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information need when incorporating the search query into the

similarity metric. Even if the same set of passages are relevant for

two queries, we may need to cluster them in different ways as

depicted in the example in Figure 1.

Hence to produce query-specific subtopic clusters, we design

a query-specific text similarity metric, which when used with a

distance-based clustering algorithm, will lead to relevant, query-

specific clusters of retrieved passages.

Our rationale is that an ideal query-specific similarity metric

should identify the query-relevant subtopics and ignore other spu-

rious topical dimensions. We follow a neural approach to train

the metric that leverages BERT-based language models. For the

given example in Figure 1, it should emit a high similarity score

between ?1 and ?3 and low similarity score between passages ?1
and ?4 given the query Q1, “Covid19 Mental Struggles”. However,

for the other query Q2, “Covid19 Precautions”, the scores should

change accordingly. Of course, during evaluation, the queries will

be different from training queries, suggesting that a query-specific

metric learning approach would result in a clustering that is more

suitable for the query, and hence more helpful when browsing the

retrieved information.

Contribution: We develop a trainable query-specific similarity

metric for text passages. The similarity metric is optimized to pre-

dict similarity scores that agree with the ground truth of passage

clusters in the training data.

Outline: This paper is organized as follows. Section 2 gives

an overview of related work along with the reference method,

sentence-BERT [28]. Section 3 elaborates our approach.1 Section

4 details our empirical evaluation on Wikipedia, while Section 5

evaluates on scientific abstracts from ArXiv. We conclude the paper

in Section 7.

2 RELATEDWORK

2.1 Text Clustering

Previous research on text clustering [18, inter alia] focuses on

unsupervised lexical similarity metrics. The similarity metric is

used to compute distances between elements in vector space for

clustering algorithms [7]. Metzler et al. [22] explore hybrid simi-

larity measures which combine lexical and probabilistic measures

with application to query similarity detection. Banea et al. [2] de-

velop an ensemble system that uses a combination of knowledge-

based and corpus-based text similarity measures as features. For

semi-supervised clustering, researchers have found pairwise bi-

nary constraints also known as “must link” and “cannot link” to

be particularly effective [4]. Most lexical similarity metrics employ

term-based vector representation of text such as TFIDF. Probabilis-

tic topic models such as latent Dirichlet allocation [8], have been

used to extract subtopics from a text corpus and use the topic dis-

tribution to represent documents. A natural choice for a similarity

metric that uses this representation is the Kullback-Leibler (KL)

divergence [29]. Recently, numerous methods are proposed to use

deep neural networks in modeling the clustering process. Peng et

al. [23] use a reformulation of the traditional k-means algorithm

using neural networks. Cho et al. [11] use a modified self-attention

1Code is available at: https://github.com/nihilistsumo/QS3M. Link to the dataset used
for this paper is provided in the github repository.

mechanism to implement an alternative version of the k-means

algorithm.

2.2 Neural Embeddings for Clustering

Clustering algorithms depend on a semantic representation of

text. With the advent of transformer-based neural networks [12, 31],

text embeddings have given rise to strong linguistic models. It is

observed in deep learning and transfer learning research that layers

at different levels of a deep network capture specific information

about the data [25]. In their work, Peters et al. [24] learned a func-

tion that projects the internal state of, ELMo, a deep Bidirectional

Language Model which was trained on a large dataset to a contex-

tual embedding space. Being a deep network, BERT [12] also has

several layers of attention heads and feed-forward neural networks

stacked on top of each other. Researchers have tried to utilize in-

formation captured at these layers by averaging all BERT layers

[34] or extracting the output of a special token (CLS) in the input

[21][26] to obtain a fixed size embedding representing the input se-

quence. Unfortunately, empirical studies prove that these methods

perform poorly in semantic matching tasks. Reimers et al. [28] pro-

posed modifications in retrieving strategies of these embeddings as

well as specific fine-tuning techniques that provide better sentence

embeddings which perform well in numerous sentence similarity

tasks. Next, we provide a brief background on their method known

as Sentence-BERT.

Sentence-BERT: After the success of BERT models, researchers

made various attempts to use token embeddings obtained from

the BERT model to embed longer sequences, such as sentences or

documents. Typically, the embedding of the first token embedding

(CLS token) from the last layer of a BERT model is used in such

scenarios. But instead of relying on a single token and a single

layer to capture the embedding of the whole sequence, Reimers et

al. explored different ways of combining information from all the

layers. They finetune all layers of a BERT encoder using a simple

distance metric (e.g. cosine distance or Euclidean distance, etc.)

governing the training process. Employing a simpler distancemetric

in the finetuning process, allowed faster similarity calculation of

embedding vectors during inference time.

The key differences between Sentence-BERT and other approaches

attempted before it are the following:

1. Averaging hidden layers of the pre-trained BERT model tend

to lose vital semantic information captured in separate layers. In

contrast, the Sentence-BERT model is fine-tuned based on the out-

come of different pooling strategies applied to all the layers of the

BERT model.

2. Sentence-BERT utilizes two different network structures to

fine-tune BERT embeddings: Siamese networks for pairwise train-

ing data (binary similarity regression and multiclass classification)

[9] and triplet networks for passage triples (similar and dissimilar

passage of a passage referred to as an anchor; together forming a

triplet of passages) proposed by Dor et al. [15]

3. Loss functions used to train Sentence-BERT are specialized to

tune the embeddings for semantic similarity tasks. a) Regression

loss to minimize mean-squared error (MSE) between the similarity

labels and cosine similarity between embedding pairs, b) optimiza-

tion of cross-entropy loss between weighted class probabilities of
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embedding pairs, c) minimization of triplet loss to reduce the em-

bedding distance between similar passage-pair relative to the same

for dissimilar passage-pair in triplets of passages.

2.3 Query-Specific Clustering and Search Result
Diversification

Query-specific clustering can be addressed as a separate step,

such as the extraction and co-occurrence analysis of keyphrases.

Leung et al. [20] develop a query-based clustering method in the

context of the user’s profile extracted from web snippets of search

results. Raiber et al. [27] employ similarity heuristics to perform

canopy clustering on the search result set to improve document

rankings. Bernardini et al. [5] cluster search results into subtopics

using keyphrases. Carpineto et al. [10] and Drosou et al. [16] evalu-

ate the effectiveness of subtopic clustering and search result diver-

sification in post-processing of search results.

The literature suggests that incorporating query information

is beneficial for subtopic clustering. However, most of the query-

specific subtopic clustering methods rely on matching relevant key

phrases from the search results. But keyphrase matchingmay not be

sufficient to capture fine-grained topical information in the search

results. Transformer-based embeddings such as Sentence-BERT

have been demonstrated to capture high-quality topical information.

It is an example of a trained similarity metric, customized for a

task, but not specific to a query. Our approach for representing

passages is built upon the Sentence-BERT embedding model but

incorporates the query while estimating similarity between a pair

of representations. Sentence-BERT is used as a strong reference

method to empirically demonstrate improvements achieved by our

model.

3 APPROACH

Our goal is to design a clustering system for text passages that

produces query-relevant subtopic clusters. We focus on training a

query-specific similarity metric (henceforth referred to as similarity

metric) between text passages, which is used in a distance-based

clustering algorithm. This similarity metric should model a topical

embedding space that is suitable for identifying query-relevant

subtopics. For example, it should emit high similarity scores be-

tween passages relevant to the subtopic “Lack of Focus” in the

context of the query “Covid19 Mental Struggles” (cf. Figure 1).

Our similarity metric is designed to be used with the following

pipeline:

Step 1: Train the similarity metric. We train our model to pre-

dict the query-specific similarities: Given a pair of passages,

?1, ?2 and query @, the model predicts whether both passages

should share the same subtopic of the training query @.

Step 2: Obtaining pairwise similarity scores. Given a query set

& and retrieved passage sets P@ for each query @ ∈ & , we

apply the model to predict pairwise similarities between all

passages in P@ .

Step 3: Clustering based on the similarity metric. Given a set

of query-specific similarities between passages inP@ , we gen-

erate :@ clusters of passages for each query @ with average-

link agglomerative clustering.

The result of this pipeline is subtopic clusters that coincide with

query-specific subtopics. Since there are no convincing solutions

for learning the true number of cluster :@ , in this work, we assume

knowledge of the true number :@ during evaluation.

Our central contribution in this work is the neural model ap-

proach for query-specific similarity metric for passages, detailed in

the following.

3.1 Training the Passage Similarity Metric

Our goal is to, given a query @ and a set of retrieved passages

P@ , model the similarity metric q , where q@ (?8 , ? 9 ) denotes the

similarity score between a pair of passages ?8 , ? 9 from P@ for a

given query @.

We follow a common approach of similarity metric learning

where documents are represented in a vector space such that the

vector similarity coincides with the semantic similarity of the pas-

sages. We focus on neural networks to be able to model such a

trainable similarity metric. The open question is how to define a

parameterized similarity function that can leverage information

about the query.

The novelty of our approach lies in how we model the similarity

between passages in a query-specific representation space so that

it generalizes to new unseen queries during evaluation time. The

similarity is trained end-to-end using training data constructed

from a set of queries and a ground truth of ideal passage clusters.

We discuss three neural models in the following, all of which

are based on an initial Sentence-BERT representation of query ®@

and passages ®? and will predict the similarity score between two

passages ?8 and ? 9 . All models are trained end-to-end.

3.1.1 �ery-Specific Scaler (QSS):. The first model is based on the

assumption that one merely needs to apply the right reweighting

of passage embedding representations to arrive at a query-specific

similarity. A scaling vector ®@ Ψ is used for reweighting passage

embeddings and is obtained by projecting the query representation

®@ with a multi-layer perceptron Ψ. After component-wise reweight-

ing of passage representations,2 the cosine similarity is used as a

measure of the passage similarity.

q@ (?8 , ? 9 ) = cos
((

®@ Ψ ⊙ ®?1

)

,
(

®@ Ψ ⊙ ®?2

))

The projection Ψ (49K trainable parameters) uses a multi-layer

perceptron (MLP) with ReLU activation with the same input and

output dimensionality (768). The MLP consists of two linear layers

with a 32-dimensional “bottleneck” between them, which we found

to generalize better than a single larger linear layer.

The QSS model can be interpreted as a Siamese network where

the same transformation is applied to a pair of passages through

®@ Ψ that arises from the query. The model is limited in that the only

trainable component Ψ does not have direct access to the passage

vectors ®? and is only indirectly trained end-to-end from the loss

computed on the resulting similarity.

3.1.2 �ery-Specific Siamese Similarity Metric (QS3M):. In the

Query-Specific Siamese Similarity Metric we assume that a better

similarity metric q@ (?8 , ? 9 ) can be obtained with a more complex

2Here ⊙ refers to a component-wise multiplication, where · denotes the dot product.
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Table 1: Dataset statistics of flat and hierarchical benchmarks.

The last columns provide the average number of clusters per

query and the average number of passages per cluster, with

standard deviation.

Dataset Psg. Queries Clusters per Query Passages per Cluster

pairs Flat Hierarchical Flat Hierarchical

CAR-A 168K 125 8 ±2.27 17 ±10.49 6 ±7.23 3 ±2.10

CAR-B 118K 115 7 ±2.05 16 ±10.59 6 ±7.61 2 ±2.14

Pre-training: Using 1.6million queries in train.v2.06 (after omit-

ting queries in CAR-A and CAR-B), we generate data to pre-

train Sentence-BERT [28] (referred as SBERT hereafter) with

a maximum input sequence length of 512.

Training: Analogously, we create training data for the similarity

metric using 162,000 queries from the rest of train.v2.0.

To avoid overfitting to particular topics, we choose three

paragraphs for each query, two from the same subtopic, and

one from a different subtopic.

CAR-A: For evaluation, articles in benchmarkY1test are converted

to flat and hierarchical clustering benchmarks as described

in Section 3.2.

CAR-B: Analogous to CAR-A, but using the benchmarkY1train

dataset. Despite its name, these queries are held out from

our training and are used only for evaluation.

4.1 Conducted Experiments

We evaluate the steps 2 and 3 of our query-specific subtopic

clustering pipeline using the following experiments:

Experiment 1 (Similarity Metric): We evaluate how well the

trained passage similarity metric generalizes to new queries.

We use the macro-averaged area under the Receiver Oper-

ating Characteristic curve (AUC) as our evaluation metric

(higher is better). We evaluate both the balanced (akin to the

training data used during training) and the full benchmark

consisting of all passage pairs.

Experiment 2 (Clustering): We evaluate the quality of the clus-

ters obtained by the trained similaritymetric using an average-

link hierarchical agglomerative clustering algorithm. The

generated clusters are evaluated in terms of themacro-averaged

Adjusted RAND index (ARI), a clustering metric reflecting

the degree of agreement between the clustering ground truth

and the obtained clusters. ARI is adjusted for to account for

the prevalence of negative pairs in ground truth and predic-

tions.

4.2 Compared Variations and Baselines

We evaluate the following query representations:

Title: Embedding of a short keyword query (aka title query). CAR

uses the article title in lieu of a web search query. Section

headings are excluded.

6We refer to filenames used in the TREC CAR data set.

Description: Embedding of a longer query description. Here we

use the text above the first heading (which is omitted from

the passage set P@ ).

Passages: The average of embeddings across all passages in the

query’s passage set P@ (akin to ideas of pseudo-relevance

feedback).

We train three variations of our similarity metric: QSS, QS3M, and

sentence-attentive QS3M (attn-QS3M). We use a pre-trained SBERT

to derive initial representations of queries ®@ and passages ®? . We

also experiment with raw BERT embeddings without the SBERT

pretraining step but observe that this degrades performance, hence

we only report the best variant: QS3M-rawBERT-Description.

As a strong baseline, we use SBERT [28], a recent BERT-based [12]

reference method, re-trained on our data (see pretraining). Follow-

ing are the baselines included in our evaluation:

SBERT euclid: Euclidean distance of SBERT embedded passages [28].

SBERT cosine: Like SBERT euclid, but using the cosine similarity.

Jaccard: Set-based similarity between sets of words from passages.

TFIDF: Cosine similarity between TFIDF vectors of passage words.

Topic model: Jensen-Shannon divergence between the topic dis-

tribution of two passages, estimated using an LDA topic

model with 200 topics [8]. The topic model is trained on our

training set.

4.3 Experimental Results

4.3.1 Experiment 1 (Similarity Metric): We study to which extent

the trained similarity metrics are able to generalize to new, unseen

queries in CAR-A and CAR-B, using both the flat and hierarchical

clustering benchmark.

Table 2 presents the empirical results for classifying passage pairs

into the same vs different clusters as measured in ROC-AUC. We

observe that our methods QSS and QS3M perform significantly bet-

ter than all baselines, specifically SBERT cosine and SBERT euclid.

While QS3M, QSS, and SBERT, are using the same underlying BERT-

based representation, the difference is that only QS3M andQSS train

a query-specific similarity metric. These results demonstrate that

incorporating the query into the similarity metric improves its pre-

diction quality. However, we also observe that attn-QS3M performs

worse than the baselines. This indicates that embedding passages

as a whole are more suitable than the weighted sum of individ-

ual sentence embeddings. We speculate that individual sentences

are often lacking the necessary context to obtain a meaningful

representation.

4.3.2 Experiment 2 (Clustering): We evaluate to which extent the

improvements in the similarity metric give rise to better clustering

results. We use average-link hierarchical agglomerative clustering

to obtain subtopics as clusters of passages for each query.We use the

macro-averaged Adjusted RAND index as a measure of clustering

quality for both Flat and Hierarchical benchmarks. The evaluation

results are reported in Table 2.

We observe that similarity metrics with better pairwise per-

formance (Table 2) also lead to better clustering performance. In

particular, QS3M is the best performing method, achieving on aver-

age 12% relative improvement over the best-performing baseline

method. For both CAR-A and CAR-B, QS3M achieves statistically
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Passage 2: Islamic gardens were built after the model

of Persian gardens and they were usually enclosed by

walls and divided in 4 by watercourses. Commonly, the

center of the garden would have a pool or pavilion. Spe-

cific to the Islamic gardens are the mosaics and glazed

tiles used to decorate the rills and fountains that were

built in these gardens.

From only the text of the passages, it is quite difficult to decide

whether they are similar enough to share the same subtopic cluster.

In the context of human culture, they are topically distinct but in

the context of the history of gardening, they are similar. Due to

this ambiguity, SBERT-cosine, which does not have access to the

query, assigned a low similarity score to this passage pair. In the

CAR benchmark, both passages are relevant for the query “Garden-

ing” in the gold cluster “History”. By taking into account that the

information need is about gardening, our QS3M model correctly

identifies a high similarity between these passages.

The previous example is a case of false-negative which is rectified

by the QS3M approach. However, we find this to be a rare instance

across both the CAR-A and CAR-B datasets. The main reason why

our QS3M approach achieves better results is its ability to avoid

false-positive cases. Let us consider another pair of passages from

the CAR-A dataset on the query:

Passage 1: Big-game fishing started as a sport after

the invention of the motorized boat. In 1898, Dr. Charles

Frederick Holder, a marine biologist and early conser-

vationist, pioneered this sport and went on to publish

many articles and books on the subject noted for their

combination of accurate scientific detail with exciting

narratives.

Passage 2: In addition to capturing fish for food, recre-

ational anglers might also keep a log of fish caught,

either in a physical form or with technology such as the

FISHBUOY or Fishbrain mobile logging application, and

submit trophy-sized fish to independent record keeping

bodies. In the Republic of Ireland, the Irish Specimen

Fish Committee [. . . ]. It also uses a set of ’fair play’ reg-

ulations to ensure fish are caught in accordance with

accepted angling norms.

Without knowledge of the query, these two passages could share

topics such as "fishing" and "sport" and consequently influence non-

query specific methods such as SBERT-cosine to incorrectly assign

high similarity scores. However, knowing that these passages are

retrieved for the query "Recreational fishing", it becomes apparent

that they belong to two different clusters, "History" and "Fish logs",

as correctly identified by QS3M.

Error Modes: From Figure 3, we observe that some queries did

not benefit from the QS3M model. To investigate why our model

failed to improve upon SBERT for those queries, we analyzed the

queries and their content in detail. Interestingly, most of these

worst performing queries are related to food or nutrition, such as

Bagel, Christmas pudding, or Fudge, which points towards a broader

context. Naturally, all of these queries share similar subtopics such

as recipes, different varieties, and history. Hence, a simple template-

learning model, e.g. as proposed by Banerjee et al. [3], would solve

the clustering problem for all of these similar queries. However,

the focus of our study is to solve the more difficult problem where

results for queries would not be appropriately represented by a fixed

template outline. Indeed, most of the queries in the CAR dataset

and the arXiv dataset (each category corresponds to a different area

of study) are of this type and benefit greatly from our QS3Mmodel.

7 CONCLUSION

In this work, we propose a query-specific similarity metric,

suitable for query-relevant subtopic clustering of passages. Tra-

ditionally, the query only indirectly influences the clustering result

through the candidate set generation. We propose a more direct

approach toward query-specific clustering and demonstrate that

clustering results can be improved by 12% with our Query-Specific

Siamese Similarity Metric (QS3M). QS3M is trained to decide if two

passages should be placed in the same versus different subtopics for

a given query. Our method utilizes BERT-based representations of

passage and query content to machine-learn a query-specific pro-

jection of passages into a similarity space. Our approach is different

from task-specific metric learning in that test queries are not known

at training time. We demonstrate the improvement using two TREC

datasets and one arXiv dataset on both flat and hierarchical query-

specific clustering benchmarks. On all test sets, QS3M outperforms

a strong, BERT-based reference method of Reimers et al. [28], our

simpler variant QSS, and many other baselines including TF-IDF

and topic models.

While topic models are appealing as they do not require training

data, in Table 2 we demonstrate that they are not able to identify

fine-grained topics such as article sections. While our method is su-

pervised, we demonstrate that suitable training data can be readily

derived from Wikipedia (cf. Section 3.2), sufficient to generalize to

unseen queries and new subtopics.

Query-specific clustering can be applied to any context-specific

text clustering task, such as detecting subtopics in corpora, domain-

specific taxonomy extraction, faceted information access, and search

diversification. It can be used to identify topical dimensions of a

conversational search dialog, trending subtopics on Twitter, as well

as to identify sections for automatic article generation. As our sim-

ilarity metric relies on latent representations of passages, it can

even be applied to multilingual settings as long as suitable embed-

ding models exist for these languages. The generalizability of our

approach for other clustering algorithms (e.g. k-means) remains to

be explored.
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