

8 **Climate-driven decoupling of wetland and upland biomass trends on the mid-**9 **Atlantic coast**

10

11 Yaping Chen^{1*}, Matthew L. Kirwan¹12 ¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA

13 *To whom correspondence and material requests should be addressed (ychen@vims.edu)

14

15 **Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink.**16 **Sea-level driven tidal wetland degradation and upland forest mortality threaten coastal**17 **carbon pools, but responses of the broader coastal landscape to interacting facets of climate**18 **change remain poorly understood. Here, we use 36 years of satellite observations across the**19 **mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the**20 **amount of carbon stored in the biomass of coastal ecosystems despite substantial aerial loss.**21 **We find that sea-level driven reductions in wetland and low-lying forest biomass were largely**22 **confined to areas less than 2 meters above sea level, whereas the otherwise warmer and**23 **wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across**24 **the entire coastal landscape, climate-driven upland greening offset sea-level driven biomass**25 **losses, such that the net impact of climate change was to increase the amount of carbon stored**26 **in coastal vegetation. These results point to a fundamental decoupling between upland and**27 **wetland carbon trends that can only be understood by integrating observations across**28 **traditional ecosystem boundaries. This holistic approach may provide a template for**29 **quantifying carbon-climate feedbacks and other aspects of coastal change that extend**30 **beyond sea-level rise alone.**

Summary of Comments on 36102_2_merged_figures with legend.pdf

Page: 1

Number: 1 Author: John Subject: Sticky Note Date: 10/14/2022 11:52:29 AM

Chen, Y. and Kirwan, M.L., 2022. Climate driven decoupling of upland and wetland biomass trends on the mid-Atlantic coast. *Nature Geoscience*. <https://doi.org/10.1038/s41561-022-01041-x>.

31

32 Climate change is driving worldwide landscape reorganization with far-reaching consequences for
33 global carbon stocks^{1,2}. For instance, amplified warming has accelerated shrubification in high
34 latitude tundra landscapes, facilitating a biome-wide increase in productivity known as Arctic
35 Greening^{3,4}. Increasing temperature and precipitation has boosted forest densification and
36 facilitated upslope treeline in high-mountain regions such as the Tibetan Plateau^{5,6}, and altered
37 precipitation regimes in the arid sub-Saharan Africa have allowed woodlands to carpet expansive
38 barren and sparsely-vegetated drylands^{7,8}. Together, these processes have contributed to a general
39 greening of the terrestrial biosphere^{9–11}, in which the amount of carbon stored in woody biomass
40 has increased through time^{12,13}.

41 Climate change is also transforming coastal ecosystems^{14–16}, which are a disproportionately
42 large, yet highly vulnerable global carbon sink^{17–19}. A prominent phenomenon unique to the coastal
43 landscape is that declining coastal sediment supplies and accelerated sea-level rise (SLR)
44 associated with recent warming has elicited degradation of existing marshes^{20,21} and mortality of
45 adjacent forests¹⁵. Recent research has explored the impacts of SLR on carbon pools in marshes^{22–}
46 ²⁴ and coastal forests^{25,26}, but how climate change interacts with SLR to modify the integrated
47 coastal carbon sink is largely unknown^{27,28}. On one hand, SLR-driven vegetation shifts may result
48 in net losses of biomass due to wetland degradation^{20,29} and forest die-off^{25,26}. On the other hand,
49 changing climate may increase biomass by extending growing seasons³⁰ and ameliorating salt
50 stress via increased precipitation³¹. The net outcome of these competing processes could influence
51 both the direction and magnitude of carbon-climate feedbacks in coastal ecosystems.

52 Here, we use the extensive Landsat dataset (30 m resolution) between 1984 and 2020 to
53 quantify landscape-scale ($\sim 12,500 \text{ km}^2$) Normalized Difference Vegetation Index (NDVI) trends

54 associated with vegetation shifts (Methods) along the rapidly warming mid-Atlantic coast of North
55 America (Extended Data Figures 1-2), a SLR hotspot characterized by extensive marsh loss and
56 forest mortality^{32,33}. Our results reveal a fundamental decoupling between negative SLR impacts
57 at low elevations and positive climate impacts at higher elevations, such that the net impact of
58 interacting facets of climate change is an overall increase in aboveground coastal biomass.

59 **Vegetation shifts and lowland browning**

60 Low-lying coastal wetlands and forests are well known to be vulnerable to SLR and erosion both
61 globally^{16,29,34,35}, and within the Chesapeake Bay region^{20,32,33}. Consistent with those observations,
62 we find large-scale losses of marsh (196.8 km²) and coastal forests (238.7 km²) in the U.S. mid-
63 Atlantic over the past ~40 years based on our Landsat observation (Figure 1). However, in spite of
64 erosion and submergence at low elevations, marsh and transition forest (defined as low-lying forest
65 between marsh and upland forests where mortality due to seawater intrusion has already begun)
66 expanded in areal extent respectively by 2% (48.4 km²) and 5% (12.1 km²) (Figure 2). The loss of
67 marshes observed in 1984 (7.7%, 196.8 km²) occurred primarily at the seaward margin and for
68 elevations below 0.2 m, and was compensated by new marsh that formed at higher elevations
69 (245.2 km²) at the expense of transition forest (134.9 km²) and forested uplands (90.7 km²).
70 Transition forest advanced upslope, where the replacement of forested uplands (149.9 km²)
71 compensated for the aerial loss of transition forest at lower elevations (139.4 km²) (Figure 2). The
72 average elevation of transitional forests increased (0.12 m; 0.58 ± 0.35 m in 1984 to 0.70 ± 0.41
73 m in 2020) more than the average elevation of marshes (0.02 m; 0.49 ± 0.44 m to 0.51 ± 0.44 m)
74 (Figure 2), and at a rate (3.3 mm yr⁻¹) that is almost equivalent to long-term SLR trends in the
75 region (3-6 mm yr⁻¹). These observations imply that sea level rise is driving the migration of coastal

76 ecosystems over large spatial scales, and that over decadal timescales, coastal forests are at least
77 as vulnerable to SLR as the marshes that occur closer to the seaward margin.

78 Changes in vegetation extent closely resemble patterns of landscape greening (positive trend
79 in NDVI) and browning (negative trend in NDVI) (Figure 1), and confirm general expectations
80 that SLR-driven land conversion leads to coastal biomass loss^{25,26}. In spite of overall browning in
81 coastal lowlands, the rate of change varies substantially across space (Figures 1-2), reflecting the
82 wide array of processes regulating vegetation dynamics. The most drastic browning appeared at
83 the marsh-forest transition (i.e. transition forest), where marsh transgresses inland, replacing forest
84 that is one to two orders of magnitude higher in aboveground biomass^{25,36}. In the low-relief
85 Blackwater National Wildlife Refuge where browning is extreme, we find that the marsh-forest
86 boundary has retreated inland by as much as ~1,100 m since 1984 (or ~30 m yr⁻¹) – the fastest
87 upland conversion ever recorded (Figure 1b). Other hotspots of coastal browning are associated
88 with degradation or loss of habitats, as exemplified by massive interior ponding of marsh in the
89 Prime Hook National Wildlife Refuge (Figure 1c) or rapid land erosion along vegetated barrier
90 islands of Virginia Coast Reserve (Figure 1d).

91 We estimate cumulative AGB changes from 1984 to 2020 based on NDVI trends (Methods
92 and Extended Data Figures 3-6), and partition the results by elevation and ecosystem (Figure 3
93 and Extended Data Figures 1 and 7). Despite pervasive AGB loss in marshes between elevation of
94 0-0.7m (-0.13 Tg), we find a small amount of AGB gain (+0.05 Tg) in marshes at higher elevations
95 (Figure 3). This observation concurs with observations and experiments that report enhanced
96 marsh productivity under moderately increased inundation^{37,38}. Conversely, transition forests
97 consistently lose AGB along elevation although the rate slightly lowers with higher elevations
98 (Figure 3), possibly as a result of lessened salt stress and flooding frequency further inland²⁵.

99 Overall, we find that transition forest is the dominant avenue of coastal AGB loss (-0.20 Tg),
100 nearly three times the amount of marsh (-0.07 Tg) (Figure 3). Considering that the area of the
101 former is merely one tenth of the latter (Figure 2), AGB loss on per unit area of transition forest
102 (815.4 g m⁻²) is ~27 times that of marsh (29.7 g m⁻²). This result is striking as previous work
103 exploring impacts of SLR on coastal carbon cycling traditionally focuses on low lying marshes
104 and mangroves^{23,29,39,40}, whereas our study highlights that reduced carbon stocks in retreating
105 upland forests may actually represent a more pronounced feedback with future warming.

106 **Sea-level driven decoupling of upland and lowland biomass trends**

107 As the impact of SLR is intrinsically tied to elevation⁴¹, we examined NDVI trends with elevation
108 to gain a general perspective on coastal response to SLR (Figure 2). Despite intricacies within
109 individual ecosystems discussed above, we find that across the coastal landscape, NDVI trends
110 increase rapidly with elevation and that the landscape switches from browning to greening at an
111 elevation of ~0.7 m (Figure 2). The benefit of rising elevation to additional landscape greening
112 progressively weakens before vanishing as elevation approaches 1.9 m above sea level, after which
113 landscape greening becomes relatively constant (Figure 2). These patterns are consistent regardless
114 of the inclusion of areas modified by human activities (e.g. agriculture, urbanization, silviculture
115 that jointly impact 18.1% of all area between 0-2 m, and 34.7% between 0-5 m) (Figure 2 and
116 Extended Data Table 1). Thus, we interpret this “turning-point” elevation around 2 m as defining
117 the upper elevation limit for SLR impacts on coastal environments, as hinted by the extent of range
118 shifts in marsh and transition forest along elevation gradient (Figure 2).

119 Previous work suggests that a variety of climatic^{31,42} and sea-level driven^{37,38} factors are
120 associated with biomass change and carbon cycling in coastal ecosystems. To identify potential
121 drivers and their relative importance (RI) in shaping the observed patterns of NDVI trend across

122 the region, we applied a boosted regression tree model to areas free from human disturbance
123 (Methods). Our analyses ($r = 0.71$, $P < 0.0001$) indicate that the spatial variation in NDVI trend is
124 mainly explained by variables broadly related to SLR (RI of 63%, 3 variables: elevation, flooding
125 frequency, and topographic slope) and to a lesser degree by climate change (RI of 37%, 3 variables:
126 change of annual precipitation, change of growing degree day, and maximum summer
127 temperature) (Figure 4).

128 Partial-dependency plots attest that the impact of SLR is largely constrained within 2 m above
129 sea level (Figure 4b). Relative SLR rates in the mid-Atlantic are 2-3X faster than the global
130 average⁴³, and excessive inundation is recognized as a primary driver of marsh loss and tree
131 mortality^{20,26,33,38,44}. Consistent with this paradigm, we find that NDVI trend declines with
132 increasing flooding frequency and decreasing topographic slope (Figure 4c-d), suggesting that
133 SLR underlies the escalated browning in coastal lowlands.

134 Meanwhile, observed temperature (annual mean +0.8 °C) and precipitation (annual total +140
135 mm) have significantly increased across the mid-Atlantic (Extended Data Figure 2). Studies from
136 a wealth of coastal and terrestrial ecosystems have linked climate change, especially warming and
137 wetting, with strengthened plant productivity and biomass carbon pools^{9,31,45,46}. Our analyses
138 indicate that increases in temperature and precipitation enhance regional greening, as NDVI trend
139 rises nearly linearly with elevated precipitation and prolonged growing degree days (Figure 4e-f).
140 Therefore, interactive components of climate change potentially lead to simultaneous and
141 contrasting responses in coastal ecosystem, where greening of uplands is associated with direct
142 climate impacts and browning of lowlands is associated with climate-driven SLR.

143 **Direct and indirect climate impacts on the coastal biomass carbon sink**

144 Interacting facets of climate change are well known to dictate carbon cycling in a range of
145 terrestrial ecosystems^{46,47}, whereas in coastal ecosystems carbon cycling is largely viewed through
146 the lens of SLR alone⁴⁸. Although direct climate impacts are important controls on wetland
147 productivity and carbon balance^{31,39}, it is unclear how the combined forces of SLR and climate
148 change drive regional-scale carbon cycling, especially in the upland component of the coastal
149 landscape. Our results illustrate that with increasing elevation, browning diminishes in marsh and
150 transition forests, and that greening intensifies in adjacent upland forests, signaling a transition
151 from SLR-driven browning to climate-driven greening (Figures 2a and 3a). Forest greening is
152 consistent at elevations greater than 1.9 m above sea level – the aforementioned turning-point
153 demarcating the potential limit of SLR impacts (Figure 2a), leading to a large net increase in AGB
154 for the coastal zone as a whole (+3.76 Tg for elevations 0-5 m) (Figure 3b).

155 Interestingly, we also find that forest greening (+1.28 Tg) compensates for marsh and transition
156 forest browning (-0.3 Tg), even when restricted to portions of the landscape that are negatively
157 impacted by SLR (+1.0 Tg for elevations 0-1.9 m) (Figure 3b). These results are generally in line
158 with recent global-scale, coarse-resolution (≥ 4 km pixels) satellite observations that suggest an
159 overall enhancement of net primary production^{9,49} and leaf area index^{10,11} both globally and in the
160 mid-Atlantic. However, by linking broad-scale biomass change with fine-scale vegetation shifts,
161 we uncover substantial spatial heterogeneity – specifically the remarkable browning of coastal
162 lowlands that would be obscured at coarser resolution.

163 Our analysis of aboveground biomass trends does not include changes in belowground biomass
164 or soil carbon pools that are hard to quantify and respond to climate change in complex ways. For
165 example, marshes contain a disproportionate amount of carbon in soils^{25,50}, and regional soil

166 carbon accumulation rates can either increase or decrease as marshes become more inundated^{22,51}.
167 Therefore, our finding that climate factors have compensated for sea-level driven losses in above-
168 ground biomass may neglect other important components of the coastal carbon budget. Similarly,
169 our finding of functional compensation in aboveground biomass may not apply to other ecosystem
170 functions that depend fundamentally on ecosystem size and location. For instance, sea-level rise
171 is leading to the loss of freshwater forested wetlands that are themselves highly valued for habitat
172 provision, water quality improvement, and flood protection^{52,53}.

173 Nevertheless, our finding that climate-driven upland greening has compensated for lowland
174 browning largely contrasts previous work that generally emphasizes sea-level driven losses of
175 biomass within marshes and coastal forests^{25,26}. Thus, our work indicates that the combined
176 influences of global change have been to increase the size of the coastal biomass carbon sink
177 (Figure 3), even in a region that is a hotspot for accelerated sea-level rise, marsh degradation, and
178 forest mortality^{32,33,43}. This unique decoupling between SLR-driven wetland browning and
179 climate-driven upland greening illustrates the need to quantify carbon dynamics across traditional
180 ecosystem boundaries that respond differently to interacting factors of global change.

181

182 **Acknowledgements.** Primary funding for this work comes from the National Science Foundation
183 (#1654374, MLK; #1832221, MLK; and #2012670, MLK) with additional support from the US
184 Department of Energy, Office of Biological and Environmental Research Program (DE-
185 SC0021112, MLK). Tyler Messerschmidt and Alex Smith helped with field work. This is
186 contribution 4115 of the Virginia Institute of Marine Science, William & Mary.

187 **Author contributions.** Y.C. designed the study, performed the analysis, and wrote the initial draft.
188 M.L.K conceived the idea, contributed to the study design and revised the manuscript. All authors
189 interpreted the data.

190 **Competing interests.** The authors declare no competing interests.

191

192 **Figure Legends/Captions (for main text figures)**

193 **Figure 1.** Correspondence between Normalized Difference Vegetation Index (NDVI) trend and
194 vegetation shift in the mid-Atlantic coast of North America, a hotspot for accelerated sea-level rise.

195 **a.** Regional NDVI trend between 1984 and 2020 for areas less than 5 m above sea level, generally
196 illustrating wetland browning (orange) and upland greening (green). The elevation data refers to
197 the Coastal National Elevation Database⁵⁴. Black boxes outline three regional subsets for fine-
198 scale demonstration. **b.** Landscape browning associated with coastal forest retreat in Blackwater
199 National Wildlife Refuge (38.4°N, 76.1°W, Maryland); **c.** Landscape browning due to marsh and
200 forest loss at Prime Hook National Wildlife Refuge (38.8°N, 75.3°W, Delaware); **d.** Landscape
201 browning driven by marsh erosion along barrier islands in Virginia Coast Reserve (37.2°N, 75.8°W,
202 Virginia). Maps of landcover change (third row in **b-d**) were computed by differencing the
203 landcover maps in 1984 (first row) and 2020 (second row). “Coastal forest loss” corresponds to
204 areas where upland forest or transition forest were replaced by migrating marsh and open water.

205 “Marsh loss” refers to areas of marsh loss to open water. Scale bars in **b-d** correspond to 4 km.
206 See Extended Data Figures 6-7 and Extended Data Table 1-3 for more information on analysis
207 statistics and landcover classifications. Map created using the Ocean Basemap in ArcGIS (v10.7).

208

209 **Figure 2.** Spatial extent of sea-level rise impacts in coastal ecosystems. **a.** Normalized Difference
210 Vegetation Index (NDVI) trend plotted against elevation gradient, including (grey line) or
211 excluding (black line) land-cover and land-use change associated with human activities (e.g.
212 agriculture, urbanization, deforestation and reforestation, Extended Data Table 1). **b.** Histograms
213 showing range shifts of vegetation from 1984 to 2020 along elevation gradient. From top to bottom:
214 marsh, transition forest and upland forest. Note that the *y* axes of the histograms were not plotted
215 on the same scale. “Count” refers to number of Landsat pixels. All statistics were computed after
216 excluding areas of human land-use and land-use change. The vertical lines correspond to mean
217 elevation of vegetation within 0-5 m above sea level in 1984 (solid) and 2020 (dotted). The red
218 lines represent cumulative number of Landsat pixels along elevation in 1984 (solid) and 2020
219 (dotted). Elevation data⁵⁴ is relative to NAVD88, which approximates mean sea level in the region.
220

221 **Figure 3.** Normalized Difference Vegetation Index (NDVI) trend and the associated aboveground
222 biomass change by vegetation type. **a.** Four-year rolling mean NDVI through time, presented by
223 vegetation type along elevation gradients (panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5
224 m above sea level). Solid and dotted lines refer to linear regression showing statistically significant
225 ($P < 0.05$, solid line) and marginally significant ($P < 0.1$, dotted line) trends between 1984 and
226 2020, respectively. **b.** Overall and vegetation-specific aboveground biomass change from 1984 to
227 2020, indicating a net increase in coastal aboveground biomass. All results were computed on
228 areas free from human land-use and land-use changes.

229

230 **Figure 4.** Environmental drivers for regional patterns of Normalized Difference Vegetation Index
231 (NDVI) trend. **a.** Relative influence of each environmental driver. FF: flooding frequency; Slope:
232 topographical slope; Δ TAP: change in total annual precipitation between 1984-2020; Δ GDD:
233 change in growing degree day between 1984-2020; MST: maximum summer temperature. **b-g.**
234 Partial-dependency plots illustrating the relationship between NDVI trend and each of the
235 environmental drivers. The x axes represent the independent variable, and the y axes refer to the
236 effect size that each variable has on the NDVI trend. The shaded areas bounding the mean lines
237 represent 95% confidence interval, and the tick marks indicate the deciles of data distribution. All
238 analyses were performed on areas free from human land-use and land-use changes.

239

240 **References**

241 1. Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. *Nature*
242 **540**, 104–108 (2016).

243 2. Jackson, S. T. Transformational ecology and climate change. *Science* **373**, 1085–1086
244 (2021).

245 3. Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent
246 summer warming. *Nat. Clim. Chang.* **2**, 453–457 (2012).

247 4. Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the
248 Arctic tundra biome. *Nat. Commun.* **11**, 4621 (2020).

249 5. Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the
250 Tibetan Plateau. *Proc. Natl. Acad. Sci. U. S. A.* **113**, 4380–4385 (2016).

251 6. Wang, C. P., Huang, M. T. & Zhai, P. M. Change in drought conditions and its impacts on
252 vegetation growth over the Tibetan Plateau. *Adv. Clim. Chang. Res.* (2021)
253 doi:10.1016/j.accre.2021.04.004.

254 7. Brandt, M. et al. Human population growth offsets climate-driven increase in woody
255 vegetation in sub-Saharan Africa. *Nat. Ecol. Evol.* **1**, 1–6 (2017).

256 8. Pausata, F. S. R. et al. The Greening of the Sahara: Past Changes and Future Implications.
257 *One Earth* **2**, 235–250 (2020).

258 9. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production
259 from 1982 to 1999. *Science* **300**, 1560–1563 (2003).

260 10. Chen, C. et al. China and India lead in greening of the world through land-use management.
261 *Nat. Sustain.* **2**, 122–129 (2019).

262 11. Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation

263 trends from MODIS products: Browning or greening? *Remote Sens. Environ.* **191**, 145–155
264 (2017).

265 12. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. *Proc. Natl.*
266 *Acad. Sci.* **116**, 4382–4387 (2019).

267 13. Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. *Sci. Adv.* **7**,
268 eabe9829 (2021).

269 14. FitzGerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal Impacts Due
270 to Sea-Level Rise. *Annu. Rev. Earth Planet. Sci.* **36**, 601–647 (2008).

271 15. Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost
272 forests. *Nat. Clim. Chang.* **9**, 450–457 (2019).

273 16. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and
274 sea-level rise. *Nature* **504**, 53–60 (2013).

275 17. McLeod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the
276 role of vegetated coastal habitats in sequestering CO₂. *Front. Ecol. Environ.* **9**, 552–560
277 (2011).

278 18. Macreadie, P. I. et al. The future of Blue Carbon science. *Nat. Commun.* **10**, 3998 (2019).

279 19. Lovelock, C. E. & Reef, R. Variable Impacts of Climate Change on Blue Carbon. *One Earth*
280 **3**, 195–211 (2020).

281 20. Schepers, L., Brennand, P., Kirwan, M. L., Guntenspergen, G. R. & Temmerman, S. Coastal
282 Marsh Degradation Into Ponds Induces Irreversible Elevation Loss Relative to Sea Level in
283 a Microtidal System. *Geophys. Res. Lett.* **47**, 1–10 (2020).

284 21. Törnqvist, T. E., Jankowski, K. L., Li, Y. & González, J. L. Tipping points of Mississippi
285 Delta marshes due to accelerated sea-level rise. *Sci. Adv.* **6**, eaaz5512 (2020).

286 22. Herbert, E. R., Windham-Myers, L. & Kirwan, M. L. Sea-level rise enhances carbon
287 accumulation in United States tidal wetlands. *One Earth* **4**, 425–433 (2021).

288 23. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative
289 sea-level rise. *Nature* **567**, 91–95 (2019).

290 24. Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise
291 increases their carbon sequestration capacity in United States. *Nat. Commun.* **10**, 5434
292 (2019).

293 25. Smith, A. J. & Kirwan, M. L. Sea Level - Driven Marsh Migration Results in Rapid Net
294 Loss of Carbon. *Geophys. Res. Lett.* **48**, 1 – 11 (2021).

295 26. Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as
296 sea levels rise. *Environ. Res. Lett.* **15**, (2020).

297 27. Osland, M. J. et al. Beyond just sea - level rise: considering macroclimatic drivers within
298 coastal wetland vulnerability assessments to climate change. *Glob. Chang. Biol.* **22**, 1 – 11
299 (2016).

300 28. Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in Earth
301 system models. *Nat. Commun.* **11**, 1–14 (2020).

302 29. Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. *Science* **368**,
303 1118–1121 (2020).

304 30. Kirwan, M. L., Guntenspergen, G. R. & Morris, J. T. Latitudinal trends in *Spartina*
305 *alterniflora* productivity and the response of coastal marshes to global change. *Glob. Chang.*
306 *Biol.* **15**, 1982–1989 (2009).

307 31. Osland, M. J. et al. Climate and plant controls on soil organic matter in coastal wetlands.
308 *Glob. Chang. Biol.* **24**, 5361–5379 (2018).

309 32. Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive Upland to Wetland Conversion
310 Compensated for Historical Marsh Loss in Chesapeake Bay, USA. *Estuaries and Coasts*
311 **41**, 940–951 (2018).

312 33. Schieder, N. W. & Kirwan, M. L. Sea-level driven acceleration in coastal forest retreat.
313 *Geology* **47**, 1151–1155 (2019).

314 34. Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal
315 salt marshes. *Nat. Commun.* **8**, (2017).

316 35. Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana's coastal
317 wetlands to present-day rates of relative sea-level rise. *Nat. Commun.* **8**, 1–7 (2017).

318 36. Kauffman, J. B. et al. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue
319 carbon of the Pacific Northwest Coast, United States. *Glob. Chang. Biol.* **26**, 5679–5692
320 (2020).

321 37. Morris, J. T., Sundareshwar, P. V., Nietz, C. T., Kjerfve, B. & Cahoon, D. R. Responses
322 of coastal wetlands to rising sea level. *Ecology* **83**, 2869–2877 (2002).

323 38. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production,
324 and shoot growth in a rapidly submerging brackish marsh. *J. Ecol.* **100**, 764–770 (2012).

325 39. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate
326 change. *Nature* **489**, 550–553 (2012).

327 40. Friess, D. A. et al. The State of the World's Mangrove Forests: Past, Present, and Future.
328 *Annu. Rev. Environ. Resour.* **44**, 89–115 (2019).

329 41. Hooijer, A. & Vernimmen, R. Global LiDAR land elevation data reveal greatest sea-level
330 rise vulnerability in the tropics. *Nat. Commun.* **12**, 3592 (2021).

331 42. Więski, K. & Pennings, S. C. Climate Drivers of *Spartina alterniflora* Saltmarsh Production

332 in Georgia, USA. *Ecosystems* **17**, 473–484 (2014).

333 43. Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the
334 Atlantic coast of North America. *Nat. Clim. Chang.* **2**, 884–888 (2012).

335 44. Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal
336 landscape driven by sea - level rise and extreme events. *Ecol. Appl.* **31**, 1 – 11 (2021).

337 45. Coldren, G. A. et al. Chronic warming stimulates growth of marsh grasses more than
338 mangroves in a coastal wetland ecotone. *Ecology* **97**, 3167–3175 (2016).

339 46. Chen, Y., Hu, F. S. & Lara, M. J. Divergent shrub-cover responses driven by climate,
340 wildfire, and permafrost interactions in Arctic tundra ecosystems. *Glob. Chang. Biol.* **27**,
341 652–663 (2021).

342 47. Kelly, R., Genet, H., McGuire, A. D. & Hu, F. S. Palaeodata-informed modelling of large
343 carbon losses from recent burning of boreal forests. *Nat. Clim. Chang.* **6**, 79–82 (2016).

344 48. Gabler, C. A. et al. Macroclimatic change expected to transform coastal wetland ecosystems
345 this century. *Nat. Clim. Chang.* **7**, 142–147 (2017).

346 49. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary
347 production from 2000 through 2009. *Science* **329**, 940–943 (2010).

348 50. Krauss, K. W. et al. The Role of the Upper Tidal Estuary in Wetland Blue Carbon Storage
349 and Flux. *Global Biogeochem. Cycles* **32**, 817–839 (2018).

350 51. Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon
351 export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a
352 critical width threshold. *Estuar. Coast. Shelf Sci.* **164**, 367–378 (2015).

353 52. White, E. E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate Change Driving Widespread
354 Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain.

355 *Ecosystems* (2021) doi:10.1007/s10021-021-00686-w.

356 53. Molino, G. D., Carr, J. A., Ganju, N. K. & Kirwan, M. L. Variability in marsh migration
357 potential determined by topographic rather than anthropogenic constraints in the
358 Chesapeake Bay region. *Limnol. Oceanogr. Lett.* (2022). In press.

359 54. Danielson, J. J., Poppenga, S. K., Tyler, D. J., Palaseanu-Lovejoy, M. & Gesch, D. B.
360 Coastal National Elevation Database. Fact Sheet
361 <http://pubs.er.usgs.gov/publication/fs20183037> (2018) doi:10.3133/fs20183037.

362

363 **METHODS**

364 **Regional Setting**

365 We analyzed the response of coastal vegetation to interacting facets of climate change across the
366 U.S. mid-Atlantic coast. The study area encompasses the Delaware Bay and the Chesapeake Bay
367 – the largest coastal-plain estuary in North America. The mid-Atlantic coast is an ideal region for
368 studying the impacts of interacting components of climate change on coastal ecosystems because
369 it represents a known hotspot of relative sea-level rise⁴³, and rapidly changing precipitation and
370 temperature (Extended Data Figures 1-2). Relative sea-level rise rates are 2-3X faster than the
371 global average, and accelerating towards a modern rate of 4-10 mm yr⁻¹⁴³. Coastal ecosystems are
372 particularly vulnerable to sea-level rise in the region because of limited sediment inputs, a
373 microtidal tide range, and a gently sloping coastal plain. Indeed, both extensive marsh loss and
374 forest retreat have been widely observed^{15,32,52}.

375 We analyzed 36-year Normalized Difference Vegetation Index (NDVI) trends and mapped
376 landcover changes from 1984 to 2020 for all areas between 0 and 5 m above sea level (Extended
377 Data Figure 1), an elevation range extending from perennially inundated coastal lowlands, through
378 periodically flooded intertidal wetlands, to seldomly flooded uplands that show no sign of seawater
379 intrusion^{25,55,56}. The elevation data used to define our study area refers to the digital elevation
380 model (DEM) of the Coastal National Elevation Database (CoNED)⁵⁴. Elevations are relative to
381 the North American Vertical Datum of 1988, which approximates mean sea level in the region.

382 **Data preprocessing and NDVI trend analysis**

383 We acquired all orthorectified, Tier-1 Landsat surface reflectance scenes with cloud cover less
384 than 60% ($n = 5,126$) by Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic
385 Mapper-plus (ETM+) and Landsat-8 Operational Land Imager (OLI)⁵⁷ that cover the entire U.S.

386 mid-Atlantic region between March 24, 1984 and December 29, 2020. All images were processed
387 with the ancillary Quality Assessment bands to mask pixels associated with water, cloud, cloud
388 shadow, snow, ice and sensor-related issues⁵⁸ in R (v 4.1.1). The resulting products were further
389 processed to filter pixels of partial inundation using the Tidal Marsh Inundation Index^{59,60}.
390 Residual cloud, shadow, haze and smoke were removed by threshold-filtering the blue (surface
391 reflectance > 0.07) and red (surface reflectance < 0.01)⁶¹ spectral bands.

392 Remotely-sensed NDVI is strongly correlated with growing-season plant biomass and
393 productivity in a myriad of terrestrial and aquatic ecosystems⁶²⁻⁶⁶. Our study region consists of
394 multiple ecosystems that vary in vegetation phenology. To ensure reliable trend detection across
395 the spatially-complex coastal landscapes, we examined monthly NDVI patterns of different
396 vegetation types (i.e. marsh, transition forest, and upland deciduous and evergreen forest) to
397 identify the best timing for consistent NDVI observations (Extended Data Figure 3)⁴. To achieve
398 that, we randomly selected ~3000 sites for each vegetation across the entire region (Extended Data
399 Figure 3) based on field observations, published study^{25,32,33,55,67}, the high-resolution National
400 Agriculture Imagery Program (NAIP) aerial imagery, and the Conservation Innovation Center
401 (CIC) landcover map. We extracted the NDVI data sensed by Landsat-7 at each site over the most
402 recent five years (2016-2020). Extended Data Figure 3 indicates the months of peak growing-
403 season in our study region (July-August) when NDVI is maximized and remains relatively stable
404 throughout the time span. This temporal pattern is consistent across vegetation types and from year
405 to year. Therefore, the images acquired annually between July 1st and August 31st were used for
406 the trend analysis.

407 We validated the correlation between Landsat-derived NDVI and peak growing-season plant
408 biomass across the study region (Extended Data Figure 4) using field measurements of

409 aboveground biomass (AGB) in the U.S. mid-Atlantic coast archived in the Long-term Ecological
410 Research (LTER) Network (Extended Data Figure 1). Specifically, we used datasets related to the
411 biomass of marshes along the York River^{68,69} and outer Atlantic Coast⁷⁰ of Virginia, and forests
412 distributed throughout the Chesapeake Bay^{25,71} and Delaware Bay⁷². Some of the field sites have
413 repeated biomass measurements collected over multiple years and transects. All the measurements
414 were screened for outliers that exceeded site mean by more than 2 standard deviation⁷⁰. For each
415 of the measurements, the corresponding NDVI data was retrieved from Landsat-7 images. Both
416 the biomass measurements and the NDVI data were averaged across year and transect for each
417 study site. Given differences in the size between Landsat pixels and field sites, only ground-based
418 measurements representative of biomass at the 30×30 m pixel scale were included. Sites that
419 account only for a fraction of the pixel (e.g. located near creakbanks or farmlands) were discarded
420 after consulting high-resolution drone images and NAIP aerial photos. Eventually, the modeled
421 relationship between NDVI and AGB ($n = 125$) pooled from all field sites of marsh, transition
422 forest, and upland forest is robust ($P < 0.0001$) with a coefficient of determination (R^2) of 0.72
423 (Extended Data Figure 4).

424 Previous studies have revealed that small systematic biases in surface reflectance may exist
425 across Landsat sensors that can lead to an artificial upward trend of NDVI through time^{4,61,62,73,74}.
426 Since our study spans 36 years that involves multiple generations of sensors (TM, ETM+, and
427 OLI), we systematically evaluated NDVI data derived from Landsat-5, 7 and 8 in the region to
428 constrain potential errors introduced by sensor difference (Extended Data Figure 5). The operation
429 timeline of Landsat-7 overlaps with Landsat-5 during 1999-2011, and with Landsat-8 during 2013-
430 present⁵⁷. Therefore, we took advantage of the overlapping scenes collected by concurrent sensors
431 to cross-validate NDVI of Landsat-5 and Landsat-8 against that of Landsat-7, similar to the

432 methodology described by refs.^{4,73} (Extended Data Figure 5). We randomly selected 35 pairs of
433 cloud-free Landsat-5 and Landsat-7 images, and 43 pairs of Landsat-8 and Landsat-7 images from
434 ten and eight overlapping summers, respectively. The paired NDVI data were extracted every 600
435 m (20 pixels) apart across all overlapping areas, and the data were analyzed with linear regression.
436 Our results agree with earlier work suggesting differences in NDVI between sensors (Extended
437 Data Figure 5), and all Landsat-5 and Landsat-8 derived NDVI was adjusted to Landsat-7
438 according to the linear equations presented in Extended Data Figure 5.

439 The processed NDVI data were then stacked in time series from 1984 to 2020 for trend analysis
440 with the non-parametric Theil-Sen slope estimator⁷⁵, a widely used approach for quantifying
441 monotonic trends with the advantage of being insensitive to outliers⁷⁶. The significance of the
442 NDVI trends was tested with the rank-based Mann-Kendall test⁷⁵, and trends were considered
443 statistically significant at the level of $\alpha < 0.1$ ^{4,10} (Extended Data Figure 6, 61.4% of the pixels
444 tested significant). All statistics were conducted in R (v 4.1.1) using the *zyp* package⁷⁵. NDVI at
445 the beginning (1984) and the end (2020) of the study period were computed for each pixel, and the
446 resulting dataset was then converted to AGB according to the NDVI-AGB relationship (Extended
447 Data Figure 4). The cumulative AGB change from 1984 to 2020 was then estimated as the
448 difference between AGB in 2020 and 1984. For pixels where no significant NDVI trends were
449 detected ($P \geq 0.1$), the cumulative AGB change was assigned to 0.

450 **Landcover mapping and validation**

451 We generated two regional landcover maps (30 by 30 m) with seven classes (Marsh, Transition
452 Forest, Upland Forest, Water, Sandbar, Agriculture and Urban Area, Extended Data Table 1), one
453 in 1984 and one in 2020 using the random forest (RF) algorithm⁷⁷ implemented in R (v 4.1.1,
454 packages of *caret* and *randomForest*) (Extended Data Figure 7). For each mapping, we acquired

455 Landsat images during multiple seasons corresponding to distinct plant phenological phases^{78,79}:
456 the greening/leaf-out season (March-April), the peak growing-season (July-August), and the
457 senescent/leaf-off season (October-November) for enhanced separability between spectrally-
458 similar classes (Extended Data Figure 3). The input predictors comprise layers of individual
459 Landsat spectral bands, Landsat-derived multispectral indices, and biophysical metrics computed
460 from the 1 m CoNED DEM (Extended Data Table. 2). The biophysical metrics were resampled to
461 30 m resolution using bilinear interpolation. All input layers were then aligned to identical pixel
462 centers and projected to a common geographic coordinate system before classification in R (v
463 4.1.1).

464 The training and validation sites for the 2020 and 1984 mapping were identified according to
465 high-resolution contemporary (2018-2020) and historical (1982-1986) images, respectively. To
466 ensure that the sites sampled cover all landcover types with relatively even distribution between
467 classes, we initially selected the sites via stratified random sampling (strata = landcover type) from
468 the most recent CIC map in 2013 (for the 2020 landcover mapping) and the earliest NOAA Coastal
469 Change Analysis Program (C-CAP) map in 1996 (for the 1984 landcover mapping)⁵⁶. In brief, we
470 randomly sampled ~5,000 sites for each landcover type except for Transition Forest based on the
471 two preexisting maps. Sites in the same class were picked across the entire region with a minimum
472 distance of 1 km apart from one another. The classification of each site was examined for accuracy
473 and corrected if mis-labeled according to high-resolution satellite/aerial images archived in Google
474 Earth Engine⁸⁰ or downloaded from the USGS (<https://earthexplorer.usgs.gov/>). Since transition
475 forest has not been mapped in previous efforts, all sites of this class were visually identified ($n =$
476 5,000) according to published delineation^{25,32,33,55,67}, field observations, and contemporary and
477 historical images across the region, similarly with a between-site distance ≥ 1 km. We then

478 randomly divided the sites of each class into the training and validation groups in the ratio of 60%
479 to 40% (Extended Data Figure 7).

480 We ran the RF classifier on all training sites and eliminated insignificant factors in a backward
481 fashion to optimize model fitting^{79,81} (Extended Data Figure 7). The most parsimonious models
482 reaching an overall classification accuracy around 90% were used for producing the regional maps
483 (Extended Data Table. 2). We then applied four steps of post-processing to refine the maps for
484 enhanced accuracy. First, we excluded degrading forests classified as Transition Forest but
485 attributable to factors other than seawater intrusion (e.g. insect outbreak, over-herbivory, and
486 pollution⁸²). These misclassified Transition Forests were identified using the combination of
487 flooding frequency = 0% (Global Surface Water dataset⁸³) and elevation > 2.5 m above sea level
488 (> upper tidal range). Second, marshes in areas with flooding frequency > 95% were assigned to
489 water⁸⁴ according to the Global Surface Water dataset⁸³. Third, additional areas identified by the
490 Global Forest Cover Change database⁸⁵ as newly lost or gained (deforestation and reforestation)
491 were excluded from Upland Forest in 2020 (Extended Data Table. 1). All the above processes were
492 visually verified by high-resolution images. Last, areas that were masked from auto-classification
493 by image preprocessing (e.g. contaminated by cloud and cloud shadow, ~5% of all area) were
494 manually classified by digitizing high-resolution images, following the same approach of ref.³³.
495 The final 1984 and 2020 landcover maps were validated extensively across the region with
496 validation sites, which attained an overall classification accuracy of 91.0% and 93.1%, respectively
497 (Extended Data Table 3).

498 **Analysis for environmental drivers**

499 We analyzed the environmental drivers of NDVI trend and their relative influence (%) using a
500 boosted regression tree (BRT) model⁸⁶ (packages of *dismo* and *gbm* in R v 4.1.1) in all areas free

501 from human impacts as identified by our landcover maps (Extended Data Table. 1). The BRT
502 model was chosen for its superiority in handling high-order interactions and collinearity of
503 covariates, as well as the sophistication in managing missing data and outliers^{86,87}. We identified
504 candidate predictors according to previous study on coastal vegetation change and carbon
505 cycling^{27,31,33,38,48,88–90}, which can be broadly categorized into climatological-related variables and
506 sea-level-related variables.

507 The climate data (temperature, precipitation, and vapor pressure deficit) for the BRT model
508 were derived from the PRISM Climate Group (daily dataset between 1984 and 2020 with spatial
509 resolution of 800 m)⁹¹. The annual growing degree days (GDD) was calculated from the
510 temperature data as the number of days when daily average is greater or equal to 10 °C^{30,88}. Aside
511 from the analysis-ready 30-year normals⁹¹, the input climate variables also include the change (Δ)
512 of temperature, precipitation and GDD from 1984 to 2020, computed as the product between the
513 slope simulated by the Theil-Sen slope estimator⁷⁵ using annual inputs, and the number of years
514 during the period (36 years). The sea-level related datasets were downloaded directly from the
515 Global Surface Water dataset (three variables: flooding frequency, flooding seasonality and
516 flooding change intensify; 30 m resolution datasets generated between 1984-2020)⁸³ or computed
517 from the CoNED DEM (four variables: elevation, topographic slope, aspect and topographic
518 position index⁹²; static 1 m resolution dataset). All datasets were projected to a common
519 geographic coordinate system and resampled to the same spatial resolution (800 m) by bilinear
520 interpolation before analysis.

521 We initiated the BRT model with all candidate predictors, and removed uninfluential, cross-
522 dependent/cross-correlative variables step by step until achieving a single reduced model that
523 contains only significant variables with relative influence greater than 5%⁹³. The default ten-fold

524 cross-validation was used to optimize model performance. The final model was fitted with a tree
525 complexity of 10, learning rate of 0.0005 and bag fraction (stochasticity) of 0.75 that result in >
526 5,000 trees.

527

528 **Data Availability.** All Landsat Level-1 surface reflectance images are publicly available from the
529 USGS EarthExplorer (<https://earthexplorer.usgs.gov/>) or via Google Cloud Landsat dataset
530 (<https://cloud.google.com/storage/docs/public-datasets/landsat>). All field-based biomass data are
531 detailed in ref.^{25,68-72} and available in the Virginia Coast Reserve Long-Term Ecological Research
532 repository (<http://www.vcrler.virginia.edu/cgi-bin/browseData.cgi>). The landcover maps and the
533 NDVI trend map are publicly available at the Environmental Data Initiative Data Repository
534 (<https://doi.org/10.6073/pasta/4ae5ac3fdbb6a20dcdb2ff36487d292>).

535 **Code Availability.** The study does not report original code. All code used this study is available
536 from the corresponding author upon reasonable request.

537

538 **Methods-only references**

539 55. Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K. & Carr, J. A. Quantifying Slopes
540 as a Driver of Forest to Marsh Conversion Using Geospatial Techniques: Application to
541 Chesapeake Bay Coastal-Plain, United States. *Front. Environ. Sci.* **9**, (2021).

542 56. NOAA Office for Coastal Management. NOAA Coastal Change Analysis Program (C-
543 CAP) Regional Land Cover Database. Data collected 1995-present. Charleston, SC.
544 <https://coast.noaa.gov/digitalcoast/tools/lca.html> (2016).

545 57. Woodcock, C. E. et al. Free Access to Landsat Imagery. *Science* **320**, 1011a-1011a (2008).

546 58. Sayler, K. & Zanter, K. Earth Resources Observation and Science (EROS) Center Science
547 Processing Architecture (ESPA) On-Demand Interface User Guide. Version 4.0. (2020).

548 59. O'Connell, J. L., Mishra, D. R., Cotten, D. L., Wang, L. & Alber, M. The Tidal Marsh
549 Inundation Index (TMII): An inundation filter to flag flooded pixels and improve MODIS
550 tidal marsh vegetation time-series analysis. *Remote Sens. Environ.* **201**, 34–46 (2017).

551 60. Campbell, A. D. & Wang, Y. Salt marsh monitoring along the mid-Atlantic coast by Google
552 Earth Engine enabled time series. *PLoS One* **15**, e0229605 (2020).

553 61. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984-
554 2012 Landsat data. *Remote Sens. Environ.* **176**, 1–16 (2016).

555 62. Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and
556 shrub dominance mapped across the North Slope of Alaska. *Environ. Res. Lett.* **13**, (2018).

557 63. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. *Nat. Clim.
558 Chang.* **10**, 106–117 (2020).

559 64. Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome
560 shift. *Ecol. Lett.* **14**, 373–379 (2011).

561 65. Zoffoli, M. L. et al. Sentinel-2 remote sensing of *Zostera noltei*-dominated intertidal
562 seagrass meadows. *Remote Sens. Environ.* **251**, 112020 (2020).

563 66. Byrd, K. B. et al. A remote sensing-based model of tidal marsh aboveground carbon stocks
564 for the conterminous United States. *ISPRS J. Photogramm. Remote Sens.* **139**, 255–271
565 (2018).

566 67. White, E. & Kaplan, D. Identifying the effects of chronic saltwater intrusion in coastal
567 floodplain swamps using remote sensing. *Remote Sens. Environ.* **258**, 112385 (2021).

568 68. Gillen, M. N., Messerschmidt, T. C. & Kirwan, M. L. Biophysical controls of marsh soil
569 shear strength along an estuarine salinity gradient. *Earth Surf. Dyn.* **9**, 413–421 (2021).

570 69. Gillen, M., Messerschmidt, T. & Kirwan, M. Shear Stress, Biomass, Bulk Density, Organic
571 Matter on the Bank of the York River, VA. *Environ. Data Initiat.* (2021).

572 70. Kirwan, M. L., Christian, R. R., Blum, L. K. & Brinson, M. M. On the Relationship Between
573 Sea Level and *Spartina alterniflora* Production. *Ecosystems* **15**, 140–147 (2012).

574 71. Smith, A., Kirwan, M. & Messerschmidt, T. Carbon stocks in forests transitioning to salt
575 marsh at four sites in the Chesapeake Bay region, 2019. *Environ. Data Initiat.* (2021).

576 72. Chen, Y., Messerschmidt, T., Smith, A. & Kirwan, M. Coastal Forest Aboveground
577 Biomass Data at six sites in the Chesapeake Bay and Delaware Bay region, 2021. *Environ.*
578 *Data Initiat.* (2022).

579 73. Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and
580 normalized difference vegetation index continuity. *Remote Sens. Environ.* **185**, 57–70
581 (2016).

582 74. Claverie, M., Vermote, E. F., Franch, B. & Masek, J. G. Evaluation of the Landsat-5 TM
583 and Landsat-7 ETM+ surface reflectance products. *Remote Sens. Environ.* **169**, 390–403

584 (2015).

585 75. Bronaugh, D. & Werner, A. *zyp: Zhang + Yue-Pilon Trends Package Version 0.10-1.1.*
586 <https://cran.r-project.org/web/packages/zyp/index.html> (2019).

587 76. Wilcox, R. R. *Fundamentals of Modern Statistical Methods: Substantially Improving Power*
588 and Accuracy, 2nd edition. (Springer, 2011).

589 77. Breiman, L. *Random Forests*. *Mach. Learn.* **45**, 5–32 (2001).

590 78. Tian, J. et al. Development of spectral-phenological features for deep learning to understand
591 *Spartina alterniflora* invasion. *Remote Sens. Environ.* **242**, 111745 (2020).

592 79. Zhang, F. & Yang, X. Improving land cover classification in an urbanized coastal area by
593 random forests: The role of variable selection. *Remote Sens. Environ.* **251**, 112105 (2020).

594 80. Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone.
595 *Remote Sens. Environ.* **202**, 18–27 (2017).

596 81. Liaw, A. & Wiener, M. Classification and Regression by randomForest. *R News* **2**, 18–22
597 (2002).

598 82. van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area
599 disturbance from fire, insect pests, diseases and severe weather events. *For. Ecol. Manage.*
600 **352**, 78–88 (2015).

601 83. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global
602 surface water and its long-term changes. *Nature* **540**, 418–422 (2016).

603 84. Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016
604 through analyses of Landsat images with Google Earth Engine. *Remote Sens. Environ.* **238**,
605 (2020).

606 85. Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change.

631 96. Chen, Y. & Kirwan, M. A phenology- and trend-based approach for accurate mapping of
632 sea-level driven coastal forest retreat. *Remote Sens. Environ.* (2022). In press.

633 97. Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution
634 sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. *Sci.
635 Bull.* **64**, 370–373 (2019).

636 98. Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover,
637 and leaf area index. *Remote Sens. Environ.* **62**, 241–252 (1997).

638 99. Diao, C. & Wang, L. Incorporating plant phenological trajectory in exotic saltcedar
639 detection with monthly time series of Landsat imagery. *Remote Sens. Environ.* **182**, 60–71
640 (2016).

641 100. Diao, C. & Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC)
642 model to monitor the inter-annual leaf senescence of exotic saltcedar. *Remote Sens. Environ.*
643 **209**, 581–593 (2018).

644 101. Guo, B. et al. Dynamic monitoring of soil salinization in Yellow River Delta utilizing
645 MSAVI–SI feature space models with Landsat images. *Environ. Earth Sci.* **78**, 308 (2019).

646 102. Gitelson, A. A. & Merzlyak, M. N. Remote sensing of chlorophyll concentration in higher
647 plant leaves. *Adv. Sp. Res.* **22**, 689–692 (1998).

648 103. Huete, A., Justice, C. & Liu, H. Development of vegetation and soil indices for MODIS-
649 EOS. *Remote Sens. Environ.* **49**, 224–234 (1994).

650 104. Huete, A. . A soil-adjusted vegetation index (SAVI). *Remote Sens. Environ.* **25**, 295–309
651 (1988).

652 105. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted
653 vegetation index. *Remote Sens. Environ.* **48**, 119–126 (1994).

654 106. McFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the
655 delineation of open water features. *Int. J. Remote Sens.* **17**, 1425–1432 (1996).

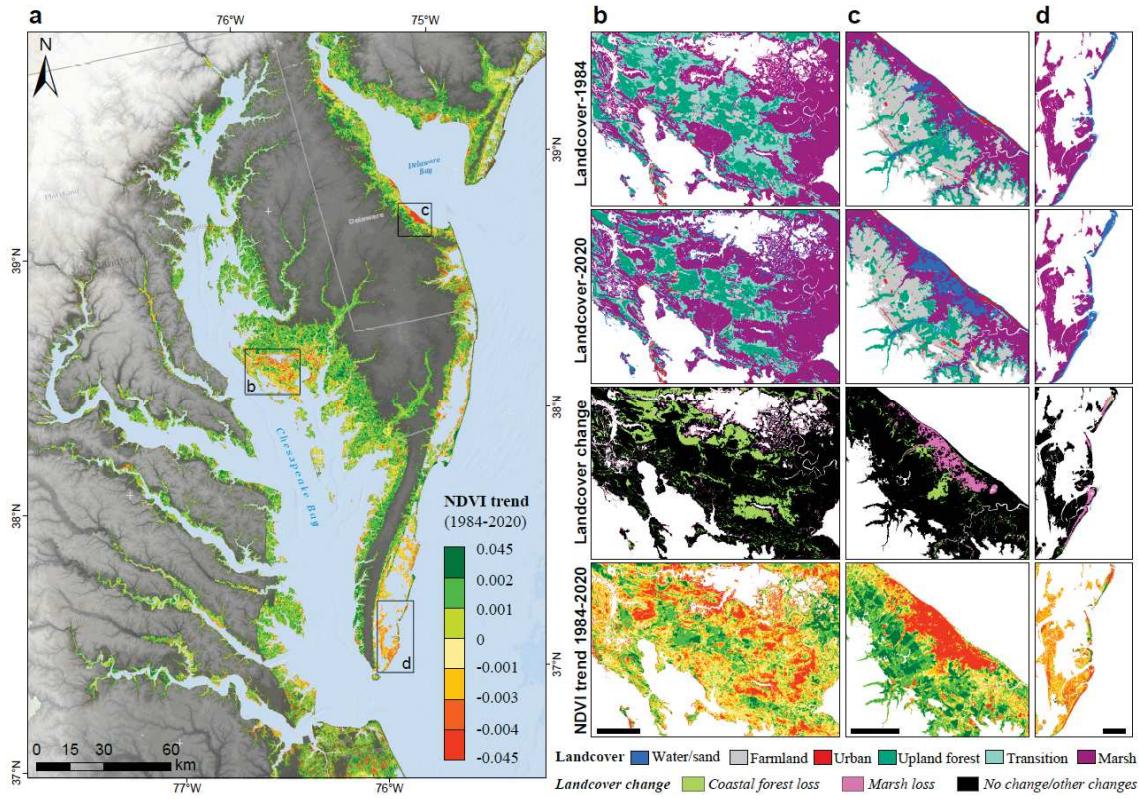
656 107. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water
657 features in remotely sensed imagery. *Int. J. Remote Sens.* **27**, 3025–3033 (2006).

658 108. Crist, E. P. & Cicone, R. C. A Physically-Based Transformation of Thematic Mapper Data-
659 --The TM Tasseled Cap. *IEEE Trans. Geosci. Remote Sens.* **GE-22**, 256–263 (1984).

660 109. Baig, M. H. A., Zhang, L., Shuai, T. & Tong, Q. Derivation of a tasselled cap transformation
661 based on Landsat 8 at-satellite reflectance. *Remote Sens. Lett.* **5**, 423–431 (2014).

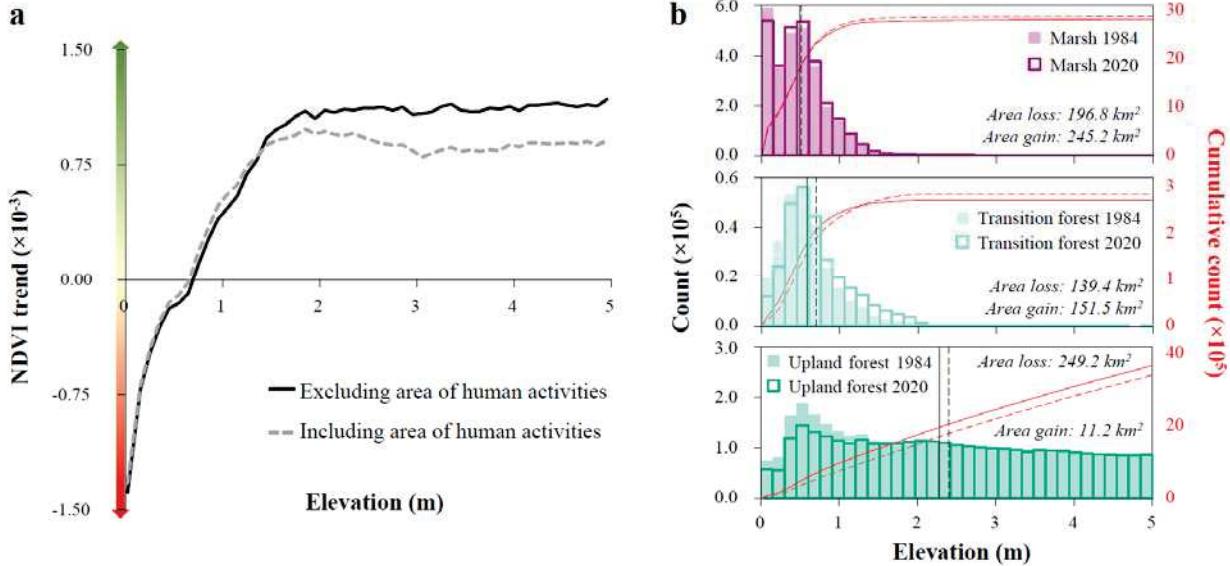
662 110. Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R. Random Forests for land cover
663 classification. *Pattern Recognit. Lett.* **27**, 294–300 (2006).

664



316
317 **Figure 1.** Correspondence between NDVI trend and vegetation shift in the mid-Atlantic coast of

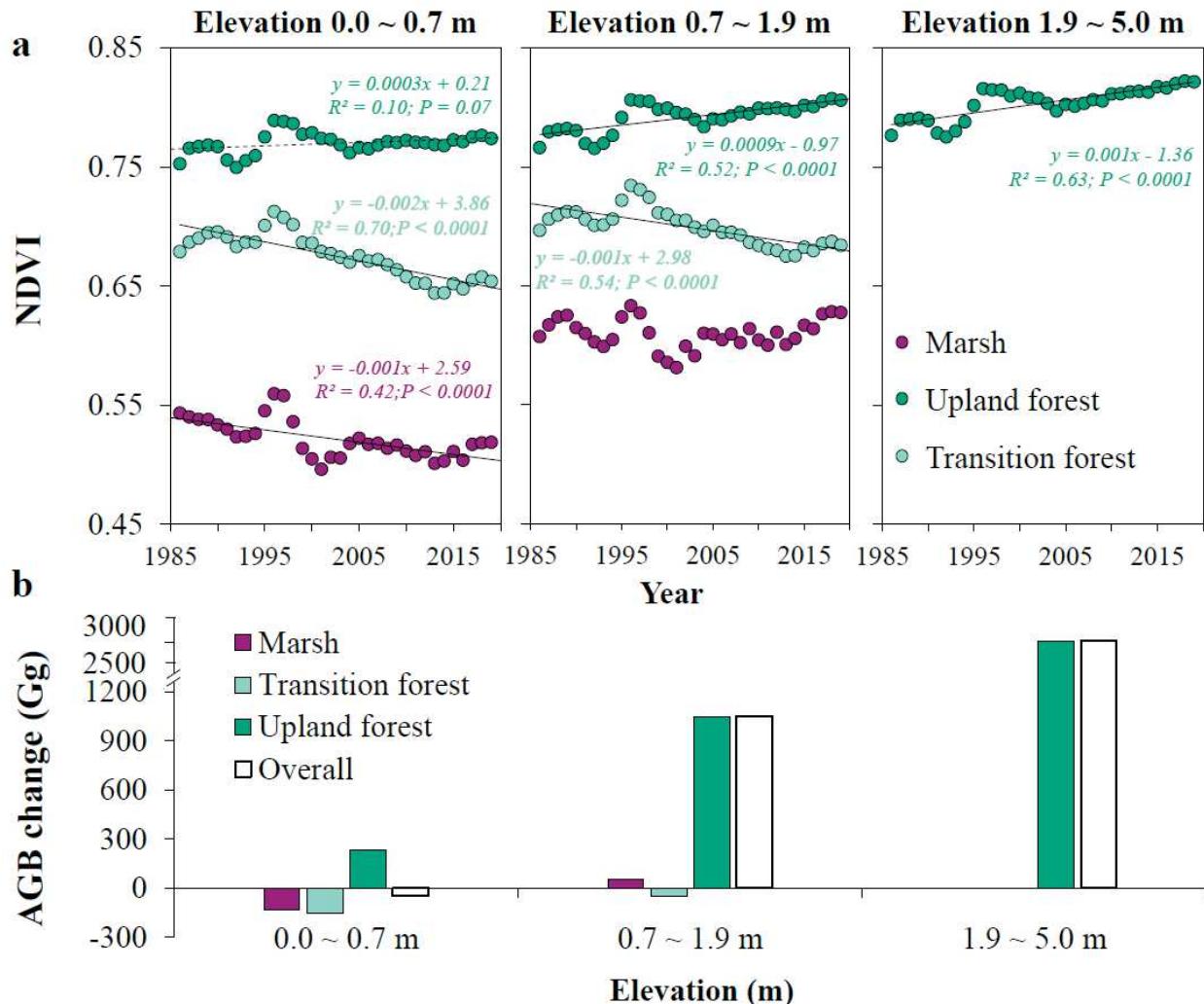
318 North America, a hotspot for accelerated SLR. **a.** Regional NDVI trend between 1984 and 2020
319 for areas less than 5 m above sea level, generally illustrating wetland browning (orange) and upland
320 greening (green). Black boxes outline three regional subsets for fine-scale demonstration. **b.**
321 Landscape browning associated with coastal forest retreat in Blackwater National Wildlife Refuge
322 (38.4°N, 76.1°W, Maryland); **c.** Landscape browning due to marsh and forest loss at Prime Hook
323 National Wildlife Refuge (38.8°N, 75.3°W, Delaware); **d.** Landscape browning driven by marsh
324 erosion along barrier islands in Virginia Coast Reserve (37.2°N, 75.8°W, Virginia). Maps of
325 landcover change (third row in **b-d**) were computed by differencing the landcover maps in 1984
326 (first row) and 2020 (second row). “Coastal forest loss” corresponds to areas where upland forest
327 or transition forest were replaced by migrating marsh and open water. “Marsh loss” refers to areas
328 of marsh loss to open water. Scale bars in **b-d** correspond to 4 km. See Extended Data Fig. 6 and
329 Extended Data Table 1-3 for more information on analysis statistics and landcover classifications.



330

331 **Figure 2.** Spatial extent of sea-level rise impacts in coastal ecosystems. **a.** NDVI trend plotted
 332 against elevation gradient, including (grey line) or excluding (black line) land-cover and land-use
 333 change associated with human activities (e.g. agriculture, urbanization, deforestation and
 334 reforestation, Extended Data Table 1). **b.** Histograms showing range shifts of vegetation from 1984
 335 to 2020 along elevation gradient. From top to bottom: marsh, transition forest and upland forest.
 336 Note that the y axes of the histograms were not plotted on the same scale. “Count” refers to number
 337 of Landsat pixels. All statistics were computed after excluding areas of human land-use and land-
 338 use change. The vertical lines correspond to mean elevation of vegetation within 0-5 m above sea
 339 level in 1984 (solid) and 2020 (dotted). The red lines represent cumulative number of Landsat
 340 pixels along elevation in 1984 (solid) and 2020 (dotted). Elevation data⁵⁴ is relative to NAVD88,
 341 which approximates mean sea level in the region.

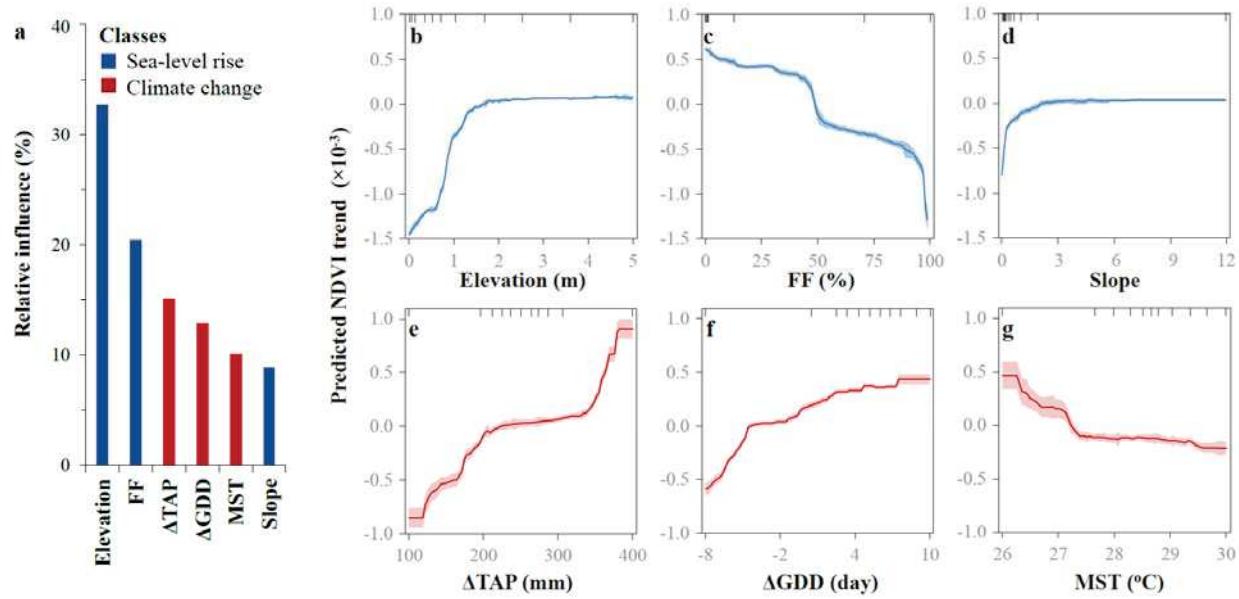
342



343

344 **Figure 3.** NDVI trend and the associated aboveground biomass change by vegetation type. **a.** Four-
 345 year rolling mean NDVI through time, presented by vegetation type along elevation gradients
 346 (panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5 m above sea level). Solid and dotted lines
 347 refer to linear regression showing statistically significant ($P < 0.05$, solid line) and marginally
 348 significant ($P < 0.1$, dotted line) trends between 1984 and 2020, respectively. **b.** Overall and
 349 vegetation-specific aboveground biomass change from 1984 to 2020, indicating a net increase in
 350 coastal aboveground biomass. All results were computed on areas free from human land-use and
 351 land-use changes.

352

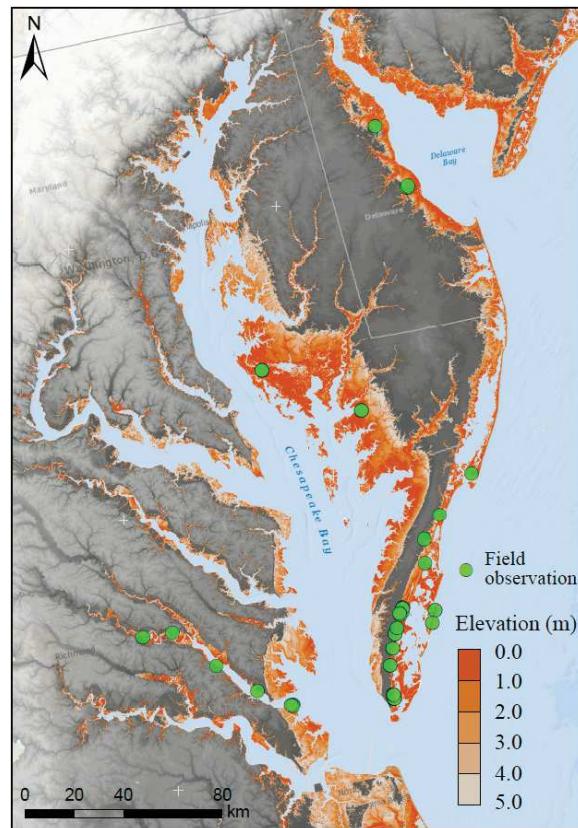


353

354 **Figure 4.** Environmental drivers for regional patterns of NDVI trend. **a.** Relative influence of each
 355 environmental driver. FF: flooding frequency; Slope: topographical slope; Δ TAP: change in total
 356 annual precipitation between 1984-2020; Δ GDD: change in growing degree day between 1984-
 357 2020; MST: maximum summer temperature. **b-g.** Partial-dependency plots illustrating the
 358 relationship between NDVI trend and each of the environmental drivers. The x axes represent the
 359 independent variable, and the y axes refer to the effect size that each variable has on the NDVI
 360 trend. The shaded areas represent 95% confidence interval, and the tick marks indicate the deciles
 361 of data distribution. All analyses were performed on areas free from human land-use and land-use
 362 changes.

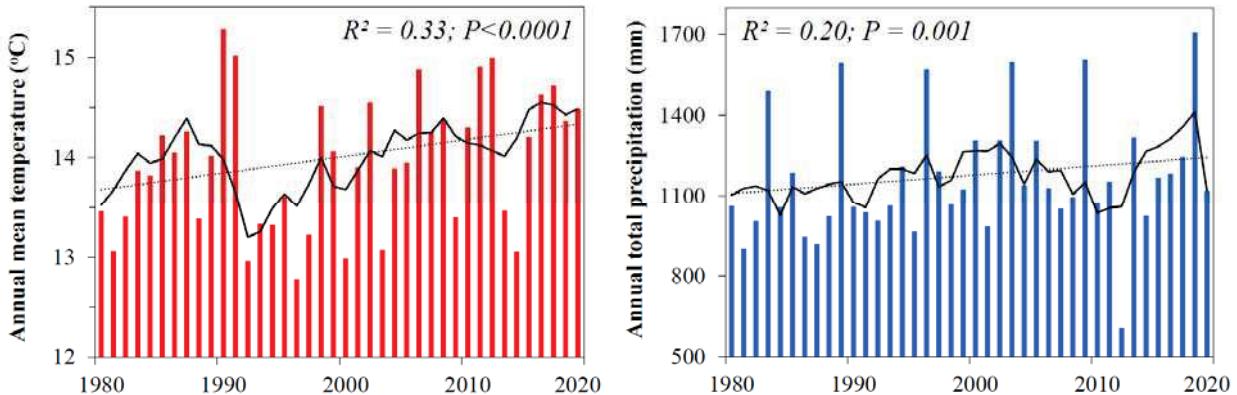
363

528



529 **Extended Data Fig. 1.** Map of the U.S. mid-Atlantic study region. Green circles denote field sites
530 of aboveground biomass observations. The elevation map refers to the CoNED DEM⁵⁴.

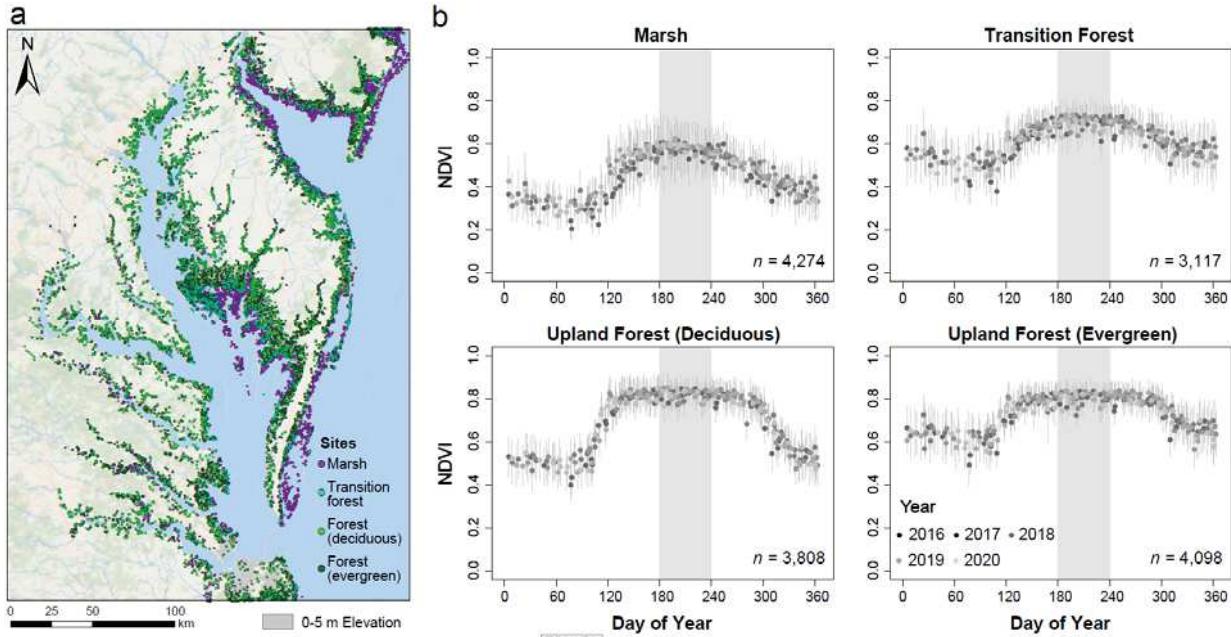
531

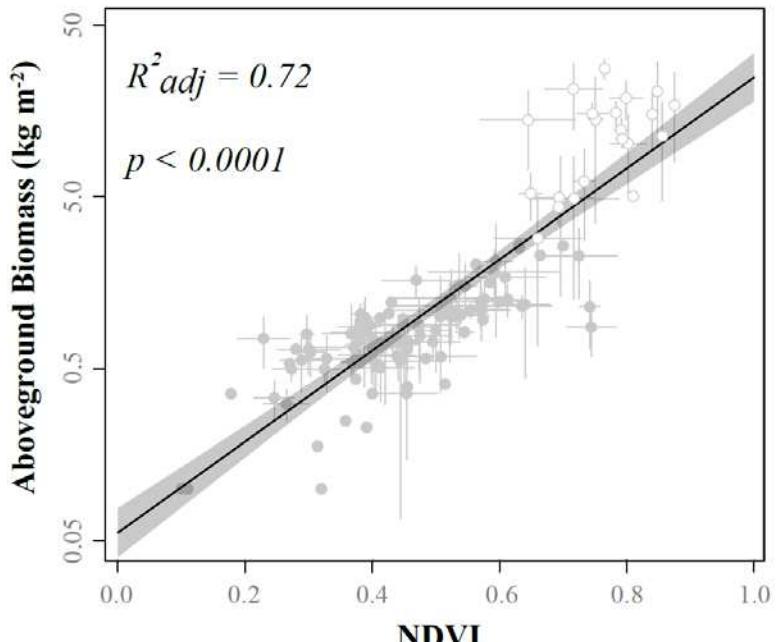


532

533 **Extended Data Fig. 2.** Climate change observed in the study region. The vertical bars represent
 534 annual mean temperature (left) and annual total precipitation (right), recorded in the nearest
 535 NOAA station in Dover, Delaware. The black lines refer to the 5-yr moving average. The dotted
 536 lines represent linear regression that show significant upward trend of long-term temperature and
 537 precipitation from 1980 onward. The observed climate data was used for illustrative purposes only.
 538 The climate inputs for our boosted regression tree analysis refers to the spatially explicit PRISM
 539 datasets.

540

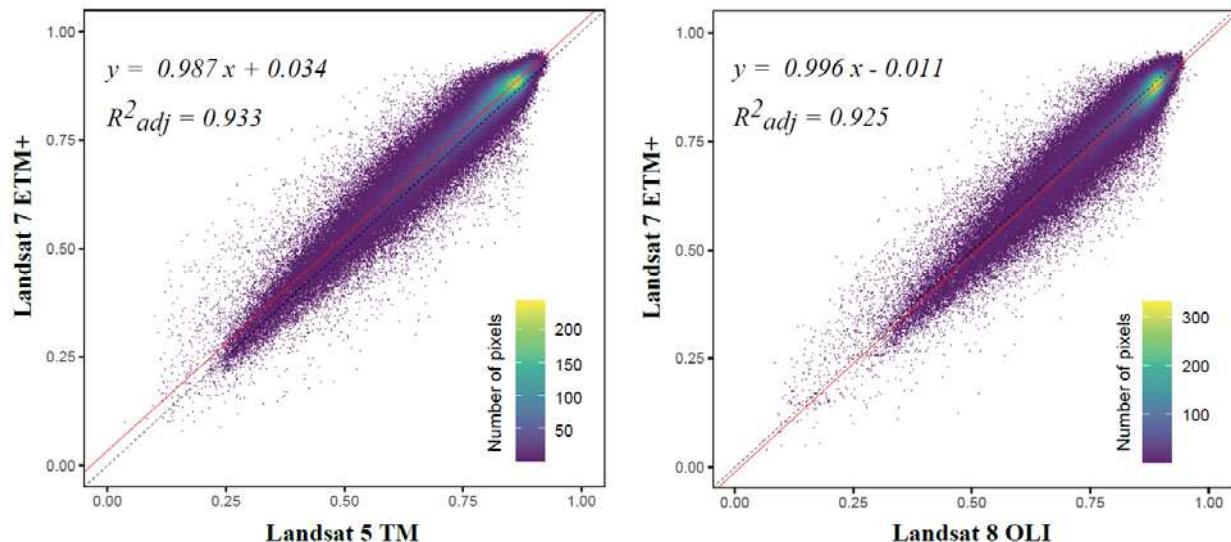




547

548 **Extended Data Fig. 4.** Relationship between peak growing-season NDVI and aboveground
 549 biomass. The solid and open symbols correspond respectively to marsh and forest. All biomass
 550 data were accessed from the LTER database indicated in Extended Data Fig. 1. The y -axis is
 551 plotted on a logarithmic scale. The regression function is (aboveground biomass) = $0.05 \times e^{6.02 \times}$
 552 $(NDVI)$, ($P < 0.0001$, F -statistic = 378.5, and RMSE = 0.5766). The uncertainties (grey lines) refer
 553 to standard deviations, and the shaded area represents 95% confidence intervals.

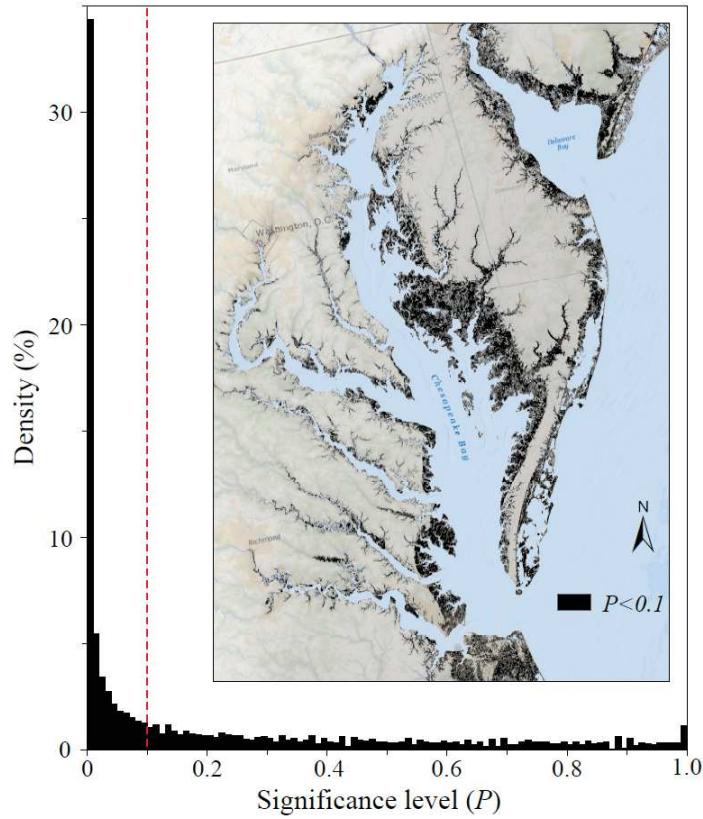
554



555

556 **Extended Data Fig. 5.** Cross-comparison of NDVI between Landsat sensors. Scatterplots of
 557 NDVI by Landsat-5 TM (left) and by Landsat-8 OLI (right) were plotted against NDVI by
 558 Landsat-7 ETM+. The solid lines refer to linear regression and dotted lines represent the 1:1 Line
 559 superimposed for reference.

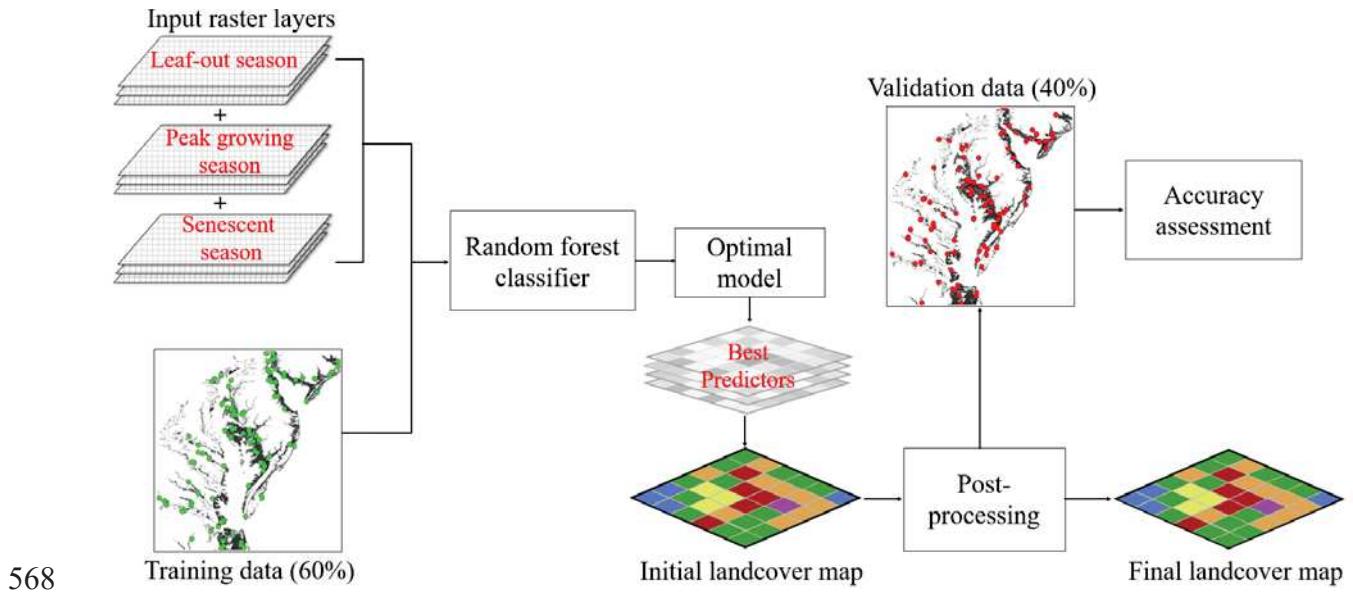
560



561

562 **Extended Data Fig. 6.** Mann-Kendall test for significant NDVI trends ($P < 0.1$) in the study
 563 region. The inserted map shows all areas that demonstrate statistically significant increases or
 564 decreases in NDVI during 1984 to 2020. The density plot summarizes distribution pattern of
 565 statistical results among all pixels, and the significance level at $P = 0.1$ is indicated by the dotted
 566 red line.

567



571 **Extended Data Table 1.** Landcover classes and their definitions used in this study.

Categories	Classes	Definition
Natural habitats	Marsh	Tidal and nontidal wetlands dominated by herbaceous hydrophytes like cordgrass, rushes, and sedges (NOAA C-CAP program ⁵⁶).
	Transition forest	Low-lying forests between marsh and upland forests where mortality due to seawater intrusion has already begun. Also known as ghost forests ^{15,25,26,67} , usually with shrubs and marshes present in understory.
	Upland forest	Primary or long-standing secondary forests characterized by closed canopy and mature trees of height greater than 5 m (NOAA C-CAP program ⁵⁶).
Human-influenced areas	Agriculture	Managed lands including actively cultivated, fallow or recently abandoned croplands; nursery and plantation for flowers, fruits and other economic plants; managed grasslands and pastures like golf course and residential lawns (National Land Cover Database ⁹⁴); and selectively thinned or clear-cut forests (Global Forest Cover Change database ⁸⁵).
	Urban area	Developed lands dominated by impervious surface such as asphaltic roads and concrete constructions for residential, institutional, and commercial activities.
Water		Open water with 25% or less of vegetation and soil cover (National Land Cover Database ⁹⁴).
Sandbar		Barren, unconsolidated sandy/silty shores, and sparsely vegetated sand dunes subject to constant tidal-driven erosion and redistribution (NOAA C-CAP program ⁵⁶).

572

573 **Extended Data Table 2.** Input datasets for random forest classifier. All Landsat images used for
 574 landcover mapping were acquired during low tides with cloud cover less than 5%. Predictors in
 575 bold are those retained in the final models. “References” refers to studies upon which the selection
 576 of candidate predictors is based in this study.

Categories	Predictors*	Data sources	Timing of acquisition	References
Spectral bands	Blue	All surface reflectance	Greening/leaf-out season; Peak growing-season; Refs. ^{78,79,95–97} Senescent/leaf-off season.	
	Green	bands of Landsat-5 for the		
	Red	1984 mapping; and		
	NIR	all surface reflectance		
	SWIR1	bands of Landsat-8 for the		
Multispectral indices	SWIR2	2020 mapping.		
	NDVI ⁹⁸		Greening/leaf-out season; Peak growing-season; Refs. ^{67,78,95–101} Senescent/leaf-off season.	
	GNDVI ¹⁰²			
	EVI ¹⁰³	Computed from surface reflectance bands of		
	SAVI ¹⁰⁴	Landsat-5 for the 1984 mapping, and from		
	MSAVI ¹⁰⁵	surface reflectance bands of Landsat-8 for the 2020 mapping.		
	NDWI ¹⁰⁶			
	mNDWI ¹⁰⁷			
	TCP - brightness ^{108,109}			
Biophysical attributes	TCP - greenness ^{108,109}		Static	Refs. ^{79,96,110}
	TCP - wetness ^{108,109}			
	Elevation	Computed from the 1 m		
	Slope	CoNED DEM, resampled to 30m using bilinear		
	Aspect	interpolation.		
	TPI ⁹²			

577 * NIR: Near-Infrared; SWIR: Short-wave Infrared; NDVI: Normalized Difference Vegetation Index;
 578 GNDVI: Green NDVI; EVI: Enhanced Vegetation Index; SAVI: Soil-Adjusted Vegetation Index; MSAVI:
 579 Modified SAVI; NDWI: Normalized Difference Water Index; mNDWI: modified NDWI; TCP: Tasseled
 580 Cap Transformation; TPI: Topographical Position Index.

581

582 **Extended Data Table 3.** Classification accuracy of landcover maps.

Classes	1984 landcover map			2020 landcover map		
	Validation (# sites)	User's accuracy	Producer's accuracy	Validation (# sites)	User's accuracy	Producer's accuracy
Marsh	2094	91.07%	90.77%	2394	94.32%	90.87%
Transition forest	1904	92.17%	87.44%	2187	93.87%	92.77%
Upland forest	2269	90.17%	94.29%	1975	96.05%	95.95%
Agriculture	2004	91.72%	90.41%	1938	91.64%	95.38%
Urban	1548	96.06%	93.52%	1501	93.27%	91.98%
Water	1799	88.27%	91.06%	2127	90.69%	92.96%
Sandbar	1264	87.66%	89.57%	1463	90.91%	91.66%
<i>Overall accuracy</i>		91.05%			93.10%	

583