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Climate-driven decoupling of wetland and upland biomass trends on the mid-

Atlantic coast
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Coastal ecosystems represent a disproportionately large but vulnerable global carbon sink.
Sea-level driven tidal wetland degradation and upland forest mortality threaten coastal
carbon pools, but responses of the broader coastal landscape to interacting facets of climate
change remain poorly understood. Here, we use 36 years of satellite observations across the
mid-Atlantic sea-level rise hotspot to show that climate change has actually increased the
amount of carbon stored in the biomass of coastal ecosystems despite substantial aerial loss.
We find that sea-level driven reductions in wetland and low-lying forest biomass were largely
confined to areas less than 2 meters above sea level, whereas the otherwise warmer and
wetter climate led to an increase in the biomass of adjacent upland forests. Integrated across
the entire coastal landscape, climate-driven upland greening offset sea-level driven biomass
losses, such that the net impact of climate change was to increase the amount of carbon stored
in coastal vegetation. These results point to a fundamental decoupling between upland and
wetland carbon trends that can only be understood by integrating observations across
traditional ecosystem boundaries. This holistic approach may provide a template for
quantifying carbon-climate feedbacks and other aspects of coastal change that extend

beyond sea-level rise alone.
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Climate change is driving worldwide landscape reorganization with far-reaching consequences for
global carbon stocks'~. For instance, amplified warming has accelerated shrubification in high
latitude tundra landscapes, facilitating a biome-wide increase in productivity known as Arctic
Greening®*. Increasing temperature and precipitation has boosted forest densification and
facilitated upslope treeline in high-mountain regions such as the Tibetan Plateau>®, and altered
precipitation regimes in the arid sub-Saharan Africa have allowed woodlands to carpet expansive
barren and sparsely-vegetated drylands’®. Together, these processes have contributed to a general
greening of the terrestrial biosphere”’!!, in which the amount of carbon stored in woody biomass

has increased through time!*!?,

14716 " which are a disproportionately

Climate change is also transforming coastal ecosystems
large, yet highly vulnerable global carbon sink!’"'°. A prominent phenomenon unique to the coastal
landscape is that declining coastal sediment supplies and accelerated sea-level rise (SLR)

2021 and mortality of

associated with recent warming has elicited degradation of existing marshes
adjacent forests'®. Recent research has explored the impacts of SLR on carbon pools in marshes?*~
24 and coastal forests?>2%, but how climate change interacts with SLR to modify the integrated
coastal carbon sink is largely unknown?’-?%, On one hand, SLR-driven vegetation shifts may result
in net losses of biomass due to wetland degradation?*?? and forest die-off>>?¢. On the other hand,
changing climate may increase biomass by extending growing seasons® and ameliorating salt
stress via increased precipitation®'. The net outcome of these competing processes could influence
both the direction and magnitude of carbon-climate feedbacks in coastal ecosystems.

Here, we use the extensive Landsat dataset (30 m resolution) between 1984 and 2020 to

quantify landscape-scale (~12,500 km?) Normalized Difference Vegetation Index (NDVI) trends
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associated with vegetation shifts (Methods) along the rapidly warming mid-Atlantic coast of North
America (Extended Data Figures 1-2), a SLR hotspot characterized by extensive marsh loss and
forest mortality>>¥. Our results reveal a fundamental decoupling between negative SLR impacts
at low elevations and positive climate impacts at higher elevations, such that the net impact of
interacting facets of climate change is an overall increase in aboveground coastal biomass.

Vegetation shifts and lowland browning

Low-lying coastal wetlands and forests are well known to be vulnerable to SLR and erosion both

16293435 "and within the Chesapeake Bay region®**>-33, Consistent with those observations,

globally
we find large-scale losses of marsh (196.8 km?) and coastal forests (238.7 km?) in the U.S. mid-
Atlantic over the past ~40 years based on our Landsat observation (Figure 1). However, in spite of
erosion and submergence at low elevations, marsh and transition forest (defined as low-lying forest
between marsh and upland forests where mortality due to seawater intrusion has already begun)
expanded in areal extent respectively by 2% (48.4 km?) and 5% (12.1 km?) (Figure 2). The loss of
marshes observed in 1984 (7.7%, 196.8 km?) occurred primarily at the seaward margin and for
elevations below 0.2 m, and was compensated by new marsh that formed at higher elevations
(245.2 km?) at the expense of transition forest (134.9 km?) and forested uplands (90.7 km?).
Transition forest advanced upslope, where the replacement of forested uplands (149.9 km?)
compensated for the aerial loss of transition forest at lower elevations (139.4 km?) (Figure 2). The
average elevation of transitional forests increased (0.12 m; 0.58 = 0.35 m in 1984 to 0.70 + 0.41
m in 2020) more than the average elevation of marshes (0.02 m; 0.49 + 0.44 m to 0.51 + 0.44 m)

(Figure 2), and at a rate (3.3 mm yr'!) that is almost equivalent to long-term SLR trends in the

region (3-6 mm yr'!). These observations imply that sea level rise is driving the migration of coastal
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ecosystems over large spatial scales, and that over decadal timescales, coastal forests are at least
as vulnerable to SLR as the marshes that occur closer to the seaward margin.

Changes in vegetation extent closely resemble patterns of landscape greening (positive trend
in NDVI) and browning (negative trend in NDVI) (Figure 1), and confirm general expectations
that SLR-driven land conversion leads to coastal biomass loss?>%%, In spite of overall browning in
coastal lowlands, the rate of change varies substantially across space (Figures 1-2), reflecting the
wide array of processes regulating vegetation dynamics. The most drastic browning appeared at
the marsh-forest transition (i.e. transition forest), where marsh transgresses inland, replacing forest
that is one to two orders of magnitude higher in aboveground biomass®>*°. In the low-relief
Blackwater National Wildlife Refuge where browning is extreme, we find that the marsh-forest
boundary has retreated inland by as much as ~1,100 m since 1984 (or ~30 m yr'!) — the fastest
upland conversion ever recorded (Figure 1b). Other hotspots of coastal browning are associated
with degradation or loss of habitats, as exemplified by massive interior ponding of marsh in the
Prime Hook National Wildlife Refuge (Figure 1c) or rapid land erosion along vegetated barrier
islands of Virginia Coast Reserve (Figure 1d).

We estimate cumulative AGB changes from 1984 to 2020 based on NDVI trends (Methods
and Extended Data Figures 3-6), and partition the results by elevation and ecosystem (Figure 3
and Extended Data Figures 1 and 7). Despite pervasive AGB loss in marshes between elevation of
0-0.7m (-0.13 Tg), we find a small amount of AGB gain (+0.05 Tg) in marshes at higher elevations
(Figure 3). This observation concurs with observations and experiments that report enhanced
marsh productivity under moderately increased inundation’’¥. Conversely, transition forests
consistently lose AGB along elevation although the rate slightly lowers with higher elevations

(Figure 3), possibly as a result of lessened salt stress and flooding frequency further inland?’.
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Overall, we find that transition forest is the dominant avenue of coastal AGB loss (-0.20 Tg),
nearly three times the amount of marsh (-0.07 Tg) (Figure 3). Considering that the area of the
former is merely one tenth of the latter (Figure 2), AGB loss on per unit area of transition forest
(815.4 g m?) is ~27 times that of marsh (29.7 g m™). This result is striking as previous work
exploring impacts of SLR on coastal carbon cycling traditionally focuses on low lying marshes

23,29,39,40

and mangroves , whereas our study highlights that reduced carbon stocks in retreating

upland forests may actually represent a more pronounced feedback with future warming.

Sea-level driven decoupling of upland and lowland biomass trends

As the impact of SLR is intrinsically tied to elevation*!, we examined NDVI trends with elevation
to gain a general perspective on coastal response to SLR (Figure 2). Despite intricacies within
individual ecosystems discussed above, we find that across the coastal landscape, NDVI trends
increase rapidly with elevation and that the landscape switches from browning to greening at an
elevation of ~0.7 m (Figure 2). The benefit of rising elevation to additional landscape greening
progressively weakens before vanishing as elevation approaches 1.9 m above sea level, after which
landscape greening becomes relatively constant (Figure 2). These patterns are consistent regardless
of the inclusion of areas modified by human activities (e.g. agriculture, urbanization, silviculture
that jointly impact 18.1% of all area between 0-2 m, and 34.7% between 0-5 m) (Figure 2 and
Extended Data Table 1). Thus, we interpret this “turning-point” elevation around 2 m as defining
the upper elevation limit for SLR impacts on coastal environments, as hinted by the extent of range
shifts in marsh and transition forest along elevation gradient (Figure 2).

3142 and sea-level driven®”?® factors are

Previous work suggests that a variety of climatic
associated with biomass change and carbon cycling in coastal ecosystems. To identify potential

drivers and their relative importance (RI) in shaping the observed patterns of NDVI trend across
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the region, we applied a boosted regression tree model to areas free from human disturbance
(Methods). Our analyses (= 0.71, P <0.0001) indicate that the spatial variation in NDVI trend is
mainly explained by variables broadly related to SLR (RI of 63%, 3 variables: elevation, flooding
frequency, and topographic slope) and to a lesser degree by climate change (RI of 37%, 3 variables:
change of annual precipitation, change of growing degree day, and maximum summer
temperature) (Figure 4).

Partial-dependency plots attest that the impact of SLR is largely constrained within 2 m above
sea level (Figure 4b). Relative SLR rates in the mid-Atlantic are 2-3X faster than the global
average®, and excessive inundation is recognized as a primary driver of marsh loss and tree
mortality?*-26:333844 ~ Consistent with this paradigm, we find that NDVI trend declines with
increasing flooding frequency and decreasing topographic slope (Figure 4c-d), suggesting that
SLR underlies the escalated browning in coastal lowlands.

Meanwhile, observed temperature (annual mean +0.8 °C) and precipitation (annual total +140
mm) have significantly increased across the mid-Atlantic (Extended Data Figure 2). Studies from
a wealth of coastal and terrestrial ecosystems have linked climate change, especially warming and
wetting, with strengthened plant productivity and biomass carbon pools’*!#346, Our analyses
indicate that increases in temperature and precipitation enhance regional greening, as NDVI trend
rises nearly linearly with elevated precipitation and prolonged growing degree days (Figure 4e-f).
Therefore, interactive components of climate change potentially lead to simultaneous and
contrasting responses in coastal ecosystem, where greening of uplands is associated with direct

climate impacts and browning of lowlands is associated with climate-driven SLR.
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Direct and indirect climate impacts on the coastal biomass carbon sink

Interacting facets of climate change are well known to dictate carbon cycling in a range of

46,47

terrestrial ecosystems™*’, whereas in coastal ecosystems carbon cycling is largely viewed through

the lens of SLR alone*. Although direct climate impacts are important controls on wetland

3139 it is unclear how the combined forces of SLR and climate

productivity and carbon balance
change drive regional-scale carbon cycling, especially in the upland component of the coastal
landscape. Our results illustrate that with increasing elevation, browning diminishes in marsh and
transition forests, and that greening intensifies in adjacent upland forests, signaling a transition
from SLR-driven browning to climate-driven greening (Figures 2a and 3a). Forest greening is
consistent at elevations greater than 1.9 m above sea level — the aforementioned turning-point
demarcating the potential limit of SLR impacts (Figure 2a), leading to a large net increase in AGB
for the coastal zone as a whole (+3.76 Tg for elevations 0-5 m) (Figure 3b).

Interestingly, we also find that forest greening (+1.28 Tg) compensates for marsh and transition
forest browning (-0.3 Tg), even when restricted to portions of the landscape that are negatively
impacted by SLR (+1.0 Tg for elevations 0-1.9 m) (Figure 3b). These results are generally in line
with recent global-scale, coarse-resolution (>4 km pixels) satellite observations that suggest an
overall enhancement of net primary production®* and leaf area index'®!! both globally and in the
mid-Atlantic. However, by linking broad-scale biomass change with fine-scale vegetation shifts,
we uncover substantial spatial heterogeneity — specifically the remarkable browning of coastal
lowlands that would be obscured at coarser resolution.

Our analysis of aboveground biomass trends does not include changes in belowground biomass
or soil carbon pools that are hard to quantify and respond to climate change in complex ways. For

25,50

example, marshes contain a disproportionate amount of carbon in soils™>", and regional soil
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carbon accumulation rates can either increase or decrease as marshes become more inundated®>°!,
Therefore, our finding that climate factors have compensated for sea-level driven losses in above-
ground biomass may neglect other important components of the coastal carbon budget. Similarly,
our finding of functional compensation in aboveground biomass may not apply to other ecosystem
functions that depend fundamentally on ecosystem size and location. For instance, sea-level rise
is leading to the loss of freshwater forested wetlands that are themselves highly valued for habitat
provision, water quality improvement, and flood protection®>>3.

Nevertheless, our finding that climate-driven upland greening has compensated for lowland
browning largely contrasts previous work that generally emphasizes sea-level driven losses of
biomass within marshes and coastal forests>>?°. Thus, our work indicates that the combined
influences of global change have been to increase the size of the coastal biomass carbon sink
(Figure 3), even in a region that is a hotspot for accelerated sea-level rise, marsh degradation, and

forest mortality>>334

. This unique decoupling between SLR-driven wetland browning and
climate-driven upland greening illustrates the need to quantify carbon dynamics across traditional

ecosystem boundaries that respond differently to interacting factors of global change.
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Figure Legends/Captions (for main text figures)

Figure 1. Correspondence between Normalized Difference Vegetation Index (NDVI) trend and
vegetation shift in the mid-Atlantic coast of North America, a hotspot for accelerated sea-level rise.
a. Regional NDVI trend between 1984 and 2020 for areas less than 5 m above sea level, generally
illustrating wetland browning (orange) and upland greening (green). The elevation data refers to
the Coastal National Elevation Database®*. Black boxes outline three regional subsets for fine-
scale demonstration. b. Landscape browning associated with coastal forest retreat in Blackwater
National Wildlife Refuge (38.4°N, 76.1°W, Maryland); ¢. Landscape browning due to marsh and
forest loss at Prime Hook National Wildlife Refuge (38.8°N, 75.3°W, Delaware); d. Landscape
browning driven by marsh erosion along barrier islands in Virginia Coast Reserve (37.2°N, 75.8°W,
Virginia). Maps of landcover change (third row in b-d) were computed by differencing the
landcover maps in 1984 (first row) and 2020 (second row). “Coastal forest loss” corresponds to
areas where upland forest or transition forest were replaced by migrating marsh and open water.
“Marsh loss” refers to areas of marsh loss to open water. Scale bars in b-d correspond to 4 km.
See Extended Data Figures 6-7 and Extended Data Table 1-3 for more information on analysis

statistics and landcover classifications. Map created using the Ocean Basemap in ArcGIS (v10.7).
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Figure 2. Spatial extent of sea-level rise impacts in coastal ecosystems. a. Normalized Difference
Vegetation Index (NDVI) trend plotted against elevation gradient, including (grey line) or
excluding (black line) land-cover and land-use change associated with human activities (e.g.
agriculture, urbanization, deforestation and reforestation, Extended Data Table 1). b. Histograms
showing range shifts of vegetation from 1984 to 2020 along elevation gradient. From top to bottom:
marsh, transition forest and upland forest. Note that the y axes of the histograms were not plotted
on the same scale. “Count” refers to number of Landsat pixels. All statistics were computed after
excluding areas of human land-use and land-use change. The vertical lines correspond to mean
elevation of vegetation within 0-5 m above sea level in 1984 (solid) and 2020 (dotted). The red
lines represent cumulative number of Landsat pixels along elevation in 1984 (solid) and 2020

dotted). Elevation data®*is relative to NAVDSS8, which approximates mean sea level in the region.
pp
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Figure 3. Normalized Difference Vegetation Index (NDVI) trend and the associated aboveground
biomass change by vegetation type. a. Four-year rolling mean NDVI through time, presented by
vegetation type along elevation gradients (panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5
m above sea level). Solid and dotted lines refer to linear regression showing statistically significant
(P < 0.05, solid line) and marginally significant (P < 0.1, dotted line) trends between 1984 and
2020, respectively. b. Overall and vegetation-specific aboveground biomass change from 1984 to
2020, indicating a net increase in coastal aboveground biomass. All results were computed on

areas free from human land-use and land-use changes.
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Figure 4. Environmental drivers for regional patterns of Normalized Difference Vegetation Index
(NDVI) trend. a. Relative influence of each environmental driver. FF: flooding frequency; Slope:
topographical slope; ATAP: change in total annual precipitation between 1984-2020; AGDD:
change in growing degree day between 1984-2020; MST: maximum summer temperature. b-g.
Partial-dependency plots illustrating the relationship between NDVI trend and each of the
environmental drivers. The x axes represent the independent variable, and the y axes refer to the
effect size that each variable has on the NDVI trend. The shaded areas bounding the mean lines
represent 95% confidence interval, and the tick marks indicate the deciles of data distribution. All

analyses were performed on areas free from human land-use and land-use changes.
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METHODS

Regional Setting

We analyzed the response of coastal vegetation to interacting facets of climate change across the
U.S. mid-Atlantic coast. The study area encompasses the Delaware Bay and the Chesapeake Bay
— the largest coastal-plain estuary in North America. The mid-Atlantic coast is an ideal region for
studying the impacts of interacting components of climate change on coastal ecosystems because
it represents a known hotspot of relative sea-level rise*’, and rapidly changing precipitation and
temperature (Extended Data Figures 1-2). Relative sea-level rise rates are 2-3X faster than the
global average, and accelerating towards a modern rate of 4-10 mm yr ! ¥*. Coastal ecosystems are
particularly vulnerable to sea-level rise in the region because of limited sediment inputs, a
microtidal tide range, and a gently sloping coastal plain. Indeed, both extensive marsh loss and
forest retreat have been widely observed!®3%2,

We analyzed 36-year Normalized Difference Vegetation Index (NDVI) trends and mapped
landcover changes from 1984 to 2020 for all areas between 0 and 5 m above sea level (Extended
Data Figure 1), an elevation range extending from perennially inundated coastal lowlands, through
periodically flooded intertidal wetlands, to seldomly flooded uplands that show no sign of seawater
intrusion?>°>%, The elevation data used to define our study area refers to the digital elevation
model (DEM) of the Coastal National Elevation Database (CoNED)**. Elevations are relative to

the North American Vertical Datum of 1988, which approximates mean sea level in the region.

Data preprocessing and NDVI trend analysis
We acquired all orthorectified, Tier-1 Landsat surface reflectance scenes with cloud cover less
than 60% (n = 5,126) by Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic

Mapper-plus (ETM+) and Landsat-8 Operational Land Imager (OLI)*’ that cover the entire U.S.
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mid-Atlantic region between March 24, 1984 and December 29, 2020. All images were processed
with the ancillary Quality Assessment bands to mask pixels associated with water, cloud, cloud
shadow, snow, ice and sensor-related issues™ in R (v 4.1.1). The resulting products were further
processed to filter pixels of partial inundation using the Tidal Marsh Inundation Index>*.
Residual cloud, shadow, haze and smoke were removed by threshold-filtering the blue (surface
reflectance > 0.07) and red (surface reflectance < 0.01)®! spectral bands.

Remotely-sensed NDVI is strongly correlated with growing-season plant biomass and
productivity in a myriad of terrestrial and aquatic ecosystems®>®®. Our study region consists of
multiple ecosystems that vary in vegetation phenology. To ensure reliable trend detection across
the spatially-complex coastal landscapes, we examined monthly NDVI patterns of different
vegetation types (i.e. marsh, transition forest, and upland deciduous and evergreen forest) to
identify the best timing for consistent NDVI observations (Extended Data Figure 3)*. To achieve
that, we randomly selected ~3000 sites for each vegetation across the entire region (Extended Data
Figure 3) based on field observations, published study®*-*%**367  the high-resolution National
Agriculture Imagery Program (NAIP) aerial imagery, and the Conservation Innovation Center
(CIC) landcover map. We extracted the NDVI data sensed by Landsat-7 at each site over the most
recent five years (2016-2020). Extended Data Figure 3 indicates the months of peak growing-
season in our study region (July-August) when NDVI is maximized and remains relatively stable
throughout the time span. This temporal pattern is consistent across vegetation types and from year
to year. Therefore, the images acquired annually between July 1% and August 31% were used for
the trend analysis.

We validated the correlation between Landsat-derived NDVI and peak growing-season plant

biomass across the study region (Extended Data Figure 4) using field measurements of
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aboveground biomass (AGB) in the U.S. mid-Atlantic coast archived in the Long-term Ecological

Research (LTER) Network (Extended Data Figure 1). Specifically, we used datasets related to the

68,69 t70

biomass of marshes along the York River®™® and outer Atlantic Coast” of Virginia, and forests

237 and Delaware Bay’?. Some of the field sites have

distributed throughout the Chesapeake Bay
repeated biomass measurements collected over multiple years and transects. All the measurements
were screened for outliers that exceeded site mean by more than 2 standard deviation”’. For each
of the measurements, the corresponding NDVI data was retrieved from Landsat-7 images. Both
the biomass measurements and the NDVI data were averaged across year and transect for each
study site. Given differences in the size between Landsat pixels and field sites, only ground-based
measurements representative of biomass at the 30 x 30 m pixel scale were included. Sites that
account only for a fraction of the pixel (e.g. located near creekbanks or farmlands) were discarded
after consulting high-resolution drone images and NAIP aerial photos. Eventually, the modeled
relationship between NDVI and AGB (n = 125) pooled from all field sites of marsh, transition
forest, and upland forest is robust (P < 0.0001) with a coefficient of determination (R?) of 0.72
(Extended Data Figure 4).

Previous studies have revealed that small systematic biases in surface reflectance may exist
across Landsat sensors that can lead to an artificial upward trend of NDVI through time*6!:6273.74,
Since our study spans 36 years that involves multiple generations of sensors (TM, ETM+, and
OLI), we systematically evaluated NDVI data derived from Landsat-5, 7 and 8 in the region to
constrain potential errors introduced by sensor difference (Extended Data Figure 5). The operation
timeline of Landsat-7 overlaps with Landsat-5 during 1999-2011, and with Landsat-8 during 2013-

t57

present’’. Therefore, we took advantage of the overlapping scenes collected by concurrent sensors

to cross-validate NDVI of Landsat-5 and Landsat-8 against that of Landsat-7, similar to the
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methodology described by refs.*”* (Extended Data Figure 5). We randomly selected 35 pairs of
cloud-free Landsat-5 and Landsat-7 images, and 43 pairs of Landsat-8 and Landsat-7 images from
ten and eight overlapping summers, respectively. The paired NDVI data were extracted every 600
m (20 pixels) apart across all overlapping areas, and the data were analyzed with linear regression.
Our results agree with earlier work suggesting differences in NDVI between sensors (Extended
Data Figure 5), and all Landsat-5 and Landsat-8 derived NDVI was adjusted to Landsat-7
according to the linear equations presented in Extended Data Figure 5.

The processed NDVI data were then stacked in time series from 1984 to 2020 for trend analysis
with the non-parametric Theil-Sen slope estimator’®, a widely used approach for quantifying
monotonic trends with the advantage of being insensitive to outliers’. The significance of the
NDVI trends was tested with the rank-based Mann-Kendall test’’, and trends were considered
statistically significant at the level of a < 0.1 #!° (Extended Data Figure 6, 61.4% of the pixels
tested significant). All statistics were conducted in R (v 4.1.1) using the zyp package’. NDVI at
the beginning (1984) and the end (2020) of the study period were computed for each pixel, and the
resulting dataset was then converted to AGB according to the NDVI-AGB relationship (Extended
Data Figure 4). The cumulative AGB change from 1984 to 2020 was then estimated as the
difference between AGB in 2020 and 1984. For pixels where no significant NDVI trends were

detected (P > 0.1), the cumulative AGB change was assigned to 0.

Landcover mapping and validation

We generated two regional landcover maps (30 by 30 m) with seven classes (Marsh, Transition
Forest, Upland Forest, Water, Sandbar, Agriculture and Urban Area, Extended Data Table. 1), one
in 1984 and one in 2020 using the random forest (RF) algorithm’’ implemented in R (v 4.1.1,

packages of caret and randomForest) (Extended Data Figure 7). For each mapping, we acquired
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Landsat images during multiple seasons corresponding to distinct plant phenological phases’":

the greening/leaf-out season (March-April), the peak growing-season (July-August), and the
senescent/leaf-off season (October-November) for enhanced separability between spectrally-
similar classes (Extended Data Figure 3). The input predictors comprise layers of individual
Landsat spectral bands, Landsat-derived multispectral indices, and biophysical metrics computed
from the 1 m CoNED DEM (Extended Data Table. 2). The biophysical metrics were resampled to
30 m resolution using bilinear interpolation. All input layers were then aligned to identical pixel
centers and projected to a common geographic coordinate system before classification in R (v
4.1.1).

The training and validation sites for the 2020 and 1984 mapping were identified according to
high-resolution contemporary (2018-2020) and historical (1982-1986) images, respectively. To
ensure that the sites sampled cover all landcover types with relatively even distribution between
classes, we initially selected the sites via stratified random sampling (strata = landcover type) from
the most recent CIC map in 2013 (for the 2020 landcover mapping) and the earliest NOAA Coastal
Change Analysis Program (C-CAP) map in 1996 (for the 1984 landcover mapping)°°. In brief, we
randomly sampled ~5,000 sites for each landcover type except for Transition Forest based on the
two preexisting maps. Sites in the same class were picked across the entire region with a minimum
distance of 1 km apart from one another. The classification of each site was examined for accuracy
and corrected if mis-labeled according to high-resolution satellite/aerial images archived in Google
Earth Engine® or downloaded from the USGS (https://earthexplorer.usgs.gov/). Since transition
forest has not been mapped in previous efforts, all sites of this class were visually identified (n =
5,000) according to published delineation?>3%333367  field observations, and contemporary and

historical images across the region, similarly with a between-site distance >1 km. We then
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randomly divided the sites of each class into the training and validation groups in the ratio of 60%
to 40% (Extended Data Figure 7).

We ran the RF classifier on all training sites and eliminated insignificant factors in a backward
fashion to optimize model fitting”>8! (Extended Data Figure 7). The most parsimonious models
reaching an overall classification accuracy around 90% were used for producing the regional maps
(Extended Data Table. 2). We then applied four steps of post-processing to refine the maps for
enhanced accuracy. First, we excluded degrading forests classified as Transition Forest but
attributable to factors other than seawater intrusion (e.g. insect outbreak, over-herbivory, and
pollution®?). These misclassified Transition Forests were identified using the combination of
flooding frequency = 0% (Global Surface Water dataset®) and elevation > 2.5 m above sea level
(> upper tidal range). Second, marshes in areas with flooding frequency > 95% were assigned to
water® according to the Global Surface Water dataset®’. Third, additional areas identified by the
Global Forest Cover Change database® as newly lost or gained (deforestation and reforestation)
were excluded from Upland Forest in 2020 (Extended Data Table. 1). All the above processes were
visually verified by high-resolution images. Last, areas that were masked from auto-classification
by image preprocessing (e.g. contaminated by cloud and cloud shadow, ~5% of all area) were
manually classified by digitizing high-resolution images, following the same approach of ref.>.
The final 1984 and 2020 landcover maps were validated extensively across the region with
validation sites, which attained an overall classification accuracy of 91.0% and 93.1%, respectively

(Extended Data Table 3).

Analysis for environmental drivers
We analyzed the environmental drivers of NDVI trend and their relative influence (%) using a

boosted regression tree (BRT) model®® (packages of dismo and gbm in R v 4.1.1) in all areas free
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from human impacts as identified by our landcover maps (Extended Data Table. 1). The BRT
model was chosen for its superiority in handling high-order interactions and collinearity of
covariates, as well as the sophistication in managing missing data and outliers®**’. We identified
candidate predictors according to previous study on coastal vegetation change and carbon

27:31,33,3848.88-90 which can be broadly categorized into climatological-related variables and

cycling
sea-level-related variables.

The climate data (temperature, precipitation, and vapor pressure deficit) for the BRT model
were derived from the PRISM Climate Group (daily dataset between 1984 and 2020 with spatial
resolution of 800 m)’!. The annual growing degree days (GDD) was calculated from the
temperature data as the number of days when daily average is greater or equal to 10 °C %%, Aside
from the analysis-ready 30-year normals’!, the input climate variables also include the change (A)
of temperature, precipitation and GDD from 1984 to 2020, computed as the product between the
slope simulated by the Theil-Sen slope estimator’ using annual inputs, and the number of years
during the period (36 years). The sea-level related datasets were downloaded directly from the
Global Surface Water dataset (three variables: flooding frequency, flooding seasonality and
flooding change intensify; 30 m resolution datasets generated between 1984-2020)% or computed
from the CONED DEM (four variables: elevation, topographic slope, aspect and topographic
position index®?; static 1 m resolution dataset). All datasets were projected to a common
geographic coordinate system and resampled to the same spatial resolution (800 m) by bilinear
interpolation before analysis.

We initiated the BRT model with all candidate predictors, and removed uninfluential, cross-

dependent/cross-correlative variables step by step until achieving a single reduced model that

contains only significant variables with relative influence greater than 5% °*. The default ten-fold
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524  cross-validation was used to optimize model performance. The final model was fitted with a tree
525  complexity of 10, learning rate of 0.0005 and bag fraction (stochasticity) of 0.75 that result in >
526 5,000 trees.
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Data Availability. All Landsat Level-1 surface reflectance images are publicly available from the

USGS EarthExplorer (https://earthexplorer.usgs.gov/) or via Google Cloud Landsat dataset

(https://cloud.google.com/storage/docs/public-datasets/landsat). All field-based biomass data are

f 25,68-72

detailed in re and available in the Virginia Coast Reserve Long-Term Ecological Research

repository (http://www.vcrlter.virginia.edu/cgi-bin/browseData.cgi). The landcover maps and the

NDVI trend map are publicly available at the Environmental Data Initiative Data Repository

(https://doi.org/10.6073/pasta/4ae5ac3fbdb6a20dcdcb2{36487d292).

Code Availability. The study does not report original code. All code used this study is available

from the corresponding author upon reasonable request.
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Figure 1. Correspondence between NDVI trend and vegetation shift in the mid-Atlantic coast of
North America, a hotspot for accelerated SLR. a. Regional NDVI trend between 1984 and 2020
for areas less than 5 m above sea level, generally illustrating wetland browning (orange) and upland
greening (green). Black boxes outline three regional subsets for fine-scale demonstration. b.
Landscape browning associated with coastal forest retreat in Blackwater National Wildlife Refuge
(38.4°N, 76.1°W, Maryland); ¢. Landscape browning due to marsh and forest loss at Prime Hook
National Wildlife Refuge (38.8°N, 75.3°W, Delaware); d. Landscape browning driven by marsh
erosion along barrier islands in Virginia Coast Reserve (37.2°N, 75.8°W, Virginia). Maps of
landcover change (third row in b-d) were computed by differencing the landcover maps in 1984
(first row) and 2020 (second row). “Coastal forest loss” corresponds to areas where upland forest
or transition forest were replaced by migrating marsh and open water. “Marsh loss” refers to areas
of marsh loss to open water. Scale bars in b-d correspond to 4 km. See Extended Data Fig. 6 and

Extended Data Table 1-3 for more information on analysis statistics and landcover classifications.
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Figure 2. Spatial extent of sea-level rise impacts in coastal ecosystems. a. NDVI trend plotted
against elevation gradient, including (grey line) or excluding (black line) land-cover and land-use
change associated with human activities (e.g. agriculture, urbanization, deforestation and
reforestation, Extended Data Table 1). b. Histograms showing range shifts of vegetation from 1984
to 2020 along elevation gradient. From top to bottom: marsh, transition forest and upland forest.
Note that the y axes of the histograms were not plotted on the same scale. “Count” refers to number
of Landsat pixels. All statistics were computed after excluding areas of human land-use and land-
use change. The vertical lines correspond to mean elevation of vegetation within 0-5 m above sea
level in 1984 (solid) and 2020 (dotted). The red lines represent cumulative number of Landsat
pixels along elevation in 1984 (solid) and 2020 (dotted). Elevation data®* is relative to NAVDSS,

which approximates mean sea level in the region.
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Figure 3. NDVI trend and the associated aboveground biomass change by vegetation type. a. Four-
year rolling mean NDVI through time, presented by vegetation type along elevation gradients
(panels from left to right: 0-0.7 m, 0.7-1.9 m, and 1.9-5 m above sea level). Solid and dotted lines
refer to linear regression showing statistically significant (P < 0.05, solid line) and marginally
significant (P < 0.1, dotted line) trends between 1984 and 2020, respectively. b. Overall and
vegetation-specific aboveground biomass change from 1984 to 2020, indicating a net increase in
coastal aboveground biomass. All results were computed on areas free from human land-use and

land-use changes.
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Figure 4. Environmental drivers for regional patterns of NDVI trend. a. Relative influence of each

environmental driver. FF: flooding frequency; Slope: topographical slope; ATAP: change in total

annual precipitation between 1984-2020; AGDD: change in growing degree day between 1984-

2020; MST: maximum summer temperature. b-g. Partial-dependency plots illustrating the

relationship between NDVI trend and each of the environmental drivers. The x axes represent the

independent variable, and the y axes refer to the effect size that each variable has on the NDVI

trend. The shaded areas represent 95% confidence interval, and the tick marks indicate the deciles

of data distribution. All analyses were performed on areas free from human land-use and land-use

changes.
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Extended Data Fig. 2. Climate change observed in the study region. The vertical bars represent
annual mean temperature (left) and annual total precipitation (right), recorded in the nearest
NOAA station in Dover, Delaware. The black lines refer to the 5-yr moving average. The dotted
lines represent linear regression that show significant upward trend of long-term temperature and
precipitation from 1980 onward. The observed climate data was used for illustrative purposes only.
The climate inputs for our boosted regression tree analysis refers to the spatially explicit PRISM

datasets.
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Extended Data Fig. 3. Identifying timing for NDVI trend analysis. a. Sites selected randomly for
evaluating monthly NDVI patterns. b. Monthly NDVI pattern of each vegetation type for the most
recent five years. The shaded areas indicate peak growing season when NDVI is maximized and

stays relatively consistent. All data are shown as mean + 1 standard deviation.
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Extended Data Fig. 5. Cross-comparison of NDVI between Landsat sensors. Scatterplots of

NDVI by Landsat-5 TM (left) and by Landsat-8 OLI (right) were plotted against NDVI by

Landsat-7 ETM+. The solid lines refer to linear regression and dotted lines represent the 1:1 Line

superimposed for reference.
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571  Extended Data Table 1. Landcover classes and their definitions used in this study.

Categories Classes

Definition

Tidal and nontidal wetlands dominated by herbaceous hydrophytes like cordgrass,
rushes, and sedges (NOAA C-CAP program®).

Low-lying forests between marsh and upland forests where mortality due to seawater
intrusion has already begun. Also known as ghost forests!>?>26¢7 ysually with shrubs
and marshes present in understory.

Primary or long-standing secondary forests characterized by closed canopy and
mature trees of height greater than 5 m (NOAA C-CAP program®®).

Managed lands including actively cultivated, fallow or recently abandoned
croplands; nursery and plantation for flowers, fruits and other economic plants;
managed grasslands and pastures like golf course and residential lawns (National
Land Cover Database®); and selectively thinned or clear-cut forests (Global Forest
Cover Change database®).

Developed lands dominated by impervious surface such as asphaltic roads and
concrete constructions for residential, institutional, and commercial activities.

Open water with 25% or less of vegetation and soil cover (National Land Cover
Database™).

Marsh
Natural Transition
habitats forest

Upland

forest
Human- Agriculture
influenced
areas

Urban area

Water
Sandbar

Barren, unconsolidated sandy/silty shores, and sparsely vegetated sand dunes subject
to constant tidal-driven erosion and redistribution (NOAA C-CAP program™).
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Extended Data Table 2. Input datasets for random forest classifier. All Landsat images used for

landcover mapping were acquired during low tides with cloud cover less than 5%. Predictors in

bold are those retained in the final models. “References” refers to studies upon which the selection

of candidate predictors is based in this study.

Categories Predictors* Data sources Timing of acquisition  References
Blue All surface reflectance
Green bands of Landsat-5 for the ino/leaf: )
Spectral Red 1984 mapping; and Greening eaf-out season;
P ’ Peak growing-season; Refs.”8.79:95-97
bands NIR all surface reflectance Senescent/leaf-off season
SWIR1 bands of Landsat-8 for the ’
SWIR2 2020 mapping.
NDVI*®
102
1(5}550\3] ! Computed from surface
SAV]I4 reflectance bands of
Multispectral  MSAVI'®S Landgat—S for the 1984 Greenmg/l'eaf—out sea.son; Refs 67789599
. . 5 - H 101
indices NDW]!06 mapping, and from Peak growing-season
mNDWI'? surface reflectance bands  Senescent/leaf-off season.
TCP - brightness!*10° of Lapdsat—8 for the 2020
TCP - greenness'%'% mapping.
TCP - wetness'*%1%
Elevation Computed from the 1 m
Biophysical Slope CoNED DEM, resampled . 79.96,110
attributes Aspect to 30m using bilinear Static Refs.
TPI*? interpolation.

* NIR: Near-Infrared; SWIR: Short-wave Infrared; NDVI: Normalized Difference Vegetation Index;

GNDVI: Green NDVI; EVI: Enhanced Vegetation Index; SAVI: Soil-Adjusted Vegetation Index; MSAVI:

Modified SAVI; NDWI: Normalized Difference Water Index; mNDWI: modified NDWI; TCP: Tasseled

Cap Transformation; TPI: Topographical Position Index.
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582  Extended Data Table 3. Classification accuracy of landcover maps.

1984 landcover map 2020 landcover map
Classes Validation User's Producer’s Validation User's Producer’s
(# sites) accuracy accuracy (# sites) accuracy accuracy

Marsh 2094 91.07% 90.77% 2394 94.32% 90.87%
Transition forest 1904 92.17% 87.44% 2187 93.87% 92.77%
Upland forest 2269 90.17% 94.29% 1975 96.05% 95.95%
Agriculture 2004 91.72% 90.41% 1938 91.64% 95.38%
Urban 1548 96.06% 93.52% 1501 93.27% 91.98%
Water 1799 88.27% 91.06% 2127 90.69% 92.96%
Sandbar 1264 87.66% 89.57% 1463 90.91% 91.66%
Overall accuracy 91.05% 93.10%
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