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ABSTRACT

Join query evaluation with ordering is a fundamental data pro-
cessing task in relational database management systems. SQL and
custom graph query languages such as Cypher offer this functional-
ity by allowing users to specify the order via the ORDER BY clause. In
many scenarios, the users also want to see the first k results quickly
(expressed by the LIMIT clause), but the value of k is not predeter-
mined as user queries are arriving in an online fashion. Recent work
has made considerable progress in identifying optimal algorithms
for ranked enumeration of join queries that do not contain any
projections. In this paper, we initiate the study of the problem of
enumerating results in ranked order for queries with projections.
Our main result shows that for any acyclic query, it is possible to
obtain a near-linear (in the size of the database) delay algorithm af-
ter only a linear time preprocessing step for two important ranking
functions: sum and lexicographic ordering. For a practical subset
of acyclic queries known as star queries, we show an even stronger
result that allows a user to obtain a smooth tradeoff between faster
answering time guarantees using more preprocessing time. Our re-
sults are also extensible to queries containing cycles and unions. We
also perform a comprehensive experimental evaluation to demon-
strate that our algorithms, which are simple to implement, improve
up to three orders of magnitude in the running time over state-of-
the-art algorithms implemented within open-source RDBMS and
specialized graph databases.
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1 INTRODUCTION

Join processing is one of the most fundamental problems in database
research with applications in many areas such as anomaly and
community detection in social media, fraud detection in finance, and
health monitoring. In many data analytics tasks, it is also required
to rank the query results in a specific order. This functionality is
supported by the ORDER BY clause in SQL, Cypher and SPARQL.
We demonstrate a practical example use-case.
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Example 1. Consider the DBLP dataset as a single relation R(A, B),
indicating that A is an author of paper B. Given an author a, the
function h-index(a) returns the h-index of a. A popular analytical task
asks to find all co-authors who authored at least one paper together.
Additionally, the pairs of authors should be returned in decreasing
order of the sum of their h-indexes, since users are only interested in
the top-100 results. The following SQL query captures this task.

SELECT DISTINCT R;.A,R;.A FROM R AS Ry, R AS R,
WHERE R;.B=Ry.B
ORDER BY h_index(R;.A) + h_index(R;.A) LIMIT 100;

The above task is an example of a join query with projections
(join-project queries) because attribute B has been projected out
(i.e. it is not present in the selection clause). The DISTINCT clause
ensures that there are no duplicate results.

Importance of joins with projections. Join queries containing
projections appear in several practical applications such as recom-
mendation systems [30, 47], similarity search [67], and network
reachability analysis [13, 26]. In fact, as Manegold et al. [48] re-
marked, joins in real-life queries almost always come with pro-
jections over certain attributes. Matrix multiplication [7], path
queries (equivalent to sparse matrix multiplication), and reachabil-
ity queries [32] are all examples of join-project queries that have
widespread applications in linear and relational algebra. Other data
models such as SPARQL [54] also support the projection operator
and evaluation of join-project queries has been a subject of research,
both theoretically [8] and practically [20]. In fact, as SPARQL sup-
ports ORDER BY/LIMIT operator, ranked enumeration for queries
(that include projections) and top-k over knowledge bases in the
SPARQL model has also been explicitly studied recently [18, 43].
As many practical SPARQL evaluation systems [33, 59] evaluate
queries using RDBMS, it is important to develop efficient algorithms
for such queries in the relational model. Similarly, [64] argued that
since a large fraction of the data of interest resides in RDBMS, ef-
ficient execution of graph queries (such as path and reachability
queries that contain projections and ranking) using RDBMS as the
backend is valuable. In the relational setting, join-project queries
also appear in the context of probabilistic databases (see Section
2.3 in [21]). This motivates us to develop efficient algorithms, both
in theory and practice, that address the challenge of incorporating
the ranked enumeration paradigm for join-project queries.

Prior Work. Efficient evaluation of join queries in the presence
of ranking functions has been a subject of intense research in the
database community. Recent work [16, 24, 62, 63, 65] has made sig-
nificant progress in identifying optimal algorithms for enumerating
query results in ranked order. In each of these works, the key idea
is to perform on-the-fly sorting of the output via the use of priority
queues by taking into account the query structure. [16] considered
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the problem of top-k tree matching in graphs and proposed op-
timal algorithms by combining Lawler’s procedure [42] with the
ranking function. [62] introduced multiple dynamic programming
algorithms that lazily populate the priority queues. [65] took a
different approach where all possible candidates were eagerly in-
serted into the priority queues and [24] generalized these ideas to
present a unified theory of ranked enumeration for full join queries.
Very recently, [63] was able to extend some of these results to non
equi-joins as well. The performance metric for enumerating query
results is the delay [9], defined as the time difference between any
two consecutive answers. Prior work was able to obtain logarithmic
delay guarantees, which were shown to be optimal. However, all
prior work in this space suffer from one fundamental limitation:
it assumes that the join query is full, i.e. there are no non-trivial
projections involved. In fact, [63] explicitly remarks that in pres-
ence of projections, the strong guarantees obtained for full queries
do not hold anymore. Their suggestion to handle this limitation is
to convert the query with projections into a projection-free result,
i.e. materialize the join query result, apply the projection filter, and
then rank the resulting output. However, this conversion requires
an expensive materialization step. An alternate approach is to mod-
ify the weights of the tuples/attribute values to allow re-use of
existing algorithms (we describe this approach in Section 2). As
we show later, this approach also does not fare any better and re-
quires enumerating the full output of the join query, which can be
polynomially slower than the optimal solution.

On the practical side, all RDBMS and graph processing engines
evaluate join-project queries in the presence of ranking functions
by performing three operations in serial order: (i) materializing
the result of the full join query, (ii) de-duplicating the query result
(since the query has DISTINCT clause), and (iii) sorting the de-
duplicated result according to the ranking function. The first step
in this process is a show-stopper. Indeed, the size of the full join
query result can be orders of magnitude larger than the size of
the final output after applying projections and de-duplicating it.
Thus, the materialization and the de-duplication step introduces
significant overhead since they are blocking operators. Further, if
the user is interested in only a small fraction of the ordered output,
the user still has to wait until the entire query completes even to
see the top-ranked result.

1.1 Our Contribution and Key Ideas

In this paper, we initiate the study of ranked enumeration over
join-project queries. We focus on two important ranking functions:
SUM (f(x,z) = x + z) and LEXICOGRAPHIC (f(x, z) = x, z) for two
reasons. First, both of these functions are very useful in practice [35].
Second, extending the algorithmic ideas to other functions, such
as MIN, MAX, AVG and circuits that use sum and products, is quite
straightforward. More specifically, we make three contributions.

1. Enumeration with Formal Delay Guarantees. Our first main
result shows that for any acyclic query (the most common fragment
of queries in practice [14]) with arbitrary projection attributes, it is
possible to develop efficient enumeration algorithms (Section 3).

Theorem 1. For an acyclic join-project query Q, an instance D, and
a ranking function rank € {SUM, LEXICOGRAPHIC}, the query result
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Q(D) can be enumerated according to rank with worst-case delay
O(|D|log |D)), after O(|D|) preprocessing time.

This result implies that top-k results in Q(D) can be enumerated
in O(k|D|log|D|) time. Theorem 1 is able to recover the prior
results for ranked enumeration of full queries as well [24]. The
key idea of our algorithm is to develop multiway join plans [52]
by exploiting the properties of join trees. Embedding the priority
queues in the join tree strategically allows us to generate the sorted
output on-the-fly and avoid the binary join plans that all state-
of-the-art systems use. Further, since we formulate the problem
in terms of delay guarantees, it allows our techniques to be limit-
aware: for small k, the answering time is also small.

2. Faster Enumeration with More Preprocessing. Our second
contribution is an algorithm that allows for a smooth tradeoff be-
tween preprocessing time and delay guarantee for a subset of join-
project queries known as star queries over binary relations of the
form R;(A;, B) (denoted as Q},) (Section 4):

SELECT DISTINCT Ag,...,Am FROM Ry,...,Rm
WHERE Ry.B=---=R,,.B ORDER BY A; +---+A,;, LIMIT k;

Theorem 2. For a star join-project query Q}x,, an instance D, and
a ranking function rank € {SUM, LEXICOGRAPHIC}, the query result
Q(D) can be enumerated according to rank with worst-case delay

0 (|D|1_E log |D|), using O (|D|1+(m_1)€) preprocessing time and
) (lDlm(l_e)) space, forany 0 < e < 1.

Theorem 2 enables users to carefully control the space usage, pre-
processing time and delay. For both Theorem 1 and Theorem 2, we
can show that the delay guarantee is optimal subject to a conjecture
about the running time of star join-project queries in Subsection 4.2.

3. Experimental Evaluation. Our final contribution is an exten-
sive experimental evaluation for practical join-project queries on
real-world datasets (Section 6). To the best of our knowledge, this is
the first comprehensive evaluation of how existing state-of-the-art
relational and graph engines execute join-project queries in the
presence of ranking. We choose MariaDB, PostgreSQL, two popular
open-source RDBMS, and Neo4j as our baselines. We highlight two
key results. First, our experimental evaluation demonstrates the bot-
tleneck of serially performing materialization, de-duplicating, and
sorting. Even with LIMIT 10 (i.e. return the top-10 ranked results),
the engines are orders of magnitude slower than our algorithm.
For some queries, they cannot finish the execution in a reasonable
time since they run out of main memory. On the other hand, our
algorithm has orders of magnitude smaller memory footprint that
allows for faster execution. The second key result is that all baseline
engines are agnostic of the ranking function. The execution time of
the queries is identical for both the sum and lexicographic ranking
function. However, our algorithm uses the additional structure of
lexicographical ordering and can execute queries 2 — 3x faster than
the sum function. For queries with unions and cycles, our algorithm
maintains its performance improvement over the baselines.

2 PROBLEM SETTING

In this section we present the basic notions and terminology, and
then discuss our framework. We focus on the class of join-project
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Figure 1: Illustration of join tree for a join-project query
Q = ma E(R1 (A, B) > Ry(B,C) »a R3(C, D) > Ry(D, E)).

queries, which are defined as
Q = ma(Ri(A1) > R2(Az) > ... % Rin(Apm))

Here, each relation has schema R;(A;), where A; is an ordered
set of attributes. Let A = Aj U Az U --- U Ap,. The projection
operator 7o only keeps a subset of the attributes from A. The join
we consider is natural join, where tuples from two relations can be
joined if they share the same value on the common attributes. A
join-project query is full if A = A. Unlike prior work on ranked
enumeration, in this paper we place no restriction on the set of
attributes in the projection operator. For simplicity of presentation,
we do not consider selections; these can be easily incorporated
into our algorithms. As an example, the SQL query in Example 1
corresponds to the following query: w4 g(R1 (A, C) > Rz2(B,()).

A database D is a set of relations, whose size is defined as the
total number of tuples in all relations denoted as |D|. For tuple ¢, we
will use the shorthand t[A] to denote 74 (t). We use & to denote
the set of all relations in the database.

Acyclic Queries and Join Trees. A join-project query Q is acyclic
if and only if it admits a join tree 7. In a join tree, each relation is a
node, and for each attribute A, all nodes in the tree containing A
form a connected subtree. For simplicity, we will use node i to refer
to the node corresponding to relation R; in 7. Given a join tree 7,
pick any node to be the root, and then orient each edge towards the
root. Let 7 be the subtree rooted at node R;. Let parent(R;) be the
(unique) parent of R;, and anchor(R;) = R; N parent(R;) to be the
anchor attributes between R; and its parent. Let child(R;) be the set
of children nodes of R;. Finally, we fix the ordering of the projection
attributes in A to be the order of visiting them in the in-order
traversal of 7. Finally, we define AT as the ordered set of projection
attributes in subtree rooted at node i (including projection attributes
of node i). As a convention, we define anchor(r) = 0, A} = 0 for
the root r and child(R;) = 0 for a leaf node R;.

Example 2. Consider a join-project query Q = ma g(R1(A, B) ™ Ry
(B,C) > R3(C,D) » R4(D,E)) under the ranking function SUM
defined over attributes A, E. In other words, for every output tuple t,
the score of the tuple is t[A] + t[E]. Figure 1 shows the join tree for
the query. We fix Rs as the root with Ry as the left child and Ry (a leaf
node) as the right child. Ry, as a leaf node, is also the only child of R.
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Figure 2: Examples of GHD and fhw. The leftmost is the min-
imal GHD of a cycle join Q = Rj(A1,A2) > Ry(Az,Az)

- 2 Ry—1(An—1,An) 24 Ry(An A;) with fhw = 2. The mid-
dle is the minimal GHD of a bi-clique join Q =;c(,] je[m]
R(i—1)m+j(Ai, Bj) with fhw = m. The rightmost is the mini-
mal GHD of a butterfly join Q = R; (A1, Az) > Ry(Az, Asz)
R3(A1, Ag) > Ry(A4, A3) with fhw = 2.

Generalized Hypertree Decompositions. A weight assignment
u = (up)peg is said to be a fractional edge cover if (i) for every
F € & up > 0; and (ii) for every X € A, Y r.xcpur > 1. The
fractional edge cover number for A, denoted p*(A) is the minimum
of Y peg ur over all possible edge covers. A generalized hypertree
decomposition (GHD) of a query Q is a tuple (T, (B¢) ey (7)) where
T is a tree and every B; (called the bag of ¢) is a subset of A for
each node t of the tree such that: (i) each variables of each F € &
is contained in some bag; and (ii) for each A € A, the set of nodes
{t | A € B;}is connected in T. The fractional hypertree width of
a decomposition is defined as max;cy (7) p*(B;), where p*(B;)
is the fractional edge cover number of the attributes in B;. The
fractional hypertree width of a query Q, denoted fhw(Q), is the
minimum fractional hypertree width over all possible GHDs of
Q. Figure 2 gives examples of GHDs of popular queries and their
width. For an acyclic query, it holds that fhw = 1 and any join tree
is a valid GHD.

Computational Model. To measure the running time of our algo-
rithms, we use the uniform-cost RAM model [34], where data values
as well as pointers to databases are of constant size. Throughout
the paper, all complexity results are with respect to data complexity,
where the query is assumed fixed. It is important to note that we
focus on the main memory setting. We further assume existence of
perfect hashing that allows constant time lookups in hash tables.

2.1 Ranking Functions

The ordering of query results in Q(D) can be specified by a ranking
function, or through the ORDER BY clause of a SQL query in practice.
Formally, a total order > on the tuples in Q(D) defined over the
attributes A, is induced by a ranking function rank that maps each
tuple t € Q(D) to a real number rank(t) € R. In particular, for two
tuples t1, 2, we have t; > ty if and only if rank(#;) > rank(2). We
assume that dom(A) for any A € A is also equipped with a total
order >. We present an example of a ranking function below.

Example 3. Consider a function w : dom(A) — R for any attribute
A € A. For each query result t, we define its rank as rank(t) =
D aeca W(t[A)), the total sum of the weights over all attributes in A.



We will focus on SUM and LEXICOGRAPHIC in this paper. We
note that both functions are instantiations of a more general class
of decomposable functions [24]. The ideas introduced for SUM and
LEXICOGRAPHIC are readily applicable to more complicated func-
tions including products, a combination of sum and products, etc.

2.2 Problem Parameters

Given a join-project query Q and a database D, an enumeration
query asks to enumerate the tuples of Q(D) according to some
specific ordering defined by rank. We study this problem in a similar
framework as [58], where an algorithm is decomposed into:

e apreprocessing phase that takes time T, and computes a
data structure of size Sp

an enumeration phase (i.e. the online query phase) that
outputs Q(D) without duplicates under the specified or-
dering whenever a user query is issued. This phase has
full access to any data structures constructed in the pre-
processing phase. The time between outputting any two
consecutive tuples (and also the time to output the first
tuple, and the time to notify that the enumeration has com-
pleted after the last tuple) is at most 8.

Prior work [24] has shown that for acyclic joins without pro-
jections, there exists an algorithm with T;, = S, = O(|D|) that can
achieve § = O(log |D|) delay under ranking. However, the problem
of ranked enumeration when projections are involved is wide open.

Using Existing Algorithms. One possible solution to the problem
is to set the weights of non-projection attributes to 0. This will
ensure that for SUM function, only the projection attributes are
considered in the ranking and existing algorithms for full join
queries could be used. However, this proposal gives poor delay
guarantees and is as expensive as enumerating the full join result.
For example, for the four path query in Example 2, the output of the
query could be constant in size but the full join can be as large as
Q(|D|?) which is prohibitively expensive, but our algorithm would
only require O(|D|) in this case. In general, a join with ¢ relations
may require as much as Q(|D|~1) time to output the smallest tuple.
We describe more details and the formal proof in [23].

3 GENERAL ACYCLIC QUERIES

We first describe the main algorithm of enumerating acyclic join-
project queries for SUM ordering in Subsection 3.1, followed by
a specialized algorithm for LEXICOGRAPHIC ordering in Subsec-
tion 3.2. Before we describe the algorithm, we introduce two key
data structures that will be used: cell and priority queues.

DEFINITION 1. A cell, denoted asc = (t, [p1, ..., px]. q). is a vector
consisting of three values: (i) a tuple t € R; for node i in the join tree
T, (ii) an array of pointers [p1, ..., pi] where the €' pointer points
to a cell defined for eth child of node i in T, (iii) a pointer q that can
only point to another cell defined for node i.

Given a cell ¢ defined for node i, one can reconstruct the tuple
over A7in constant time (dependent only on the query size, which
is a constant) by traversing the pointers recursively. We will use
output(c) to denote the utility method that performs this task. Note
that the time and space complexity of creating a cell is O(1) since
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the size of the query and the database schema is assumed to be
a constant. This implies that we only need to insert/access a con-
stant number of entries in the vector representing a cell. Similarly,
output(c) also takes O(1) time since the join tree size is a constant.

Priority queue. A priority queue is a data structure for maintain-
ing a set S of elements, each with an associated value called a key.
The space complexity of a priority queue containing |S| elements
is O(]S]). We will use an implementation of a priority queue (e.g., a
Fibonacci heap [31]) with the following properties: (i) an element
can be inserted in O(1) time, (ii) the min element can be obtained
in O(1) time, and (iii) the min element can be popped and deleted
in O(log |D|) time. We will use the priority queue in conjunction
with a cell in the following way: for two cells ¢; and cy, the pri-
ority queue uses rank(output(cq)) and rank(output(cy)) in the
comparator function to determine the relative ordering of ¢; and
cy. If rank(output(cy)) = rank(output(cy)), then we break ties
according to the lexicographic order of output(cy) and output(cy).
The choice of lexicographic ordering is not driven by any specific
consideration; as long as the ties are broken consistently, we can
use other tie-breaking criteria too. Once again, the comparator func-
tion only takes a O(1) time to compare since the ranking function
rank(output(c)) can be evaluated in constant time.

3.1 General Algorithm

In this section, we present the algorithm for Theorem 1. At a high
level, each node i in the join tree will materialize, in an incremental
fashion, all tuples over the attributes AT U anchor(R;) in sorted
order. In order to efficiently store the materialized output, we will
use the cell data structure. Since we need to sort the materialized
output, each node in the join tree maintains a set of priority queues
indexed by 7anchor (r;) (4), 4 € R;. The values of the priority queue
are the cells of node i. For example, given the join tree from Exam-
ple 2, node 2 containing Ry will incrementally materialize the sorted
result of the subquery zc 4 (R2(B, C) > Ry (A, B)) that is indexed
by the values 7¢(Rz(B, C)) since A7 = {A} and anchor(Rz) = {C}.
Note that there may be multiple possible join trees for a given
acyclic query. Our algorithm is applicable to all join trees. In fact,
any node in the join tree can be chosen as the root without any
impact on the time and space complexity.

Preprocessing Phase. We begin by describing the algorithm for
preprocessing in Algorithm 1. We assume that a join tree has been
fixed and the input instance D does not contain any dangling tuples,
i.e., tuples that will not contribute in the join; otherwise, we can
invoke the Yannakakis algorithm [66] to remove all dangling tuples.
We initialize a set of empty priority queues for every node in the join
tree. We proceed in a bottom up fashion and perform the following
steps. For each leaf relation R; € 7, we create a cell (¢, [], L)
for each tuple ¢t € R; and insert it into PQ; [7anchor(r,) (£)]. For
each non-leaf relation R; € 7, we create a cell for t € R, which
points to the top of the priority queue in each child node of R; that
can be joined with t. This cell is then added to the priority queue
PQ;[7anchor (R;) (t)]. Note that we only have one priority queue for
the root relation r since anchor(r) = @ by definition.

Example 4. Continuing with the 4-path query running example,
consider the following instance D as shown below.
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Figure 3: Example to demonstrate the preprocessing and enumeration phase of the general algorithm

Algorithm 1: PREPROCESSACYCLIC Algorithm 2: ENUMAcYcLIC
Input :Input query Q, database instance D; join tree 7 Input :Input query Q, database instance D; join tree 7;
ranking function rank. ranking function rank; Priority queues PQ
Output: Priority Queues PQ Output:Q(D) in ranked order
1 foreach R; € T in post order traversal do 1 PROCEDURE Enum()
2 foreach t € R; do 2 last « 0;
3 U ¢ Tanchor (R;) ()3 s | while PQ,[0] # 0 do
4 if PQ;[u] does not exist then 4 0 «— PQ,[0].top();
5 ‘ PQ;[u] « 0; /* Initialize a priority queue */ 5 if is_equal(o, last) = false then
6 L« 0; 6 ‘ print output(o), last « o; /* new output */
7 foreach R; is the child of R; do 7 Topdown (o, r);
8 ‘ L.insert(PQ[manchor(r,) (4)].top()); 8 PROCEDURE Topdown(c, j) /¢ = (t,[p1,. .., pr], next) */
9 PQ;|u].insert({t,L, 1)); 9 U — ﬂanChOr(Rj)(C't);
10 if c.next = L then
11 while true do
T Ry =TC Ry =5 Rs =T Ry 12 temp « pop(PQ;[u]);
T3 T3 7T 7 T3 13 foreach R; is a child of Rj do
2|1 1 12 1|2 1 p; < Topdown(c.p;, i) ;
12 15 if p} # 1 then
i12 1 ‘ PQ,[ul.insert((t, [c.p1, . pls- .. c.p]s 1))
As we saw before, Figure 1 shows the join tree along with the anchor . .
attributes in each relation. Figure 3a shows the state of priority queues 7 if R; is not the root then
after the preprocessing step. After the full reducer pass, tuple (1,2) 1 ‘ Ac.next « addressof(PQ;;[u].top());
is removed from R3 because there is no join tuple that can be formed 9 if is_equal(temp, PQ;[u].top()) = false
using it. Then, we start constructing the cells for each node starting then break;
with the leaf nodes. Since B is the anchor for relation Ry, we create two 20 return c.next;
priority queues PQq[1] and PQq[2]. For PQ[1], we create the cells 21 PROCEDURE is_equal(cy,c2)
for tuples (1,1) and (2, 1). For convenience, the cells are followed by 22 if rank(output(cy))# rank(output(cz)) then return
the partially aggregated score. Consider relation Ry (B, C). The cell for false
tuple (1,1) in PQy[1] points to the top of PQi[1] (shown as pointer 23 foreach A € A do
with address 100). The root bag consists of a single tuple entry which 21 if output(cq)[A] < output(cz)[A] then return
points to the cells at locations 300 and 400. The output tuple that can false
be formed by the root bag is (A =1,E = 1). 95 return true;

Enumeration Phase. We describe the enumeration procedure
in Algorithm 2. The high-level idea is to output answers by re-
peatedly popping elements from the root priority queue. It may be
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possible that multiple tuples of the root priority queue output the
same final result. In order to deduplicate answers, we compare the
answer at the current top of the priority queue with the previous
answer (line 5), and output it only if they are different. Then, we
invoke the procedure ToPDOWN to insert new candidates into the
priority queue. This procedure will be recursively propagated over
the join tree until it reaches the leaf nodes. Observe that once the
new candidates have been inserted, the next pointer of a cell is
updated by pointing to the topmost element in the priority queue.
This chaining materializes the answers for a particular node that
can be reused and is key to avoiding repeated computation.

Example 5. Continuing our running example, Figure 3b shows the
state of the priority queues after one complete iteration of procedure
EnuMm(). We first pop the only element in root priority queue and note
that the output tuple (A = 1,E = 1) is enumerated. Then we call
TorpOWN with cell at memory 500 and root (node 3) as arguments
(denoted as TorpowN(%500, 3) ). The next for the cell is L so we pop
the cell at 500 from the priority queue (shown as greyed out in the
figure) and recursively call TorpowN(%300, 2). The cell at memory
location 300 has next = L. Therefore, we enter the while loop, pop the
cell and recursively call ToPDowN(*100, 1). We have now reached the
leaf node. The anchor attribute value for cell at 100 isu = 1, so we
pop the current cell from PQq [1] (greyed out cell at 100), find the next
candidate at the top of PQq[1] (which is cell at 101), chain it to the
cell at 100 by assigning next = 101 and return the cell at 101 to the
parent. When the program control returns from the recursive call back
to node 2, we create a new cell (at memory address 302) that points to
101 and insert it into the priority queue. However, observe that the cell
at memory location 301 also generates A = 1, a duplicate since cell at
300 also generated it. This is where the equality check at line 19 comes
in. Since both cells at 300 and 301 generate the same value, we also
pop off the cell at 301 in the subsequent while loop iteration, find its
next candidate and create the cell at 303, and insert into the priority
queue. This ensures that all elements in PQ2[1] generating the same
A value are removed, ensuring no duplicates at the root level. Finally,
the control returns to the root level ToPDOWN call. The recursive call
to the right child (node 4) create a new cell 401 and we insert two cells
at the root priority queue, cell 501 and 502 that correspond to output
tuple (A =2,E = 1) and (A = 1, E = 2) respectively.

We are now ready to formally prove Theorem 1.

Lemma 1. The delay guarantee of ENUMAcYcLIC is at most O(|D| log

Lemma 2. PrRePrOCESsAcycLIC running in O(|D|log|D|) time,
generates a data structure of size O(|D|).

Lemma 3. ENUMACYCLIC enumerates the query result Q(D) in
ranked order correctly.

Together, the above lemmas establish Theorem 1. We defer the
full proofs to [23]. We also show how we can recover logarithmic
delay guarantee for full queries from [24, 62].

3.2 Improvement for Lexicographic Ranking

The algorithm from last section is also applicable to LEXICOGRAPHIC
ranking function. In fact, we can transform LEXICOGRAPHIC with
an attribute ordering of A1, Ay, -+, Ay, into SUM by defining a

D).
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ranking function rank(t) = Y™ 10™"" . w(m4,(t)) for tuple t,
while preserving the LEXICOGRAPHIC ordering. In this section, we
present an alternative algorithm by exploiting the special structural
properties of LEXICOGRAPHIC, that the global ranking also implies
local ranking over every output attribute. Moreover, it admits to
enumerate query results not only in lexicographic order as given
by ORDER BY Ay, Ay, - -+, A but also arbitrary ordering on each
attribute (for instance, ORDER BY A ASC, Ay DESC ...).

Preprocessing Phase. In this phase, we perform the full reducer
pass to remove all dangling tuples and create hash indexes for the
base relations in sorted order. We also sort dom(A4;).

Enumeration Phase. Given an attribute order of output attributes
A = {A1, Ay, -+, A}, we start by fixing the minimum value in
dom(A;) as aj. Then, we perform the two-phase semi-joins to re-
move tuples that cannot be joined with value aj, and find the values
in dom(Ay) that survive after semi-joins, denoted as L4, (a1). Sim-
ilarly, we fix the minimum value in L4, (a1) as a2, and perform
the two-phase semi-joins for finding the values in dom(As3) that
can be joined with both aj, az. We continue this process until all
attributes in A have been fixed, and end up with enumerating such
a query result (with fixed values). Then, we backtrack and continue
the process until all values in attribute A; are exhausted.

Algorithm 3: ENuMAcYcLicLEX1(t, L, i)

Input :Input query Q, database D

Output:Q(D) x ¢ in lexicographic order of A;, -+, Ap,
1 if i = m then output ¢ and return;
2 foreach a € £ do
L — ma,,, (0a;=a(Riv1 < 1)) 5
' — (t,a);
EnumAcycLicLexi(t/, L, i+ 1);

3 /* by semi-joins */

4 /* create new tuple */

5

Algorithm 3 takes as input an acyclic query Q, an database
D, an integer i € {1,---,m}, a tuple t defined over attributes
Ay, -+, Aj_1, and a set of values £ C dom(A;) that can be joined
with ¢ in D. The original problem can be solved by invokingbreak
EnumAcycLicLEx1(0, dom (A1), 1) for sorted dom(A1).

Lemma 4. ENUMAcYcLICLEXT enumerates Q(D) correctly in lexico-
graphic order with delay guarantee O(|D|) after preprocessing time
T, = O(|D|log |D[) and space complexity O(|D]).

4 STAR QUERIES

In this section, we present a specialized data structure for the star
query, which is represented as: QF, = 74 (R1 (A1, B) 4 R(Az, B)
-+« > Ry (Am, B)). where A = {Ay, -, Ay }. All relations in a star
query join on exactly the same attribute(s). In this following, we
present a specialized data structure on ranked enumeration for Q}x,
in Section 4.1, and prove the optimality in Section 4.2.

4.1 The Algorithm

Consider the star query QJ,, a database D and a ranking function
rank. Now we present a data structure for Theorem 2.



Algorithm 4: PREPROCESSSTAR

Algorithm 5: ENUMSTAR

Input :Input star query Q},, ranking function rank and
database D; degree threshold § > 1
Output:Heavy output O and priority queue PQ
1 foreachi€ {1,2,---,m} do
2 Rfl — {teR;: |o’Ai:,rAi(t)| >0}

RE—{teR;: loa;=ma, ()| < 6}

3
4 Compute OF « 715 (R{{ S I RI,Z);

5 Sort OH by rank;

6 forie {0,1,...,m—1} do

Qi<—R11LII><1 NanI_l MR{.‘ > Rjpq > - > Ry
7i « ajoin tree for Q with R; as root and all other

7

8
relations as children of R;;

PREPROCESSAcCYCLIC(Qj, T7);

next «—ENUMAcycLic(Q;, 77);

PQ.insert(next);/* insert the smallest tuple into PQ */

10

11

Preprocessing Phase. Without loss of generality, assume that
there is no dangling tuples in D. Moreover, if A does not include an
attribute A, we can remove efficiently R; using a semi-join. We first
fix a degree threshold § > 1 (whose value will be determined later).
Foreachi € {1,2,---,m},avalue a; € dom(A) is heavy if it has de-
gree larger than § in R;, i.e., [0a=q, (R;)| = 6, and light otherwise. A
tuple t = (a;, b) € R; is heavyif a; is heavy. For R;, let RiH, R{‘ be the
set of heavy and light tuples in R;. An output t = (aj, az,...,am) €
Q% (D) is heavy if a; is heavy in R; for each i € {1,2,---,m}, and
light otherwise. In this way, we can divide the output Q;, (D) into
OF and O, containing all heavy and light output tuples sepa-
rately. In the preprocessing phase, our goal is to materialize all
heavy output tuples (OF) ordered by rank. Details are described

in Algorithm 4. We compute OF = 75 (Rfl > Rf SIS Rg)

by invoking the Yannakakis algorithm [66], and then sort O by
rank. Next, we insert the smallest query result from O into the
priority queue. Then, we define m different subqueries as Q;

nA(Rllq ST NREI MRiL D4 Rjpp b4 - MRm) where tuples in
relation R; are heavy for any j < i and tuples in relation R; are
light. For such Q;, we consider a join tree 7; in which R; is the
root and all other relations are children of R;. We preprocess a data
structure for Q; with 7;, by invoking Algorithm 1.

Enumeration Phase. As described in Algorithm 5, the high-level
idea in the enumeration is to perform a (m + 1)-way merge over OF
and Q;’s. Specifically, we maintain a priority queue PQ with one
entry for each subquery Q; and one entry for O, Once the smallest
element is extracted from PQ (say t generated by Q;), we extract
the next smallest candidate from Q; (if there is any) and insert it
into PQ. Moreover, finding the smallest candidate output result
from O™ is trivial since O have been materialized in a sorted way
in the preprocessing phase. We conclude this subsection with the
formal statement of the result.
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Input :Star query Q};, ranking function rank and
database D; Output of OF and priority queue PQ

Output:Qx (D) in ranked order

while PQ # 0 do

t < PQ.pop();

output ¢;

if t ¢ OF then

i « smallest positive index such that TA; (1) is

/* enumerate the result */

heavy for all j < i and 74, (¢) is light;
next « ENumAcycric(Q;, 77);
PQ.insert(next);
else PQ.insert(O™.pop());

Lemma 5. Algorithm 4 runs in time T = O(|D| - (|D|/8)™™!) and
requires space S = O((|D|/8)"™). Algorithm 5 correctly enumerates
the result of the query in ranked order with delay O(|D|log |D|/d).

4.2 Tradeoff Optimality

We next present conditional optimality for our tradeoff achieved in
Theorem 2. Before showing the proof, we first revisit a result on
unranked evaluation for Q, in [7]:

Lemma 6 ([7]). There exists a combinatorial' algorithm that can
1
evaluate Q, on any database D in time O (|D| . |Q;(D)|1_ m )

This result was presented over a decade ago without any im-
provement since then. Thus, it is not unreasonable to conjecture
that Lemma 6 is optimal. Based on its conjectured optimality, we
can show the following result for unranked enumeration.

Lemma 7. Consider star query Q},, database D and some constant
€ € [0,1]. If there exists an algorithm that supports O(|D|*~€ log | D|) -
delay enumeration after O(|D|"*(M=D€=€"y preprocessing time for
some constant €’ > 0, the optimality of Lemma 6 will be broken.

The lower bound holds for any ranking function. Lemma 7 im-
plies that for star queries, both Theorem 1 and Theorem 2 are
optimal. Before concluding this section, we also remark on the
question of whether the logarithmic factor that we obtain in the
delay guarantee is removable. Prior work [24] showed that for the
following simple join query Q = R(x) » S(y) over SUM, there
exists no algorithm supporting constant-delay enumeration after
linear preprocessing time. Note that this does not rule out a sub-
logarithmic delay guarantee, which remains an open problem.

5 GENERAL QUERIES

In this section, we will describe how to extend the algorithm for
acyclic queries to handle cyclic queries. The key idea is to transform
the cyclic query into an acyclic one, by constructing a GHD as
defined in Section 2. A GHD automatically implies an algorithm
for cyclic joins. After materializing the results of the subquery
induced by each node in the decomposition, the residual query

! An algorithm is called combinatorial if it does not use algebraic techniques such as
fast matrix multiplication.



becomes acyclic. Hence, we can apply our algorithm for acyclic
queries directly obtaining the following:

Theorem 3. For a join-project query Q, a database instance D and
a ranking function rank € {SUM, LEXICOGRAPHIC}, the query results
Q(D) can be enumerated according to rank with O(|D|ftw log |D|)
delay, after O(|D|f™ log |D|) preprocessing time.

We now go one step further and extend our algorithm to queries
that are unions of join-project queries (UCQs) using an idea intro-
duced by [24, 62]. AUCQ query is of the form Q = Q1UQ2U- - -UQ,,
where each Q; is a join-project query defined over the same projec-
tion attributes A. Semantically, Q(D) = |J; Qi(D). Recent work by
Abo Khamis et al. [4] presents an improved algorithm (called PANDA)
that constructs multiple GHDs by partitioning the input database
into disjoint pieces and build a GHD for each piece. In this way,
the size of materialized subquery can be bounded by O(|D|3/0%),
where subw is the submodular width [49] of input query Q. More-
over, subw < fhw holds generally for query Q, thus improving the
previous result on fhw. By using Theorem 1 in conjunction with
data-dependent decompositions from PANDA we can immediately
obtain the following result:

Theorem 4. For a join-project query Q, a database instance D and
a ranking function rank € {SUM, LEXICOGRAPHIC}, the query results
Q(D) can be enumerated according to rank with O(|D|*®" log |D|)
delay, after O(|D|*"® log |D|) preprocessing time.

Example 6. Consider the 4-cycle (butterfly) query ms c(R1(A, B) >
Ry(B,C) > R3(C, D) » Ry(D, A)) with ranking function rank(t) =
wA(t) + mc(t). With fhw = 2, Theorem 4 implies that the query
results can be enumerated according to rank with O(|D|?log |D|)
delay, after O(|D|?) preprocessing time. With subw = %, Theorem 4
implies that query results can be enumerated according to rank with
delay O(|D|3/2 log |D|), after O(|D|3/2 log |D|) preprocessing time.

A note on optimality. The reader may wonder whether the expo-
nent of fhw and subw in Theorem 3 and Theorem 4 are truly neces-
sary. For the triangle query Qa (x,y) = R(x,y) > S(y, z) = T(z,x)
which is the simplest cyclic query, fhw = subw = 3/2 and even after
30 years, the original AYZ algorithm [6] that detects the existence
of a triangle in O(|D|?/2) time still remains the best known combi-
natorial algorithm. It is widely conjectured [1, 2, 40, 50] that there
exists no better algorithm. As noted in [4], the notion of submod-
ular width was suggested as the yardstick for optimality. Indeed,
the groundbreaking results by Marx [49] rules out algorithms with
better dependence than subw in the exponent for a small of class
of queries but a general unconditional lower bound still remains
out of reach. Thus, any improvement in the exponent would auto-
matically imply a better algorithm for cycle detection since ranked
enumeration is at least as hard. In [23], we formally show that
the exponential dependence of subw in Theorem 4 is unavoidable
subject to popular conjectures.

6 EXPERIMENTAL EVALUATION

In this section, we perform an extensive evaluation of our pro-
posed algorithm. Our goal is to evaluate three aspects: (a) how fast
our algorithm is compared to state-of-the-art implementations for
both SUM and LEXICOGRAPHIC ranking functions on various queries
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and datasets, (b) test the empirical performance of the space-time
tradeoff in Theorem 2, (c) investigate the performance of our algo-
rithm on various cyclic queries based on different shapes and (d)
test the scalability behavior of our algorithm.

6.1 Experimental Setup

We use Neo4j 4.2.3 community edition, MariaDB 10.1.47% and Post-
greSQL 11.12 for our experiments. All experiments are performed
on a Cloudlab machine [25] running Ubuntu 18.04 equipped with
two Intel E5-2630 v3 8-core CPUs@2.40 GHz and 128 GB RAM. We
focus only on the main memory setting and all experiments run
on a single core. Since the join queries are memory intensive, we
take special care to ensure that only one DBMS engine is running
at a time, restart the session for each query to ensure temp tables
in main memory are flushed out to avoid any interference, and also
monitor that no temp tables are created on the disk. We only keep
one database containing a single relation when performing experi-
ments. We switch off all logging to avoid any performance impact.
For PostgreSQL and MariaDB, we allow the engines to use the full
main memory to ensure all temp tables are resident in the RAM
and sorting (if any) happens without any disk IOs by increasing the
sort buffer limit. For Neo4j, we allow the JVM heap to use the full
main memory at the time of start up. We also build bidirectional
B-tree indexes for each relation ahead of time and create named
indexes in Neo4j. All of our algorithms are implemented in C++
and compiled using the GNU C++ 7.5.0 compiler that ships with
Ubuntu 18.04. Each experiment is run 5 times and we report the
median after removing the slowest and the fastest run.

6.1.1  Small-Scale Datasets. We use two real world small scale
datasets for our experiments: the DBLP dataset, containing relation-
ship between authors and papers, and the IMDB dataset, containing
relationship between actors, directors, and movies. We use these
datasets for two reasons: (i) both datasets have been found to
be useful and studied extensively in practical problems such as
similarity search [67], citation graph analysis [56], and network
analysis [13, 26]. (ii) small-scale datasets allow experiments to
finish for all systems allowing us to make a fair comparison and
develop a fine-grained understanding. In line with prior work [38],
for each tuple we assign the weight attribute (and add it to the table
schema) in two ways: first, we assign a randomly chosen value,
and second, logarithmic weights in which the weight of the entity
(author and paper in DBLP) v is log, (1+deg,), where deg, denotes
its degree in the relation. The schema for both datasets is as shown
below (underlined attributes are primary keys for the relation):
(1) DBLP: AuthorPapers(aid, pid), Author(aid, name, weight),
Paper(aid, title, venue, year, weight, is_research).
(2) IMDB: PersonMovie(pid, mid), Company(cid, name, nation),
Person(pid, name, role, weight),
Movie(@, name, year, genre, cid, weight)

Queries. We consider 4 acyclic join queries as shown in Figure 4 for
the small-scale datasets, which are commonly seen in practice [14,
60]. Intuitively, the first three queries find all the top-k weighted
2-hops, 3-hops and 4-hops reachable attribute pairs within the

2Compared with MySQL, MariaDB performed better in our experiments, hence we
report the results for MariaDB



DBLPspop = SELECT DISTINCT Aj.name, Az.name FROM Author AS A7, Author AS Ay, AuthorPapers AS AP, AuthorPapers as AP,
Paper AS P WHERE AP;.pid = AP,.pid AND APj.aid = Aj.aid AND AP,.aid = Aj.aid AND P.is_research =true ORDER BY

Aj.weight + Ap.weight LIMIT k;

DBLP3pop = SELECT DISTINCT A.name, P.name FROM Author AS A, Paper AS P, AuthorPapers AS APi, AuthorPapers as AP,
AuthorPapers as AP3 WHERE APq.pid = AP,.pid AND AP;.aid = AP3.aid AND AP;.aid = A.aid AND AP3.pid = P.pid AND P.is_research =

true ORDER BY A.weight + P.weight LIMIT k;

DBLPypop = SELECT DISTINCT Aj.name, Az.name FROM Author AS A7, Author AS Ay, AuthorPapers AS AP, AuthorPapers as AP,
AuthorPapers as AP3, AuthorPapers as AP4, Paper AS Py, Paper AS P, WHERE AP;.pid = AP,.pid AND AP;.aid = AP3.aid AND
AP3.pid = AP4.pid AND AP3.pid = P;.pid AND AP;.pid = P1.pid AND APj.aid = Aj.aid AND APj.aid = Aj.aid AND Pj.is_research =true
AND P;.is_research =true ORDER BY Aj.weight + A2.weight LIMIT k;

DBLP3star = SELECT DISTINCT Aj.name, Az.name, As.name FROM Author AS A;, Author AS A, Author AS Az, AuthorPapers AS APj,
AuthorPapers as AP, AuthorPapers as APz, Paper AS P WHERE AP;.pid = AP;.pid = AP3.pid AND AP;.aid = Aj.aid AND
AP;.aid = Ay.aid AND APs.aid = Az.aid AND AP5.pid = P.pid AND P.is_research =true ORDER BY Aj.weight + Az.weight + As.weight

LIMIT k;

Figure 4: Network analysis queries for DBLP. Queries for IMDB are defined similarly (see [23]).

DBLP network. As remarked by in [17, 41, 60], these queries are
of immense practical interest (e.g., see Table 4 in [60]). Queries for
IMDB dataset are defined similarly in [23]. In Subsection 6.2.2, we
also investigate the performance for cyclic queries.

6.1.2  Large-Scale Datasets. We also perform experiments on two
real-world large scale relational datasets and one relational bench-
mark. The first dataset is from the Friendster [44] online social
network that contains 1.8B tuples. In the social network each, user
is associated with multiple groups. The second dataset is the Meme-
tracker [44] dataset which describes user generated memes and
which users have interacted with the meme. The dataset contains
418M tuples. For both Friendster and Memetracker, we use weights
for users as the number of groups they belong to and the num-
ber of memes they create respectively. Finally, we also use the
queries containing a ranking function from the LDBC Social Net-
work Benchmark [27] with scale factor SF = 10, a publicly available
benchmark, to perform scalability experiments.

Queries. For Friendster and Memetracker, we use two popular
queries that are used in network analysis. Similar to the DBLP
queries, we identify the ranked user pairs in the two hop and three
hop neighborhoods for all users. The ranking is the sum of weights
of the user pair. These queries have widespread application in
understanding information flow in a network [51] and are used in
recommendation systems [30, 47]. For LDBC benchmark, we use
the multi-source version of Q3, Q10 and Q11. Each of these queries
are variants of the neighborhood analysis and contains UNION.

6.2 Small Scale Experiments

In this section, we compare the empirical performance of the al-
gorithm given by Theorem 1 (labeled as LINDELAY in all figures)
against the baselines for each query. In order to perform a fair com-
parison, we materialize the top-k answers in-memory since other
engines also do it. However, a strength of our system is that if a
downstream task only requires the output as a stream, we are able
to enumerate the result instead of materializing it, which is not
possible with other engines.
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Sum ordering. Figure 5 shows the main results for the DBLP
and IMDB datasets when the ranking function is the sum function
and the weights are chosen randomly. Let us first review the re-
sults for the DBLP dataset. Figure 5a shows the running time for
different values of k in the limit clause. The first observation is
that all engines materialize the join result, followed by dedupli-
cating and sorting according to the ranking function which leads
to poor performance for all baselines. This is because all engines
treat sorting and distinct clause as blocking operators, verified by
examining the query plan. On the other hand, our approach is limit-
aware. For small values of k, we are up to two orders of magnitude
faster and as the value of k increases, the total running time of
our algorithm increases linearly. Even when our algorithm has to
enumerate and materialize the entire result, it is still faster than
asking the engines for the top-10 results. This is a direct benefit
of generating the output in deduplicated and ranked order. As the
path length increases from two to three and four path (Figure 5b
and Figure 5c), the performance gap between existing engines and
our approach also becomes larger. We also point out that all en-
gines require a large amount of main memory for query execution.
For example, MariaDB requires about 40GB of memory for exe-
cuting DBLPp0p. In contrast, the space overhead of our algorithm
is dominated by the size of the priority queue. For DBLP dataset,
our approach requires a measly 1.3GB, 4GB, 3GB and 2.7GB total
space for DBLPypop, DBLP3pop, DBLP4pop and DBLP3star respec-
tively. For DBLP3p0p, DBLPypop and DBLP3star, we also implement
breadth first search (BFS) followed by a sorting step using the idea
of Algorithm 3. As it can be seen from the figures, BFS and sort pro-
vides an intermediate strategy which is faster than our algorithm
for large values of k but at the cost of expensive materialization
of the entire result, which may not be always possible (and is the
case for IMDB dataset). However, deciding to use BFS and sort
requires knowledge of the output result size, which is unknown
apriori and difficult to estimate. For the IMDB dataset, we observe
a similar trend of our algorithm displaying superior performance
compared to all other baselines. In this case, BFS and sorting even
for DBLP4pep is not possible since the result is almost 0.5 trillion
items. For DBLP3star, none of the engines were able to compute



the result after running for 5 hours when main memory ran out.
BFS and sort also failed due to the size being larger than the main
memory limit. Lastly, Neo4j was consistently the best performing
(albeit marginally) engine among all baselines. While there is little
scope for rewriting the SQL queries to try to obtain better perfor-
mance, Neo4j has graph-specific operators such as variable length
expansion. We tested multiple rewritings of the query to obtain the
best performance (although this is the job of the query optimizer),
which is finally reported in the figures. Regardless of the rewritings,
Neo4;j still treats materializing and sorting as a blocking operator
which is a fundamental bottleneck.

Lexicographic ordering. Figures 6a,6b,6c and 6d show the run-
ning time for different values of k in the limit clause for lexico-
graphic ranking function on DBLP (i.e. we replace Aj.weight +
Az.weight with Aj.weight, Az.weight in the ORDER BY clause) for
random weights. The first striking observation here is that the
running time for all baseline engines is identical to that of sum
function. This demonstrates that existing engines are also agnostic
to the ranking function in the query and fail to take advantage
of the additional structure. However, lexicographic functions are
easier to handle in practice than sum because we can avoid the use
of a priority queue altogether. This in turn leads to faster running
time since push and pops from the priority queue are expensive
due to the logarithmic overhead and need for re-balancing of the
tree structure. Thus, we obtain a 2X improvement for lexicographic
ordering as compared to the sum function.

Join ordering. At this point, the reader may wonder what is the
impact of different join orderings on the query execution time for
DBMS engines in the presence of ORDER BY. To investigate this, we
supply join order hints to each of the engines. We run the queries
on all possible join order hints to find the best possible running
time. We found that the join order hints had virtually no impact on
execution time. For instance, DBLP4p,, on Neo4] takes 5521.61s
without any join hints and the best possible join ordering reduces
the time to 5418.23s, a mere 1.8% reduction. This is not surprising
since the bottleneck for all engines is the materialization of the
unsorted output, which is orders of magnitude larger than the final
output and ends up being the dominant cost. In fact, for queries
containing only self-joins, join order hints do not have any impact
on the query plan because all relations are identical. Further, the
number of possible join orderings that may need to be explored
is exponential in the number of relations. On the other hand, our
algorithm has the advantage of bypassing the materialization due
to the delay based problem formulation and use of multi-way joins.

Logarithmic weights. Instead of choosing the weights randomly,
we also investigate the behavior when the weights scale logarithmi-
cally w.r.t. to the degree. We observed that all systems as well as our
algorithm had identical execution times. This is not surprising con-
sidering that no algorithm takes into account the actual distribution
of the weights. This observation points to an additional opportunity
for optimization where one could use the weight distribution to
allow for fine-grained, data-dependent processing. We leave the
study of this problem for future work.

6.2.1 Enumeration with Preprocessing. We next investigate the em-
pirical performance of the preprocessing step and its impact on the
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result enumeration as described by Theorem 2. For all experiments
in this section, we fix k to be large enough to enumerate the entire
result (which is equivalent to having no limit clause at all).

Sum ordering,. Figure 7a and Figure 7b show the tradeoff between
space used by the data structure constructed in the preprocessing
phase and running time of the enumeration algorithm for DBLPp,,,
and IMDBgp,), repectively. We show the tradeoff for 6 different
space budgets but the user is free to choose any space budget in
the entire spectrum. As expected, the time required to enumerate
the result is large when there is no preprocessing and it gradually
drops as more and more results are materialized in the preprocess-
ing phase. The sum of preprocessing time and enumeration time
is not a flat line: this is because as an optimization, we do not use
priority queues in the preprocessing phase. Instead, we can simply
use the BFS and sort algorithm for all chosen nodes which need to
be materialized. This is a faster approach in practice as we avoid use
of priority queues but priority queues cannot be avoided for enu-
meration phase. We observe similar trend for DBLP3gtar, IMDB3star
on both datasets as well.

6.2.2 Cyclic Queries. We also compare the performance of our
algorithm to other systems for cyclic queries. We choose four cyclic
queries found commonly in practice inspired by [62]: four cycle, six
cycle, eight cycle and bowtie query (two four cycles joined at a com-
mon attribute). Figure 10 shows the performance of our algorithm
on the DBLP dataset for the sum function. As the table shows, our
algorithm is able to process all queries within 200 seconds, with the
bowtie query being the most computationally intensive. In contrast,
for k = 10 the fastest performing engine Neo4] required 240s (450s)
for four cycle (six cycle). It did not finish execution for eight cycle
and bowtie query due to an out of memory error. For the IMDB
dataset, our algorithm was able to process all queries, while Neo4]
was not able to process any query (except four cycle) due to its
large memory requirement. We defer those experiments to [23].

6.3 Large Scale Experiments and Scalability

In this section, we investigate the performance of our techniques
on the large scale datasets. Figure 8a and 8b shows the time to find
the top-k answers for the Memetracker dataset on two neighbor-
hood and three neighborhood queries. Compared to the small scale
datasets, the execution time increases rapidly even for low values
of k. This is attributed to the high duplication of answers, which
leads to a rapidly increasing priority queue size. None of MariaDB,
Postgres and Neo4] were able to finish, or even to find the top-10
answers, within 5 hours in our experiments. The same trend is also
observed for the Friendster dataset as shown in Figure 8d and 8c.
Similar to the small-scale datasets, lexicographic functions were
faster than the sum function for our algorithm but DBMS engines
were unable to finish query execution. We also conduct scalability
experiments on LDBC benchmark queries that contain the ORDER
BY clause. Figure 9 shows the scalability of our algorithm for finding
answers of queries Q3, Q10, Q11. As the scale factor increases, the
execution time also increases linearly. For each of these queries,
all engines require more than 3 hours to compute the result even
for SF = 10 and k = 10. This is because of the serial execution
plan generated by the engines, forcing the materialization of the
unsorted result before sorting and filtering for top-k-.
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SF=10 SF=20 SF=30 SF=40 SF=40

Q3 5.91s 9.63s 13.47s 18.23s 22.18s
Q10 2.82s 3.47s 4.65s 5.23s 6.46s
Q11 0.78s 1.07s 1.56s 1.82s 2.36s

Figure 9: Scalability for different scale factors (SF) in LDBC

k=10 k=102 k=10® k=10
four cycle  0.85s 0.95s 1.2s 1.8s
six cycle 13.1s 17.7s 25.6s 38.2s
eight cycle 33.4s 48.7s 63.9s 77.8s
bowtie 112s 125s 156s 192s

Figure 10: Cyclic query performance on the DBLP dataset for
different values of k in the LIMIT clause.

7 RELATED WORK

Top-k. Top-k ranked enumeration of full join queries has been
studied extensively by the database community for both certain [5,
12, 35, 36, 45, 46, 55, 61] and uncertain databases [57, 68]. Most of
these works exploit the monotonicity property of scoring functions,
building offline indexes and integrate the function into the cost
model of the query optimizer in order to bound the number of
operations required per answer tuple. We refer the reader to [35]
for a comprehensive survey. We note that none of these works
consider non-trivial join-project queries (see Appendix in [23] for
more discussion). Ours is the first work to consider the ranked
enumeration of arbitrary join-project queries.

Rank aggregation algorithms. Top-k processing over ranked lists
of objects has a rich history. The problem was first studied by Fagin
et al. [28, 29] where the database consists of N objects and m ranked
streams, each containing a ranking of the N objects with the goal
of finding the top-k results for coordinate monotone functions. The
authors proposed Fagin’s algorithm (FA) and Threshold algorithm
(TA), both of which were shown to be instance optimal for database
access cost under sorted list access and random access model. A
key limitation of these works is that it expects the input to be
materialized, i.e., Q(D) must already be computed and stored for
the algorithm to perform random access.

Unranked enumeration of query results. Recent work by Kara
et al. [37] showed that for a small but important fragment of CQs
known as hierarchical queries, it is possible to obtain a tradeoff be-
tween preprocessing and delay guarantees. Importantly, this result
is applicable even in the presence of arbitrary projection. However,
the authors did not investigate how to add ranking because adding
priority queues at different location in the join tree leads to dif-
ferent complexities. In fact, follow up work [22] showed that the
same unranked enumeration could be performed with better delay
guarantees under certain settings. Our work considers the class of
CQs with arbitrary projections and we are also able to extend the
main result to UCQs, an even broader class of queries. Naturally,
our algorithm automatically recovers the existing results for full
CQs as well [24, 62], in addition to the first extensive empirical
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evidence on how ranked enumeration can be performed for CQs
containing projections beyond free-connex queries.

Factorization and Aggregation. Factorized databases [11, 19, 53]
exploit the distributivity of product over union to represent query
results compactly and generalize the results on bounded fhwto
the non-Boolean case [53]. [3] captures a wide range of aggre-
gation problems over semirings. Factorized representations can
also enumerate the query results with constant delay according to
lexicographic orders of the variables [10]. For that to work, the lexi-
cographic order must "agree" with the factorization order. However,
it was shown in [24] that the algorithm for lexicographic ordering
is not optimal. Further, since all prior work in this space using the
concept of variable ordering, adding projections to the query forces
the building of a GHD that can materialize the entire join query
result, which is expensive and an unavoidable drawback.

Ranked enumeration. Both Chang et al. [16] and Yang et al. [65]
provide any-k algorithms for graph queries instead of the more
general CQs; Kimelfeld and Sagiv [39] give an any-k algorithm for
acyclic queries with polynomial delay. Recent work on ranked enu-
meration of MSO logic over words is also of particular interest [15].
None of these existing works give any non-trivial guarantees for
CQs with projections. Ours is the first work in this space that pro-
vides non-trivial guarantees.

8 CONCLUSION

In this paper, we study the problem of ranked enumeration for
CQs with projections. We present a general algorithm that can
enumerate query results according to two commonly-used ranking
functions (SUM, LEXICOGRAPHIC) with near-linear delay after near-
linear preprocessing time. We also show how to extend our results
to a broader class of queries known as UCQs. For star queries, an
important and practical fragment of CQs, we further show how to
achieve a smooth tradeoff between the delay, preprocessing time
and space used for data structure. Extensive experiments demon-
strate that our methods are up to three orders of magnitude better
when compared to popular open-source RDBMS and specialized
graph engines. This work opens up several exciting future work
challenges. The first important problem is to extend our results
from main memory setting to the distributed setting. Since the cost
of I/O must also be taken into account, it becomes important to
identify the optimal priority queue storage layout to ensure that
access cost is low. It would also be interesting to develop output bal-
anced algorithms. The second exciting challenge is to incorporate
approximation into the ranking. For some applications, it may be
sufficient to get an approximately ordered output which could lead
to improved running time guarantees. Finally, it would be useful to
re-rank the query results when the ranking function is changed by
the user and extend our ideas to non-monotone ranking functions.
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