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Abstract—Deep Learning (DL) is being applied in various
domains, especially in safety-critical applications such as au-
tonomous driving. Consequently, it is of great significance to
ensure the robustness of these methods and thus counteract
uncertain behaviors caused by adversarial attacks. In this paper,
we use gradient heatmaps to analyze the response characteristics
of the VGG-16 model when the input images are mixed with
adversarial noise and statistically similar Gaussian random noise.
In particular, we compare the network response layer by layer to
determine where errors occurred. Several interesting findings are
derived. First, compared to Gaussian random noise, intentionally
generated adversarial noise causes severe behavior deviation by
distracting the area of concentration in the networks. Second,
in many cases, adversarial examples only need to compromise a
few intermediate blocks to mislead the final decision. Third, our
experiments revealed that specific blocks are more vulnerable and
easier to exploit by adversarial examples. Finally, we demonstrate
that the layers 𝐵𝑙𝑜𝑐𝑘4 𝑐𝑜𝑛𝑣1 and 𝐵𝑙𝑜𝑐𝑘5 𝑐𝑜𝑣1 of the VGG-16
model are more susceptible to adversarial attacks. Our work
could potentially provide useful insights into developing more
reliable Deep Neural Network (DNN) models.

I. INTRODUCTION

Deep learning (DL) provides unlimited possibilities for

addressing various scientific problems. However, the robust-

ness of Deep Neural Networks (DNNs) has caused many

concerns; for example, some researchers revealed that DNNs,

such as the VGG-16 model [1], can be misled by intentionally

mutated images that are imperceptible to humans [2]–[4].

In these scenarios, the mutated pixels have pseudo-random

characteristics and thus raise concerns about the uncertainty

and trustworthiness of DNNs under the natural Gaussian noise

of their operational environments [5], [6]. Most of the current

efforts still regard DNNs as black-box models and have not

yet analyzed the effect of adversarial attacks in an explainable

way. In this paper, we use images from the ImageNet database

[7] and then manipulate them with DLFuzz [8], which gener-

ates adversarial examples based on given seed images and tries

to activate as many neurons as possible simultaneously. Grad-

CAM [9] heatmaps are generated to make the decision-making

procedure explainable. Wrongly classified mutated images are

* Wenkai Tan and Justus Renkhoff are co-first authors.

analyzed and compared to their origin to find out why and

in which layers behavior deviations occur. We compare the

response characteristics of the VGG-16 model when the input

images are perturbed with adversarial and Gaussian random

noise.

II. METHODOLOGY

A. Adversarial Example Generation

We selected 1000 images from the dataset. With DLFuzz we

were able to generate a total of 93 adversarial examples which

will be used in the analysis. Based on these perturbations we

calculated Gaussian random noise with the same statistical

properties and applied it to the original images as well.

B. Locating Vulnerabilities

The original samples, adversarial examples, and noisy sam-

ples are analyzed using Grad-CAM. A heatmap is generated

for each layer of the VGG-16 model showing the focus point

of the DNN in the corresponding layer. Then, the cosine

similarity is calculated between the heatmaps of the adversarial

examples and those of the original images for every layer. By

locating layers where the similarity between the adversarial

and the original samples are particularly low, we can determine

which layers react strongly to the perturbations.

Fig. 1. Exploring neural network response against adversarial perturbations
and Gaussian noise.
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III. EVALUATION AND DISCUSSION

The cosine similarities between the original image’s
heatmaps and the adversarial sample’s heatmaps have no-
ticeable lower medians and greater variances in most layers
compared to the ones of the original images and the noisy
images as it can be seen in figure 2. Especially the lay-
ers Block4 Conv1 and Block5 Conv1 are considered to be
comparatively easier to compromise because their response
deviates significantly under adversarial attacks, as they have
the two lowest medians. Gaussian noise also causes the DNN’s
behavior to deviate as shown in figure 2b. However, noisy
images cause less significant deviation. In general, more
significant behavioral deviations can be observed in deeper
layers of the network, as shown in figures 2a and 2b. We found
that the VGG-16 network can be misled by compromising only
a few intermediate layers. Perturbations based on Gaussian
noise can cause behavioral drift, but usually do not mislead
the classifier. Using this, we define a threshold for each layer.
This threshold is equal to the median of the cosine similarity
between the heatmap of the original image and the one based
on Gaussian noise in the corresponding layer. A layer is
said to be compromised if the cosine similarity between the
heatmap of the adversarial example and the heatmap of the
original image is lower than the threshold. With DLFuzz’s
standard level of perturbation, we calculated a 40% chance of
compromising a layer. This probability increases significantly
and reaches 80% when we increase the level of perturbation by
a factor of 2. We observed that there are adversarial examples
that can cause misclassifications by compromising only a small
number of layers.

IV. CONCLUSION

We generated adversarial examples using DLFuzz. Through
Grad-CAM, we were able to analyze the decision-making
procedure of the VGG-16 network layer by layer. With our
approach, we were able to show that compared to Gaussian
random noise, intentionally generated adversarial perturbations
cause more severe behavioral deviations. Furthermore, we
were able to show that, only a few intermediate layers of
a DNN need to be compromised in order to manipulate
the final decision. Finally, we demonstrated that, the layers
⌫;>2:4 2>=E1 and ⌫;>2:5 2>E1 of the VGG-16 model are
more susceptible to adversarial attacks.
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