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ABSTRACT

In this paper, we present a blockwise optimization method for
masking-based networks (BLOOM-Net) for training scalable speech
enhancement networks. Here, we design our network with a residual
learning scheme and train the internal separator blocks sequentially
to obtain a scalable masking-based deep neural network for speech
enhancement. Its scalability lets it dynamically adjust the run-time
complexity depending on the test time environment. To this end,
we modularize our models in that they can flexibly accommodate
varying needs for enhancement performance and constraints on the
resources, incurring minimal memory or training overhead due to the
added scalability. Our experiments on speech enhancement demon-
strate that the proposed blockwise optimization method achieves
the desired scalability with only a slight performance degradation
compared to corresponding models trained end-to-end.

Index Terms— Speech Enhancement, ResNet, Model Com-
pression, Scalability

1. INTRODUCTION

Deep learning-based supervised methods have dramatically boosted
single-channel source separation performances in recent years. Typ-
ically, effective and dominating deep learning solutions operate by
estimating masks, either on the time-frequency (TF) representations,
such as the short-time Fourier transform (STFT) [1, 2, 3] or recent
models that learn a separator module that applies masks in the latent
feature space. The latter models have improved the state of the art
as the learned feature space allows them to bypass limits imposed
by TF-domain solutions (e.g., time-frequency resolution trade-off,
using noisy phase or dealing with phase estimation, etc.) in addi-
tion to the advanced separator module’s architecture. Various ar-
chitectures have been proposed with each progressive model show-
ing relative improvements: fully-convolutional Conv-TasNet [4] that
initially popularized the time-domain approach, dual-path recurrent
neural networks (DPRNN) that enabled long-term sequence model-
ing [5], and Transformer and Conformer-based models that over-
come limitations from convolutional neural networks (CNN) and
RNN based approaches (e.g., limitations of receptive fields and ex-
tensive recurrent connections) [6, 7, 8, 9].

However, a major drawback of aforementioned deep learning so-
lutions is the complexity of models. Heavy memory occupancy and
especially their exorbitant computational cost makes them impracti-
cal for deployment onto resource-constrained devices.

Model compression methods offer effective solutions to this
problem by reducing complexity of neural network architectures
while minimizing their drop in generalization performance. There
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are various model compression methods such as quantizing model
parameters using low-bit resolution fixed-point representations
and/or pruning less important network components [10, 11] , simpli-
fying convolutional operations [12], grouping RNN’s intermediate
tensor representations into smaller blocks [13], multi-resolution fea-
tures via successive downsampling and resampling [14], distilling
knowledge from a larger network to improve the performance of its
corresponding compressed model [15, 16], etc. These compressed
models are typically designed to minimize the inference complexity
targeting the low-resource environment, thus not being able to scale
up to challenging separation problems. Eventually, in order for a
legacy system to be scalable, a range of versions need to be retained
in a device, increasing the total spatial complexity.

We argue that a scalable and efficient system must cover a wide
resource-related diversity in edge computing via an adaptive model
architecture rather than simply enumerating various model architec-
tures. The scalable, thus adaptive systems can be commonly found
in coding applications. In [17], the cross-module residual learning
scheme enabled greedy module-wise neural codec learning, where a
deep autoencoder is trained to model the residual signal that its pre-
ceding autoencoder fails to model. The system can preserve the or-
der of relative importance of the participating autoencoder modules,
that gives scalability to the system, i.e., the first part of the bitstream
is more important than the rest. SoundStream audio codec features
bitrate scalability, allowing the codec to adapt to the network con-
ditions that can vary while transmitting signals, too [18]. However,
these models are specifically for signal compression, seeking scal-
ability within their resulting bitstreams, thus not suitable for other
applications. Meanwhile, the once-for-all (OFA) scheme provides
a general-purpose adaptive training mechanism that learns multiple
compressed variants of a model via a single training task [19]. How-
ever, it does not provide a single architecture that scales to different
test environments freely as we propose.

Likewise, we envision a scalable speech enhancement model
that changes its operation modes, ranging from an energy-efficient
version to a performance-boosted one. In doing so, instead of prepar-
ing each different model in the device, a scalable model provides a
flexible structure that adjusts its performance and complexity per re-
source constraint. To this end, we propose a scalable time-domain
architecture for speech enhancement: BLOckwise Optimization for
Masking networks (BLOOM-Net). It is a greedy residual learning
strategy to train individual blocks sequentially. Since each block
is trained to improve the previous block’s speech enhancement re-
sult further, the deployment can optionally choose to use only the
first few blocks depending on the available computational resources.
Although it has been known that a sequence of two heterogeneous
speech enhancement processes is effective [20, 21], our approach
differs from that literature in that (a) ours focuses on the architectural
innovation rather than a concatenation of two heterogeneous models
(b) the proposed model eventually achieves the scalability in the fea-
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Fig. 1: (a) The baseline separation model (b) a weak separation block
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(a) The time-domain blockwise optimization model (Baseline 2).
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ŝ(2)
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(b) The proposed BLOOM-Net architecture.

Fig. 2: The scalable speech enhancement models.

ture space rather than in the raw signal domain. BLOOM-Net shows
competitive performance compared to their end-to-end counterparts,
while providing the additional advantage that its modularized blocks
are easy to attach or detach for scalability.

2. METHODOLOGIES

2.1. Baseline 1: The Time-Domain Separation Model

Our baseline source separation model adopts the common structure
found in time-domain source separation networks that consists of an
encoder, separator, masker, and decoder as shown in Fig. 1a. First,
the input x ∈ R

T with T samples in the time domain is fed to the
encoder, which is a function that transforms the input into a latent
representation: Enc : x → h ∈ R

D . We posit that it is a small
neural network module, e.g., a 1D convolutional layer followed by a
nonlinear activation function. Then, the latent representation is fed
into the separator module: Sep : h → z ∈ R

K , whose output z is
used as input to the mask estimation module Mas : z → m ∈ R

D .
Finally, the mask is applied to the encoded mixture representation
h to retrieve the source-specific estimate of the latent representation
h̃ (e.g., for the speech source), which is then decoded back to the
time-domain estimate of the target source, Dec : h̃ → ŝ ∈ R

T .

In the time-domain separation models, it is common to employ
a large separator module with repeating structures indexed by l. It
is also popular to merge the input and output of each block as input
to the next one, performing residual learning as proposed in ResNet
[22]. These blocks are learned altogether in the state-of-the-art mod-
els as well as in Baseline 1, limiting the models’ scalability.

2.2. Baseline 2: Time-Domain Blockwise Optimization

To build up our proposed BLOOM-Net model, we begin with a naı̈ve
concatenation approach as our second baseline. Fig. 1b shows a
weak source separation block as a compromised version of Baseline
1 in Fig. 1a. Although it is with only one ResNet block for the sepa-
rator module, it is still a legitimate stand-alone separation model. We
assume that there are L such weak separation blocks, each of which
enhances its previous block’s results as shown in Fig. 2a. Let F (l)(·)
be the l-th weak separation block. It performs speech enhancement
on ŝ(l−1), an output of the (l − 1)-th block: F (l) : ŝ(l−1) → ŝ(l).
Note that the notion of a “weak” separation block comes from the
boosting methods that incrementally add weak learners [23].

The second baseline provides a mechanism to serialize the
speech enhancement models with an order of significance. If the
(l − 1)-th weak separation block leaves room for improvement, i.e.,

when the loss L(l−1)(s, ŝ(l−1)) is not sufficiently small, the next

block F (l)(ŝ(l−1)) focuses on that sample and tries to improve.
During the test time, suppose the device can afford only up to �
blocks. Since each of the L blocks is sequentially trained with
its own reconstruction loss L(l)(s, ŝ(l)), scalability is achieved by
performing the inference on only the first l ≤ � weak separation
blocks—the result is still a legitimate source estimate. In contrast,
Baseline 1 would need to redundantly prepare all the scaled variants
of the model in order to achieve the desired scalability.

2.3. BLOOM-Net: Blockwise Optimization in the Latent Space

Baseline 2 exhibits a redundancy issue. During the test time, the
chosen block should execute all four submodules to deliver a time-
domain signal to its successive block. Instead, we propose a block-
wise optimization scheme that works in the latent space, so that the
serialization is done among the separator submodules. In that way,
the system can avoid unnecessary masking, decoding, and encoding
operations that repeat at every weak separation block in Baseline 2.

Fig. 2b describes the BLOOM-Net architecture, where Sep(l)

performs residual learning in the sense that it relays the sum of its
output z(l) and the input z̄(l−1) to the next separator block:

z̄(l) = z(l) + z̄(l−1), where z(l) = Sep
(l)(z̄(l−1)). (1)

Note that the encoder’s output h = z(0) is the input to Sep(1). We
also induce the input to Sep(L) recursively: z̄(L−1) =

∑L−1
l=0 z(l).

BLOOM-Net performs block-specific masking and decoding
just to compute the block-specific error, while the residual connec-
tions are defined among the latent variables z(l). The l-th masker
and decoder works on the separator output z(l) as follows:

ŝ(l)=Dec
(l)(h̃(l)), h̃(l)=m(l)�h(l), m(l)=Mas

(l)(z(l)). (2)

The blockwise output ŝ(l) is then compared with the ground-truth
source s to compute the blockwise loss L(l)(s, ŝ(l)), ensuring the
intermediate output is usable. Note that Enc is shared and reused
for all the sequence of blocks such that all blocks learn to estimate
denoising masks on the same latent representation h. Meanwhile,
Mas(l) and Dec(l) modules are block-specific and no longer updated
once the l-th block is trained.

During the test time, the actual inference involves Enc, Sep(l)

where 1≤ l≤�, Mas(l), and Dec(l), which are represented as shaded
blocks in Fig. 2b. Compared to Baseline 2, BLOOM-Net saves the
cost of �−1 encoding, decoding, and masking operations. Although
these blocks are lightweight, removing them improves not only the
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computational efficiency but also feature learning. The direct resid-
ual learning path in the latent feature space allows BLOOM-Net to
learn a hierarchy of latent representations, while Baseline 2 is lim-
ited to concatenating shallow representations.

Fine-tuning can further refine a fully trained BLOOM-Net.
While BLOOM-Net provides the desired scalability via blockwise
optimization, its greedy nature prevents the model from learning
from the full picture, thus underperforming the theoretical upper
bound. To this end, we propose to fine-tune BLOOM-Net, where all
modules in all L blocks are updated using the combination of all loss
functions, i.e.,

∑L
l=1 L(l)(s, ŝ(l)). This comprehensive fine-tuning

significantly improves BLOOM-Net, making its performance near
the theoretical upper bound.

3. EXPERIMENTAL SETUP

3.1. Datasets

During training, we used clean speech samples from the Librispeech
corpus [24] and noise recordings from the MUSAN dataset [25].
We used train-clean-100 and dev-clean subsets from
Librispeech for training and validation respectively. We split
MUSAN’s free-sound subset at 80:20 ratio into training and
validation partitions. For testing, we used unseen speech sam-
ples from Librispeech’s test-clean and noise from MUSAN’s
sound-bible. Audio files are loaded at 16 kHz sampling rate
and standardized to have a unit-variance. Noise samples are scaled
to random input SNR levels uniformly chosen between -5 and 10 dB
and added to speech signals to obtain noisy mixtures.

3.2. Architecture and Training Details

To investigate its application to time-domain audio separation net-
works [4, 5, 6, 7, 26], our ResNet-based models are implemented as
a simplified form of Conv-TasNet [4]. We use the same encoder and
decoder design as in [4] with the same hyperparameters. Each sepa-
rator module is defined as a residual block using 1-D convolutional
layers similar to those in [4], but without dilation and intermediate
skip-connections. Each residual block consists of a 1×1 convolution
operation followed by a depthwise convolution operation, with para-
metric ReLU (PReLU) [27] and global layer normalization (gLN)
added after each convolution operation. We used the ConvTasNet
implementation available in Asteroid [28] and tuned the hyperpa-
rameters to construct our time-domain ResNet models.

We used the negative scale-invariant signal to distortion ratio
(SI-SDR) as the loss function [29], defined as

L(s, ŝ) = −SI-SDR(s, ŝ) = −10 log10

( ||αs||2
||αs− ŝ||2

)
(3)

where α = ŝ�s
||s||2 is a scaling factor. We train all models on 1-second

long segments using a mini-batch size of 64. Adam is used as the
optimizer with learning rate initialized to 1 × 10−4. Early stopping
is applied and models with the lowest validation losses are used for
final evaluation on the test mixtures.

3.3. Training Configurations

The experiments are on two types of baselines and our proposed
BLOOM-Net method. We additionally examine the impact of fine-
tuning on BLOOM-Net.

Table 1: SI-SDR improvements of the competing models. Evalua-

tions are with respect to the number of blocks � chosen for inference.

Method � = 1 � = 2 � = 3 � = 4 � = 5 � = 6

Baseline 1 - Full -0.60 -0.86 -0.12 0.40 0.97 8.89

Baseline 1 - Int. 4.55 6.83 7.65 8.30 8.58 8.89

Baseline 2 4.55 5.01 5.17 5.25 5.25 5.25

BLOOM 4.55 6.13 6.92 7.40 7.61 7.75

BLOOM-FT 4.74 6.55 7.44 8.14 8.51 8.72

• Baseline 1 - Full: The time-domain separation model (Sec. 2.1)
trained in a conventional end-to-end manner. It employs L = 6
separator blocks from the beginning and learns all of them together.
Although there are L = 6 separators, removing one of them to re-
duce the complexity will cause a complete break down as the model
is not scalable.
• Baseline 1 - Int.: We also learn L = 6 different versions of Base-

line 1, each of which is an intermediate version, containing up to
L = {1, . . . , 6} separators, respectively, e.g., when L = 3 there are
three separators that are trained altogether. Each of these models is
the upper bound of its corresponding BLOOM-Net with a matching
separator number.
• Baseline 2: The time-domain weak separation blocks (Sec. 2.2).

Individual blocks are trained as a stand-alone separation model one
after another to promote scalability.
• BLOOM: BLOOM-Net in its basic setup (Sec. 2.3).
• BLOOM-FT: BLOOM-Net, fine-tuned to minimize the combina-

tion of losses from all blocks. It overcomes the suboptimal perfor-
mance caused by BLOOM’s greedy training.

4. EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 presents the results of the competing systems. We first com-
pare BLOOM-Net with Baseline 1. At a glance, the model trained
under Baseline 1 - Full achieves the highest performance when it
fully utilizes all 6 separator blocks. However, the model’s scalability
is limited, as it is evidently unable to perform denoising when less
than 6 separator blocks are used (columns from � = 1 to 5). This
behavior is expected since all 6 modules are trained altogether in the
conventional end-to-end fashion—its intermediate separator outputs
z(l) are not suitable for the shared masker module to compute the
mask from, except for the final separator output z(6).

Hence, it is unavoidable for Baseline 1 to train multiple versions
of different block configurations to scale to various application and
hardware requirements, which is the Baseline 1 - Int. setup. Since
in this set up there are totally six different end-to-end models, each
of which specializes in each choice of �, they form the performance
upper bound. However, the system’s total spatial complexity is the
sum of all six versions, which is not the most efficient option.

BLOOM-Net, on the other hand, exhibits desired scalability. In-
stead of completely failing, BLOOM shows decent performance at
� = 5 case, which is only a 0.1 dB drop from its � = 6 setup. Its per-
formance apparently drops as the model complexity decreases more.
In addition, BLOOM’s most powerful setup � = 6 is suboptimal
compared to Baseline 1.

BLOOM-FT addresses this issue by fine-tuning the entire mod-
ules via the sum of all blockwise loss functions. Compared against
the oracle end-to-end Baseline 1 results (Baseline 1 - Int.), the fine-
tuned results usually show less than 0.3 dB drop in all cases. Hence,
we claim that the properly fine-tuned BLOOM-Net is almost compa-
rable to the traditional end-to-end models while it provides unprece-
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(a) x1 (SI-SDR: 7.63 dB) (b) ŝ
(2)
1 (SI-SDR: 12.12 dB) (c) ŝ

(4)
1 (SI-SDR: 13.13 dB) (d) ŝ

(6)
1 (SI-SDR: 13.29 dB) (e) s1

(f) x2 (SI-SDR: 3.05 dB) (g) ŝ
(2)
2 (SI-SDR: 14.22 dB) (h) ŝ

(4)
2 (SI-SDR: 19.93 dB) (i) ŝ

(6)
2 (SI-SDR: 19.98 dB) (j) s2

Fig. 3: Denoising output samples from intermediate blocks. Each row represents a different example. The columns represent noisy mixture,

estimated reconstructions from l-th blocks, and the corresponding ground-truth target clean speech.

dented scalability and spatial efficiency.

Next, we draw attention towards the time-domain blockwise op-
timization method, Baseline 2. Compared to BLOOM-Net that oper-
ates in the latent domain, Baseline 2 sequentially feeds time-domain
inputs to the next stand-alone module. This incurs an overhead of
learning the feature transformation and its inverse operation, con-
straining each block to only learn a shallow latent representation;
thus, the improvement by adding more weak separation blocks is
only minimal. It showcases the merit of the proposed BLOOM-Net
algorithm that performs blockwise optimization in the latent space.

Fig. 3 shows two denoising examples where the different model
complexity choices affect the quality of the output. The deeper the
inputs are processed within the BLOOM-Net, the higher the denois-
ing quality. The depth of the network can be decided based on the
requirements of the deployed environment or users’ preference. This
demonstrates BLOOM-Net’s scalability feature that offers flexible
quality-complexity tradeoff to adjust to the test environment.

Finally, Table 2 shows the inference-time computational com-
plexity of Baseline 1 - Int. and BLOOM-Net in terms of number of
parameters and multiply-accumulate (MAC) operations. Note that
BLOOM and BLOOM-FT are equivalent in this context. First, there
is no difference in computational complexity (MACs), as the active
modules during inference are the same. However, BLOOM-Net ex-
hibits a significant advantage in terms of spatial complexity when we
assume a scalable model. For example, if the device can afford up to
� = 2, the baseline has to prepare two different versions with L = 1
and L = 2 for the best performance in both energy-efficient and
performance-boosted use cases. In doing so, although these two ver-
sions’ sizes are 0.28M and 0.42M parameters, respectively, their
sum amounts to 0.70M . Likewise, in order for Baseline 1 to be
scalable, it exponentially accumulates spatial complexity as � grows.
Conversely, BLOOM-Net manages this scalability issue more care-
fully: it increases the model size just by the amount of a single sep-
arator block and its insignificantly small block-specific masker and

Table 2: Computational requirements of time-domain ResNet mod-

els trained under Baseline 1 and our proposed BLOOM-Net method.

The number of parameters reported encompasses the entire model

parameters needed to implement the scalable model. MACs are com-

puted given 1-second inputs.

Method � = 1 � = 2 � = 3 � = 4 � = 5 � = 6

MACs (G)
Baseline 1

0.53 0.80 1.07 1.33 1.60 1.87
BLOOM

Params (M)
Baseline 1 0.28 0.70 1.26 1.95 2.78 3.64

BLOOM 0.28 0.49 0.71 0.92 1.13 1.34

decoder modules (about 0.21M parameters). Hence, for example,
our scalable BLOOM-Net with five separators (1.13M) is smaller
than the baseline that covers three complexity profiles (1.26M).

5. CONCLUSION

In this study, we introduced BLOOM-Net, a novel algorithm for
scalable speech denoising. We postulated that scalable implementa-
tion of a deep learning-based speech enhancement system is critical
to handle various resource-related test conditions that a device faces.
While traditional end-to-end time-domain source separation mod-
els have shown advanced separation performance, we claimed that
such a system cannot provide the desired scalability. Our BLOOM-
Net is with a carefully designed residual learning scheme that per-
forms blockwise optimization to improve the model performance in
an incremental way. Since the blockwise optimization was on each
individual separator module that greedily contributes to the model
performance, BLOOM-Net achieves the scalablility—the device can
freely choose from the multiple profiles based on its resource con-
straint. In doing so, the enhancement quality is reasonably asso-
ciated with the model complexity. Source codes are available at
https://saige.sice.indiana.edu/research-projects/bloom-net.
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