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ABSTRACT

Entity-oriented search systems often learn vector representations

of entities via the introductory paragraph from the Wikipedia page

of the entity. As such representations are the same for every query,

our hypothesis is that the representations are not ideal for IR tasks.

In this work, we present BERT Entity Representations (BERT-ER)

which are query-specific vector representations of entities obtained

from text that describes how an entity is relevant for a query. Using

BERT-ER in a downstream entity ranking system, we achieve a

performance improvement of 13–42% (Mean Average Precision)

over a system that uses the BERT embedding of the introductory

paragraph from Wikipedia on two large-scale test collections. Our

approach also outperforms entity ranking systems using entity em-

beddings from Wikipedia2Vec, ERNIE, and E-BERT. We show that

our entity ranking system using BERT-ER can increase precision

at the top of the ranking by promoting relevant entities to the top.

With this work, we release our BERT models and query-specific

entity embeddings fine-tuned for the entity ranking task.1
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1 INTRODUCTION

An important aspect of entity-oriented research pertains to the

representation of entities. Commonly, the vector representation

(embedding) of the introductory paragraph (lead text) from an

1Data and code available at: https://github.com/shubham526/SIGIR2022-BERT-ER
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The United States Food and Drug Administration

(FDA or USFDA) is a federal agency of the Depart-

ment of Health and Human Services. The FDA is re-

sponsible for protecting and promoting public health

through the control and supervision of food safety,

tobacco products, dietary supplements [...] The FDA’s

primary focus is enforcement of the Federal Food,

Drug, and Cosmetic Act [...]

Figure 1: Lead text from the Wikipedia page of the entity

“Food and Drug Administration”. This text is a generic de-

scription of the entity and does not highlight the connection

between the entity and the query “Genetically Modified Or-

ganism”. Hence, the corresponding entity embedding is static.

Our intuition is that such static embeddings may not be ideal

for IR tasks.

entity’sWikipedia page is used as the entity’s representation [35, 36,

58]. An issue with using the lead text is that it is a static description

of the entity: Often, the lead text contains only generic information

about the entity that is the same for every query and may not even

be relevant for the query. For example, the entity “Food and Drug

Administration” (FDA) is relevant to the topical keyword query

“Genetically Modified Organism” as an organization that approved

and released a kind of genetically engineered insulin; however, the

lead text from the Wikipedia page of the FDA does not contain

this information (Figure 1). In fact, the lead text has been found

to be useful as an entity’s description in less than 50% cases for

the ClueWeb12 collection [16]. As the lead text is a static textual

description of the entity, the corresponding entity embedding is

static in nature, i.e., the embedding is the same for every query.

Similarly, while entity embeddings obtained using graph em-

bedding methods [5, 33, 51, 56] encode the general semantics and

knowledge of entities available in a Knowledge Graph, the em-

beddings are static. Recently, models such as ERNIE [62] and E-

BERT [44] have been proposed in an effort to inject information

from Knowledge Graphs into BERT [13]. However, these models too

use a static textual description of the entity, either from Freebase

or Wikipedia, resulting in static embeddings.

Static entity embeddings obtained using Wikipedia or Knowl-

edge Graphs are easy to pre-compute and store. They have also

been shown to be useful for downstream (query-independent)

knowledge-driven NLP tasks such as entity linking [19, 44, 60],

entity typing [43, 62] and relation classification [44, 62]. However,

our intuition is that such embeddings may not be ideal for IR tasks.

Often, a query and document are matched in the entity-space [35,

36, 40, 58] through the similarity between the embedding of the



entities mentioned in the query and the document. Static entity

embeddings without any knowledge of the query may not be able

to identify when two entities are similar/related in the context of

the query. For example, the Wikipedia page of the entity “Food and

Drug Administration” does not mention the entity “Robert Swan-

son”, yet these two entities are similar/related in the context of the

query “Genetically Modified Organism” because Robert Swanson

was the founder of the company that produced the first geneti-

cally engineered insulin approved for use by the Food and Drug

Administration. Our hypothesis is that an entity embedding that

incorporates query-specific knowledge about the entity would be

more beneficial in a downstream IR task. In this work, we use a

query-specific textual description of an entity to encode the query-

relevant information about entities using BERT.

Task. Given a query and an entity, produce a query-specific

dense vector representation (embedding) of the entity.

We evaluate the impact of our query-specific BERT Entity Repre-

sentations (BERT-ER) on a downstream entity ranking task: Given a

keyword query, return a ranked list of entities ordered by relevance.

The prevalent approach for representing entities through the

BERT embedding of the lead text is appealing because it is simple

to implement and use; unfortunately, it leads to poor results, as

we demonstrate in our experimental evaluation. We provide an

equally easy-to-implement approach for obtaining query-specific

entity embeddings using BERT that performs much better than the

prevalent approach. This improvement is achieved by incorporating

query-relevant information about the entity in its representation.

To this end, we explore the utility of three types of query-specific

textual descriptions (Figure 2) of entities for learning query-

specific entity embeddings using BERT:

‚ Aspect (top-level section fromWikipedia).We identify the

relevant top-level sections from an entity’s Wikipedia page, and

use the text of the highest ranked section as the entity’s query-

specific description. Prior work [40, 46] refers to the top-level

sections as an entity’s aspects. In this work, we too refer to the

top-level sections from Wikipedia as an entity’s aspects. We

discuss this in more detail in Section 3.2.

‚ PRF-passage. This is the simplest and most straightforward

query-specific textual description of an entity. The approach is

based on Pseudo-Relevance Feedback [31] and entity linking. We

use the text of the highest ranked pseudo-relevant candidate

passage that mentions an entity as the entity’s query-specific

textual description. We discuss this in more detail in Section 3.3.

‚ Entity-support passage.An entity’s support passage [4, 8, 25] is

a PRF-passage that mentions the entity and explains to a human,

why an entity is relevant to a query. We use the text of the highest

ranked support passage as an entity’s query-specific description.

We discuss this in more detail in Section 3.4.

Contributions. The novel contribution of this work is new

knowledge about query-specific entity embeddings that will not

only benefit the IR community but also other related research areas.

In the experimental evaluation, we demonstrate the benefits of us-

ing our query-specific BERT entity embeddings using several large

entity ranking benchmarks consisting of a diverse set of queries

(question answering, keyword queries, list search queries, etc.).

‚ We obtain query-specific BERT Entity Representations (BERT-

ER) by incorporating the query-relevant knowledge about an

entity into its representation. This query-relevant knowledge is

obtained using pseudo-relevant candidate passages, support pas-

sages, and relevant aspects (top-level sections from Wikipedia).

‚ Using BERT-ER in our entity ranking system, we outperform the

entity ranking system that uses the BERT embedding of the lead

text of entities by 13–42% on two large-scale entity ranking test

collections. We also outperform systems using entity embeddings

from Wikipedia2Vec [59], ERNIE [62], E-BERT [44].

‚ We provide a detailed empirical evaluation demonstrating that

compared to the prevalent entity embedding methods, our query-

specific BERT entity embeddings yield better performance for IR

tasks such as entity ranking.

2 RELATED WORK

2.1 Knowledge-Enhanced BERT

Recently, much effort has been spent on injecting knowledge into

BERT [13]. Zhang et al. [62] propose ERNIE, a neural language

model that uses additional knowledge encoder layers to integrate

the knowledge from entities into the textual information from

the underlaying layers. Peters et al. [43] propose KnowBert, a

knowledge-enhanced BERT model that explicitly models entity

spans in the input text and uses an entity linker trained jointly

with the model to retrieve relevant entity embeddings. Wang et al.

[55] propose KEPLER, a model based on RoBERTa [34] that maps

texts and entities onto the same semantic space using the same

language model and jointly optimizes the Knowledge Embedding

and the Masked Language Modeling objectives. While ERNIE and

KnowBert are based on adapting BERT to entity embeddings and

involve additional pre-training, E-BERT proposed by Poerner et al.

[44] adapts entity embeddings to BERT without any pre-training.

E-BERT alignsWikipedia2Vec [59] entity vectors with BERT’s word-

piece vectors. E-BERT has been shown to outperform BERT, ERNIE,

and KnowBert on question-answering, relation classification, and

entity linking.

2.2 Entity Embeddings

Bordes et al. [5] propose TransE which learns embeddings for both

entities and relations based on the idea that the relationship A be-

tween two entities ℎ and C corresponds to a translation between the

embedding of these entities. However, TransE has problems deal-

ing with reflexive, one-to-many, many-to-one, or many-to-many

relations between entities. Wang et al. [56] propose TransH to over-

come this issue by representing each relation A with two vectors:

the norm vector wA , and the translation vector dA . Both TransE

and TransH assume that entities and relations are embedded in the

same space. Lin et al. [33] propose TransR to address this issue by

modelling entities and relations in distinct entity space and mul-

tiple relation spaces. TransR projects h and t to the aspects that a

relation A focuses on using relation-specific mapping matrix MA .

However, this means that for relation A , all entities share the same

MA irrespective of their types or attributes. Ji et al. [24] propose

TransD to address this issue by using a unique mapping matrix for

every entity-relation pair.





features, for example, whether the candidate entity is contained in

the query, whether entities in queries and documents are connected

in a Knowledge Graph, etc. Graus et al. [21] learn an optimal entity

representation for entity retrieval by representing an entity as a

fielded document. ENT-Rank [14] is a LTR model that combines

information about an entity, the entity’s neighbors, and context

using a hypergraph. Recently, Chatterjee et al. [9] have shown that

entity aspects are useful for entity retrieval. Their approach (re-

ferred to as LTR-ASP in this work) is based on LTR with a rich set

of features derived from entity aspects. ENT-Rank and LTR-ASP

represent the current state-of-the-art on our datasets. Hence, we

include them as baselines.

Ranking via entity types. Type-aware entity retrieval models

estimate the type-based similarity between an entity and the set

of target types provided with the query. For example, Kaptein and

Kamps [26] represent the types by concatenating the descriptions

of entities that belong to that type, and then estimate the similarity

by scoring the query against this representation. Balog et al. [1]

represent the query and entity types using probability distributions,

and then measure the similarity between the two distributions.

Ranking via entity relationships. Tonon et al. [53] address

the ad-hoc entity retrieval task by identifying (relevant) entities

from a Knowledge Graph that are related to entities present in a

candidate set. Ciglan et al. [10] address the list search task of the

Semantic Search Challenge [3] by identifying sets of semantically

related entities from the underlying Knowledge Graph and scoring

entities based on the relevance score of the sets it belongs to. Bron

et al. [6] address the related entity finding task of the TREC Entity

track [2] by modelling the relevance of an entity using a generative

probabilistic model.

3 ENTITY REPRESENTATIONS

Given a query and an entity, we want to produce a query-specific

dense vector representation (embedding) of the entity. In this work,

we use query-specific entity descriptions, i.e., text that clarifies why

an entity is relevant to a query, to create entity representations.

Our assumption is that such a query-specific description provides

a suitable and easy-to-implement method of providing the model

with query-relevant information about an entity to learn the entity’s

embedding. We obtain query-specific BERT Entity Representations

(BERT-ER) by fine-tuning BERT for the entity ranking task. We

explore a range of different approaches (Sections 3.2 through 3.4)

for obtaining query-specific entity descriptions and compare them

empirically in Section 6.

3.1 Fine-tuning BERT

BERT-based neural re-ranking models such as MonoBERT and

DuoBERT [42] have shown to be useful for the passage ranking

task. Hence, we fine-tune a BERT model for entity ranking in two

ways:

‚ Point-wise (MonoBERT-style) using the cross-entropy loss.

‚ Pair-wise (DuoBERT-style) using margin ranking loss.

The input to BERT is generated as follows:

Input “ r�!(s C
@
1 , C

@
2 , ..., C

@
= r(�%s C31 , C

3
2 , ..., C

3
< r(�%s

where C
@
8 is a query token, C39 is a description token, and [CLS] and

[SEP] are special tokens used by BERT. We use the !-dimensional

embedding of the [CLS] token obtained from the last hidden layer

of BERT as the query-specific embedding eQ of an entity 4 .

Below, we discuss the different query-specific entity descriptions

used to derive query-specific entity embeddings in this work.

3.2 Aspects: Top-Level Wikipedia Sections

We identify the top-level section from the Wikipedia page of an

entity that is most relevant for the query, and use the text of the

section to embed the entity. Following previous work [18, 40, 46,

48], we refer to the top-level sections from Wikipedia as aspects,

and use a catalog of aspects provided by Ramsdell et al. [46].2

This aspect catalog contains the top-level sections from the entire

EnglishWikipedia together with section heading, text of the section,

and the entities mentioned in the section.

To identify the most relevant top-level section (aspect) from

an entity’s Wikipedia page, we create a search index of aspects

containing the full-text of all aspects from the catalog. We retrieve

a candidate set of aspects (sections) A from this aspect index with

the query using BM25.

An issue with directly using aspects fromA is that many entities

corresponding to the aspects in A may not even be relevant to the

query. To remedy this, we leverage prior work on entity aspect

linking. Entity Aspect Linking [40, 46] refines an entity link to an

entity aspect link by clarifying the meaning of an entity from the

context in which the entity has been mentioned, for example, the

entity “Food and Drug Administration” in the context of its history

or regulations.

We follow a useful assumption often encountered in entity-

oriented research [11, 14, 47] to further improve the quality of

the candidate set of aspects A: The entities mentioned in passages

from a candidate set of passages for the query are relevant for the

query. We transfer this idea to entity aspects. First, we retrieve a

candidate set of passages D for the query using BM25, then we

retain only aspects 0 P A that are linked to atleast one passage

? P D to obtain a filtered set of candidate aspects A1. We use the

text of the top-ranked aspect 04 P A
1 of an entity 4 as the entity’s

description.

The downside of the the above approach is that often, Wikipedia

articles are outdated or have some (negative) information removed.

As a result, they do not contain all the query-relevant information.

3.3 Pseudo-Relevant Candidate Passages

To alleviate the above problem, we explore an alternative source

of query-specific entity descriptions. We use ideas from Pseudo-

Relevance Feedback [31] to obtain an entity’s query-specific de-

scription: We use the candidate set of passages D for the query

(obtained in Section 3.2) directly and use the text of the highest

ranked passage ?4 P D that mentions the entity 4 (identified, for

example, via entity links) as the entity’s query-specific description.

This approach is easy to implement and based on a widely used

Pseudo-Relevance Feedback technique. The downside is that al-

though the candidate passage is relevant to the query, the entity

may not be salient, i.e., central to the discussion in the passage, and

2https://www.cs.unh.edu/~dietz/eal-dataset-2020/



the connection between the query and entity may be made as a

passing reference. In other words, the passage may be relevant to

the query but not to the entity.

3.4 Entity Support Passage

To overcome the limitation from using PRF-passages as entity de-

scriptions, we explore prior work on entity support passage re-

trieval [4, 8, 25] that identifies a passage that is relevant to both

the query and the entity and elaborates on the connection between

the query and entity. We extend the ideas from previous work on

entity support passage retrieval to retrieve support passages for

each entity (referred to as “target entity”) in a candidate entity

ranking. We use the entity ranking obtained using the combination

of Pseudo-Relevance Feedback and Entity Context Model described

in Section 4.3.

We want to focus on the relevant connections between the query

and target entity while learning the query-specific representation

of the target entity. The idea is that an entity (e.g., “Genetically Mod-

ified Crops”) that is relevant to the query (e.g., Genetically Modified

Organism) and mentioned frequently whenever the target entity

(e.g., “Food and Drug Adminstration”) is mentioned in some text, is

a relevant connection between the query and target entity. Hence,

we consider the other query-relevant entities that are mentioned

frequently in the vicinity of the target entity as surrogates for such

“relevant connections” between the query and target entity, and

score a candidate support passage based on the number of such

relevant connections (entities) the passage contains.

To implement this idea, we derive a filtered set of candidate

passages D4 for a target entity 4 by retaining passages ? P D

(obtained in Section 3.2) that mention the entity 4 . Then, we identify

the : most frequently mentioned entities 4G P D4 . We re-rank

passages ? P D4 for the entity 4 by the number of frequent entities

4G in the passage:

Score4p?q “
ÿ

4GP?

Freqp4G P D4q

where Freqp4G P D4q is the number of times 4G appears in D4 . We

obtain the final score of a passage ? P D4 by interpolating the

passage’s score for the entity with the passage’s score for the query

(obtained from D):

Scorep? | 4,&q “ _ ¨ Score4p?q ` p1 ´ _q ¨ Score& p?q _ P r0, 1s

where _ is learnt using a machine learning method.

Additionally, we re-rank passages ? P D4 based on the salience3

of the target entity 4 in the passage. Finally, we use the various

support passage rankings obtained above as features to train a

supervised Learning-To-Rank model, and produce one combined

support passage ranking for each query and target entity. We use

the text of the highest ranked support passage for each target entity

as the target entity’s query-specific description.

4 ENTITY RANKING

Given a keyword query & , the entity ranking task is to return

a ranked list of entities E from a Knowledge Graph ordered by

relevance of each entity 4 P E for the query & . As discussed in

3We use the salience detection system from Ponza et al. [45].

Section 3.1, we use point-wise/pair-wise ranking methods to fine-

tune BERT for the entity ranking task using our query-specific

entity descriptions and obtain the vector representation eQ of an

entity 4 P E.

4.1 BERT-based Entity Ranking

To rank entities 4 P E using BERT, we learn the scoring function

Scorep4|&q using the !-dimensional embedding eQ of entity 4 as

follows:

Scorep4|&q “ , ¨ eQ
) ` b

where, is an ! ˆ ! weight matrix, and b is an !-dimensional

bias vector. We can implement this by passing the embedding eQ
through a fully-connected layer trained jointly with the model.

4.2 Combinations using Learning-To-Rank

As discussed in Section 2, the current state-of-the-art entity rank-

ing models use list-wise Learning-To-Rank. Hence, using list-wise

Learning-To-Rank, we combine the entity rankings obtained from

BERT using the query-specific entity representations with other en-

tity relevance features used in previous work [9, 11, 14] (discussed

below) to obtain the final entity ranking for a query.

4.3 Other Entity Features

We include several entity features found to be useful by previous

work in entity ranking. For example, considering each Wikipedia

page to be an entity [27], we obtain an entity ranking by retrieving

Wikipedia pages from a search index containing the full-text of

Wikipedia pages. We also retrieve entities directly from an index

containing the name and lead text of entities in a Knowledge Base.

Additionally, we also use an idea based on Pseudo-Relevance

Feedback [31] and the Entity Context Model [11] that has been

found to be a strong entity relevance indicator by prior work [9,

11, 14, 47] to obtain an entity ranking from a search index of para-

graphs as follows: We represent a pseudo-relevant feedback set of

paragraphs retrieved using the query as a bag-of-entities. To rank

the entities in the bag, we weigh the frequency distribution of the

entities by the retrieval score of the paragraphs.

5 EXPERIMENTAL METHODOLOGY

5.1 Datasets

We use two large-scale entity ranking test collections: TREC Com-

plex Answer Retrieval and DBpedia-Entity v2.

TREC Complex Answer Retrieval (CAR). Given a topical key-

word query such as “Genetically Modified Orgnism”, the entity

retrieval task of the TREC Complex Answer Retrieval (CAR) [15]4

track is to return a ranked list of entities based on whether the en-

tity must, should, or could be mentioned in an article on this topic.

In this work, we focus on the page-level queries, i.e., the title of the

Wikipedia page as the query. The CAR dataset contains both man-

ual and automatic entity ground truth, as well as an entity linked

corpus consisting of paragraphs from the entire English Wikipedia.

The automatic ground truth is constructed synthetically: all entities

on theWikipedia page corresponding to the query are relevant. The

4http://trec-car.cs.unh.edu



manual ground truth was constructed after a manual assessment

conducted by NIST using pool-based evaluation.

We use two subsets from the TREC CAR v2.1 data release.

‚ BenchmarkY1-Train. This subset is based on aWikipedia dump

from 2016. The ground truth is automatic with 117 page-level

queries, and 3,031 positive entity assessments.

‚ BenchmarkY2-Test. This subset is based partly on a Wikipedia

dump from 2018 and partly on the Textbook Question Answer-

ing [28] dataset (questions from middle school science curricu-

lum). The ground truth is manual, with 27 page-level queries,

and 3173 positive entity assessments.

The CAR dataset also contains a large collection of Wikipedia

pages from 2016 in an easily parsable format (unprocessedAllBut-

Benchmark). Query pages are excluded. We use this collection as

our Knowledge Base to create the page/entity index representations

used in Section 4.3.

DBpedia-Entity v2. The DBpedia-Entity v2 [23]5 is a collection

of queries collected from several established entity retrieval bench-

marking campaigns. It uses the DBpedia knowledge base (October

2015). The dataset contains the following categories of queries:

‚ SemSearch ES consisting of named entity queries (e.g., brooklyn

bridge).

‚ INEX-LD consisting of IR-style keyword queries (e.g., electronic

music genres).

‚ List Search consisting of queries which seek a list of entities

(e.g., Professional sports teams in Philadelphia).

‚ QALD-2 consisting of natural language queries (e.g.,Who owns

Aldi?).

Since we use the paragraphs, entity links, sections, etc. from

Wikipedia, we use the version6 of DBpedia-Entity v2 projected

onto the Wikipedia dump from TREC CAR v2.1. Since our methods

are not included in the assessment pool, we remove the unjudged

entities retrieved by our methods to enable a fair comparison.

5.2 Evaluation Metrics

We use Mean Average Precision (MAP), Precision at R (P@R),

and Normalized Discounted Cumulative Gain at 100 (NDCG@100)

as our evaluation metrics. We conduct significance testing using

paired-t-tests.

5.3 Details of Learning-To-Rank

We perform list-wise Learning-To-Rank (LTR) using Coordinate

Ascent optimized for MAP. We use the toolkit Ranklips7 for this

purpose. We use 5-fold cross-validation for fine-tuning the BERT

model as well as training the LTR model on both TREC CAR and

DBpedia-Entity v2. The different subsets of queries available in the

DBpedia-Entity v2 collection and CAR BenchmarkY2-Test were

merged for training. Further details for using Ranklips can be found

in the online appendix for this paper.

5https://github.com/iai-group/DBpedia-Entity
6https://github.com/TREMA-UNH/DBpediaV2-entity-CAR
7https://www.cs.unh.edu/~dietz/rank-lips/

5.4 Feature Generating Retrieval Models

We produce entity rankings using the following retrieval models:

(1) BM25, and (2) Query Likelihood with Dirichlet Smoothing (` “
1500), both with and without RM3-style query expansion. We use

the default implementation of BM25 in Lucene. We also use the

implementation of Query Likelihood in Lucene.

5.5 Details of BERT Fine-Tuning

Our model is implemented in PyTorch using HuggingFace. We

use the bert-base-uncased version of BERT. For fine-tuning our

model, we use the PyTorch implementation of the Cross-Entropy

Loss8 and Margin Ranking Loss.9 The model is fine-tuned using the

Adam [29] optimizer with a learning rate of 24 ´ 5 and batch size

of 8. We also use a linear learning rate schedule with 1000 warm-up

steps.

5.6 Baselines

We include the following entity ranking systems as baselines:

(1) BERT-LeadText++.We fine-tune BERT for entity ranking us-

ing the lead text from an entity’s Wikipedia page. The resulting

entity rankings are used as features within a Learning-To-Rank

system with other entity features (Section 4).

(2) GEEER [20]. The entity retrieval system from Gerritse et al.

[20] (described in Section 2) using Wikipedia2Vec [59] to re-

rank entities.

(3) GEEER-ERNIE. Same as GEEER but using ERNIE [62] instead

of Wikipedia2Vec.

(4) GEEER-E-BERT. Same as GEEER but using E-BERT [44] in-

stead of Wikipedia2Vec.

(5) GEEER-BERT. Same as GEEER but using BERT [44] instead

of Wikipedia2Vec. We use the name of the Wikipedia page of

the entity to embed the entity using BERT.

(6) ENT-Rank [14] A Learning-To-Rank model that uses entity,

neighbors, and text features.

(7) LTR-ASP [9]. A Learning-To-Rank model that uses features

based on entity aspects and entity support passages.

(8) BM2F-CA. Best-performing system on the DBpedia-Entity v2

dataset provided by the creators.

5.7 Research Questions

We address the following research questions in this work:

RQ1 Is it sufficient to use the lead text of an entity’s Wikipedia

page as the entity’s description? Are query-specific entity

descriptions better?

RQ2 To what extent do query-specific entity descriptions help

improve entity ranking performance? What is the reason for

this performance improvement?

RQ3 How do embeddings obtained using BERT-ER compare to

those obtained using Wikipedia2vec for entity ranking?

Which of these is better?

8https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
9https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html





Table 2: Results on BenchmarkY2-Test (separated by its subsets on Wikipedia and TQA) page-level using the manual ground

truth. Trained using 5-fold cross-validation. Ĳ denotes significant improvement and İ denotes significant deterioration compared

to ‹. ENT-Rank results on BenchmarkY2-Test page-level unavailable.

All Textbook Question Answering Wikipedia

MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100

BERT-LeadText++‹ 0.25‹ 0.29‹ 0.44‹ 0.25‹ 0.28‹ 0.46‹ 0.24‹ 0.28‹ 0.40‹

GEEER [20] 0.06İ 0.11İ 0.18İ 0.06İ 0.10İ 0.19İ 0.07İ 0.12İ 0.17İ

GEEER-E-BERT 0.04İ 0.08İ 0.13İ 0.03İ 0.07İ 0.12İ 0.07İ 0.12İ 0.18İ

GEEER-ERNIE 0.04İ 0.08İ 0.14İ 0.03İ 0.05İ 0.10İ 0.05İ 0.09İ 0.13İ

GEEER-BERT 0.02İ 0.07İ 0.09İ 0.01İ 0.04İ 0.06İ 0.05İ 0.12İ 0.14İ

LTR-ASP [9] 0.24 0.31Ĳ 0.46Ĳ 0.29 0.34Ĳ 0.52Ĳ 0.29 0.32Ĳ 0.47Ĳ

BERT-ER++ 0.33Ĳ 0.36Ĳ 0.54Ĳ 0.33Ĳ 0.37Ĳ 0.55Ĳ 0.34Ĳ 0.36Ĳ 0.50Ĳ

Table 3: Results onDBpedia-Entity v2 (separated by different subsets). Trained using 5-fold cross-validation. Ĳ denotes significant

improvement and İ denotes significant deterioration compared to ‹. Only best baselines shown.

All SemSearch_ES ListSearch INEX_LD QALD2

MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100 MAP P@R NDCG@100

BERT-LeadText++‹ 0.45‹ 0.41‹ 0.68‹ 0.60‹ 0.54‹ 0.77‹ 0.43‹ 0.40‹ 0.69‹ 0.43‹ 0.40‹ 0.69‹ 0.34‹ 0.32‹ 0.60‹

BM25F-CA [23] 0.45 0.43Ĳ 0.68 0.61 0.55 0.78 0.44 0.43Ĳ 0.68 0.42İ 0.41Ĳ 0.67İ 0.37Ĳ 0.36Ĳ 0.46İ

ENT-Rank [14] 0.48Ĳ 0.44Ĳ 0.71Ĳ 0.59 0.50İ 0.78 0.49Ĳ 0.47Ĳ 0.74Ĳ 0.43 0.42Ĳ 0.70Ĳ 0.40Ĳ 0.37 0.64Ĳ

GEEER [20] 0.37İ 0.38İ 0.57İ 0.56İ 0.53İ 0.72İ 0.34İ 0.38İ 0.54İ 0.34İ 0.35İ 0.55İ 0.27İ 0.29İ 0.48İ

LTR-ASP [9] 0.43İ 0.39İ 0.68 0.55İ 0.47İ 0.74İ 0.43 0.41Ĳ 0.69 0.41İ 0.38İ 0.67İ 0.36Ĳ 0.32 0.62Ĳ

BERT-ER++ 0.50Ĳ 0.46Ĳ 0.72Ĳ 0.63Ĳ 0.57Ĳ 0.81Ĳ 0.51Ĳ 0.47Ĳ 0.74Ĳ 0.47Ĳ 0.44Ĳ 0.71Ĳ 0.41Ĳ 0.38Ĳ 0.65Ĳ

Table 4: Ablation study. Results on CAR BenchmarkY1-Train

(Automatic) and DBpedia-Entity v2 (All) for entity ranking

using different types of embeddings. Ĳ denotes significant

improvement and İ significant deterioration compared to ‹.

CAR Y1-Train (Automatic) DBpedia-Entity v2 (All)

MAP P@R NDCG@100 MAP P@R NDCG@100

BERT-LeadText‹ 0.16‹ 0.20‹ 0.25‹ 0.07‹ 0.08‹ 0.12‹

Wikipedia2Vec [59] 0.10İ 0.16İ 0.23İ 0.05İ 0.07İ 0.10İ

E-BERT [44] 0.11İ 0.13İ 0.19İ 0.09Ĳ 0.15Ĳ 0.22Ĳ

ERNIE [62] 0.05İ 0.10İ 0.14İ 0.09Ĳ 0.12Ĳ 0.16Ĳ

BERT-BM25Psg 0.06İ 0.07İ 0.11İ 0.08Ĳ 0.10Ĳ 0.14Ĳ

BERT-SupportPsg 0.29Ĳ 0.32Ĳ 0.44Ĳ 0.14Ĳ 0.16Ĳ 0.24Ĳ

BERT-Aspects 0.22Ĳ 0.28Ĳ 0.37Ĳ 0.18Ĳ 0.21Ĳ 0.30Ĳ

BERT-ER 0.34Ĳ 0.36Ĳ 0.48Ĳ 0.22Ĳ 0.23Ĳ 0.35Ĳ

BERT-ER (combining BERT-SupportPsg, BERT-Aspects, and BERT-

BM25Psg) is able to differentiate between relevant and non-relevant

entities better and outperforms all other methods.

Lead text versus query-specific descriptions. To investigate

the source of performance improvements due to query-specific

entity descriptions, we analyze the results at the query-level by

dividing the queries into different levels of difficulty according to

the performance (MAP) of BERT-LeadText. We put the 5% most

difficult queries for BERT-LeadText to the left and the 5% easiest

ones to the right. Below, we discuss the results only with respect

to CAR BenchmarkY1-Train but similar results are obtained on the

other benchmarks.

From Figure 3, we observe that BERT-SupportPsg, BERT-Aspects,

and BERT-BM25Psg performwell on the “difficult” queries (e.g., bins

0-50%) onwhich BERT-LeadText performs poorly. BERT-SupportPsg

is always better than BERT-LeadText, even for queries where BERT-

LeadText performs the best (bin 95–100%). BERT-Aspects are better

than BERT-LeadText on 75% of the queries. We also notice that

BERT-BM25Psg is complementary to BERT-LeadText: When the

performance of BERT-LeadText is low, BERT-BM25Psg performs

well, for example, in bin 25–50%, and vice-versa.

We find that BERT-SupportPsg improves performance (helps)

on 92 queries, BERT-Aspects helps 95 queries, and BERT-BM25Psg

helps 18 queries. On inspecting the top-100 entities for some queries

that are helped, we find that compared to BERT-LeadText, BERT-

SupportPsg, BERT-Aspects, and BERT-BM25Psg place relevant en-

tities higher in the ranking. For example, BERT-LeadText places

the relevant entity “Organic Consumers Association” at rank 57

whereas BERT-SupportPsg places it at rank 13 (see Figure 4). By

promoting relevant entities higher up in the ranking, query-specific

entity descriptions help to improve the precision at the top of the

ranking. Moreover, we are able to improve performance on the

“difficult” queries for BERT-LeadText using query-specific entity

descriptions.

BM25 passage as description. From Table 4, we observe that

on CAR BenchmarkY1-Train, BERT-BM25Psg obtains"�% “ 0.06

whereas BERT-SupportPsg obtains"�% “ 0.29. Using the difficulty

test above, we find that BERT-SupportPsg obtains"�% “ 0.30 on

the lower 0–50% (difficult) queries where BERT-BM25Psg obtains

"�% “ 0.15. This shows that using an entity’s support passage as



Figure 4: Example query and entity with description. Left: Lead text. The passage contains only generic knowledge (highlighted

in green) about the entity and does not elaborate upon the connection between the query and entity. Right: Support passage.

The passage contains information about both, the query (highlighted in yellow) and the entity (green), and elaborates that the

entity “Organic Consumers Association” is relevant to GMOs because it regulates GMO food. This query-relevant knowledge

helps BERT-SupportPsg learn that the entity is relevant for the query and promotes it up the ranking, from rank-57 placed by

BERT-LeadText to rank-13.

its description is better than using a query-relevant BM25-passage

that mentions the entity. As discussed in Section 3.4, this is because

sometimes, the entity may not be salient to the discussion in the

BM25-passage, and the connection between the query and entity

may be made as a passing reference, i.e., although the passage is

relevant to the query, it is non-relevant for the entity (see Figure 2

for example). A support passage addresses this issue because the

support passage retrieval method only considers passages which

are relevant to the query and mention the entity in a salient manner.

Take-away. RegardingRQ1, it is not always sufficient to use the

lead text of an entity as the entity’s description; query-specific entity

descriptions are better. RegardingRQ2, although BERT-LeadText++

often performs well, our system BERT-ER++ using query-specific

entity descriptions improves entity ranking performance by 13–42%

over BERT-LeadText++. On its own (without other entity features

from related work), BERT-ER outperforms not only BERT-LeadText

but also entity rankings obtained using Wikipedia2Vec, ERNIE, and

E-BERT. This performance boost is due to our system’s ability to

promote relevant entities to the top of the ranking while demot-

ing non-relevant entities to the bottom. This is possible because

query-specific descriptions help our model to learn query-relevant

information and minimize the non-relevant information.

6.3 Analysis of Query-Specific BERT-ER

From Tables 1 to 4, BERT-ER and BERT-ER++ obtain statistically

significant improvements over the entity re-ranking systems using

entity embeddings from Wikipedia2Vec, ERNIE, and E-BERT. To

analyze the source of this performance improvement, we compare

the performance of our query-specific BERT-ER to Wikipedia2Vec

(as our work heavily relies on Wikipedia and uses Wikipedia as a

Knowledge Base). We use the Wikipedia2Vec entity embeddings

with the graph component made available by Gerritse et al. [20].10

Overall results. From Table 4, we observe that BERT-ER out-

performs Wikipedia2Vec on both CAR BenchmarkY1-Train and

DBpedia-Entity v2. When performing the difficulty test described

10Available from: https://github.com/informagi/GEEER

in Section 6.2, we find that BERT-ER obtains "�% “ 0.30 for

queries in the lower 0–50% range where Wikipedia2Vec obtains

"�% “ 0.05. Moreover, considering the query-specific descriptions

individually, we observe that BERT-SupportPsg and BERT-Aspects

consistently outperform Wikipedia2Vec on both datasets. This sug-

gests that compared to Wikipedia2Vec, the entity embeddings ob-

tained from BERT using query-specific entity descriptions capture

the similarity/relevance of the entity for the query in a better way.

To verify this, we inspect the entity rankings for the query GMO

obtained usingWikipedia2Vec and BERT-SupportPsg in Table 4. We

find that BERT-SupportPsg places the relevant entity “Robert Swan-

son” at the top of the ranking (rank 3) compared to Wikipedia2Vec

that places the entity at the bottom (rank 8). Moreover, BERT-

SupportPsg demotes the non-relevant entity “Developmental Biol-

ogy” that is placed higher by Wikipedia2Vec (rank 3) to the bottom

of the ranking (rank 10). Our intuition is that this is because entity

embeddings obtained using BERT-SupportPsg are query-specific

and encode the query-relevant knowledge about the entity that is

helpful for determining the entity’s relevance for the query. The

success of our approach demonstrates that the lead text often does

not relate to the query, and compensating with query-specific de-

scriptions leads to better performance.

Context-dependent entity relatedness. As discussed in Section

1, queries and documents are often matched in the entity-space

through the cosine similarity of the embeddings of entities men-

tioned in the query and document. Hence, it is important that the

entity embeddings are able to capture context-dependent similarity

between entities. For example, the entities “Food and Drug Ad-

ministration” and “Robert Swanson” are related in the context of

GMOs since Robert Swanson was the founder of the company that

produced the first genetically engineered insulin approved for use

by the Food and Drug Administration. We find that compared to

Wikipedia2Vec, our query-specific BERT entity embeddings capture

this context-dependent similarity between two entities in a better

way. For example, compared to Wikipedia2Vec, BERT-SupportPsg

assigns a higher similarity to the entities above.
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