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Abstract—Deep Learning (DL) is being applied in various
domains, especially in safety-critical applications such as au-
tonomous driving. Consequently, it is of great significance to
ensure the robustness of these methods and thus counteract
uncertain behaviors caused by adversarial attacks. In this paper,
we use gradient heatmaps to analyze the response characteristics
of the VGG-16 model when the input images are mixed with
adversarial noise and statistically similar Gaussian random noise.
In particular, we compare the network response layer by layer to
determine where errors occurred. Several interesting findings are
derived. First, compared to Gaussian random noise, intentionally
generated adversarial noise causes severe behavior deviation by
distracting the area of concentration in the networks. Second,
in many cases, adversarial examples only need to compromise a
few intermediate blocks to mislead the final decision. Third, our
experiments revealed that specific blocks are more vulnerable and
easier to exploit by adversarial examples. Finally, we demonstrate
that the layers Block4_convl and Block5_covl of the VGG-16
model are more susceptible to adversarial attacks. Our work
could potentially provide useful insights into developing more
reliable Deep Neural Network (DNN) models.

I. INTRODUCTION

Deep learning (DL) provides unlimited possibilities for
addressing various scientific problems. However, the robust-
ness of Deep Neural Networks (DNNs) has caused many
concerns; for example, some researchers revealed that DNNs,
such as the VGG-16 model , can be misled by intentionally
mutated images that are imperceptible to humans [2]-[4].
In these scenarios, the mutated pixels have pseudo-random
characteristics and thus raise concerns about the uncertainty
and trustworthiness of DNNs under the natural Gaussian noise
of their operational environments , [@l Most of the current
efforts still regard DNNs as black-box models and have not
yet analyzed the effect of adversarial attacks in an explainable
way. In this paper, we use images from the ImageNet database
and then manipulate them with DLFuzz [8], which gener-
ates adversarial examples based on given seed images and tries
to activate as many neurons as possible simultaneously. Grad-
CAM [9] heatmaps are generated to make the decision-making
procedure explainable. Wrongly classified mutated images are
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analyzed and compared to their origin to find out why and
in which layers behavior deviations occur. We compare the
response characteristics of the VGG-16 model when the input
images are perturbed with adversarial and Gaussian random
noise.

II. METHODOLOGY
A. Adversarial Example Generation

We selected 1000 images from the dataset. With DLFuzz we
were able to generate a total of 93 adversarial examples which
will be used in the analysis. Based on these perturbations we
calculated Gaussian random noise with the same statistical
properties and applied it to the original images as well.

B. Locating Vulnerabilities

The original samples, adversarial examples, and noisy sam-
ples are analyzed using Grad-CAM. A heatmap is generated
for each layer of the VGG-16 model showing the focus point
of the DNN in the corresponding layer. Then, the cosine
similarity is calculated between the heatmaps of the adversarial
examples and those of the original images for every layer. By
locating layers where the similarity between the adversarial
and the original samples are particularly low, we can determine
which layers react strongly to the perturbations.
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Fig. 1. Exploring neural network response against adversarial perturbations
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III. EVALUATION AND DISCUSSION

The cosine similarities between the original image’s
heatmaps and the adversarial sample’s heatmaps have no-
ticeable lower medians and greater variances in most layers
compared to the ones of the original images and the noisy
images as it can be seen in figure Especially the lay-
ers Block4_Convl and Block5_Convl are considered to be
comparatively easier to compromise because their response
deviates significantly under adversarial attacks, as they have
the two lowest medians. Gaussian noise also causes the DNN’s
behavior to deviate as shown in figure However, noisy
images cause less significant deviation. In general, more
significant behavioral deviations can be observed in deeper
layers of the network, as shown in figures[2a]and[2b] We found
that the VGG-16 network can be misled by compromising only
a few intermediate layers. Perturbations based on Gaussian
noise can cause behavioral drift, but usually do not mislead
the classifier. Using this, we define a threshold for each layer.
This threshold is equal to the median of the cosine similarity
between the heatmap of the original image and the one based
on Gaussian noise in the corresponding layer. A layer is
said to be compromised if the cosine similarity between the
heatmap of the adversarial example and the heatmap of the
original image is lower than the threshold. With DLFuzz’s
standard level of perturbation, we calculated a 40% chance of
compromising a layer. This probability increases significantly
and reaches 80% when we increase the level of perturbation by
a factor of 2. We observed that there are adversarial examples
that can cause misclassifications by compromising only a small
number of layers.

IV. CONCLUSION

We generated adversarial examples using DLFuzz. Through
Grad-CAM, we were able to analyze the decision-making
procedure of the VGG-16 network layer by layer. With our
approach, we were able to show that compared to Gaussian
random noise, intentionally generated adversarial perturbations
cause more severe behavioral deviations. Furthermore, we
were able to show that, only a few intermediate layers of
a DNN need to be compromised in order to manipulate
the final decision. Finally, we demonstrated that, the layers
Block4 _convl and Block5_covl of the VGG-16 model are
more susceptible to adversarial attacks.
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