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Ecography Species distribution models (SDMs) provide insights into species’ ecology and distri-
2022: 06060 butions and are frequently used to guide conservation priorities. However, many uses
doi 101111/ 06060 of SDMs require model transferability, which refers to the degree to which a model

or €cos: built in one place or time can successfully predict distributions in a different place

Subject Editor: Carsten Dormann or time. If a species’ model has high spatial transferability, the relationship between
Editor-in-Chief: Miguel Aratjo abundance and predictor variables should be consistent across a geographical distribu-
Accepted 2 February 2022 tion. We used Breeding Bird Surveys, climate and remote sensing data, and a novel

method for quantifying model transferability to test whether SDMs can be trans-
ferred across the geographic ranges of 129 species of North American birds. We also
assessed whether species’ traits are correlated with model transferability. We expected
that prediction accuracy between modeled regions should decrease with 1) geographi-
cal distance, 2) degree of extrapolation and 3) the distance from the core of a species’
range. Our results suggest that very few species have a high model transferability index
(MTT). Species with large distributions, with distributions located in areas with low
topographic relief, and with short lifespans are more likely to exhibit low transferabil-
ity. Transferability between modeled regions also decreased with geographical distance
and degree of extrapolation. We expect that low transferability in SDMs potentially
resulted from both ecological non-stationarity (i.e. biological differences within a
species across its range) and over-extrapolation. Accounting for non-stationarity and
extrapolation should substantially increase the prediction success of species distribu-
tion models, therefore enhancing the success of conservation efforts.
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Introduction

The accuracy of species distribution models (SDMs) is essential for sound conservation
decision making. By predicting the presence of a species through time and space, biolo-
gists and managers can use SDMs to forecast biological invasions, identify critical hab-
itats, prioritize the locations of reserves, appropriately translocate endangered species
(Guisan et al. 2013), and inform large-scale land management practices (Thomas et al.
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2006, Millar et al. 2007). While SDMs are a ubiquitous tool,
they require several assumptions that may not be realistic,
decreasing prediction accuracy and therefore model transfer-
ability (Guisan and Thuiller 2005, Pearman et al. 2008, Elich
and Leathwick 2009).

First, the underlying habitat associations need to exhibit
‘stationarity’ in space and time. We define stationarity here
as a process for which the parameters are temporally and
spatially consistent (Miller 2012, Dale and Fortin 2014). In
other words, to have a stationary SDM, a species needs to be
associated with the same abiotic and biotic factors, i.e. have a
consistent ecological niche (Hutchinson 1957), over time and
at all locations. However, theory and empirical evidence sug-
gest it is often not the case. Spatial variation in species’ niches
may occur if there are genetic differences among populations
(Pearman et al. 2008) or if a species is facing different degrees
and types of competition, predation and diseases across their
range (Aradjo and Luoto 2007, Daskin and Alford 2012,
Chamberlain et al. 2014, Vergnon et al. 2017). There are
some indications that the assumption of stationarity may not
always hold true (Whittingham et al. 2007, Fink et al. 2010,
Schmidt et al. 2014, Shirk et al. 2014, Howard et al. 2015,
Laube etal. 2015, Gémez et al. 2016, Zuckerberg et al. 2016,
Wan et al. 2017), and while the inclusion of biotic factors in
SDMs would likely reduce the problem of non-stationarity,
it is often impractical to include them.

Second, models must be well specified, such that the
entire range of potential environmental variables are present
in data used for SDMs. For instance, if a model is trained in
a location with low to moderate values of a strongly limit-
ing variable (e.g. precipitation) the variable will emerge as
an important SDM predictor. However, if the same model is
extrapolated to a region where precipitation is no longer lim-
iting for the species, the model will likely fail (Owens et al.
2013, Betts et al. 2021). In this case, using a mechanistic
model, rather than a correlative model, while also including
the full range of potential environmental values is likely to
improve model transferability (Higgins et al. 2020). In prac-
tice, it is challenging to separate difficulties in model trans-
ferability that are due to either low stationarity (i.e. ‘true’
differences in species niches across the geographic range) ver-
sus issues relating to extrapolation (Dale and Fortin 2014).

Regardless of the mechanism, research is scant on which
species, and more specifically which species traits, may be
associated with lower model transferability. For example, life
history traits, such as clutch size, number of broods and lon-
gevity may correlate with stationarity. Other traits such as
the spatial extent and topography of a distribution, as well as
primary habitat used, may result in models for some species’
SDMs being better specified than others. Overall, under-
standing such correlates of poor model transferabilicy will
provide advance knowledge about the likely reliability of spe-
cies distribution model predictions.

Within a species’ geographic range, it is also likely that
geographical, ecological and environmental features impact

prediction accuracies. In theory, a regional model should pre-
dict equally well within and between regions of a distribution.
However, at least three mechanisms may decrease prediction
accuracy of models transferred in space.

First, it is widely known that ecological similarity
decreases with increasing distance — a phenomenon known
as Tobler’s law in geography (Tobler 1970). Therefore, under
this geographic distance hypothesis (Fig. 1a), we would expect
species distribution model predictions to become less accu-
rate with increasing physical distances between where a
model has been built (i.e. trained) and where it is applied
(i.e. tested; Yates et al. 2018). The degree to which extrapola-
tion occurs is also likely to increase with geographic distance
(for instance, topography, climate and landcover features
are less likely to be similar as distance increases). Second,
prediction accuracies may decrease between models that are
located at different distances from a distribution’s core (i.e.
the geographic center of the range). Under this core-bound-
ary hypothesis (Fig. 1b), prediction accuracies may increase
if a model is transferred between core or boundary regions.
This hypothesis is derived from the premise that species may
have different levels of fitness, competition, gene flow and
abundance across their ranges, following a gradient along
the range’s core to boundary (Sexton et al. 2009, Orme et al.
2019). This hypothesis is different from the geographical
distance hypothesis because two regions may both be located
at the boundary of a distribution yet be very geographi-
cally distant from each other. Lastly, models transferred
between regions with overlapping ranges of environmental
values (i.e. similar environmental space, termed ‘interpola-
tion’) should have higher predictive accuracy than models
transferred between regions where the environments are not
analogous (Elith and Leathwick 2009, Qiao et al. 2019). We
refer to this hypothesis as the analogue environment hypoth-
esis (Fig. 1c). Whereas the core-boundary hypothesis tends to
be associated with the concept of stationarity, non-analogue
environments across space are likely to be more associated
with poor model specification (Franklin 2010, Dale and
Fortin 2014).

Here, we used 129 species of North American breeding
birds to address three main questions: 1) Can we transfer
SDMs across species’ ranges? Because we expected varia-
tion across species, and to clarify under what conditions
SDMs failed to predict species abundance, we addressed
two additional questions. 2) What geographic and life
history predictors can explain variation in species-level
model transferability? Here, our results provide guidance
on which species, based on their traits, are more likely to
have high prediction accuracies across their range. 3) For
species with lower prediction accuracies, what causes the
decreases in model predictions across space? To answer this
question, we tested three hypotheses associated with fea-
tures of a distribution — the geagraphical distance hypotbhesis,
the core-boundary hypothesis and the analogue environment

hypothesis (Fig. 1).
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Figure 1. Graphical representation of the three hypotheses tested in our model transferability analysis. Black hexagons represent regions
where a model was trained. Green hexagons represent regions where we expect good model transferability, and orange hexagons where we
expect poor model transferability. (a) Under the geographical distance hypothesis, model transferability will be greatest over shorter geographi-
cal distances. A model trained in 1 would do poorly in the orange regions and a model trained at 2 would predict well the abundance in the
neighboring green region. (b) The core-boundary hypothesis is symbolized by a yellow gradient across regions, where core regions are dark
yellow and boundary regions are white. Under this hypothesis, a model at the core, such as model 1 would predict well other core regions
such as the nearby green region. The same applies for two boundary regions such as 2 and its neighboring region, but a core region such as
1 would poorly predict the region in orange because it is at the range boundary. (c) Under the analogue environment hypothesis, regions with
a similar range of environmental conditions should show high transferability. Here the color dots represent temperature, from warm in red,
to cold in dark blue. Region 1 would predict well the green region because they have the same range of temperature (light blue dots) but

poorly the regions in orange. Region 2 would also poorly predict the regions in orange, even if within close geographic proximity.

Material and methods

Data - bird species and abundance

We used data from the USGS Breeding Bird Survey (BBS)
to extract abundances of bird species in Canada and USA
(Pardieck et al. 2019). BBS consists of routes surveyed once
a year during the breeding season (typically June). A BBS
route includes 50 three-minute point counts, separated by a
distance of at least 0.5 miles (Sauer et al. 2003).

We selected bird species (n=138) using three criteria.
First, a species had to be detected in at least 30 different
routes per year. This provided for a minimum sample size
in the number of routes where a species is present and
helped ensure our models would predict reasonably well
(Hernandez et al. 2006, Wisz et al. 2008). Second, we
selected species with a prevalence (i.e. the percentage of
routes where the species was present) of at least 20%. We
also excluded highly common species (prevalence > 75%).
These prevalence values are recommended to improve
the fit of SDMs (McPherson et al. 2004). Third, a mini-
mum of 80% of the breeding distribution of each species
had to be within the area covered by the BBS routes. We
used breeding bird geographic distributions from BirdLife
International (2018). The area covered by the BBS routes was

determined usinga minimum convex polygon surroundingall
BBS routes.

For each BBS route and species, we used the mean abun-
dance for the years of 2013-2017 (inclusively; Howard et al.
2014). This range of years represents the latest five years
available at the time of download. Using the mean abun-
dance across a short time frame enabled us to reduce the
noise caused by yearly changes in detections, while limiting
the impact caused by long-term changes in habitat and cli-
mate on bird abundance (Gutiérrez-Illdn et al. 2014, Betts
etal. 2019).

Data - environmental covariates

We used climatic and land cover covariates known to be
correlated with bird abundance (Austin 2002, Shirley et al.
2013, Howard et al. 2015). Data were obtained from Google
Earth Engine (Gorelick et al. 2017) and were summarized
for each BBS route and year (2013-2017), using a 400 m
buffer (Bahn and McGill 2013). Datasets were selected
based on their availability across North America. Climatic
covariates were obtained from Daymet V3 (Thornton et al.
2017) and included summer precipitation (prcpSummer),
winter precipitation (prcpWinter), maximum summer
temperature (tMax) and minimum winter temperature



(tMin). We used the equivalent of the band 3 (B3) and 4
(B4) of Landsat 7, from Landsat 5, 7 and 8 as land cover
variables. These land cover data were summarized using
the LandTrendr tools (Kennedy et al. 2018). LandTrendr
includes pre-processing of the images including geometric
rectification and cloud and shadow screening. It creates a
yearly surface reflectance composite which we used to sum-
marize data for each BBS route. We used B3 to discriminate
between built-up environments and vegetation, and B4 to
compare rates of chlorophyll absorption which is useful to
distinguish between conifer and broadleaf as well as young
versus senescent vegetation (Cohen and Goward 2004).
The climatic and land cover covariates used in the analysis
are summarized in Table 1. To be consistent with bird data
and to increase model transferability (Tuanmu et al. 2011),
covariates for each BBS route were then averaged over the
period from 2013 to 2017. The number of BBS routes used
for each species was dependent on the size of its breeding
distribution (mean number of BBS routes per species:

1568.5 + 1061.4 SD).

Model transferability analysis

We divided the distribution of each species into equal-sized
hexagons of 106 088 km? (apothem of 175 km; we refer
to these as ‘regions’; Fig. 2). We established a hexagon size
that jointly maximized both the within-hexagon number of
BBS routes, and number of hexagons within each distribu-
tion. We determined this optimum via sensitivity analysis,
in which we used different sizes of hexagons and species to
assess the greatest number of hexagons containing at least 30
BBS routes (Luan et al. 2020). Out of 138 species, 129 had at
least one pair of hexagons with a minimum of 30 BBS routes
per hexagon.

We trained a Random Forest regression model (Breiman
2001, Liaw and Wiener 2002) on each hexagon, using mean
abundance of each bird species per BBS route as response
variables and the BBS route environmental variables (Table
1) as explanatory variables. For the Random Forest mod-
els, we used an ensemble of 1000 trees. To avoid overfitting,
each tree was split using two randomly selected variables.
We zero-centered and scaled by the standard deviations all
predictors to avoid bias in the variable selection process
(Boulesteix et al. 2012). To further lower risks of overfitting,

we divided each hexagon into blocks of 130 km and used
a 5-fold block validation approach (Roberts et al. 2017) to
predict bird abundance within the same hexagon (referred to
‘within-region predictions’). We assessed for the presence of
bias in our prediction by plotting observed ~ predicted and
found our models to be well-calibrated (Supporting informa-
tion). The within-region prediction accuracy, the relationship
between observed and predicted across blocked areas within
the same hexagon, was calculated using a Pearson coeffi-
cient of correlation (r) (Yates et al. 2018). We used Random
Forest because it is commonly used in SDMs (Syphard and
Franklin 2009, Goetz et al. 2010, Matthews et al. 2011,
Mainali et al. 2015, Rich and Currie 2018). It also has
the advantage of modeling multiple interactions and rela-
tionships between variables (Evans et al. 2011, Boulesteix
etal. 2012).

We paired all hexagons, keeping track of the directional-
ity of each pair (i.e. keeping the pairs for hexagon 1 to 2 and
hexagon 2 to 1). For each pair of hexagons, we used the train-
ing model from one hexagon to predict abundance in the
second hexagon (referred to ‘between-regions prediction’).
We also assessed between-regions prediction accuracy using
a Pearson coefficient of correlation (Qiao et al. 2019). Each
species had a different number of Pearson coefficients based
on the number of pairs of predictions (i.e. number of pairs of
hexagons) within their distribution.

We used the within-region predictions per species to cal-
culate a mean within-region Pearson (7 ). Species with a
high 7 were species for which models generally predicted
well within the same hexagon. We selected species with a 7
> 0.2 for the remainder analyses. This value is associated with
models that have a small positive predictive strength of asso-
ciation between predicted and observed values (Cohen 1992,
Maller and Jennions 2002, Betts et al. 2019). We also com-
pleted a sensitivity analysis to assess if different cutoffs for 7
would yield different results. The direction of the resules did
not qualitatively change with different cutoff values.

We created a model transferability index (M71) per spe-
cies. This index represents the mean change in predictive value
between the within-region and between-regions, such that:

Model transferability index (MTI) =1-

1
1
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Table 1. Summary of the environmental covariates used in the modeling analysis.

Summary per  Summary per

Variable Source Pixel size Cadence; range used  pixel, per year route, per year
Band 3* Landsat5, 7 and 8 30 m averaged to 90 m 16 days; 15 May-15 July ~ Medoid** Mean and SD
Band 4* Landsat 5, 7and 8 30 m averaged to 90 m 16 days; 15 May—15 July ~ Medoid** Mean and SD
Precipitation summer DaymetV3 —prcp 1000 m Daily; 15 May-15 July Sum Mean
Precipitation winter DaymetV3 —prcp 1000 m Daily; 1 Jan.—15 March Sum Mean
Maximum summer temperature  DaymetV3 —tmax 1000 m Daily; 15 May-15 July Medoid** Mean
Minimum winter temperature  DaymetV3 —tmin 1000 m Daily; 1 Jan.—15 March Medoid** Mean

* Used LandTrendr to summarize the values.

**The mediod is obtained by selecting the image pixel with the smallest difference between the median from all layers and the observation,

per band.
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Figure 2. Summary of the methodology used in this paper. (a) We used bird distributions, abundance and remote sensing data to train
models within small regions (hexagons) of each distribution. For each model, we calculated a Pearson coefficient of correlation (r) repre-
senting the within-region prediction accuracy. Each trained model was transferred to all other regions of the distribution. We calculated a
between-regions prediction accuracy using Pearson (7). (b) For each species, we calculated a model transferability index (AM77) using the
average difference between 7, and 7. (c) We assessed whether M 77 was correlated with species traits using a phylogenetic linear model. (d)
For each species, we completed a univariate model selection analysis, using the between-region predictions (7,) as response variables and
variables representing our three hypotheses as explanatory variables. We then compiled the best model(s) from all species to assess which

hypothesis best fitted our species.

where 7, is the within-region Pearson coeflicient of correlation
for region i of each species, 7, is the between-regions Pearson
for a model trained in region i and tested in region 7, and i
X j represent the total number of pairs of regions. Species
for which we can predict abundance between regions with
high accuracy will have a small difference in Pearson coef-
ficients between the within-region and between-regions. The
index ranges from —1 to 1, but is most commonly positive,
with mean differences closer to 1 representing overall high
model transferability across a species range. Values close to
1 can either represent a high model transferability across a
species range (even more so when the 7, is large), or a spe-
cies for which the training model did not account well for
the processes regulating abundance (i.e. species with a low

7). In other words, the index is more meaningful for those
species with a higher within-region mean Pearson, which is
one reason we removed species with a very low mean Pearson
(7 <0.2). This index represents a gradient of model trans-
ferability and one would need to consider sample size (num-
ber of independent pairs) to assess the level of significance in
MTT for each species (Cohen 1992).

Geographical and life history traits associated with
high model transferability

We expected that the level of model transferability (M77)
would be predictable based on the geographical and life-his-
tory traits of species. For example, shorter lived species, and



species with a greater number of broods and higher clutch
size may have more rapid evolution and greater potential
for adaptation to their environment (Vedder et al. 2013) as
a result of quick turnover between generations; this could
result in reduced model transferability across their ranges.
Alternatively, long-lived species, which tend to have bigger
brains (Minias et al. 2017), have a higher capacity for behav-
ioral adaptation and would thus have a lower model trans-
ferability in their distributions. The geographic range size of
a species and its topographic heterogeneity may also impact
model transferability. Larger geographic ranges should have
more varied populations across space (Phillimore et al. 2007)
and would likely cross a more diverse set of habitats and cli-
matic conditions. Further, in North America, western regions
tend to have more topographic relief, which also offers greater
diversity of habitats and climatic conditions than in the mid-
west region of North America. Spatial autocorrelation in
biophysical features should occur at finer scales in the west
where habitat heterogeneity is greater; we expect each of
these factors could impact model transferability because they
decrease the likelihood that models are extrapolated outside
the bounds of environmental variables within the focal train-
ing hexagons. We also expected that the maximum summer
temperature tolerated by a species within their ranges, i.e. the
10% warmest locations where the species is present (referred
to as maximum temperature tolerance), could be correlated
with model transferability. Jiguet et al. (2010) showed that
bird species with higher thermal maxima are more likely to
have positive population trends. These species may also be
better adapted to a range of environmental conditions and
have lower model prediction accuracies. Lastly other species
traits such as migration status and primary habitat have been
correlated with species’ abilities to adapt to new environ-
ments (Pulido and Widmer 2005, Colles et al. 2009) and
may affect model transferability.

We used a phylogenetic linear model and the R package
‘phylolm’ (Ho and Ané 2014) to assess if the response vari-
able, MTT, was correlated with species traits (explanatory vari-
ables). We accounted for differences in within-region model
fit of each species by including 7 as an explanatory variable
(Fig. 2). A total of 107 species had phylogenetic data available
and a 7 > 0.2. The phylogenetic data were extracted from
Jetz et al. 2012 (<www.birdtree.org>). We used 5000 trees
from Ericson et al. (Ericson et al. 2006, Hackett et al. 2008)
and 5000 trees from Hackett et al. (2008). We used the R
package ‘ape’ (Paradis and Schliep 2019) to calculate one
consensus tree from the combined 10 000 trees. This consen-
sus tree was used in the linear model to account for the lack
of independence between closely related species.

We included six traits in the phylogenetic linear model.
Each corresponds to the hypotheses above: distribution size,
topographic variation of the geographic range, maximum
temperature tolerance, breeding habitat type, migration
status and a single combined variable representing a slow—
fast continuum in life history traits (Bennett and Owens
2002). We calculated topographic variation by calculating
the standard deviation of the elevation pixels overlapping

each distribution. We calculated maximum temperature tol-
erance for each species using the mean temperature of the
warmest 10% BBS routes where the species was detected. We
extracted breeding habitat information from the Partners In
Flight database (Partners in Flight 2020). All species with
the word ‘forest’ within the name of their primary breeding
habitat were associated with the category ‘forest’, all oth-
ers were associated with the category ‘non-forest’. Based on
Partners in Flight (2020), birds without the word forest as
a primary habitat did not rely on forests during breeding.
We visually assessed migration status using the distribution
maps in Birds of the World (Billerman et al. 2020). All spe-
cies with a summer distribution that is estimated to be more
than 10% different from their distribution on other seasons
were categorized as migrants, the others as residents. Lastly,
we combined three life history traits into a principal compo-
nent analysis (PCA): maximum longevity, number of broods
and maximum clutch size. The life history traits for most spe-
cies (n=102) were extracted from Amniote (Myhrvold et al.
2015). Whenever data were absent from Amniote, we used
the information from Birds of the World (Billerman et al.
2020). The PCA axis 1 explained 85.9% of the variance, with
the ‘longevity’ responsible for 99.9% of its weight, therefore
representing a ‘slow-to-fast’ continuum in avian life-histories
(Bennett and Owens 2002). We implemented PCA using the
R function prcomp (<www.r-project.org>). The axis 1 values
were then used as input in the phylogenetic linear model.

Attributes of a distribution

In total, 96 species satisfied our criteria for inclusion in the
analysis (between-regions 7 > 0.2, 30 hexagon pairs). For
each species, we tested whether the 7, (response) were cor-
related with three aspects of a species distribution, representing
our three hypotheses above (geographic distance hypothesis,
core-boundary hypothesis and analogue environment hypothesis;
Fig. 1). We tested whether the T for each species, were corre-
lated with geographical distance between hexagons. We used
the center point of each hexagon to calculate a great circle
distance (as the crow flies) between paired regions.

We tested if the location of the hexagons, whether at the
core of a distribution or towards its boundary (i.e. core-bound-
ary hypothesis) affected prediction accuracy between regions.
We first calculated the distance between a hexagon’s center
to the closest range boundary line. We then used the abso-
lute difference between the two hexagons’ distances to the
boundary. Under this hypothesis, hexagons with the greatest
distances between core and range edge should have the lowest
prediction accuracy.

We tested the analogue environment hypothesis for each of
the covariates used in the training and predicting models:
prepSummer, prepWinter, tMax, tMin, B3 mean and stan-
dard deviation, and B4 mean and standard deviation. We first
calculated the minimum and maximum value of each covari-
ate within each hexagon, resulting in a covariate range of val-
ues. We then divided the amount of overlap between the two
ranges (one per hexagon), by the range of values from the two



hexagons combined. A range overlap of 100% could either
represent a perfectly identical environmental range between
paired hexagons, or more likely, that the range of the hexagon
used for training included 100% of the values represented in
the predicted hexagon. A percentage of overlap < 100% is
associated with predictions that involved at least some degree
of extrapolation. Negative percentages represent ranges that
did not overlap. We calculated the percentage of extrapola-
tion across regions, considering all 8 variables, for each spe-
cies and pairs of hexagons (Supporting information).

We tested which of these three hypotheses were associated
with each species using a univariate model selection approach
(Fig. 2). This allowed us to include a greater number of species,
at the cost of excluding possible interactions between variables.
Each univariate model consisted of a linear mixed model with
7, as a response, one feature as an explanatory variable, and
two random effects, the training hexagon ID and the predicted
hexagon ID. The two random effects were needed since each
hexagon was used multiple times as both the training and as the
predicted hexagon, resulting in a lack of independence among
predictions. We used a Bayesian information criterion (BIC)
approach to select the top model(s) per species because it con-
trols for differences in sample size in model selection (Burnham
and Anderson 2003, Vrieze 2012); this enabled comparisons
among species with different sample sizes. BIC is also more
consistent when simple models are considered (Vrieze 2012).
We compared 11 univariate models: a null (intercept) model,
a model representing geographical distance, one for the core
versus boundary difference, and eight models representing the
analogue environment hypothesis, one per climatic or land cover
variable’s percent range overlap. For each species, we retained
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the model(s) that had a delta BIC < 2. If the null model was
among the best models, we only retained the null model.

Results

Model transferability

Across 129 species, we found a consistent decrease in model
prediction accuracy when testing models within-region (7 )
than when testing between-regions (7; ; Fig. 3a). A total of
109 species, out of the 129, had a 7 > 0.2. These species
had a mean decrease in prediction accuracy of 43.4% + 30.0
between 7 and 7, and a mean model transferability index
of 0.72 + 0.09 (Fig. 4b; Supporting information).

Species traits

As expected, species with larger geographic ranges tended
to have lower prediction accuracies and associated M7Ts
(Table 2; Supporting information). Topographic variation
within distributions was also important; species inhabiting
regions with greater topographic variation are more likely to
have higher prediction accuracies across their SDMs (Table 2;
Supporting information). Finally, we found that SDMs for
short-lived species tended to have lower M77s (Table 2;
Supporting information).

Attributes of distributions

Several attributes of species’ geographic ranges were use-
ful predictors of model transferability between-regions. Of

Number of species
N w
o o
1 L

N
o
1

_-.I
0.6 08 10

Modei Transferability Index (MTI)

Figure 3. (a) Comparisons of the mean within-region Pearson (7 ) per species and mean between-regions Pearson (7; ). The models pre-

4

dicted within the same region had substantially higher prediction accuracy than between regions. The white circles represent the mean per
category. The violin plots represent the distribution of means among species and the boxplot shows the quartile spread of the data. (b)
Histogram of the model transferability index (M77) per species, where large values of M 77 indicate high model transferability.
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Figure 4. For each species, we compared 11 models in a model selection analysis. The top model(s) of each species is represented by a bar in
this graph. The colors represent the hypothesis tested by each model. The blue bar represents the geographic distance hypothesis, the yellow
bar represents the core-boundary hypothesis and the green bars represent each variable tested as part of the analogue environment hypothesis.
We added a null model (in black) to each species. Out of 96 species, most species (77.1%) had model transferability results that fitted at
least one of the three hypotheses. Most species had prediction accuracies correlated with geographical distance between regions and with
extrapolation in the amount of vegetation (B3 mean) between regions. (b) Example results showing how the attributes of a distribution
influence model transferability among study regions (hexagons). (I) Increases in geographic distances between training and testing regions
decreased model transferability for warbling vireo (Vireo gilvus) (I). Model transferability was improved with a decrease in extrapolation in
the amount of vegetation (B3 mean) for the western wood-pewee (Contopus sordidulus) and (11I) model transferability was improved with
a decrease in extrapolation in maximum summer temperature for the magnolia warbler (Sezophaga magnolia).

the 96 species used in this analysis, 77.1% (74 species) had
prediction data fitting at least one of the three hypotheses
tested (Fig. 4a; Supporting information). We found strong
support for the geographic distance hyporhesis for 28.1% of
species (Fig. 4a; example in Fig. 4b). As expected, larger
distances between regions decreased model transferability.
Further, the analogue environment hypothesis was supported
for 54.2% of species; the greater the amount of extrapola-
tion from the environmental conditions observed in the

model training region, the greater the fall-down in predic-
tion success. However, one covariate stood out as being the
most impactful; 21.9% of species had model transferability
decreased by extrapolation in the amount of vegetation (B3
mean) between regions (Fig. 4a; example in Fig. 4b). Overall,
31.3% of species were affected by extrapolation in at least
one land-cover covariate and 26.0% of species by extrapola-
tion in at least one climate covariate. Unexpectedly, the core-

boundary hypothesis was supported for only 5.2% of species.



Table 2. Results of phylogenetic linear models assessing relationship
between model transferability index MTI and species traits. Traits in
bold had 95% confidence intervals that did not include zero.

Species trait Estimate 95% Cl
(Intercept) 0.675 0.356 to 0.994
Within-region mean Pearson 0.140 0.005 to 0.275
Distribution size (1 000 000 km?) —0.009 —0.014 to —0.003
Topographic variation (km) 0.065 0.002 to 0.127
Maximum temperature (°C) —-0.0004  —0.006 to 0.0005
Habitat — forest versus non-forest ~ —0.009 —0.064 to 0.045
Migration status — migrants -0.009 —-0.109 to 0.092
versus residents
PCA axis 1 (longevity) 0.007 0.001 to 0.013

Overall, 8.3% of species were affected by both distance and
extrapolation, i.e. these species had two hypotheses reflected
among the top models (delta BIC < 2), one representing the
geographic distance hypothesis, one representing the analogue
environment hypothesis.

Discussion

Overall, we found that most species exhibited low prediction
accuracies when transferring models across their geographic
ranges. Between-regions predictions were 43% poorer than
models making predictions within-regions — suggesting poor
model transferability and possibly a violation of the stationar-
ity assumption. While selection of modeling tool can impact
between-region model performance (Heikkinen et al. 2012,
Qiao et al. 2019), our results support previous studies indi-
cating that an increase in geographical distances (Qiao et al.
2019) and degree of extrapolation (Torres et al. 2015, Bell
and Schlaepfer 2016, Qiao et al. 2019, Charney et al. 2021)
between model training and testing areas reduce prediction
accuracies. Moreover, our results suggest that extrapolating
between regions with different amounts of vegetation is espe-
cially problematic for model transferability.

Species’ model transferability indices (M71) were corre-
lated with three ecological and life history traits. We found
that short-lived species and species with large geographic
distributions were more likely to have lower model transfer-
ability prediction accuracies. As predicted, we also found that
species with distributions in areas with low topographic relief
are more likely to have lower prediction accuracies across their
SDMs. We recommend caution when transferring models
across space for such species. If the objective is prediction to
new areas, we recommend that model training areas include
as broad a range of environmental and land-cover variables as
possible. For instance, in mountain landscapes, environmen-
tal conditions in a region can often reflect those encountered
by species across their entire geographic ranges. This limits
the risks posed by extrapolation. The inclusion of mechanis-
tic variables (e.g. dispersal, factors influencing survival and
reproduction) may also decrease the risks posed by extrapola-
tion regardless of the species (Evans et al. 2016, Higgins et al.
2020, Betts et al. 2021).

Similar mechanisms likely drove our findings that 1) spe-
cies with larger geographical ranges are more likely to have
low model transferability, and 2) increases in geographic
distance reduce prediction accuracies. However, the nega-
tive effect of geographic distance was not consistent across
all species. In other words, species with large distributions
were not always more affected by long distances. This could
be due to the presence subspecies or subpopulations across
space, with each population responding slightly differently
to environmental conditions. While an increase in distance
elevates the likelihood of encountering different populations,
in some circumstances (e.g. in the presence of a geographical
barrier), populations could be relatively close to each other
(Pomara et al. 2014, Kopuchian et al. 2020).

Two mechanisms could influence the degree to which
models can be transferred across space. First, the actual bio-
logical processes governing a species’ distribution could vary
across geographic space; such factors influence what we term
ecological stationariry. For instance, different biotic interac-
tions in the form of, for example, new competitors, could
arise in particular parts of the species range, which could
alter relationships between observed predictors and species
abundances (Jankowski et al. 2010). Similarly, geographic
isolation and different climatic conditions could combine to
enable subpopulations within species — each with somewhat
different environmental niches (Bush 1994, Peterson and
Holt 2003, Rollinson et al. 2021). In short, a lack of eco-
logical stationarity could be caused by the presence of unac-
counted differences in biotic interactions or processes such as
emergence of sub-population structure across a species’ range.

However, even if a species exhibits a high degree of eco-
logical stationarity, extrapolating models to new environ-
ments can also impinge severely on model prediction success
(Fig. 5). Indeed, there are substantial risks of model failure
due to over-extrapolation to new environments; this situation
is particularly likely to occur under global change. Indeed,
several of our results (including support for the analogue envi-
ronment hypothesis) indicate that reduced model transferabil-
ity is due to over-extrapolation.

Model misspecification is yet another mechanism that
likely affects model stationarity and transferability (Miller
2012, Dale and Fortin 2014, Rollinson et al. 2021). For
instance, SDMs often use predictor variables collected at
broad spatial scales, but organisms often respond to the envi-
ronment at finer scales (Potter et al. 2013, Frey et al. 2016).
Species also likely have changing biotic interactions across
their range (Dormann et al. 2018), but such data, while
important, are often unavailable across large spatial extents.
Moreover, adding additional covariates to a model could
help, but it involves costs, both statistically in terms of model
complexity, and the economic costs of gathering additional
data. Considering limited conservation and management
resources, it becomes important to balance the level of accu-
racy in model prediction with the cost involved in improving
the model accuracy (Montanari and Koutsoyiannis 2014).

Our results emphasize the importance of assessing the
degree of extrapolation used in model transferability analysis
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Figure 5. Example of a situation where extrapolation and statistical non-stationarity are related through the concept of spatial autocorrela-
tion. (a) Assume a species has a true unimodal relationship between abundance and temperature, referred as ecological stationarity. (b) If a
distribution is characterized by spatial autocorrelation in temperature, with colder temperatures in the northern region and warmer tem-
peratures in the southern region, then predicting the relationship from one region to the other will require extrapolation. Note that spatial
autocorrelation is not necessary to have extrapolation. (c) The starting model of the relationship between abundance and temperature will

be reversed, yielding statistical nonstationarity.

and documenting the results in publications (Qiao et al. 2019,
Guillaumot et al. 2020). We also recommend testing the sta-
tionarity assumption in SDMs prior to transferring models
to new geographic locations or into the future (Legendre
and Fortin 1989, Betts et al. 2006, Dormann et al. 2007,
Hawkins 2012, Ghorbani 2013, Sequeira et al. 2018). While
it may be difficult to disentangle the effects of extrapolation
and non-stationarity, it may be possible to account for each
separately. A first option is to limit extrapolation in model
specifications by selecting regions with analogue environ-
ments (Owens et al. 2013).

Management and conservation applications

Our results highlight the challenges associated with predict-
ing abundance across space for most species of birds breeding
in North America. If unaccounted for, poor model transfer-
ability could mislead conservation efforts by inaccurately
predicting species occurrences and abundances across space
and time. The problems associated with extrapolation are
well known, and yet many applications of SDMs ignore the
consequences. Moreover, only rarely are attempts made to
directly test for stationarity in space or time. Once extrapola-
tion is accounted for, ecological non-stationarity (Legendre
and Fortin 1989, Ghorbani 2013, Dale and Fortin 2014)
may not be a problem in itself but a source of information
to be quantified. It can elucidate potential patterns in habitat
use and selection across geographic ranges that could imply
population structure (Hawkins 2012).

As mentioned by Milly et al. (2008, 2015), ‘In a non-
stationary world, continuity of observations is critical’. To

10

improve the accuracy of SDMs and to better identify station-
ary versus non-stationary ecological processes, will require
dependence upon an ever-expanding pool of biodiversity data
— both in terms of responses (e.g. species’ abundance) and
covariates (Yates et al. 2018) — which are increasingly quan-
tified at fine resolutions using remote sensing (Goetz et al.
2010, He et al. 2015). The future of conservation and success
of management actions must reflect chronic non-stationar-
ity in species responses to their environment (Wiens 2012,
Wolkovich et al. 2014). Continual and consistent monitor-
ing of our environment and constituent biodiversity is there-
fore essential (Yates et al. 2018).
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