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ABSTRACT

Entity-oriented search systems often learn vector representations
of entities via the introductory paragraph from the Wikipedia page
of the entity. As such representations are the same for every query,
our hypothesis is that the representations are not ideal for IR tasks.
In this work, we present BERT Entity Representations (BERT-ER)
which are query-specific vector representations of entities obtained
from text that describes how an entity is relevant for a query. Using
BERT-ER in a downstream entity ranking system, we achieve a
performance improvement of 13-42% (Mean Average Precision)
over a system that uses the BERT embedding of the introductory
paragraph from Wikipedia on two large-scale test collections. Our
approach also outperforms entity ranking systems using entity em-
beddings from Wikipedia2Vec, ERNIE, and E-BERT. We show that
our entity ranking system using BERT-ER can increase precision
at the top of the ranking by promoting relevant entities to the top.
With this work, we release our BERT models and query-specific
entity embeddings fine-tuned for the entity ranking task.!
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« Information systems — Retrieval models and ranking; Learn-
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1 INTRODUCTION

An important aspect of entity-oriented research pertains to the
representation of entities. Commonly, the vector representation
(embedding) of the introductory paragraph (lead text) from an

Data and code available at: https://github.com/shubham526/SIGIR2022-BERT-ER

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °22, July 11-15, 2022, Madrid, Spain

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8732-3/22/07...$15.00
https://doi.org/10.1145/3477495.3531944

Laura Dietz
dietz@cs.unh.edu
University of New Hampshire
Durham, New Hampshire, USA

The United States Food and Drug Administration
(FDA or USFDA) is a federal agency of the Depart-
ment of Health and Human Services. The FDA is re-
sponsible for protecting and promoting public health
through the control and supervision of food safety,
tobacco products, dietary supplements [...] The FDA’s
primary focus is enforcement of the Federal Food,
Drug, and Cosmetic Act [...]

Figure 1: Lead text from the Wikipedia page of the entity
“Food and Drug Administration”. This text is a generic de-
scription of the entity and does not highlight the connection
between the entity and the query “Genetically Modified Or-
ganism”. Hence, the corresponding entity embedding is static.
Our intuition is that such static embeddings may not be ideal
for IR tasks.

entity’s Wikipedia page is used as the entity’s representation [35, 36,
58]. An issue with using the lead text is that it is a static description
of the entity: Often, the lead text contains only generic information
about the entity that is the same for every query and may not even
be relevant for the query. For example, the entity “Food and Drug
Administration” (FDA) is relevant to the topical keyword query
“Genetically Modified Organism” as an organization that approved
and released a kind of genetically engineered insulin; however, the
lead text from the Wikipedia page of the FDA does not contain
this information (Figure 1). In fact, the lead text has been found
to be useful as an entity’s description in less than 50% cases for
the ClueWeb12 collection [16]. As the lead text is a static textual
description of the entity, the corresponding entity embedding is
static in nature, i.e., the embedding is the same for every query.

Similarly, while entity embeddings obtained using graph em-
bedding methods [5, 33, 51, 56] encode the general semantics and
knowledge of entities available in a Knowledge Graph, the em-
beddings are static. Recently, models such as ERNIE [62] and E-
BERT [44] have been proposed in an effort to inject information
from Knowledge Graphs into BERT [13]. However, these models too
use a static textual description of the entity, either from Freebase
or Wikipedia, resulting in static embeddings.

Static entity embeddings obtained using Wikipedia or Knowl-
edge Graphs are easy to pre-compute and store. They have also
been shown to be useful for downstream (query-independent)
knowledge-driven NLP tasks such as entity linking [19, 44, 60],
entity typing [43, 62] and relation classification [44, 62]. However,
our intuition is that such embeddings may not be ideal for IR tasks.

Often, a query and document are matched in the entity-space [35,
36, 40, 58] through the similarity between the embedding of the



entities mentioned in the query and the document. Static entity
embeddings without any knowledge of the query may not be able
to identify when two entities are similar/related in the context of
the query. For example, the Wikipedia page of the entity “Food and
Drug Administration” does not mention the entity “Robert Swan-
son”, yet these two entities are similar/related in the context of the
query “Genetically Modified Organism” because Robert Swanson
was the founder of the company that produced the first geneti-
cally engineered insulin approved for use by the Food and Drug
Administration. Our hypothesis is that an entity embedding that
incorporates query-specific knowledge about the entity would be
more beneficial in a downstream IR task. In this work, we use a
query-specific textual description of an entity to encode the query-
relevant information about entities using BERT.

Task. Given a query and an entity, produce a query-specific
dense vector representation (embedding) of the entity.

We evaluate the impact of our query-specific BERT Entity Repre-
sentations (BERT-ER) on a downstream entity ranking task: Given a
keyword query, return a ranked list of entities ordered by relevance.

The prevalent approach for representing entities through the
BERT embedding of the lead text is appealing because it is simple
to implement and use; unfortunately, it leads to poor results, as
we demonstrate in our experimental evaluation. We provide an
equally easy-to-implement approach for obtaining query-specific
entity embeddings using BERT that performs much better than the
prevalent approach. This improvement is achieved by incorporating
query-relevant information about the entity in its representation.
To this end, we explore the utility of three types of query-specific
textual descriptions (Figure 2) of entities for learning query-
specific entity embeddings using BERT:

o Aspect (top-level section from Wikipedia). We identify the
relevant top-level sections from an entity’s Wikipedia page, and
use the text of the highest ranked section as the entity’s query-
specific description. Prior work [40, 46] refers to the top-level
sections as an entity’s aspects. In this work, we too refer to the
top-level sections from Wikipedia as an entity’s aspects. We
discuss this in more detail in Section 3.2.

o PRF-passage. This is the simplest and most straightforward

query-specific textual description of an entity. The approach is

based on Pseudo-Relevance Feedback [31] and entity linking. We
use the text of the highest ranked pseudo-relevant candidate
passage that mentions an entity as the entity’s query-specific

textual description. We discuss this in more detail in Section 3.3.

Entity-support passage. An entity’s support passage [4, 8, 25] is

a PRF-passage that mentions the entity and explains to a human,

why an entity is relevant to a query. We use the text of the highest

ranked support passage as an entity’s query-specific description.

We discuss this in more detail in Section 3.4.

Contributions. The novel contribution of this work is new
knowledge about query-specific entity embeddings that will not
only benefit the IR community but also other related research areas.
In the experimental evaluation, we demonstrate the benefits of us-
ing our query-specific BERT entity embeddings using several large
entity ranking benchmarks consisting of a diverse set of queries
(question answering, keyword queries, list search queries, etc.).

e We obtain query-specific BERT Entity Representations (BERT-
ER) by incorporating the query-relevant knowledge about an
entity into its representation. This query-relevant knowledge is
obtained using pseudo-relevant candidate passages, support pas-
sages, and relevant aspects (top-level sections from Wikipedia).

e Using BERT-ER in our entity ranking system, we outperform the
entity ranking system that uses the BERT embedding of the lead
text of entities by 13-42% on two large-scale entity ranking test
collections. We also outperform systems using entity embeddings
from Wikipedia2Vec [59], ERNIE [62], E-BERT [44].

e We provide a detailed empirical evaluation demonstrating that
compared to the prevalent entity embedding methods, our query-
specific BERT entity embeddings yield better performance for IR
tasks such as entity ranking.

2 RELATED WORK
2.1 Knowledge-Enhanced BERT

Recently, much effort has been spent on injecting knowledge into
BERT [13]. Zhang et al. [62] propose ERNIE, a neural language
model that uses additional knowledge encoder layers to integrate
the knowledge from entities into the textual information from
the underlaying layers. Peters et al. [43] propose KnowBert, a
knowledge-enhanced BERT model that explicitly models entity
spans in the input text and uses an entity linker trained jointly
with the model to retrieve relevant entity embeddings. Wang et al.
[55] propose KEPLER, a model based on RoBERTa [34] that maps
texts and entities onto the same semantic space using the same
language model and jointly optimizes the Knowledge Embedding
and the Masked Language Modeling objectives. While ERNIE and
KnowBert are based on adapting BERT to entity embeddings and
involve additional pre-training, E-BERT proposed by Poerner et al.
[44] adapts entity embeddings to BERT without any pre-training.
E-BERT aligns Wikipedia2Vec [59] entity vectors with BERT’s word-
piece vectors. E-BERT has been shown to outperform BERT, ERNIE,
and KnowBert on question-answering, relation classification, and
entity linking.

2.2 Entity Embeddings

Bordes et al. [5] propose TransE which learns embeddings for both
entities and relations based on the idea that the relationship r be-
tween two entities h and t corresponds to a translation between the
embedding of these entities. However, TransE has problems deal-
ing with reflexive, one-to-many, many-to-one, or many-to-many
relations between entities. Wang et al. [56] propose TransH to over-
come this issue by representing each relation r with two vectors:
the norm vector w,, and the translation vector d,. Both TransE
and TransH assume that entities and relations are embedded in the
same space. Lin et al. [33] propose TransR to address this issue by
modelling entities and relations in distinct entity space and mul-
tiple relation spaces. TransR projects h and t to the aspects that a
relation r focuses on using relation-specific mapping matrix M,.
However, this means that for relation r, all entities share the same
M, irrespective of their types or attributes. Ji et al. [24] propose
TransD to address this issue by using a unique mapping matrix for
every entity-relation pair.



Query: Genetically Modified Organism

Entity: Food and Drug Administration

Food and Drug Administration
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Figure 2: Example of query-specific entity representations for the query “Genetically Modified Organism” and entity “Food and
Drug Administration”. The lead text is a generic description of the entity and non-relevant for the query. The PRF-passage
provides a query-specific description of the entity by first defining what a GMO is, then stating that the FDA regulates GMO
food. As a result, the PRF-passage is a better textual description of the entity than the lead text. An issue with the PRF-passage
is that the entity is not central to the discussion in the passage and the connection between FDA and GMO foods is made as a
passing reference, i.e., passage is relevant to query but not to the entity. The support passage is a PRF-passage that is relevant
to both the query and entity. The connection between entity and the query is central to the discussion in the support passage,
and the support passage clarifies how the FDA regulates GMOs, including that the FDA allowed the use of the first genetically
modified insulin (not shown in the figure). The aspect further clarifies the meaning of the entity in the context of the query —
FDA is mentioned in the context of “Regulatory Programs” in the support passage; the text from the aspect elaborates on this

deeper query-relevant meaning of the entity.

Xie et al. [57] propose a novel representation learning method for
knowledge graphs taking advantages of entity descriptions present
in knowledge bases. Yamada et al. [61] present TextEnt, a neural net-
work model that learns distributed representations of entities and
documents directly from a knowledge base using the introductory
paragraph of an entity’s Wikipedia article as descriptions.

Recently, Yamada et al. [59] proposed Wikipedia2Vec for learning
embeddings of words and entities from Wikipedia based on the
skip-gram model [38, 39]. Gerritse et al. [20] propose GEEER, an
entity ranking system that re-ranks entities using Wikipedia2Vec.
They show that entity embeddings from Wikipedia2Vec are useful
for entity ranking. First, they compute the embedding-based score
for an entity E as a weighted sum:

Scoreey, (E, Q) = Z C(e) - cos(E, &) 1)
ecQ

where C(e) is the confidence score of each entity e in the query Q
as returned by the entity linker TagMe [17]. The final score of an
entity is derived from an interpolation of the embedding-based and
retrieval scores:

Scoregnal (E, Q) = A - Scoreemp, (E, Q) + (1 — A) - Scoreret(E, Q)

where Scoreret(E, Q) is the score of entity E obtained from a re-
trieval model, and A € [0, 1].

We include the entity ranking method GEEER of Gerritse et al.
[20] as a baseline. Further, we replace the Wikipedia2Vec embed-
dings in GEEER with embeddings from ERNIE and E-BERT, and
include the resulting systems as baselines.

2.3 Entity Ranking

Ranking via unstructured retrieval models. Entity retrieval
is often addressed in two steps. First, an entity description is con-
structed either from document corpora, Web documents such as
the Wikipedia page of an entity, or knowledge bases such as DB-
pedia [32]. Second, these entity descriptions are ranked using a
retrieval model such as BM25 [49], or language models. Alterna-
tively, term dependencies may be incorporated using a Markov
Random Field (MRF) [37]. For example, the Sequential Dependence
Model (SDM) [37] based on the MRF assigns different weights to
matching unigrams and bigarams of different types.

Ranking via fielded retrieval models. Fielded retrieval models
are used to rank entities represented as a fielded document using,
for example, the Wikipedia page of the entity. Zhiltsov et al. [63]
propose the Fielded Sequential Dependence Model (FSDM) that
estimates the feature functions for unigams and bigrams across
multiple fields using field-specific background models. Nikolaev
et al. [41] propose improvements over the FSDM by dynamically
estimating the probability of unigrams and bigrams being mapped
onto a field. Hasibi et al. [22] leverage entity links in queries and
propose a parameter-free estimation of the field weights in FSDM.

Ranking via Learning-To-Rank. The current state-of-the-art
entity ranking models are based on Learning-To-Rank (LTR). LTR
approaches represent each query-entity pair as a feature vector, and
learn the optimal way to combine these vectors through discrimina-
tive training. Schuhmacher et al. [52] propose several query-entity



features, for example, whether the candidate entity is contained in
the query, whether entities in queries and documents are connected
in a Knowledge Graph, etc. Graus et al. [21] learn an optimal entity
representation for entity retrieval by representing an entity as a
fielded document. ENT-Rank [14] is a LTR model that combines
information about an entity, the entity’s neighbors, and context
using a hypergraph. Recently, Chatterjee et al. [9] have shown that
entity aspects are useful for entity retrieval. Their approach (re-
ferred to as LTR-ASP in this work) is based on LTR with a rich set
of features derived from entity aspects. ENT-Rank and LTR-ASP
represent the current state-of-the-art on our datasets. Hence, we
include them as baselines.

Ranking via entity types. Type-aware entity retrieval models
estimate the type-based similarity between an entity and the set
of target types provided with the query. For example, Kaptein and
Kamps [26] represent the types by concatenating the descriptions
of entities that belong to that type, and then estimate the similarity
by scoring the query against this representation. Balog et al. [1]
represent the query and entity types using probability distributions,
and then measure the similarity between the two distributions.

Ranking via entity relationships. Tonon et al. [53] address
the ad-hoc entity retrieval task by identifying (relevant) entities
from a Knowledge Graph that are related to entities present in a
candidate set. Ciglan et al. [10] address the list search task of the
Semantic Search Challenge [3] by identifying sets of semantically
related entities from the underlying Knowledge Graph and scoring
entities based on the relevance score of the sets it belongs to. Bron
et al. [6] address the related entity finding task of the TREC Entity
track [2] by modelling the relevance of an entity using a generative
probabilistic model.

3 ENTITY REPRESENTATIONS

Given a query and an entity, we want to produce a query-specific
dense vector representation (embedding) of the entity. In this work,
we use query-specific entity descriptions, i.e., text that clarifies why
an entity is relevant to a query, to create entity representations.
Our assumption is that such a query-specific description provides
a suitable and easy-to-implement method of providing the model
with query-relevant information about an entity to learn the entity’s
embedding. We obtain query-specific BERT Entity Representations
(BERT-ER) by fine-tuning BERT for the entity ranking task. We
explore a range of different approaches (Sections 3.2 through 3.4)
for obtaining query-specific entity descriptions and compare them
empirically in Section 6.

3.1 Fine-tuning BERT

BERT-based neural re-ranking models such as MonoBERT and
DuoBERT [42] have shown to be useful for the passage ranking
task. Hence, we fine-tune a BERT model for entity ranking in two
ways:

e Point-wise (MonoBERT-style) using the cross-entropy loss.
o Pair-wise (DuoBERT-style) using margin ranking loss.

The input to BERT is generated as follows:

Input = [CLS] t7, ¢, ... 1] [SEP] 12,44, ..., 12, [SEP]

where t? is a query token, tg is a description token, and [CLS] and
[SEP] are special tokens used by BERT. We use the L-dimensional
embedding of the [CLS] token obtained from the last hidden layer
of BERT as the query-specific embedding eg of an entity e.
Below, we discuss the different query-specific entity descriptions
used to derive query-specific entity embeddings in this work.

3.2 Aspects: Top-Level Wikipedia Sections

We identify the top-level section from the Wikipedia page of an
entity that is most relevant for the query, and use the text of the
section to embed the entity. Following previous work [18, 40, 46,
48], we refer to the top-level sections from Wikipedia as aspects,
and use a catalog of aspects provided by Ramsdell et al. [46].2
This aspect catalog contains the top-level sections from the entire
English Wikipedia together with section heading, text of the section,
and the entities mentioned in the section.

To identify the most relevant top-level section (aspect) from
an entity’s Wikipedia page, we create a search index of aspects
containing the full-text of all aspects from the catalog. We retrieve
a candidate set of aspects (sections) A from this aspect index with
the query using BM25.

An issue with directly using aspects from A is that many entities
corresponding to the aspects in A may not even be relevant to the
query. To remedy this, we leverage prior work on entity aspect
linking. Entity Aspect Linking [40, 46] refines an entity link to an
entity aspect link by clarifying the meaning of an entity from the
context in which the entity has been mentioned, for example, the
entity “Food and Drug Administration” in the context of its history
or regulations.

We follow a useful assumption often encountered in entity-
oriented research [11, 14, 47] to further improve the quality of
the candidate set of aspects A: The entities mentioned in passages
from a candidate set of passages for the query are relevant for the
query. We transfer this idea to entity aspects. First, we retrieve a
candidate set of passages D for the query using BM25, then we
retain only aspects a € A that are linked to atleast one passage
p € D to obtain a filtered set of candidate aspects A’. We use the
text of the top-ranked aspect a, € A’ of an entity e as the entity’s
description.

The downside of the the above approach is that often, Wikipedia
articles are outdated or have some (negative) information removed.
As a result, they do not contain all the query-relevant information.

3.3 Pseudo-Relevant Candidate Passages

To alleviate the above problem, we explore an alternative source
of query-specific entity descriptions. We use ideas from Pseudo-
Relevance Feedback [31] to obtain an entity’s query-specific de-
scription: We use the candidate set of passages D for the query
(obtained in Section 3.2) directly and use the text of the highest
ranked passage p. € D that mentions the entity e (identified, for
example, via entity links) as the entity’s query-specific description.

This approach is easy to implement and based on a widely used
Pseudo-Relevance Feedback technique. The downside is that al-
though the candidate passage is relevant to the query, the entity
may not be salient, i.e., central to the discussion in the passage, and

Zhttps://www.cs.unh.edu/~dietz/eal-dataset-2020/



the connection between the query and entity may be made as a
passing reference. In other words, the passage may be relevant to
the query but not to the entity.

3.4 Entity Support Passage

To overcome the limitation from using PRF-passages as entity de-
scriptions, we explore prior work on entity support passage re-
trieval [4, 8, 25] that identifies a passage that is relevant to both
the query and the entity and elaborates on the connection between
the query and entity. We extend the ideas from previous work on
entity support passage retrieval to retrieve support passages for
each entity (referred to as “target entity”) in a candidate entity
ranking. We use the entity ranking obtained using the combination
of Pseudo-Relevance Feedback and Entity Context Model described
in Section 4.3.

We want to focus on the relevant connections between the query
and target entity while learning the query-specific representation
of the target entity. The idea is that an entity (e.g., “Genetically Mod-
ified Crops”) that is relevant to the query (e.g., Genetically Modified
Organism) and mentioned frequently whenever the target entity
(e.g., “Food and Drug Adminstration”) is mentioned in some text, is
a relevant connection between the query and target entity. Hence,
we consider the other query-relevant entities that are mentioned
frequently in the vicinity of the target entity as surrogates for such
“relevant connections” between the query and target entity, and
score a candidate support passage based on the number of such
relevant connections (entities) the passage contains.

To implement this idea, we derive a filtered set of candidate
passages D, for a target entity e by retaining passages p € D
(obtained in Section 3.2) that mention the entity e. Then, we identify
the k most frequently mentioned entities ex € D,. We re-rank
passages p € D, for the entity e by the number of frequent entities
ey in the passage:

Scoree(p) = Z Freq(ex € De)

exEp

where Freq(ex € D) is the number of times ey appears in D,. We
obtain the final score of a passage p € D, by interpolating the
passage’s score for the entity with the passage’s score for the query
(obtained from D):

Score(p | e,Q) = A - Scoree(p) + (1 — A) - Scoreg(p) A€ [0,1]

where A is learnt using a machine learning method.

Additionally, we re-rank passages p € D, based on the salience
of the target entity e in the passage. Finally, we use the various
support passage rankings obtained above as features to train a
supervised Learning-To-Rank model, and produce one combined
support passage ranking for each query and target entity. We use
the text of the highest ranked support passage for each target entity
as the target entity’s query-specific description.

3

4 ENTITY RANKING

Given a keyword query Q, the entity ranking task is to return
a ranked list of entities & from a Knowledge Graph ordered by
relevance of each entity e € & for the query Q. As discussed in

3We use the salience detection system from Ponza et al. [45].

Section 3.1, we use point-wise/pair-wise ranking methods to fine-
tune BERT for the entity ranking task using our query-specific
entity descriptions and obtain the vector representation eg of an
entity e € &.

4.1 BERT-based Entity Ranking

To rank entities e € & using BERT, we learn the scoring function
Score(e|Q) using the L-dimensional embedding eg of entity e as
follows:

Score(e|Q) = W - eQT +b
where W is an L x L weight matrix, and b is an L-dimensional
bias vector. We can implement this by passing the embedding eg
through a fully-connected layer trained jointly with the model.

4.2 Combinations using Learning-To-Rank

As discussed in Section 2, the current state-of-the-art entity rank-
ing models use list-wise Learning-To-Rank. Hence, using list-wise
Learning-To-Rank, we combine the entity rankings obtained from
BERT using the query-specific entity representations with other en-
tity relevance features used in previous work [9, 11, 14] (discussed
below) to obtain the final entity ranking for a query.

4.3 Other Entity Features

We include several entity features found to be useful by previous
work in entity ranking. For example, considering each Wikipedia
page to be an entity [27], we obtain an entity ranking by retrieving
Wikipedia pages from a search index containing the full-text of
Wikipedia pages. We also retrieve entities directly from an index
containing the name and lead text of entities in a Knowledge Base.

Additionally, we also use an idea based on Pseudo-Relevance
Feedback [31] and the Entity Context Model [11] that has been
found to be a strong entity relevance indicator by prior work [9,
11, 14, 47] to obtain an entity ranking from a search index of para-
graphs as follows: We represent a pseudo-relevant feedback set of
paragraphs retrieved using the query as a bag-of-entities. To rank
the entities in the bag, we weigh the frequency distribution of the
entities by the retrieval score of the paragraphs.

5 EXPERIMENTAL METHODOLOGY
5.1 Datasets

We use two large-scale entity ranking test collections: TREC Com-
plex Answer Retrieval and DBpedia-Entity v2.

TREC Complex Answer Retrieval (CAR). Given a topical key-
word query such as “Genetically Modified Orgnism”, the entity
retrieval task of the TREC Complex Answer Retrieval (CAR) [15]*
track is to return a ranked list of entities based on whether the en-
tity must, should, or could be mentioned in an article on this topic.
In this work, we focus on the page-level queries, i.e., the title of the
Wikipedia page as the query. The CAR dataset contains both man-
ual and automatic entity ground truth, as well as an entity linked
corpus consisting of paragraphs from the entire English Wikipedia.
The automatic ground truth is constructed synthetically: all entities
on the Wikipedia page corresponding to the query are relevant. The

“http://trec-car.cs.unh.edu



manual ground truth was constructed after a manual assessment
conducted by NIST using pool-based evaluation.
We use two subsets from the TREC CAR v2.1 data release.

e BenchmarkY1-Train. This subset is based on a Wikipedia dump
from 2016. The ground truth is automatic with 117 page-level
queries, and 3,031 positive entity assessments.

e BenchmarkY2-Test. This subset is based partly on a Wikipedia
dump from 2018 and partly on the Textbook Question Answer-
ing [28] dataset (questions from middle school science curricu-
lum). The ground truth is manual, with 27 page-level queries,
and 3173 positive entity assessments.

The CAR dataset also contains a large collection of Wikipedia
pages from 2016 in an easily parsable format (unprocessedAllBut-
Benchmark). Query pages are excluded. We use this collection as
our Knowledge Base to create the page/entity index representations
used in Section 4.3.

DBpedia-Entity v2. The DBpedia-Entity v2 [23] is a collection
of queries collected from several established entity retrieval bench-
marking campaigns. It uses the DBpedia knowledge base (October
2015). The dataset contains the following categories of queries:

o SemSearch ES consisting of named entity queries (e.g., brooklyn
bridge).

o INEX-LD consisting of IR-style keyword queries (e.g., electronic
music genres).

e List Search consisting of queries which seek a list of entities
(e.g., Professional sports teams in Philadelphia).

e QALD-2 consisting of natural language queries (e.g., Who owns
Aldi?).

Since we use the paragraphs, entity links, sections, etc. from
Wikipedia, we use the version® of DBpedia-Entity v2 projected
onto the Wikipedia dump from TREC CAR v2.1. Since our methods
are not included in the assessment pool, we remove the unjudged
entities retrieved by our methods to enable a fair comparison.

5.2 Evaluation Metrics

We use Mean Average Precision (MAP), Precision at R (P@R),
and Normalized Discounted Cumulative Gain at 100 NDCG@100)
as our evaluation metrics. We conduct significance testing using
paired-t-tests.

5.3 Details of Learning-To-Rank

We perform list-wise Learning-To-Rank (LTR) using Coordinate
Ascent optimized for MAP. We use the toolkit Ranklips’ for this
purpose. We use 5-fold cross-validation for fine-tuning the BERT
model as well as training the LTR model on both TREC CAR and
DBpedia-Entity v2. The different subsets of queries available in the
DBpedia-Entity v2 collection and CAR BenchmarkY2-Test were
merged for training. Further details for using Ranklips can be found
in the online appendix for this paper.

Shttps://github.com/iai- group/DBpedia-Entity
Shttps://github.com/TREMA-UNH/DBpediaV2-entity- CAR
https://www.cs.unh.edu/~dietz/rank-lips/

5.4 Feature Generating Retrieval Models

We produce entity rankings using the following retrieval models:
(1) BM25, and (2) Query Likelihood with Dirichlet Smoothing (¢ =
1500), both with and without RM3-style query expansion. We use
the default implementation of BM25 in Lucene. We also use the
implementation of Query Likelihood in Lucene.

5.5 Details of BERT Fine-Tuning

Our model is implemented in PyTorch using HuggingFace. We
use the bert-base-uncased version of BERT. For fine-tuning our
model, we use the PyTorch implementation of the Cross-Entropy
Loss® and Margin Ranking Loss.” The model is fine-tuned using the
Adam [29] optimizer with a learning rate of 2e — 5 and batch size
of 8. We also use a linear learning rate schedule with 1000 warm-up
steps.

5.6 Baselines

We include the following entity ranking systems as baselines:

(1) BERT-LeadText++. We fine-tune BERT for entity ranking us-
ing the lead text from an entity’s Wikipedia page. The resulting
entity rankings are used as features within a Learning-To-Rank
system with other entity features (Section 4).

(2) GEEER [20]. The entity retrieval system from Gerritse et al.
[20] (described in Section 2) using Wikipedia2Vec [59] to re-
rank entities.

(3) GEEER-ERNIE. Same as GEEER but using ERNIE [62] instead
of Wikipedia2Vec.

(4) GEEER-E-BERT. Same as GEEER but using E-BERT [44] in-
stead of Wikipedia2Vec.

(5) GEEER-BERT. Same as GEEER but using BERT [44] instead
of Wikipedia2Vec. We use the name of the Wikipedia page of
the entity to embed the entity using BERT.

(6) ENT-Rank [14] A Learning-To-Rank model that uses entity,
neighbors, and text features.

(7) LTR-ASP [9]. A Learning-To-Rank model that uses features
based on entity aspects and entity support passages.

(8) BM2F-CA. Best-performing system on the DBpedia-Entity v2
dataset provided by the creators.

5.7 Research Questions

We address the following research questions in this work:

ROQ1 Is it sufficient to use the lead text of an entity’s Wikipedia
page as the entity’s description? Are query-specific entity
descriptions better?

RQ2 To what extent do query-specific entity descriptions help
improve entity ranking performance? What is the reason for
this performance improvement?

RQ3 How do embeddings obtained using BERT-ER compare to
those obtained using Wikipedia2vec for entity ranking?
Which of these is better?

8https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
“https://pytorch.org/docs/stable/generated/torch.nn. MarginRankingLoss.html



Table 1: Results on BenchmarkY1-Train page-level using au-
tomatic ground truth. Trained using 5-fold cross-validation.
4 denotes significant improvement and v denotes significant
deterioration compared to BERT-LeadText++ (denoted ) us-
ing a paired-t-test at p < 0.05.

MAP P@R NDCG@100
BERT-LeadText++* 0.38* 0.41* 0.49*
GEEER [20] 0.15"  0.21 0.30
GEEER-E-BERT 0.13¥  0.18" 0.267
GEEER-ERNIE 0.147 0.197 0.267
GEEER-BERT 0.147 0.217 0.287
ENT-Rank [14] 032" 0.36 0.46"
LTR-ASP [9] 0.49* 0.50* 0.63*
BERT-ER++ 0.54* 0.54* 0.66*

6 RESULTS AND DISCUSSIONS

The overall results on CAR BenchmarkY1-Train are shown in Table
1, on CAR BenchmarkY2-Test in Table 2, and on DBpedia-Entity v2
in Table 3 (only best baselines shown due to lack of space). Below, we
discuss the results with reference to the research questions outlined
in Section 5.7. We use the query “Genetically Modified Organism”
(GMO) as an illustrative query throughout our discussions below. In
Tables 1 to 3, we refer to our entity ranking system as BERT-ER++.
BERT-ER++ is the Learning-To-Rank combination of entity features
described in Section 2.3 and entity rankings obtained by fine-tuning
BERT using query-specific entity descriptions. In Table 4, BERT-ER
is the Learning-To-Rank combination of all entity rankings obtained
from BERT using query-specific entity descriptions (excluding the
entity features described in Section 2.3).

6.1 Overall Results

From Tables 1 to 3, we observe that our entity ranking system BERT-
ER++ outperforms all baselines in terms of all evaluation measures
on both datasets. For example, on CAR BenchmarkY1-Train in Table
1, in comparison to BERT-LeadText++, we obtain an improvement
of 42% in terms of MAP (MAP = 0.38 to MAP = 0.54). Similar
results are observed in Tables 2 and 3. BERT-ER (Table 4) and BERT-
ER++ especially improve on the recall-oriented measures MAP and
NDCG@100. This shows that query-specific entity descriptions
are more informative and useful than the lead text of an entity’s
Wikipedia article that has often been used in prior work. We discuss
this further in Section 6.2.

BERT-ER and BERT-ER++ also obtain statistically significant
improvements over the entity re-ranking systems using recent and
state-of-the-art entity embedding methods: Wikipedia2Vec [59],
ERNIE [62], and E-BERT [44]. For example, on CAR BenchmarkY1-
Train in Table 1, GEEER [20] using Wikipedia2Vec obtain MAP =
0.15, GEEER-E-BERT obtains MAP = 0.13, and GEEER-ERNIE
obtaines MAP = 0.14; our system BERT-ER++ obtains MAP = 0.54.
Similar results are observed in Tables 2 and 3. This shows that
our query-specific entity representations are able to capture the
relevance of an entity for a query in a better way. We discuss this
further with respect to Wikipedia2Vec in Section 6.3.
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Figure 3: Difficulty test for MAP on CAR BenchmarkY1-Train,
comparing entity rankings obtained by fine-tuning BERT
using different query-specific entity descriptions. Baseline:
BERT-LeadText. 5% most difficult queries for BERT-Lead Text
to the left and the 5% easiest ones to the right. Performance
reported as macro-averages across queries. For the difficult
queries (0-50%), relevant entities are found using BM25 pas-
sages, entity support passages, entity aspects. Hence, our
entity ranking system outperforms several baselines.

6.2 Importance of Query-Specific Descriptions

To investigate why BERT-ER++ performs so well, we remove the
other entity features from BERT-ER++ and analyze the results ob-
tained by only BERT-ER. The results are shown in Table 4. This
table shows the results of fine-tuning BERT for entity ranking using
the individual query-specific entity descriptions obtained in Section
3 as well as a Learning-To-Rank combination of these (denoted as
BERT-ER in the table). We use Equation 1 to rank entities using
Wikipedia2Vec, E-BERT and ERNIE. We show results for only CAR
BenchmarkY1-Train and DBpedia-Entity v2 (All).

Ablation study. From Table 4, we observe that BERT-ER out-
performs BERT-LeadText on both datasets. On CAR BenchmarkY1-
Train, BERT-ER achieves MAP = 0.34 whereas BERT-LeadText
achieves MAP = 0.16. On DBpedia-Entity v2, BERT-ER achieves
MAP = 0.22 whereas BERT-LeadText achieves MAP = 0.07. We
also observe that BERT-SupportPsg, BERT-Aspects, and BERT-ER
outperform Wikipedia2Vec, E-BERT and ERNIE on both datasets.
This is because Wikipedia2Vec, E-BERT and ERNIE produce query-
independent entity embeddings (embeddings have no knowledge
of the query) using a query-independent textual description of an
entity (often, the Freebase description or lead text). Hence, their
performance on an IR task (here, entity ranking) is not good. BERT-
SupportPsg and BERT-Aspects use query-specific entity embed-
dings obtained using query-specific entity descriptions. As a result,



Table 2: Results on BenchmarkY2-Test (separated by its subsets on Wikipedia and TQA) page-level using the manual ground
truth. Trained using 5-fold cross-validation. 4 denotes significant improvement and v denotes significant deterioration compared
to . ENT-Rank results on BenchmarkY2-Test page-level unavailable.

All Textbook Question Answering Wikipedia
MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100
BERT-LeadText++*  0.25*  0.29* 0.44* 0.25*  0.28* 0.46* 0.24* 0.28* 0.40*
GEEER [20] 0.06" 0.117 0.18" 0.06" 0.107 0.197 0.077 0.127 0.177
GEEER-E-BERT 0.04" 0.08” 0.137 0.03"  0.077 0.127 0.077 0.127 0.187
GEEER-ERNIE 0.04" 0.08” 0.14" 0.03"  0.057 0.107 0.05"  0.09” 0.137
GEEER-BERT 0.027  0.077 0.097 0.017  0.047 0.06" 0.057 0.127 0.147
LTR-ASP [9] 0.24 0.31* 0.46* 0.29  0.34" 0.52* 0.29  0.32* 0.47*
BERT-ER++ 0.33* 0.36" 0.54* 0.33* 0.37* 0.55* 0.34* 0.36" 0.50*

Table 3: Results on DBpedia-Entity v2 (separated by different subsets). Trained using 5-fold cross-validation. 4 denotes significant
improvement and v denotes significant deterioration compared to x. Only best baselines shown.

All SemSearch_ES ListSearch INEX_LD QALD2
MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100
BERT-LeadText++*  0.45*  0.41* 0.68* 0.60*  0.54* 0.77* 043*  0.40* 0.69* 043*  0.40* 0.69* 034* 032" 0.0
BM25F-CA [23] 045 043" 0.68 061 0.5 0.78 044 043 0.68 0427 041* 0.677 037" 036* 0467
ENTRank [14]  048* 044* 0.71* 059 0507 0.78 0.49*  0.47* 0.74* 043 042 0.70* 0.40*  0.37 0.64*
GEEER [20] 0377 0.38" 057" 0.56”  0.537 0.727 034" 0387 0.547 034" 0357 0.557 0277 0297 048"
LTR-ASP [9] 043" 0397 0.68 0.55" 0477 0.747 043 0.41* 0.69 0417 0.387 0.67 036* 032 0.62*
BERT-ER++  0.50* 0.46* 0.72* 0.63* 0.57 0.81* 0.51* 0.47* 0.74* 0.47* 0.44* 0.71* 041 038°  0.65*
Table 4: Ablation study. Results on CAR BenchmarkY1-Train From Figure 3, we observe that BERT-SupportPsg, BERT-Aspects,
(Automatic) and DBpedia-Entity v2 (All) for entity ranking and BERT-BM25Psg perform well on the “difficult” queries (e.g., bins
using different types of embeddings. 4 denotes significant 0-50%) on which BERT-LeadText performs poorly. BERT-SupportPsg
improvement and v significant deterioration compared to *. is always better than BERT-LeadText, even for queries where BERT-
LeadText performs the best (bin 95-100%). BERT-Aspects are better
CAR Y1-Train (Automatic) DBpedia-Entity v2 (All) than BERT-LeadText on 75% of the queries. We also notice that
MAP P@R NDCG@100 MAP P@R NDCG@100 BERT-BM25Psg is complementary to BERT-LeadText: When the
BERT-LeadText* 016 020 0.25* 0.07* 008 0.12* performance of BERT-LeadText is low, BERT-BM25Psg performs
Wikipedia2Vec [59] 0.10"  0.16” 0.23" 0.05"  0.07" 0.107 well, for example, in bin 25-50%, and vice-versa.
E-BERT [44] 0117 0.137 0.197 0.09° 0.15° 0.22" We find that BERT-SupportPsg improves performance (helps)
ERNIE [62] 0.057 0.10 0.14 0.097 012 0.16 on 92 queries, BERT-Aspects helps 95 queries, and BERT-BM25Psg
§E§¥_5BM25P S% 0.067  0.077 0.117 0.08" 0.10* 0.14* helps 18 queries. On inspecting the top-100 entities for some queries
-SupportPsg  0.29*  0.32* 0.44* 0.14*  0.16* 0.24* 5 .
BERT-Aspects 022° 028 0.37* 018% 021 0.30* that are helped, we find that compared to BERT-LeadText, BERT
N N N N N N SupportPsg, BERT-Aspects, and BERT-BM25Psg place relevant en-
BERT-ER 0.34* 0.36 0.48 0.22* 0.23 0.35

BERT-ER (combining BERT-SupportPsg, BERT-Aspects, and BERT-
BM25Psg) is able to differentiate between relevant and non-relevant
entities better and outperforms all other methods.

Lead text versus query-specific descriptions. To investigate
the source of performance improvements due to query-specific
entity descriptions, we analyze the results at the query-level by
dividing the queries into different levels of difficulty according to
the performance (MAP) of BERT-LeadText. We put the 5% most
difficult queries for BERT-LeadText to the left and the 5% easiest
ones to the right. Below, we discuss the results only with respect
to CAR BenchmarkY1-Train but similar results are obtained on the
other benchmarks.

tities higher in the ranking. For example, BERT-LeadText places
the relevant entity “Organic Consumers Association” at rank 57
whereas BERT-SupportPsg places it at rank 13 (see Figure 4). By
promoting relevant entities higher up in the ranking, query-specific
entity descriptions help to improve the precision at the top of the
ranking. Moreover, we are able to improve performance on the
“difficult” queries for BERT-LeadText using query-specific entity
descriptions.

BM25 passage as description. From Table 4, we observe that
on CAR BenchmarkY1-Train, BERT-BM25Psg obtains MAP = 0.06
whereas BERT-SupportPsg obtains MAP = 0.29. Using the difficulty
test above, we find that BERT-SupportPsg obtains MAP = 0.30 on
the lower 0-50% (difficult) queries where BERT-BM25Psg obtains
MAP = 0.15. This shows that using an entity’s support passage as



Query: Genetically Modified Organism
Entity: Organic Consumers Association

The Organic Consumers Association (OCA) is a
non-profit advocacy group for the organic
agriculture industry based in Minnesota. It was
formed in 1998 by members of the organic
industry and consumers of organic products
after the U.S. Department of Agriculture's
controversial initial version of their proposed
regulations for organic food was introduced. [...]

Lead Text

Organic food are foods that are produced using
methods involving no agricultural synthetic inputs,
for instance, genetically modified organisms
(GMO) [...] The Organic Consumers Association
has said that risks have not been adequately
identified and managed and that there are
unanswered questions regarding the potential
long-term impact on human health from food
derived from GMOs. [...]

Support Passage

Figure 4: Example query and entity with description. Left: Lead text. The passage contains only generic knowledge (highlighted
in green) about the entity and does not elaborate upon the connection between the query and entity. Right: Support passage.
The passage contains information about both, the query (highlighted in yellow) and the entity (green), and elaborates that the
entity “Organic Consumers Association” is relevant to GMOs because it regulates GMO food. This query-relevant knowledge
helps BERT-SupportPsg learn that the entity is relevant for the query and promotes it up the ranking, from rank-57 placed by

BERT-LeadText to rank-13.

its description is better than using a query-relevant BM25-passage
that mentions the entity. As discussed in Section 3.4, this is because
sometimes, the entity may not be salient to the discussion in the
BM25-passage, and the connection between the query and entity
may be made as a passing reference, i.e., although the passage is
relevant to the query, it is non-relevant for the entity (see Figure 2
for example). A support passage addresses this issue because the
support passage retrieval method only considers passages which
are relevant to the query and mention the entity in a salient manner.

Take-away. Regarding RQ1, it is not always sufficient to use the
lead text of an entity as the entity’s description; query-specific entity
descriptions are better. Regarding RQ2, although BERT-LeadText++
often performs well, our system BERT-ER++ using query-specific
entity descriptions improves entity ranking performance by 13-42%
over BERT-LeadText++. On its own (without other entity features
from related work), BERT-ER outperforms not only BERT-LeadText
but also entity rankings obtained using Wikipedia2Vec, ERNIE, and
E-BERT. This performance boost is due to our system’s ability to
promote relevant entities to the top of the ranking while demot-
ing non-relevant entities to the bottom. This is possible because
query-specific descriptions help our model to learn query-relevant
information and minimize the non-relevant information.

6.3 Analysis of Query-Specific BERT-ER

From Tables 1 to 4, BERT-ER and BERT-ER++ obtain statistically
significant improvements over the entity re-ranking systems using
entity embeddings from Wikipedia2Vec, ERNIE, and E-BERT. To
analyze the source of this performance improvement, we compare
the performance of our query-specific BERT-ER to Wikipedia2Vec
(as our work heavily relies on Wikipedia and uses Wikipedia as a
Knowledge Base). We use the Wikipedia2Vec entity embeddings
with the graph component made available by Gerritse et al. [20].1°

Overall results. From Table 4, we observe that BERT-ER out-
performs Wikipedia2Vec on both CAR BenchmarkY1-Train and
DBpedia-Entity v2. When performing the difficulty test described

10 Available from: https://github.com/informagi/GEEER

in Section 6.2, we find that BERT-ER obtains MAP = 0.30 for
queries in the lower 0-50% range where Wikipedia2Vec obtains
MAP = 0.05. Moreover, considering the query-specific descriptions
individually, we observe that BERT-SupportPsg and BERT-Aspects
consistently outperform Wikipedia2Vec on both datasets. This sug-
gests that compared to Wikipedia2Vec, the entity embeddings ob-
tained from BERT using query-specific entity descriptions capture
the similarity/relevance of the entity for the query in a better way.

To verify this, we inspect the entity rankings for the query GMO
obtained using Wikipedia2Vec and BERT-SupportPsg in Table 4. We
find that BERT-SupportPsg places the relevant entity “Robert Swan-
son” at the top of the ranking (rank 3) compared to Wikipedia2Vec
that places the entity at the bottom (rank 8). Moreover, BERT-
SupportPsg demotes the non-relevant entity “Developmental Biol-
ogy” that is placed higher by Wikipedia2Vec (rank 3) to the bottom
of the ranking (rank 10). Our intuition is that this is because entity
embeddings obtained using BERT-SupportPsg are query-specific
and encode the query-relevant knowledge about the entity that is
helpful for determining the entity’s relevance for the query. The
success of our approach demonstrates that the lead text often does
not relate to the query, and compensating with query-specific de-
scriptions leads to better performance.

Context-dependent entity relatedness. As discussed in Section
1, queries and documents are often matched in the entity-space
through the cosine similarity of the embeddings of entities men-
tioned in the query and document. Hence, it is important that the
entity embeddings are able to capture context-dependent similarity
between entities. For example, the entities “Food and Drug Ad-
ministration” and “Robert Swanson” are related in the context of
GMOs since Robert Swanson was the founder of the company that
produced the first genetically engineered insulin approved for use
by the Food and Drug Administration. We find that compared to
Wikipedia2Vec, our query-specific BERT entity embeddings capture
this context-dependent similarity between two entities in a better
way. For example, compared to Wikipedia2Vec, BERT-SupportPsg
assigns a higher similarity to the entities above.
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Figure 5: Visualizing clusters of relevant entities using t-SNE. We observe that relevant entities are better clustered using

BERT-SupportPsg (left) than using Wikipedia2Vec (right).

Table 5: Results on BenchmarkY1-Train for clustering rel-
evant entities. Evaluation measures: David-Bouldin score
(lower better), Silhouette score (higher better), and Calinski-
Harabasz score (higher better).

David-Bouldin  Silhouette Calinski-Harabasz

BERT-SupportPsg 3.87 -0.03 22.75
Wikipedia2Vec 5.29 -0.12 20.30

Clustering entities using embeddings. As an additional eval-
uation, we assess whether the embeddings satisfy the cluster hy-
pothesis [30]: documents (entities) relevant to a query cluster to-
gether. We consider the embeddings of relevant entities as points
in a vector space to be clustered and evaluate the quality of the
resulting clusters. We use the following three metrics for evalu-
ation: David-Bouldin score [12] (lower scores better), Silhouette
score [50] (higher scores better), and Calinski-Harabasz score [7]
(higher scores better). From Table 5, we observe that clusters formed
using embeddings from BERT-SupportPsg are better than clusters
formed using Wikipedia2Vec. We also present a t-SNE [54] visual-
ization of the resulting clusters for some example queries in CAR
BenchmarkY1-Train. As we observe from Figure 5, the relevant
entities for a query (e.g., “Yogurt”, and “Oxygen”) are close together,
and the clusters are better separated using BERT-SupportPsg than
using Wikipedia2Vec.

Take-away. Regarding RQ3, our query-specific BERT-ER out-
performs Wikipedia2Vec on all datasets. BERT-ER finds relevant
entities for the (difficult) queries for which Wikipedia2Vec fails be-
cause compared to Wikipedia2vec, BERT-ER captures the context-
dependent similarity between query-entity pairs in a better way.
BERT-ER can promote relevant entities to the top of the ranking
while demoting the non-relevant entities to the bottom.

7 CONCLUSION

We present BERT-ER, query-specific BERT Entity Representations
learnt by fine-tuning BERT for the entity ranking task. In contrast to
the prevalent approach of using the static lead text from an entity’s
Wikipedia page as the entity’s description, we study the utility of
three types of query-specific entity descriptions: pseudo-relevant
candidate passage, entity support passage and entity aspect.

Using BERT-ER for entity ranking, we obtain a performance
improvement of 13-42% (MAP) over a system using the lead text
as the entity’s description, across a diverse range of queries from
two large-scale entity ranking test collections. We also outperform
entity ranking systems using Wikipedia2Vec, E-BERT, and ERNIE.
We show that query-specific descriptions help an entity ranking
system by promoting relevant entities to the top of the ranking,
thereby increasing the precision at the top of the ranking. We also
demonstrate that compared to Wikipedia2Vec, BERT-ER represen-
tations can identify when entities are related in the context of
the query in a better way. We also show, both qualitatively and
quantitatively, that compared to Wikipedia2Vec, our query-specific
BERT-ER produce better clusters of relevant entities.

In the long-term, we believe that our easy-to-implement ap-
proach to query-specific entity representations will lead to signifi-
cant improvements in diverse IR and text analysis tasks, including
question answering, and summarization. By demonstrating the im-
portance of query-specific entity descriptions, we hope to promote
more research in this area.
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