
1 

Climate-driven decoupling of wetland and upland biomass trends on the mid-8 

Atlantic coast 9 

10 

Yaping Chen1*, Matthew L. Kirwan111 

1Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA 12 

*To whom correspondence and material requests should be addressed (ychen@vims.edu) 13 

14 

Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink. 15 

Sea-level driven tidal wetland degradation and upland forest mortality threaten coastal 16 

carbon pools, but responses of the broader coastal landscape to interacting facets of climate 17 

change remain poorly understood. Here, we use 36 years of satellite observations across the 18 

mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the 19 

amount of carbon stored in the biomass of coastal ecosystems despite substantial aerial loss. 20 

We find that sea-level driven reductions in wetland and low-lying forest biomass were largely 21 

confined to areas less than 2 meters above sea level, whereas the otherwise warmer and 22 

wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across 23 

the entire coastal landscape, climate-driven upland greening offset sea-level driven biomass 24 

losses, such that the net impact of climate change was to increase the amount of carbon stored 25 

in coastal vegetation. These results point to a fundamental decoupling between upland and 26 

wetland carbon trends that can only be understood by integrating observations across 27 

traditional ecosystem boundaries. This holistic approach may provide a template for 28 

quantifying carbon-climate feedbacks and other aspects of coastal change that extend 29 

beyond sea-level rise alone.30 
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31 

Climate change is driving worldwide landscape reorganization with far-reaching consequences for 32 

global carbon stocks1,2. For instance, amplified warming has accelerated shrubification in high 33 

latitude tundra landscapes, facilitating a biome-wide increase in productivity known as Arctic 34 

Greening3,4. Increasing temperature and precipitation has boosted forest densification and 35 

facilitated upslope treeline in high-mountain regions such as the Tibetan Plateau5,6, and altered 36 

precipitation regimes in the arid sub-Saharan Africa have allowed woodlands to carpet expansive 37 

barren and sparsely-vegetated drylands7,8. Together, these processes have contributed to a general 38 

greening of the terrestrial biosphere9–11, in which the amount of carbon stored in woody biomass 39 

has increased through time12,13. 40 

Climate change is also transforming coastal ecosystems14–16, which are a disproportionately 41 

large, yet highly vulnerable global carbon sink17–19. A prominent phenomenon unique to the coastal 42 

landscape is that declining coastal sediment supplies and accelerated sea-level rise (SLR) 43 

associated with recent warming has elicited degradation of existing marshes20,21 and mortality of 44 

adjacent forests15. Recent research has explored the impacts of SLR on carbon pools in marshes22–45 

24 and coastal forests25,26, but how climate change interacts with SLR to modify the integrated 46 

coastal carbon sink is largely unknown27,28. On one hand, SLR-driven vegetation shifts may result 47 

in net losses of biomass due to wetland degradation20,29 and forest die-off25,26. On the other hand, 48 

changing climate may increase biomass by extending growing seasons30 and ameliorating salt 49 

stress via increased precipitation31. The net outcome of these competing processes could influence 50 

both the direction and magnitude of carbon-climate feedbacks in coastal ecosystems. 51 

Here, we use the extensive Landsat dataset (30 m resolution) between 1984 and 2020 to 52 

quantify landscape-scale (~12,500 km2) Normalized Difference Vegetation Index (NDVI) trends 53 



3 

 

associated with vegetation shifts (Methods) along the rapidly warming mid-Atlantic coast of North 54 

America (Extended Data Figures 1-2), a SLR hotspot characterized by extensive marsh loss and 55 

forest mortality32,33. Our results reveal a fundamental decoupling between negative SLR impacts 56 

at low elevations and positive climate impacts at higher elevations, such that the net impact of 57 

interacting facets of climate change is an overall increase in aboveground coastal biomass. 58 

Vegetation shifts and lowland browning 59 

Low-lying coastal wetlands and forests are well known to be vulnerable to SLR and erosion both 60 

globally16,29,34,35, and within the Chesapeake Bay region20,32,33. Consistent with those observations, 61 

we find large-scale losses of marsh (196.8 km2) and coastal forests (238.7 km2) in the U.S. mid-62 

Atlantic over the past ~40 years based on our Landsat observation (Figure 1). However, in spite of 63 

erosion and submergence at low elevations, marsh and transition forest (defined as low-lying forest 64 

between marsh and upland forests where mortality due to seawater intrusion has already begun) 65 

expanded in areal extent respectively by 2% (48.4 km2) and 5% (12.1 km2) (Figure 2). The loss of 66 

marshes observed in 1984 (7.7%, 196.8 km2) occurred primarily at the seaward margin and for 67 

elevations below 0.2 m, and was compensated by new marsh that formed at higher elevations 68 

(245.2 km2) at the expense of transition forest (134.9 km2) and forested uplands (90.7 km2). 69 

Transition forest advanced upslope, where the replacement of forested uplands (149.9 km2) 70 

compensated for the aerial loss of transition forest at lower elevations (139.4 km2) (Figure 2). The 71 

average elevation of transitional forests increased (0.12 m; 0.58 ± 0.35 m in 1984 to 0.70 ± 0.41 72 

m in 2020) more than the average elevation of marshes (0.02 m; 0.49 ± 0.44 m to 0.51 ± 0.44 m) 73 

(Figure 2), and at a rate (3.3 mm yr-1) that is almost equivalent to long-term SLR trends in the 74 

region (3-6 mm yr-1). These observations imply that sea level rise is driving the migration of coastal 75 
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ecosystems over large spatial scales, and that over decadal timescales, coastal forests are at least 76 

as vulnerable to SLR as the marshes that occur closer to the seaward margin. 77 

Changes in vegetation extent closely resemble patterns of landscape greening (positive trend 78 

in NDVI) and browning (negative trend in NDVI) (Figure 1), and confirm general expectations 79 

that SLR-driven land conversion leads to coastal biomass loss25,26. In spite of overall browning in 80 

coastal lowlands, the rate of change varies substantially across space (Figures 1-2), reflecting the 81 

wide array of processes regulating vegetation dynamics. The most drastic browning appeared at 82 

the marsh-forest transition (i.e. transition forest), where marsh transgresses inland, replacing forest 83 

that is one to two orders of magnitude higher in aboveground biomass25,36. In the low-relief 84 

Blackwater National Wildlife Refuge where browning is extreme, we find that the marsh-forest 85 

boundary has retreated inland by as much as ~1,100 m since 1984 (or ~30 m yr-1) – the fastest 86 

upland conversion ever recorded (Figure 1b). Other hotspots of coastal browning are associated 87 

with degradation or loss of habitats, as exemplified by massive interior ponding of marsh in the 88 

Prime Hook National Wildlife Refuge (Figure 1c) or rapid land erosion along vegetated barrier 89 

islands of Virginia Coast Reserve (Figure 1d). 90 

We estimate cumulative AGB changes from 1984 to 2020 based on NDVI trends (Methods 91 

and Extended Data Figures 3-6), and partition the results by elevation and ecosystem (Figure 3 92 

and Extended Data Figures 1 and 7). Despite pervasive AGB loss in marshes between elevation of 93 

0-0.7m (-0.13 Tg), we find a small amount of AGB gain (+0.05 Tg) in marshes at higher elevations 94 

(Figure 3). This observation concurs with observations and experiments that report enhanced 95 

marsh productivity under moderately increased inundation37,38. Conversely, transition forests 96 

consistently lose AGB along elevation although the rate slightly lowers with higher elevations 97 

(Figure 3), possibly as a result of lessened salt stress and flooding frequency further inland25. 98 
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Overall, we find that transition forest is the dominant avenue of coastal AGB loss (-0.20 Tg), 99 

nearly three times the amount of marsh (-0.07 Tg) (Figure 3). Considering that the area of the 100 

former is merely one tenth of the latter (Figure 2), AGB loss on per unit area of transition forest 101 

(815.4 g m-2) is ~27 times that of marsh (29.7 g m-2). This result is striking as previous work 102 

exploring impacts of SLR on coastal carbon cycling traditionally focuses on low lying marshes 103 

and mangroves23,29,39,40, whereas our study highlights that reduced carbon stocks in retreating 104 

upland forests may actually represent a more pronounced feedback with future warming.  105 

Sea-level driven decoupling of upland and lowland biomass trends  106 

As the impact of SLR is intrinsically tied to elevation41, we examined NDVI trends with elevation 107 

to gain a general perspective on coastal response to SLR (Figure 2). Despite intricacies within 108 

individual ecosystems discussed above, we find that across the coastal landscape, NDVI trends 109 

increase rapidly with elevation and that the landscape switches from browning to greening at an 110 

elevation of ~0.7 m (Figure 2). The benefit of rising elevation to additional landscape greening 111 

progressively weakens before vanishing as elevation approaches 1.9 m above sea level, after which 112 

landscape greening becomes relatively constant (Figure 2). These patterns are consistent regardless 113 

of the inclusion of areas modified by human activities (e.g. agriculture, urbanization, silviculture 114 

that jointly impact 18.1% of all area between 0-2 m, and 34.7% between 0-5 m) (Figure 2 and 115 

Extended Data Table 1). Thus, we interpret this “turning-point” elevation around 2 m as defining 116 

the upper elevation limit for SLR impacts on coastal environments, as hinted by the extent of range 117 

shifts in marsh and transition forest along elevation gradient (Figure 2).  118 

Previous work suggests that a variety of climatic31,42 and sea-level driven37,38 factors are 119 

associated with biomass change and carbon cycling in coastal ecosystems. To identify potential 120 

drivers and their relative importance (RI) in shaping the observed patterns of NDVI trend across 121 
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the region, we applied a boosted regression tree model to areas free from human disturbance 122 

(Methods). Our analyses (r = 0.71, P < 0.0001) indicate that the spatial variation in NDVI trend is 123 

mainly explained by variables broadly related to SLR (RI of 63%, 3 variables: elevation, flooding 124 

frequency, and topographic slope) and to a lesser degree by climate change (RI of 37%, 3 variables: 125 

change of annual precipitation, change of growing degree day, and maximum summer 126 

temperature) (Figure 4). 127 

Partial-dependency plots attest that the impact of SLR is largely constrained within 2 m above 128 

sea level (Figure 4b). Relative SLR rates in the mid-Atlantic are 2-3X faster than the global 129 

average43, and excessive inundation is recognized as a primary driver of marsh loss and tree 130 

mortality20,26,33,38,44. Consistent with this paradigm, we find that NDVI trend declines with 131 

increasing flooding frequency and decreasing topographic slope (Figure 4c-d), suggesting that 132 

SLR underlies the escalated browning in coastal lowlands.  133 

Meanwhile, observed temperature (annual mean +0.8 oC) and precipitation (annual total +140 134 

mm) have significantly increased across the mid-Atlantic (Extended Data Figure 2). Studies from 135 

a wealth of coastal and terrestrial ecosystems have linked climate change, especially warming and 136 

wetting, with strengthened plant productivity and biomass carbon pools9,31,45,46. Our analyses 137 

indicate that increases in temperature and precipitation enhance regional greening, as NDVI trend 138 

rises nearly linearly with elevated precipitation and prolonged growing degree days (Figure 4e-f). 139 

Therefore, interactive components of climate change potentially lead to simultaneous and 140 

contrasting responses in coastal ecosystem, where greening of uplands is associated with direct 141 

climate impacts and browning of lowlands is associated with climate-driven SLR.  142 
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Direct and indirect climate impacts on the coastal biomass carbon sink 143 

Interacting facets of climate change are well known to dictate carbon cycling in a range of 144 

terrestrial ecosystems46,47, whereas in coastal ecosystems carbon cycling is largely viewed through 145 

the lens of SLR alone48. Although direct climate impacts are important controls on wetland 146 

productivity and carbon balance31,39, it is unclear how the combined forces of SLR and climate 147 

change drive regional-scale carbon cycling, especially in the upland component of the coastal 148 

landscape. Our results illustrate that with increasing elevation, browning diminishes in marsh and 149 

transition forests, and that greening intensifies in adjacent upland forests, signaling a transition 150 

from SLR-driven browning to climate-driven greening (Figures 2a and 3a). Forest greening is 151 

consistent at elevations greater than 1.9 m above sea level – the aforementioned turning-point 152 

demarcating the potential limit of SLR impacts (Figure 2a), leading to a large net increase in AGB 153 

for the coastal zone as a whole (+3.76 Tg for elevations 0-5 m) (Figure 3b).  154 

Interestingly, we also find that forest greening (+1.28 Tg) compensates for marsh and transition 155 

forest browning (-0.3 Tg), even when restricted to portions of the landscape that are negatively 156 

impacted by SLR (+1.0 Tg for elevations 0-1.9 m) (Figure 3b). These results are generally in line 157 

with recent global-scale, coarse-resolution ( 4 km pixels) satellite observations that suggest an 158 

overall enhancement of net primary production9,49 and leaf area index10,11 both globally and in the 159 

mid-Atlantic. However, by linking broad-scale biomass change with fine-scale vegetation shifts, 160 

we uncover substantial spatial heterogeneity – specifically the remarkable browning of coastal 161 

lowlands that would be obscured at coarser resolution.  162 

Our analysis of aboveground biomass trends does not include changes in belowground biomass 163 

or soil carbon pools that are hard to quantify and respond to climate change in complex ways. For 164 

example, marshes contain a disproportionate amount of carbon in soils25,50, and regional soil 165 
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carbon accumulation rates can either increase or decrease as marshes become more inundated22,51. 166 

Therefore, our finding that climate factors have compensated for sea-level driven losses in above-167 

ground biomass may neglect other important components of the coastal carbon budget. Similarly, 168 

our finding of functional compensation in aboveground biomass may not apply to other ecosystem 169 

functions that depend fundamentally on ecosystem size and location. For instance, sea-level rise 170 

is leading to the loss of freshwater forested wetlands that are themselves highly valued for habitat 171 

provision, water quality improvement, and flood protection52,53.  172 

Nevertheless, our finding that climate-driven upland greening has compensated for lowland 173 

browning largely contrasts previous work that generally emphasizes sea-level driven losses of 174 

biomass within marshes and coastal forests25,26. Thus, our work indicates that the combined 175 

influences of global change have been to increase the size of the coastal biomass carbon sink 176 

(Figure 3), even in a region that is a hotspot for accelerated sea-level rise, marsh degradation, and 177 

forest mortality32,33,43. This unique decoupling between SLR-driven wetland browning and 178 

climate-driven upland greening illustrates the need to quantify carbon dynamics across traditional 179 

ecosystem boundaries that respond differently to interacting factors of global change. 180 

181 
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Figure Legends/Captions (for main text figures) 192 

Figure 1. Correspondence between Normalized Difference Vegetation Index (NDVI) trend and 193 

vegetation shift in the mid-Atlantic coast of North America, a hotspot for accelerated sea-level rise. 194 

a. Regional NDVI trend between 1984 and 2020 for areas less than 5 m above sea level, generally 195 

illustrating wetland browning (orange) and upland greening (green). The elevation data refers to 196 

the Coastal National Elevation Database54. Black boxes outline three regional subsets for fine-197 

scale demonstration. b. Landscape browning associated with coastal forest retreat in Blackwater 198 

National Wildlife Refuge (38.4oN, 76.1oW, Maryland); c. Landscape browning due to marsh and 199 

forest loss at Prime Hook National Wildlife Refuge (38.8oN, 75.3oW, Delaware); d. Landscape 200 

browning driven by marsh erosion along barrier islands in Virginia Coast Reserve (37.2oN, 75.8oW, 201 

Virginia). Maps of landcover change (third row in b-d) were computed by differencing the 202 

landcover maps in 1984 (first row) and 2020 (second row). “Coastal forest loss” corresponds to 203 

areas where upland forest or transition forest were replaced by migrating marsh and open water. 204 

“Marsh loss” refers to areas of marsh loss to open water. Scale bars in b-d correspond to 4 km. 205 

See Extended Data Figures 6-7 and Extended Data Table 1-3 for more information on analysis 206 

statistics and landcover classifications. Map created using the Ocean Basemap in ArcGIS (v10.7). 207 

208 
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Figure 2. Spatial extent of sea-level rise impacts in coastal ecosystems. a. Normalized Difference 209 

Vegetation Index (NDVI) trend plotted against elevation gradient, including (grey line) or 210 

excluding (black line) land-cover and land-use change associated with human activities (e.g. 211 

agriculture, urbanization, deforestation and reforestation, Extended Data Table 1). b. Histograms 212 

showing range shifts of vegetation from 1984 to 2020 along elevation gradient. From top to bottom: 213 

marsh, transition forest and upland forest. Note that the y axes of the histograms were not plotted 214 

on the same scale. “Count” refers to number of Landsat pixels. All statistics were computed after 215 

excluding areas of human land-use and land-use change. The vertical lines correspond to mean 216 

elevation of vegetation within 0-5 m above sea level in 1984 (solid) and 2020 (dotted). The red 217 

lines represent cumulative number of Landsat pixels along elevation in 1984 (solid) and 2020 218 

(dotted). Elevation data54 is relative to NAVD88, which approximates mean sea level in the region. 219 

  220 
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Figure 3. Normalized Difference Vegetation Index (NDVI) trend and the associated aboveground 221 

biomass change by vegetation type. a. Four-year rolling mean NDVI through time, presented by 222 

vegetation type along elevation gradients (panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5 223 

m above sea level). Solid and dotted lines refer to linear regression showing statistically significant 224 

(P < 0.05, solid line) and marginally significant (P < 0.1, dotted line) trends between 1984 and 225 

2020, respectively. b. Overall and vegetation-specific aboveground biomass change from 1984 to 226 

2020, indicating a net increase in coastal aboveground biomass. All results were computed on 227 

areas free from human land-use and land-use changes. 228 

  229 
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Figure 4. Environmental drivers for regional patterns of Normalized Difference Vegetation Index 230 

(NDVI) trend. a. Relative influence of each environmental driver. FF: flooding frequency; Slope: 231 

topographical slope; TAP: change in total annual precipitation between 1984-2020; GDD: 232 

change in growing degree day between 1984-2020; MST: maximum summer temperature. b-g. 233 

Partial-dependency plots illustrating the relationship between NDVI trend and each of the 234 

environmental drivers. The x axes represent the independent variable, and the y axes refer to the 235 

effect size that each variable has on the NDVI trend. The shaded areas bounding the mean lines 236 

represent 95% confidence interval, and the tick marks indicate the deciles of data distribution. All 237 

analyses were performed on areas free from human land-use and land-use changes.  238 

 239 
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METHODS363 

Regional Setting 364 

We analyzed the response of coastal vegetation to interacting facets of climate change across the 365 

U.S. mid-Atlantic coast. The study area encompasses the Delaware Bay and the Chesapeake Bay 366 

– the largest coastal-plain estuary in North America. The mid-Atlantic coast is an ideal region for 367 

studying the impacts of interacting components of climate change on coastal ecosystems because 368 

it represents a known hotspot of relative sea-level rise43, and rapidly changing precipitation and 369 

temperature (Extended Data Figures 1-2). Relative sea-level rise rates are 2-3X faster than the 370 

global average, and accelerating towards a modern rate of 4-10 mm yr 1 43. Coastal ecosystems are 371 

particularly vulnerable to sea-level rise in the region because of limited sediment inputs, a 372 

microtidal tide range, and a gently sloping coastal plain. Indeed, both extensive marsh loss and 373 

forest retreat have been widely observed15,32,52.  374 

We analyzed 36-year Normalized Difference Vegetation Index (NDVI) trends and mapped 375 

landcover changes from 1984 to 2020 for all areas between 0 and 5 m above sea level (Extended 376 

Data Figure 1), an elevation range extending from perennially inundated coastal lowlands, through 377 

periodically flooded intertidal wetlands, to seldomly flooded uplands that show no sign of seawater 378 

intrusion25,55,56. The elevation data used to define our study area refers to the digital elevation 379 

model (DEM) of the Coastal National Elevation Database (CoNED)54. Elevations are relative to 380 

the North American Vertical Datum of 1988, which approximates mean sea level in the region. 381 

Data preprocessing and NDVI trend analysis 382 

We acquired all orthorectified, Tier-1 Landsat surface reflectance scenes with cloud cover less 383 

than 60% (n = 5,126) by Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic 384 

Mapper-plus (ETM+) and Landsat-8 Operational Land Imager (OLI)57 that cover the entire U.S. 385 
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mid-Atlantic region between March 24, 1984 and December 29, 2020. All images were processed 386 

with the ancillary Quality Assessment bands to mask pixels associated with water, cloud, cloud 387 

shadow, snow, ice and sensor-related issues58 in R (v 4.1.1). The resulting products were further 388 

processed to filter pixels of partial inundation using the Tidal Marsh Inundation Index59,60. 389 

Residual cloud, shadow, haze and smoke were removed by threshold-filtering the blue (surface 390 

reflectance > 0.07) and red (surface reflectance < 0.01)61 spectral bands. 391 

Remotely-sensed NDVI is strongly correlated with growing-season plant biomass and 392 

productivity in a myriad of terrestrial and aquatic ecosystems62–66. Our study region consists of 393 

multiple ecosystems that vary in vegetation phenology. To ensure reliable trend detection across 394 

the spatially-complex coastal landscapes, we examined monthly NDVI patterns of different 395 

vegetation types (i.e. marsh, transition forest, and upland deciduous and evergreen forest) to 396 

identify the best timing for consistent NDVI observations (Extended Data Figure 3)4. To achieve 397 

that, we randomly selected ~3000 sites for each vegetation across the entire region (Extended Data 398 

Figure 3) based on field observations, published study25,32,33,55,67, the high-resolution National 399 

Agriculture Imagery Program (NAIP) aerial imagery, and the Conservation Innovation Center 400 

(CIC) landcover map. We extracted the NDVI data sensed by Landsat-7 at each site over the most 401 

recent five years (2016-2020). Extended Data Figure 3 indicates the months of peak growing-402 

season in our study region (July-August) when NDVI is maximized and remains relatively stable 403 

throughout the time span. This temporal pattern is consistent across vegetation types and from year 404 

to year. Therefore, the images acquired annually between July 1st and August 31st were used for 405 

the trend analysis.  406 

We validated the correlation between Landsat-derived NDVI and peak growing-season plant 407 

biomass across the study region (Extended Data Figure 4) using field measurements of 408 
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aboveground biomass (AGB) in the U.S. mid-Atlantic coast archived in the Long-term Ecological 409 

Research (LTER) Network (Extended Data Figure 1). Specifically, we used datasets related to the 410 

biomass of marshes along the York River68,69 and outer Atlantic Coast70 of Virginia, and forests 411 

distributed throughout the Chesapeake Bay25,71 and Delaware Bay72. Some of the field sites have 412 

repeated biomass measurements collected over multiple years and transects. All the measurements 413 

were screened for outliers that exceeded site mean by more than 2 standard deviation70. For each 414 

of the measurements, the corresponding NDVI data was retrieved from Landsat-7 images. Both 415 

the biomass measurements and the NDVI data were averaged across year and transect for each 416 

study site. Given differences in the size between Landsat pixels and field sites, only ground-based 417 

measurements representative of biomass at the 30 × 30 m pixel scale were included. Sites that 418 

account only for a fraction of the pixel (e.g. located near creekbanks or farmlands) were discarded 419 

after consulting high-resolution drone images and NAIP aerial photos. Eventually, the modeled 420 

relationship between NDVI and AGB (n = 125) pooled from all field sites of marsh, transition 421 

forest, and upland forest is robust (P < 0.0001) with a coefficient of determination (R2) of 0.72 422 

(Extended Data Figure 4). 423 

Previous studies have revealed that small systematic biases in surface reflectance may exist 424 

across Landsat sensors that can lead to an artificial upward trend of NDVI through time4,61,62,73,74. 425 

Since our study spans 36 years that involves multiple generations of sensors (TM, ETM+, and 426 

OLI), we systematically evaluated NDVI data derived from Landsat-5, 7 and 8 in the region to 427 

constrain potential errors introduced by sensor difference (Extended Data Figure 5). The operation 428 

timeline of Landsat-7 overlaps with Landsat-5 during 1999-2011, and with Landsat-8 during 2013-429 

present57. Therefore, we took advantage of the overlapping scenes collected by concurrent sensors 430 

to cross-validate NDVI of Landsat-5 and Landsat-8 against that of Landsat-7, similar to the 431 
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methodology described by refs.4,73 (Extended Data Figure 5). We randomly selected 35 pairs of 432 

cloud-free Landsat-5 and Landsat-7 images, and 43 pairs of Landsat-8 and Landsat-7 images from 433 

ten and eight overlapping summers, respectively. The paired NDVI data were extracted every 600 434 

m (20 pixels) apart across all overlapping areas, and the data were analyzed with linear regression. 435 

Our results agree with earlier work suggesting differences in NDVI between sensors (Extended 436 

Data Figure 5), and all Landsat-5 and Landsat-8 derived NDVI was adjusted to Landsat-7 437 

according to the linear equations presented in Extended Data Figure 5. 438 

The processed NDVI data were then stacked in time series from 1984 to 2020 for trend analysis 439 

with the non-parametric Theil-Sen slope estimator75, a widely used approach for quantifying 440 

monotonic trends with the advantage of being insensitive to outliers76. The significance of the 441 

NDVI trends was tested with the rank-based Mann-Kendall test75, and trends were considered 442 

statistically significant at the level of  < 0.1 4,10 (Extended Data Figure 6, 61.4% of the pixels 443 

tested significant). All statistics were conducted in R (v 4.1.1) using the zyp package75. NDVI at 444 

the beginning (1984) and the end (2020) of the study period were computed for each pixel, and the 445 

resulting dataset was then converted to AGB according to the NDVI-AGB relationship (Extended 446 

Data Figure 4). The cumulative AGB change from 1984 to 2020 was then estimated as the 447 

difference between AGB in 2020 and 1984. For pixels where no significant NDVI trends were 448 

detected (P  0.1), the cumulative AGB change was assigned to 0. 449 

Landcover mapping and validation 450 

We generated two regional landcover maps (30 by 30 m) with seven classes (Marsh, Transition 451 

Forest, Upland Forest, Water, Sandbar, Agriculture and Urban Area, Extended Data Table. 1), one 452 

in 1984 and one in 2020 using the random forest (RF) algorithm77 implemented in R (v 4.1.1, 453 

packages of caret and randomForest) (Extended Data Figure 7). For each mapping, we acquired 454 
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Landsat images during multiple seasons corresponding to distinct plant phenological phases78,79: 455 

the greening/leaf-out season (March-April), the peak growing-season (July-August), and the 456 

senescent/leaf-off season (October-November) for enhanced separability between spectrally-457 

similar classes (Extended Data Figure 3). The input predictors comprise layers of individual 458 

Landsat spectral bands, Landsat-derived multispectral indices, and biophysical metrics computed 459 

from the 1 m CoNED DEM (Extended Data Table. 2). The biophysical metrics were resampled to 460 

30 m resolution using bilinear interpolation. All input layers were then aligned to identical pixel 461 

centers and projected to a common geographic coordinate system before classification in R (v 462 

4.1.1). 463 

The training and validation sites for the 2020 and 1984 mapping were identified according to 464 

high-resolution contemporary (2018-2020) and historical (1982-1986) images, respectively. To 465 

ensure that the sites sampled cover all landcover types with relatively even distribution between 466 

classes, we initially selected the sites via stratified random sampling (strata = landcover type) from 467 

the most recent CIC map in 2013 (for the 2020 landcover mapping) and the earliest NOAA Coastal 468 

Change Analysis Program (C-CAP) map in 1996 (for the 1984 landcover mapping)56. In brief, we 469 

randomly sampled ~5,000 sites for each landcover type except for Transition Forest based on the 470 

two preexisting maps. Sites in the same class were picked across the entire region with a minimum 471 

distance of 1 km apart from one another. The classification of each site was examined for accuracy 472 

and corrected if mis-labeled according to high-resolution satellite/aerial images archived in Google 473 

Earth Engine80 or downloaded from the USGS (https://earthexplorer.usgs.gov/). Since transition 474 

forest has not been mapped in previous efforts, all sites of this class were visually identified (n = 475 

5,000) according to published delineation25,32,33,55,67, field observations, and contemporary and 476 

historical images across the region, similarly with a between-site distance 1 km. We then 477 
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randomly divided the sites of each class into the training and validation groups in the ratio of 60% 478 

to 40% (Extended Data Figure 7). 479 

We ran the RF classifier on all training sites and eliminated insignificant factors in a backward 480 

fashion to optimize model fitting79,81 (Extended Data Figure 7). The most parsimonious models 481 

reaching an overall classification accuracy around 90% were used for producing the regional maps 482 

(Extended Data Table. 2). We then applied four steps of post-processing to refine the maps for 483 

enhanced accuracy. First, we excluded degrading forests classified as Transition Forest but 484 

attributable to factors other than seawater intrusion (e.g. insect outbreak, over-herbivory, and 485 

pollution82). These misclassified Transition Forests were identified using the combination of 486 

flooding frequency = 0% (Global Surface Water dataset83) and elevation > 2.5 m above sea level 487 

(> upper tidal range). Second, marshes in areas with flooding frequency > 95% were assigned to 488 

water84 according to the Global Surface Water dataset83. Third, additional areas identified by the 489 

Global Forest Cover Change database85 as newly lost or gained (deforestation and reforestation) 490 

were excluded from Upland Forest in 2020 (Extended Data Table. 1). All the above processes were 491 

visually verified by high-resolution images. Last, areas that were masked from auto-classification 492 

by image preprocessing (e.g. contaminated by cloud and cloud shadow, ~5% of all area) were 493 

manually classified by digitizing high-resolution images, following the same approach of ref.33. 494 

The final 1984 and 2020 landcover maps were validated extensively across the region with 495 

validation sites, which attained an overall classification accuracy of 91.0% and 93.1%, respectively 496 

(Extended Data Table 3). 497 

Analysis for environmental drivers 498 

We analyzed the environmental drivers of NDVI trend and their relative influence (%) using a 499 

boosted regression tree (BRT) model86 (packages of dismo and gbm in R v 4.1.1) in all areas free 500 
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from human impacts as identified by our landcover maps (Extended Data Table. 1). The BRT 501 

model was chosen for its superiority in handling high-order interactions and collinearity of 502 

covariates, as well as the sophistication in managing missing data and outliers86,87. We identified 503 

candidate predictors according to previous study on coastal vegetation change and carbon 504 

cycling27,31,33,38,48,88–90, which can be broadly categorized into climatological-related variables and 505 

sea-level-related variables. 506 

The climate data (temperature, precipitation, and vapor pressure deficit) for the BRT model 507 

were derived from the PRISM Climate Group (daily dataset between 1984 and 2020 with spatial 508 

resolution of 800 m)91. The annual growing degree days (GDD) was calculated from the 509 

temperature data as the number of days when daily average is greater or equal to 10 oC 30,88. Aside 510 

from the analysis-ready 30-year normals91, the input climate variables also include the change ( ) 511 

of temperature, precipitation and GDD from 1984 to 2020, computed as the product between the 512 

slope simulated by the Theil-Sen slope estimator75 using annual inputs, and the number of years 513 

during the period (36 years). The sea-level related datasets were downloaded directly from the 514 

Global Surface Water dataset (three variables: flooding frequency, flooding seasonality and 515 

flooding change intensify; 30 m resolution datasets generated between 1984-2020)83 or computed 516 

from the CoNED DEM (four variables: elevation, topographic slope, aspect and topographic 517 

position index92; static 1 m resolution dataset). All datasets were projected to a common 518 

geographic coordinate system and resampled to the same spatial resolution (800 m) by bilinear 519 

interpolation before analysis. 520 

We initiated the BRT model with all candidate predictors, and removed uninfluential, cross-521 

dependent/cross-correlative variables step by step until achieving a single reduced model that 522 

contains only significant variables with relative influence greater than 5% 93. The default ten-fold 523 
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cross-validation was used to optimize model performance. The final model was fitted with a tree 524 

complexity of 10, learning rate of 0.0005 and bag fraction (stochasticity) of 0.75 that result in > 525 

5,000 trees.  526 

  527 
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Data Availability. All Landsat Level-1 surface reflectance images  are publicly available from the 528 

USGS EarthExplorer (https://earthexplorer.usgs.gov/) or via Google Cloud Landsat dataset 529 

(https://cloud.google.com/storage/docs/public-datasets/landsat). All field-based biomass data are 530 

detailed in ref.25,68-72 and available in the Virginia Coast Reserve Long-Term Ecological Research 531 

repository (http://www.vcrlter.virginia.edu/cgi-bin/browseData.cgi). The landcover maps and the 532 

NDVI trend map are publicly available at the Environmental Data Initiative Data Repository 533 

(https://doi.org/10.6073/pasta/4ae5ac3fbdb6a20dcdcb2ff36487d292).534 

Code Availability. The study does not report original code. All code used this study is available 535 

from the corresponding author upon reasonable request. 536 

  537 



29 

 

Methods-only references 538 

55. Molino, G. D., Defne, Z., Aretxabaleta, A. L., Ganju, N. K. & Carr, J. A. Quantifying Slopes 539 

as a Driver of Forest to Marsh Conversion Using Geospatial Techniques: Application to 540 

Chesapeake Bay Coastal-Plain, United States. Front. Environ. Sci. 9, (2021). 541 

56. NOAA Office for Coastal Management. NOAA Coastal Change Analysis Program (C-542 

CAP) Regional Land Cover Database. Data collected 1995-present. Charleston, SC. 543 

https://coast.noaa.gov/digitalcoast/tools/lca.html (2016). 544 

57. Woodcock, C. E. et al. Free Access to Landsat Imagery. Science 320, 1011a-1011a (2008). 545 

58. Sayler, K. & Zanter, K. Earth Resources Observation and Science (EROS) Center Science 546 

Processing Architecture (ESPA) On-Demand Interface User Guide. Version 4.0. (2020). 547 

59. O’Connell, J. L., Mishra, D. R., Cotten, D. L., Wang, L. & Alber, M. The Tidal Marsh 548 

Inundation Index (TMII): An inundation filter to flag flooded pixels and improve MODIS 549 

tidal marsh vegetation time-series analysis. Remote Sens. Environ. 201, 34–46 (2017). 550 

60. Campbell, A. D. & Wang, Y. Salt marsh monitoring along the mid-Atlantic coast by Google 551 

Earth Engine enabled time series. PLoS One 15, e0229605 (2020). 552 

61. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984-553 

2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016). 554 

62. Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant above-ground biomass and 555 

shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, (2018). 556 

63. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. 557 

Chang. 10, 106–117 (2020). 558 

64. Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome 559 

shift. Ecol. Lett. 14, 373–379 (2011). 560 



30 

 

65. Zoffoli, M. L. et al. Sentinel-2 remote sensing of Zostera noltei-dominated intertidal 561 

seagrass meadows. Remote Sens. Environ. 251, 112020 (2020). 562 

66. Byrd, K. B. et al. A remote sensing-based model of tidal marsh aboveground carbon stocks 563 

for the conterminous United States. ISPRS J. Photogramm. Remote Sens. 139, 255–271 564 

(2018). 565 

67. White, E. & Kaplan, D. Identifying the effects of chronic saltwater intrusion in coastal 566 

floodplain swamps using remote sensing. Remote Sens. Environ. 258, 112385 (2021). 567 

68. Gillen, M. N., Messerschmidt, T. C. & Kirwan, M. L. Biophysical controls of marsh soil 568 

shear strength along an estuarine salinity gradient. Earth Surf. Dyn. 9, 413–421 (2021). 569 

69. Gillen, M., Messerschmidt, T. & Kirwan, M. Shear Stress, Biomass, Bulk Density, Organic 570 

Matter on the Bank of the York River, VA. Environ. Data Initiat. (2021). 571 

70. Kirwan, M. L., Christian, R. R., Blum, L. K. & Brinson, M. M. On the Relationship Between 572 

Sea Level and Spartina alterniflora Production. Ecosystems 15, 140–147 (2012). 573 

71. Smith, A., Kirwan, M. & Messerschmidt, T. Carbon stocks in forests transitioning to salt 574 

marsh at four sites in the Chesapeake Bay region, 2019. Environ. Data Initiat. (2021). 575 

72. Chen, Y., Messerschmidt, T., Smith, A. & Kirwan, M. Coastal Forest Aboveground 576 

Biomass Data at six sites in the Chesapeake Bay and Delaware Bay region, 2021. Environ. 577 

Data Initiat. (2022). 578 

73. Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and 579 

normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 580 

(2016). 581 

74. Claverie, M., Vermote, E. F., Franch, B. & Masek, J. G. Evaluation of the Landsat-5 TM 582 

and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 169, 390–403 583 



31 

 

(2015). 584 

75. Bronaugh, D. & Werner, A. zyp: Zhang + Yue-Pilon Trends Package Version 0.10-1.1. 585 

https://cran.r-project.org/web/packages/zyp/index.html (2019). 586 

76. Wilcox, R. R. Fundamentals of Modern Statistical Methods: Substantially Improving Power 587 

and Accuracy, 2nd edition. (Springer, 2011). 588 

77. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001). 589 

78. Tian, J. et al. Development of spectral-phenological features for deep learning to understand 590 

Spartina alterniflora invasion. Remote Sens. Environ. 242, 111745 (2020). 591 

79. Zhang, F. & Yang, X. Improving land cover classification in an urbanized coastal area by 592 

random forests: The role of variable selection. Remote Sens. Environ. 251, 112105 (2020). 593 

80. Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. 594 

Remote Sens. Environ. 202, 18–27 (2017). 595 

81. Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22 596 

(2002). 597 

82. van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area 598 

disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manage. 599 

352, 78–88 (2015). 600 

83. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global 601 

surface water and its long-term changes. Nature 540, 418–422 (2016). 602 

84. Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 603 

through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 604 

(2020). 605 

85. Hansen, M. C. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. 606 



32 

 

Science 342, 850–853 (2013). 607 

86. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. 608 

Ecol. 77, 802–813 (2008). 609 

87. La Marca, W. et al. The influence of data source and species distribution modelling method 610 

on spatial conservation priorities. Divers. Distrib. 25, 1060–1073 (2019). 611 

88. Liu, W. et al. Climate and geographic adaptation drive latitudinal clines in biomass of a 612 

widespread saltmarsh plant in its native and introduced ranges. Limnol. Oceanogr. 65, 613 

1399–1409 (2020). 614 

89. Wiberg, P. L., Fagherazzi, S. & Kirwan, M. L. Improving Predictions of Salt Marsh 615 

Evolution Through Better Integration of Data and Models. Ann. Rev. Mar. Sci. 12, 389–413 616 

(2020). 617 

90. Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates 618 

mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–619 

90 (2019). 620 

91. PRISM Climate Group. Oregon State Univ. (2020). 621 

92. Vinod, P. G. Development of topographic position index based on Jenness algorithm for 622 

precision agriculture at Kerala, India. Spat. Inf. Res. 25, 381–388 (2017). 623 

93. Chen, Y., Lara, M. J., Jones, B. M., Frost, G. V. & Hu, F. S. Thermokarst acceleration in Arctic 624 

tundra driven by climate change and fire disturbance. One Earth 4, 1718–1729 (2021). 625 

94. Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L. & Dewitz, J. A. Thematic accuracy 626 

assessment of the NLCD 2016 land cover for the conterminous United States. Remote Sens. 627 

Environ. 257, 112357 (2021). 628 

95. Thomas, V. A. et al. Mapping thins to identify active forest management in southern pine 629 

plantations using Landsat time series stacks. Remote Sens. Environ. 252, 112127 (2021). 630 



33 

 

96. Chen, Y. & Kirwan, M. A phenology- and trend-based approach for accurate mapping of 631 

sea-level driven coastal forest retreat. Remote Sens. Environ. (2022). In press. 632 

97. Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution 633 

sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. 634 

Bull. 64, 370–373 (2019). 635 

98. Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, 636 

and leaf area index. Remote Sens. Environ. 62, 241–252 (1997). 637 

99. Diao, C. & Wang, L. Incorporating plant phenological trajectory in exotic saltcedar 638 

detection with monthly time series of Landsat imagery. Remote Sens. Environ. 182, 60–71 639 

(2016). 640 

100. Diao, C. & Wang, L. Landsat time series-based multiyear spectral angle clustering (MSAC) 641 

model to monitor the inter-annual leaf senescence of exotic saltcedar. Remote Sens. Environ. 642 

209, 581–593 (2018). 643 

101. Guo, B. et al. Dynamic monitoring of soil salinization in Yellow River Delta utilizing 644 

MSAVI–SI feature space models with Landsat images. Environ. Earth Sci. 78, 308 (2019). 645 

102. Gitelson, A. A. & Merzlyak, M. N. Remote sensing of chlorophyll concentration in higher 646 

plant leaves. Adv. Sp. Res. 22, 689–692 (1998). 647 

103. Huete, A., Justice, C. & Liu, H. Development of vegetation and soil indices for MODIS-648 

EOS. Remote Sens. Environ. 49, 224–234 (1994). 649 

104. Huete, A. . A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 650 

(1988). 651 

105. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted 652 

vegetation index. Remote Sens. Environ. 48, 119–126 (1994). 653 



34 

 

106. McFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the 654 

delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996). 655 

107. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water 656 

features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006). 657 

108. Crist, E. P. & Cicone, R. C. A Physically-Based Transformation of Thematic Mapper Data-658 

--The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. GE-22, 256–263 (1984). 659 

109. Baig, M. H. A., Zhang, L., Shuai, T. & Tong, Q. Derivation of a tasselled cap transformation 660 

based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 5, 423–431 (2014). 661 

110. Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R. Random Forests for land cover 662 

classification. Pattern Recognit. Lett. 27, 294–300 (2006). 663 

 664 



16 

 

316 
Figure 1. Correspondence between NDVI trend and vegetation shift in the mid-Atlantic coast of 317 

North America, a hotspot for accelerated SLR. a. Regional NDVI trend between 1984 and 2020 318 

for areas less than 5 m above sea level, generally illustrating wetland browning (orange) and upland 319 

greening (green). Black boxes outline three regional subsets for fine-scale demonstration. b. 320 

Landscape browning associated with coastal forest retreat in Blackwater National Wildlife Refuge 321 

(38.4oN, 76.1oW, Maryland); c. Landscape browning due to marsh and forest loss at Prime Hook 322 

National Wildlife Refuge (38.8oN, 75.3oW, Delaware); d. Landscape browning driven by marsh 323 

erosion along barrier islands in Virginia Coast Reserve (37.2oN, 75.8oW, Virginia). Maps of 324 

landcover change (third row in b-d) were computed by differencing the landcover maps in 1984 325 

(first row) and 2020 (second row). “Coastal forest loss” corresponds to areas where upland forest 326 

or transition forest were replaced by migrating marsh and open water. “Marsh loss” refers to areas 327 

of marsh loss to open water. Scale bars in b-d correspond to 4 km. See Extended Data Fig. 6 and 328 

Extended Data Table 1-3 for more information on analysis statistics and landcover classifications. 329 
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330 

Figure 2. Spatial extent of sea-level rise impacts in coastal ecosystems. a. NDVI trend plotted 331 

against elevation gradient, including (grey line) or excluding (black line) land-cover and land-use 332 

change associated with human activities (e.g. agriculture, urbanization, deforestation and 333 

reforestation, Extended Data Table 1). b. Histograms showing range shifts of vegetation from 1984 334 

to 2020 along elevation gradient. From top to bottom: marsh, transition forest and upland forest. 335 

Note that the y axes of the histograms were not plotted on the same scale. “Count” refers to number 336 

of Landsat pixels. All statistics were computed after excluding areas of human land-use and land-337 

use change. The vertical lines correspond to mean elevation of vegetation within 0-5 m above sea 338 

level in 1984 (solid) and 2020 (dotted). The red lines represent cumulative number of Landsat 339 

pixels along elevation in 1984 (solid) and 2020 (dotted). Elevation data54 is relative to NAVD88, 340 

which approximates mean sea level in the region. 341 

  342 
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343 

Figure 3. NDVI trend and the associated aboveground biomass change by vegetation type. a. Four-344 

year rolling mean NDVI through time, presented by vegetation type along elevation gradients 345 

(panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5 m above sea level). Solid and dotted lines 346 

refer to linear regression showing statistically significant (P < 0.05, solid line) and marginally 347 

significant (P < 0.1, dotted line) trends between 1984 and 2020, respectively. b. Overall and 348 

vegetation-specific aboveground biomass change from 1984 to 2020, indicating a net increase in 349 

coastal aboveground biomass. All results were computed on areas free from human land-use and 350 

land-use changes. 351 

  352 
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 353 

Figure 4. Environmental drivers for regional patterns of NDVI trend. a. Relative influence of each 354 

environmental driver. FF: flooding frequency; Slope: topographical slope; TAP: change in total 355 

annual precipitation between 1984-2020; GDD: change in growing degree day between 1984-356 

2020; MST: maximum summer temperature. b-g. Partial-dependency plots illustrating the 357 

relationship between NDVI trend and each of the environmental drivers. The x axes represent the 358 

independent variable, and the y axes refer to the effect size that each variable has on the NDVI 359 

trend. The shaded areas represent 95% confidence interval, and the tick marks indicate the deciles 360 

of data distribution. All analyses were performed on areas free from human land-use and land-use 361 

changes. 362 

 363 
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Extended Data 527 

 528 

Extended Data Fig. 1. Map of the U.S. mid-Atlantic study region. Green circles denote field sites 529 

of aboveground biomass observations. The elevation map refers to the CoNED DEM54. 530 

  531 
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 532 

Extended Data Fig. 2. Climate change observed in the study region. The vertical bars represent 533 

annual mean temperature (left) and annual total precipitation (right), recorded in the nearest 534 

NOAA station in Dover, Delaware. The black lines refer to the 5-yr moving average. The dotted 535 

lines represent linear regression that show significant upward trend of long-term temperature and 536 

precipitation from 1980 onward. The observed climate data was used for illustrative purposes only. 537 

The climate inputs for our boosted regression tree analysis refers to the spatially explicit PRISM 538 

datasets. 539 

  540 
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 541 

Extended Data Fig. 3. Identifying timing for NDVI trend analysis. a. Sites selected randomly for 542 

evaluating monthly NDVI patterns. b. Monthly NDVI pattern of each vegetation type for the most 543 

recent five years. The shaded areas indicate peak growing season when NDVI is maximized and 544 

stays relatively consistent. All data are shown as mean ± 1 standard deviation. 545 

  546 
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 547 

Extended Data Fig. 4. Relationship between peak growing-season NDVI and aboveground 548 

biomass. The solid and open symbols correspond respectively to marsh and forest. All biomass 549 

data were accessed from the LTER database indicated in Extended Data Fig. 1. The y-axis is 550 

plotted on a logarithmic scale. The regression function is (aboveground biomass) = 0.05 × e6.02 × 551 

(NDVI), (P < 0.0001, F-statistic = 378.5, and RMSE = 0.5766). The uncertainties (grey lines) refer 552 

to standard deviations, and the shaded area represents 95% confidence intervals. 553 
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 555 

Extended Data Fig. 5. Cross-comparison of NDVI between Landsat sensors. Scatterplots of 556 

NDVI by Landsat-5 TM (left) and by Landsat-8 OLI (right) were plotted against NDVI by 557 

Landsat-7 ETM+. The solid lines refer to linear regression and dotted lines represent the 1:1 Line 558 

superimposed for reference. 559 

  560 
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 561 

Extended Data Fig. 6. Mann-Kendall test for significant NDVI trends (P < 0.1) in the study 562 

region. The inserted map shows all areas that demonstrate statistically significant increases or 563 

decreases in NDVI during 1984 to 2020. The density plot summarizes distribution pattern of 564 

statistical results among all pixels, and the significance level at P = 0.1 is indicated by the dotted 565 

red line. 566 

  567 
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 568 

Extended Data Fig. 7. Flowchart for landcover mapping and validation. 569 

  570 
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Extended Data Table 1. Landcover classes and their definitions used in this study.  571 

Categories Classes  Definition 

Natural 

habitats 

Marsh 
Tidal and nontidal wetlands dominated by herbaceous hydrophytes like cordgrass, 

rushes, and sedges (NOAA C-CAP program56). 

Transition 

forest 

Low-lying forests between marsh and upland forests where mortality due to seawater 

intrusion has already begun. Also known as ghost forests15,25,26,67, usually with shrubs 

and marshes present in understory. 

Upland 

forest 

Primary or long-standing secondary forests characterized by closed canopy and 

mature trees of height greater than 5 m (NOAA C-CAP program56). 

Human-

influenced 

areas 

Agriculture 

Managed lands including actively cultivated, fallow or recently abandoned 

croplands; nursery and plantation for flowers, fruits and other economic plants; 

managed grasslands and pastures like golf course and residential lawns (National 

Land Cover Database94); and selectively thinned or clear-cut forests (Global Forest 

Cover Change database85). 

Urban area 
Developed lands dominated by impervious surface such as asphaltic roads and 

concrete constructions for residential, institutional, and commercial activities. 

Water 
Open water with 25% or less of vegetation and soil cover (National Land Cover 

Database94). 

Sandbar 
Barren, unconsolidated sandy/silty shores, and sparsely vegetated sand dunes subject 

to constant tidal-driven erosion and redistribution (NOAA C-CAP program56). 

572 
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Extended Data Table 2. Input datasets for random forest classifier. All Landsat images used for 573 

landcover mapping were acquired during low tides with cloud cover less than 5%. Predictors in 574 

bold are those retained in the final models. “References” refers to studies upon which the selection 575 

of candidate predictors is based in this study. 576 

Categories Predictors* Data sources Timing of acquisition References 

Spectral 

bands 

Blue All surface reflectance 

bands of Landsat-5 for the 

1984 mapping; and 

all surface reflectance 

bands of Landsat-8 for the 

2020 mapping. 

Greening/leaf-out season;  

Peak growing-season;  

Senescent/leaf-off season. 

Refs.78,79,95–97 

Green 

Red 

NIR 

SWIR1

SWIR2 

Multispectral 

indices 

NDVI98 

Computed from surface 

reflectance bands of 

Landsat-5 for the 1984 

mapping, and from 

surface reflectance bands 

of Landsat-8 for the 2020 

mapping. 

Greening/leaf-out season;  

Peak growing-season;  

Senescent/leaf-off season. 

Refs.67,78,95,99–

101 

GNDVI102 

EVI103

SAVI104 

MSAVI105 

NDWI106 

mNDWI107 

TCP - brightness108,109 

TCP - greenness108,109 

TCP - wetness108,109 

Biophysical 

attributes 

Elevation Computed from the 1 m 

CoNED DEM, resampled 

to 30m using bilinear 

interpolation. 

Static Refs.79,96,110 
Slope 

Aspect 

TPI92 

* NIR: Near-Infrared; SWIR: Short-wave Infrared; NDVI: Normalized Difference Vegetation Index; 577 

GNDVI: Green NDVI; EVI: Enhanced Vegetation Index; SAVI: Soil-Adjusted Vegetation Index; MSAVI: 578 

Modified SAVI; NDWI: Normalized Difference Water Index; mNDWI: modified NDWI; TCP: Tasseled 579 

Cap Transformation; TPI: Topographical Position Index. 580 

581 
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Extended Data Table 3. Classification accuracy of landcover maps. 582 

Classes 

1984 landcover map 2020 landcover map 

Validation  

(# sites) 

User's 

accuracy 

Producer’s 

accuracy 

Validation 

(# sites) 

User's 

accuracy 

Producer’s 

accuracy 

Marsh 2094 91.07% 90.77% 2394 94.32% 90.87% 

Transition forest 1904 92.17% 87.44% 2187 93.87% 92.77% 

Upland forest 2269 90.17% 94.29% 1975 96.05% 95.95% 

Agriculture 2004 91.72% 90.41% 1938 91.64% 95.38% 

Urban 1548 96.06% 93.52% 1501 93.27% 91.98% 

Water 1799 88.27% 91.06% 2127 90.69% 92.96% 

Sandbar 1264 87.66% 89.57% 1463 90.91% 91.66% 

Overall accuracy 91.05% 93.10% 
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