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Species distribution models (SDMs) provide insights into species’ ecology and distri-
butions and are frequently used to guide conservation priorities. However, many uses 
of SDMs require model transferability, which refers to the degree to which a model 
built in one place or time can successfully predict distributions in a different place 
or time. If a species’ model has high spatial transferability, the relationship between 
abundance and predictor variables should be consistent across a geographical distribu-
tion. We used Breeding Bird Surveys, climate and remote sensing data, and a novel 
method for quantifying model transferability to test whether SDMs can be trans-
ferred across the geographic ranges of 129 species of North American birds. We also 
assessed whether species’ traits are correlated with model transferability. We expected 
that prediction accuracy between modeled regions should decrease with 1) geographi-
cal distance, 2) degree of extrapolation and 3) the distance from the core of a species’ 
range. Our results suggest that very few species have a high model transferability index 
(MTI). Species with large distributions, with distributions located in areas with low 
topographic relief, and with short lifespans are more likely to exhibit low transferabil-
ity. Transferability between modeled regions also decreased with geographical distance 
and degree of extrapolation. We expect that low transferability in SDMs potentially 
resulted from both ecological non-stationarity (i.e. biological differences within a 
species across its range) and over-extrapolation. Accounting for non-stationarity and 
extrapolation should substantially increase the prediction success of species distribu-
tion models, therefore enhancing the success of conservation efforts.

Keywords: extrapolation, model transfer, species distribution models, stationarity, 
traits

Introduction

The accuracy of species distribution models (SDMs) is essential for sound conservation 
decision making. By predicting the presence of a species through time and space, biolo-
gists and managers can use SDMs to forecast biological invasions, identify critical hab-
itats, prioritize the locations of reserves, appropriately translocate endangered species 
(Guisan et al. 2013), and inform large-scale land management practices (Thomas et al. 
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2006, Millar et al. 2007). While SDMs are a ubiquitous tool, 
they require several assumptions that may not be realistic, 
decreasing prediction accuracy and therefore model transfer-
ability (Guisan and Thuiller 2005, Pearman et al. 2008, Elith 
and Leathwick 2009).

First, the underlying habitat associations need to exhibit 
‘stationarity’ in space and time. We define stationarity here 
as a process for which the parameters are temporally and 
spatially consistent (Miller 2012, Dale and Fortin 2014). In 
other words, to have a stationary SDM, a species needs to be 
associated with the same abiotic and biotic factors, i.e. have a 
consistent ecological niche (Hutchinson 1957), over time and 
at all locations. However, theory and empirical evidence sug-
gest it is often not the case. Spatial variation in species’ niches 
may occur if there are genetic differences among populations 
(Pearman et al. 2008) or if a species is facing different degrees 
and types of competition, predation and diseases across their 
range (Araújo and Luoto 2007, Daskin and Alford 2012, 
Chamberlain  et  al. 2014, Vergnon  et  al. 2017). There are 
some indications that the assumption of stationarity may not 
always hold true (Whittingham et al. 2007, Fink et al. 2010, 
Schmidt et al. 2014, Shirk et al. 2014, Howard et al. 2015, 
Laube et al. 2015, Gómez et al. 2016, Zuckerberg et al. 2016, 
Wan et al. 2017), and while the inclusion of biotic factors in 
SDMs would likely reduce the problem of non-stationarity, 
it is often impractical to include them.

Second, models must be well specified, such that the 
entire range of potential environmental variables are present 
in data used for SDMs. For instance, if a model is trained in 
a location with low to moderate values of a strongly limit-
ing variable (e.g. precipitation) the variable will emerge as 
an important SDM predictor. However, if the same model is 
extrapolated to a region where precipitation is no longer lim-
iting for the species, the model will likely fail (Owens et al. 
2013, Betts  et  al. 2021). In this case, using a mechanistic 
model, rather than a correlative model, while also including 
the full range of potential environmental values is likely to 
improve model transferability (Higgins et al. 2020). In prac-
tice, it is challenging to separate difficulties in model trans-
ferability that are due to either low stationarity (i.e. ‘true’ 
differences in species niches across the geographic range) ver-
sus issues relating to extrapolation (Dale and Fortin 2014).

Regardless of the mechanism, research is scant on which 
species, and more specifically which species traits, may be 
associated with lower model transferability. For example, life 
history traits, such as clutch size, number of broods and lon-
gevity may correlate with stationarity. Other traits such as 
the spatial extent and topography of a distribution, as well as 
primary habitat used, may result in models for some species’ 
SDMs being better specified than others. Overall, under-
standing such correlates of poor model transferability will 
provide advance knowledge about the likely reliability of spe-
cies distribution model predictions.

Within a species’ geographic range, it is also likely that 
geographical, ecological and environmental features impact 

prediction accuracies. In theory, a regional model should pre-
dict equally well within and between regions of a distribution. 
However, at least three mechanisms may decrease prediction 
accuracy of models transferred in space.

First, it is widely known that ecological similarity 
decreases with increasing distance – a phenomenon known 
as Tobler’s law in geography (Tobler 1970). Therefore, under 
this geographic distance hypothesis (Fig. 1a), we would expect 
species distribution model predictions to become less accu-
rate with increasing physical distances between where a 
model has been built (i.e. trained) and where it is applied 
(i.e. tested; Yates et al. 2018). The degree to which extrapola-
tion occurs is also likely to increase with geographic distance 
(for instance, topography, climate and landcover features 
are less likely to be similar as distance increases). Second, 
prediction accuracies may decrease between models that are 
located at different distances from a distribution’s core (i.e. 
the geographic center of the range). Under this core-bound-
ary hypothesis (Fig. 1b), prediction accuracies may increase 
if a model is transferred between core or boundary regions. 
This hypothesis is derived from the premise that species may 
have different levels of fitness, competition, gene flow and 
abundance across their ranges, following a gradient along 
the range’s core to boundary (Sexton et al. 2009, Orme et al. 
2019). This hypothesis is different from the geographical 
distance hypothesis because two regions may both be located 
at the boundary of a distribution yet be very geographi-
cally distant from each other. Lastly, models transferred 
between regions with overlapping ranges of environmental 
values (i.e. similar environmental space, termed ‘interpola-
tion’) should have higher predictive accuracy than models 
transferred between regions where the environments are not 
analogous (Elith and Leathwick 2009, Qiao et al. 2019). We 
refer to this hypothesis as the analogue environment hypoth-
esis (Fig. 1c). Whereas the core-boundary hypothesis tends to 
be associated with the concept of stationarity, non-analogue 
environments across space are likely to be more associated 
with poor model specification (Franklin 2010, Dale and 
Fortin 2014).

Here, we used 129 species of North American breeding 
birds to address three main questions: 1) Can we transfer 
SDMs across species’ ranges? Because we expected varia-
tion across species, and to clarify under what conditions 
SDMs failed to predict species abundance, we addressed 
two additional questions. 2) What geographic and life 
history predictors can explain variation in species-level 
model transferability? Here, our results provide guidance 
on which species, based on their traits, are more likely to 
have high prediction accuracies across their range. 3) For 
species with lower prediction accuracies, what causes the 
decreases in model predictions across space? To answer this 
question, we tested three hypotheses associated with fea-
tures of a distribution – the geographical distance hypothesis, 
the core-boundary hypothesis and the analogue environment  
hypothesis (Fig. 1).
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Material and methods

Data – bird species and abundance

We used data from the USGS Breeding Bird Survey (BBS) 
to extract abundances of bird species in Canada and USA 
(Pardieck et al. 2019). BBS consists of routes surveyed once 
a year during the breeding season (typically June). A BBS 
route includes 50 three-minute point counts, separated by a 
distance of at least 0.5 miles (Sauer et al. 2003).

We selected bird species (n = 138) using three criteria. 
First, a species had to be detected in at least 30 different 
routes per year. This provided for a minimum sample size 
in the number of routes where a species is present and 
helped ensure our models would predict reasonably well 
(Hernandez  et  al. 2006, Wisz  et  al. 2008). Second, we 
selected species with a prevalence (i.e. the percentage of 
routes where the species was present) of at least 20%. We 
also excluded highly common species (prevalence > 75%). 
These prevalence values are recommended to improve 
the fit of SDMs (McPherson  et  al. 2004). Third, a mini-
mum of 80% of the breeding distribution of each species 
had to be within the area covered by the BBS routes. We 
used breeding bird geographic distributions from BirdLife 
International (2018). The area covered by the BBS routes was 

determined using a minimum convex polygon surrounding all  
BBS routes.

For each BBS route and species, we used the mean abun-
dance for the years of 2013–2017 (inclusively; Howard et al. 
2014). This range of years represents the latest five years 
available at the time of download. Using the mean abun-
dance across a short time frame enabled us to reduce the 
noise caused by yearly changes in detections, while limiting 
the impact caused by long-term changes in habitat and cli-
mate on bird abundance (Gutiérrez-Illán et  al. 2014, Betts  
et al. 2019).

Data – environmental covariates

We used climatic and land cover covariates known to be 
correlated with bird abundance (Austin 2002, Shirley et al. 
2013, Howard et al. 2015). Data were obtained from Google 
Earth Engine (Gorelick et al. 2017) and were summarized 
for each BBS route and year (2013–2017), using a 400 m 
buffer (Bahn and McGill 2013). Datasets were selected 
based on their availability across North America. Climatic 
covariates were obtained from Daymet V3 (Thornton et al. 
2017) and included summer precipitation (prcpSummer), 
winter precipitation (prcpWinter), maximum summer 
temperature (tMax) and minimum winter temperature 

Figure 1. Graphical representation of the three hypotheses tested in our model transferability analysis. Black hexagons represent regions 
where a model was trained. Green hexagons represent regions where we expect good model transferability, and orange hexagons where we 
expect poor model transferability. (a) Under the geographical distance hypothesis, model transferability will be greatest over shorter geographi-
cal distances. A model trained in 1 would do poorly in the orange regions and a model trained at 2 would predict well the abundance in the 
neighboring green region. (b) The core-boundary hypothesis is symbolized by a yellow gradient across regions, where core regions are dark 
yellow and boundary regions are white. Under this hypothesis, a model at the core, such as model 1 would predict well other core regions 
such as the nearby green region. The same applies for two boundary regions such as 2 and its neighboring region, but a core region such as 
1 would poorly predict the region in orange because it is at the range boundary. (c) Under the analogue environment hypothesis, regions with 
a similar range of environmental conditions should show high transferability. Here the color dots represent temperature, from warm in red, 
to cold in dark blue. Region 1 would predict well the green region because they have the same range of temperature (light blue dots) but 
poorly the regions in orange. Region 2 would also poorly predict the regions in orange, even if within close geographic proximity.
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(tMin). We used the equivalent of the band 3 (B3) and 4 
(B4) of Landsat 7, from Landsat 5, 7 and 8 as land cover 
variables. These land cover data were summarized using 
the LandTrendr tools (Kennedy  et  al. 2018). LandTrendr 
includes pre-processing of the images including geometric 
rectification and cloud and shadow screening. It creates a 
yearly surface reflectance composite which we used to sum-
marize data for each BBS route. We used B3 to discriminate 
between built-up environments and vegetation, and B4 to 
compare rates of chlorophyll absorption which is useful to 
distinguish between conifer and broadleaf as well as young 
versus senescent vegetation (Cohen and Goward 2004). 
The climatic and land cover covariates used in the analysis 
are summarized in Table 1. To be consistent with bird data 
and to increase model transferability (Tuanmu et al. 2011), 
covariates for each BBS route were then averaged over the 
period from 2013 to 2017. The number of BBS routes used 
for each species was dependent on the size of its breeding  
distribution (mean number of BBS routes per species: 
1568.5 ± 1061.4 SD).

Model transferability analysis

We divided the distribution of each species into equal-sized 
hexagons of 106 088 km2 (apothem of 175 km; we refer 
to these as ‘regions’; Fig. 2). We established a hexagon size 
that jointly maximized both the within-hexagon number of 
BBS routes, and number of hexagons within each distribu-
tion. We determined this optimum via sensitivity analysis, 
in which we used different sizes of hexagons and species to 
assess the greatest number of hexagons containing at least 30 
BBS routes (Luan et al. 2020). Out of 138 species, 129 had at 
least one pair of hexagons with a minimum of 30 BBS routes 
per hexagon.

We trained a Random Forest regression model (Breiman 
2001, Liaw and Wiener 2002) on each hexagon, using mean 
abundance of each bird species per BBS route as response 
variables and the BBS route environmental variables (Table 
1) as explanatory variables. For the Random Forest mod-
els, we used an ensemble of 1000 trees. To avoid overfitting, 
each tree was split using two randomly selected variables. 
We zero-centered and scaled by the standard deviations all 
predictors to avoid bias in the variable selection process 
(Boulesteix et al. 2012). To further lower risks of overfitting, 

we divided each hexagon into blocks of 130 km and used 
a 5-fold block validation approach (Roberts et al. 2017) to 
predict bird abundance within the same hexagon (referred to 
‘within-region predictions’). We assessed for the presence of 
bias in our prediction by plotting observed ~ predicted and 
found our models to be well-calibrated (Supporting informa-
tion). The within-region prediction accuracy, the relationship 
between observed and predicted across blocked areas within 
the same hexagon, was calculated using a Pearson coeffi-
cient of correlation (ri) (Yates et al. 2018). We used Random 
Forest because it is commonly used in SDMs (Syphard and 
Franklin 2009, Goetz  et  al. 2010, Matthews  et  al. 2011, 
Mainali  et  al. 2015, Rich and Currie 2018). It also has 
the advantage of modeling multiple interactions and rela-
tionships between variables (Evans  et  al. 2011, Boulesteix  
et al. 2012).

We paired all hexagons, keeping track of the directional-
ity of each pair (i.e. keeping the pairs for hexagon 1 to 2 and 
hexagon 2 to 1). For each pair of hexagons, we used the train-
ing model from one hexagon to predict abundance in the 
second hexagon (referred to ‘between-regions prediction’). 
We also assessed between-regions prediction accuracy using 
a Pearson coefficient of correlation (Qiao et al. 2019). Each 
species had a different number of Pearson coefficients based 
on the number of pairs of predictions (i.e. number of pairs of 
hexagons) within their distribution.

We used the within-region predictions per species to cal-
culate a mean within-region Pearson ( ri ). Species with a 
high ri  were species for which models generally predicted 
well within the same hexagon. We selected species with a ri  
> 0.2 for the remainder analyses. This value is associated with 
models that have a small positive predictive strength of asso-
ciation between predicted and observed values (Cohen 1992, 
Møller and Jennions 2002, Betts et al. 2019). We also com-
pleted a sensitivity analysis to assess if different cutoffs for ri  
would yield different results. The direction of the results did 
not qualitatively change with different cutoff values.

We created a model transferability index (MTI) per spe-
cies. This index represents the mean change in predictive value 
between the within-region and between-regions, such that:

Model transferability index MTI( ) = -
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Table 1. Summary of the environmental covariates used in the modeling analysis.

Variable Source Pixel size Cadence; range used
Summary per 
pixel, per year

Summary per 
route, per year

Band 3* Landsat 5, 7 and 8 30 m averaged to 90 m 16 days; 15 May–15 July Medoid** Mean and SD
Band 4* Landsat 5, 7 and 8 30 m averaged to 90 m 16 days; 15 May–15 July Medoid** Mean and SD
Precipitation summer Daymet V3 – prcp 1000 m Daily; 15 May–15 July Sum Mean
Precipitation winter Daymet V3 – prcp 1000 m Daily; 1 Jan.–15 March Sum Mean
Maximum summer temperature Daymet V3 – tmax 1000 m Daily; 15 May–15 July Medoid** Mean
Minimum winter temperature Daymet V3 – tmin 1000 m Daily; 1 Jan.–15 March Medoid** Mean

* Used LandTrendr to summarize the values.
** The mediod is obtained by selecting the image pixel with the smallest difference between the median from all layers and the observation, 
per band.
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where ri is the within-region Pearson coefficient of correlation 
for region i of each species, rij is the between-regions Pearson 
for a model trained in region i and tested in region j, and i 
× j represent the total number of pairs of regions. Species 
for which we can predict abundance between regions with 
high accuracy will have a small difference in Pearson coef-
ficients between the within-region and between-regions. The 
index ranges from −1 to 1, but is most commonly positive, 
with mean differences closer to 1 representing overall high 
model transferability across a species range. Values close to 
1 can either represent a high model transferability across a 
species range (even more so when the ri is large), or a spe-
cies for which the training model did not account well for 
the processes regulating abundance (i.e. species with a low 

ri). In other words, the index is more meaningful for those 
species with a higher within-region mean Pearson, which is 
one reason we removed species with a very low mean Pearson  
( ri  ≤ 0.2). This index represents a gradient of model trans-
ferability and one would need to consider sample size (num-
ber of independent pairs) to assess the level of significance in 
MTI for each species (Cohen 1992).

Geographical and life history traits associated with 
high model transferability

We expected that the level of model transferability (MTI) 
would be predictable based on the geographical and life-his-
tory traits of species. For example, shorter lived species, and 

Figure 2. Summary of the methodology used in this paper. (a) We used bird distributions, abundance and remote sensing data to train 
models within small regions (hexagons) of each distribution. For each model, we calculated a Pearson coefficient of correlation (ri) repre-
senting the within-region prediction accuracy. Each trained model was transferred to all other regions of the distribution. We calculated a 
between-regions prediction accuracy using Pearson (rij). (b) For each species, we calculated a model transferability index (MTI) using the 
average difference between ri and rij. (c) We assessed whether MTI was correlated with species traits using a phylogenetic linear model. (d) 
For each species, we completed a univariate model selection analysis, using the between-region predictions (rij) as response variables and 
variables representing our three hypotheses as explanatory variables. We then compiled the best model(s) from all species to assess which 
hypothesis best fitted our species.
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species with a greater number of broods and higher clutch 
size may have more rapid evolution and greater potential 
for adaptation to their environment (Vedder et al. 2013) as 
a result of quick turnover between generations; this could 
result in reduced model transferability across their ranges. 
Alternatively, long-lived species, which tend to have bigger 
brains (Minias et al. 2017), have a higher capacity for behav-
ioral adaptation and would thus have a lower model trans-
ferability in their distributions. The geographic range size of 
a species and its topographic heterogeneity may also impact 
model transferability. Larger geographic ranges should have 
more varied populations across space (Phillimore et al. 2007) 
and would likely cross a more diverse set of habitats and cli-
matic conditions. Further, in North America, western regions 
tend to have more topographic relief, which also offers greater 
diversity of habitats and climatic conditions than in the mid-
west region of North America. Spatial autocorrelation in 
biophysical features should occur at finer scales in the west 
where habitat heterogeneity is greater; we expect each of 
these factors could impact model transferability because they 
decrease the likelihood that models are extrapolated outside 
the bounds of environmental variables within the focal train-
ing hexagons. We also expected that the maximum summer 
temperature tolerated by a species within their ranges, i.e. the 
10% warmest locations where the species is present (referred 
to as maximum temperature tolerance), could be correlated 
with model transferability. Jiguet et al. (2010) showed that 
bird species with higher thermal maxima are more likely to 
have positive population trends. These species may also be 
better adapted to a range of environmental conditions and 
have lower model prediction accuracies. Lastly other species 
traits such as migration status and primary habitat have been 
correlated with species’ abilities to adapt to new environ-
ments (Pulido and Widmer 2005, Colles  et  al. 2009) and 
may affect model transferability.

We used a phylogenetic linear model and the R package 
‘phylolm’ (Ho and Ané 2014) to assess if the response vari-
able, MTI, was correlated with species traits (explanatory vari-
ables). We accounted for differences in within-region model 
fit of each species by including ri  as an explanatory variable 
(Fig. 2). A total of 107 species had phylogenetic data available 
and a ri  > 0.2. The phylogenetic data were extracted from 
Jetz et al. 2012 (<www.birdtree.org>). We used 5000 trees 
from Ericson et al. (Ericson et al. 2006, Hackett et al. 2008) 
and 5000 trees from Hackett et al. (2008). We used the R 
package ‘ape’ (Paradis and Schliep 2019) to calculate one 
consensus tree from the combined 10 000 trees. This consen-
sus tree was used in the linear model to account for the lack 
of independence between closely related species.

We included six traits in the phylogenetic linear model. 
Each corresponds to the hypotheses above: distribution size, 
topographic variation of the geographic range, maximum 
temperature tolerance, breeding habitat type, migration 
status and a single combined variable representing a slow–
fast continuum in life history traits (Bennett and Owens 
2002). We calculated topographic variation by calculating 
the standard deviation of the elevation pixels overlapping 

each distribution. We calculated maximum temperature tol-
erance for each species using the mean temperature of the 
warmest 10% BBS routes where the species was detected. We 
extracted breeding habitat information from the Partners In 
Flight database (Partners in Flight 2020). All species with 
the word ‘forest’ within the name of their primary breeding 
habitat were associated with the category ‘forest’, all oth-
ers were associated with the category ‘non-forest’. Based on 
Partners in Flight (2020), birds without the word forest as 
a primary habitat did not rely on forests during breeding. 
We visually assessed migration status using the distribution 
maps in Birds of the World (Billerman et al. 2020). All spe-
cies with a summer distribution that is estimated to be more 
than 10% different from their distribution on other seasons 
were categorized as migrants, the others as residents. Lastly, 
we combined three life history traits into a principal compo-
nent analysis (PCA): maximum longevity, number of broods 
and maximum clutch size. The life history traits for most spe-
cies (n = 102) were extracted from Amniote (Myhrvold et al. 
2015). Whenever data were absent from Amniote, we used 
the information from Birds of the World (Billerman  et  al. 
2020). The PCA axis 1 explained 85.9% of the variance, with 
the ‘longevity’ responsible for 99.9% of its weight, therefore 
representing a ‘slow-to-fast’ continuum in avian life-histories 
(Bennett and Owens 2002). We implemented PCA using the 
R function prcomp (<www.r-project.org>). The axis 1 values 
were then used as input in the phylogenetic linear model.

Attributes of a distribution

In total, 96 species satisfied our criteria for inclusion in the 
analysis (between-regions ri  > 0.2, 30 hexagon pairs). For 
each species, we tested whether the rij (response) were cor-
related with three aspects of a species distribution, representing 
our three hypotheses above (geographic distance hypothesis, 
core-boundary hypothesis and analogue environment hypothesis; 
Fig. 1). We tested whether the rij, for each species, were corre-
lated with geographical distance between hexagons. We used 
the center point of each hexagon to calculate a great circle 
distance (as the crow flies) between paired regions.

We tested if the location of the hexagons, whether at the 
core of a distribution or towards its boundary (i.e. core-bound-
ary hypothesis) affected prediction accuracy between regions. 
We first calculated the distance between a hexagon’s center 
to the closest range boundary line. We then used the abso-
lute difference between the two hexagons’ distances to the 
boundary. Under this hypothesis, hexagons with the greatest 
distances between core and range edge should have the lowest 
prediction accuracy.

We tested the analogue environment hypothesis for each of 
the covariates used in the training and predicting models: 
prcpSummer, prcpWinter, tMax, tMin, B3 mean and stan-
dard deviation, and B4 mean and standard deviation. We first 
calculated the minimum and maximum value of each covari-
ate within each hexagon, resulting in a covariate range of val-
ues. We then divided the amount of overlap between the two 
ranges (one per hexagon), by the range of values from the two 
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hexagons combined. A range overlap of 100% could either 
represent a perfectly identical environmental range between 
paired hexagons, or more likely, that the range of the hexagon 
used for training included 100% of the values represented in 
the predicted hexagon. A percentage of overlap < 100% is 
associated with predictions that involved at least some degree 
of extrapolation. Negative percentages represent ranges that 
did not overlap. We calculated the percentage of extrapola-
tion across regions, considering all 8 variables, for each spe-
cies and pairs of hexagons (Supporting information).

We tested which of these three hypotheses were associated 
with each species using a univariate model selection approach 
(Fig. 2). This allowed us to include a greater number of species, 
at the cost of excluding possible interactions between variables. 
Each univariate model consisted of a linear mixed model with 
rij as a response, one feature as an explanatory variable, and 
two random effects, the training hexagon ID and the predicted 
hexagon ID. The two random effects were needed since each 
hexagon was used multiple times as both the training and as the 
predicted hexagon, resulting in a lack of independence among 
predictions. We used a Bayesian information criterion (BIC) 
approach to select the top model(s) per species because it con-
trols for differences in sample size in model selection (Burnham 
and Anderson 2003, Vrieze 2012); this enabled comparisons 
among species with different sample sizes. BIC is also more 
consistent when simple models are considered (Vrieze 2012). 
We compared 11 univariate models: a null (intercept) model, 
a model representing geographical distance, one for the core 
versus boundary difference, and eight models representing the 
analogue environment hypothesis, one per climatic or land cover 
variable’s percent range overlap. For each species, we retained 

the model(s) that had a delta BIC < 2. If the null model was 
among the best models, we only retained the null model.

Results

Model transferability

Across 129 species, we found a consistent decrease in model 
prediction accuracy when testing models within-region ( ri ) 
than when testing between-regions ( rij ; Fig. 3a). A total of 
109 species, out of the 129, had a ri  > 0.2. These species 
had a mean decrease in prediction accuracy of 43.4% ± 30.0 
between ri  and rij , and a mean model transferability index 
of 0.72 ± 0.09 (Fig. 4b; Supporting information).

Species traits

As expected, species with larger geographic ranges tended 
to have lower prediction accuracies and associated MTIs 
(Table 2; Supporting information). Topographic variation 
within distributions was also important; species inhabiting 
regions with greater topographic variation are more likely to 
have higher prediction accuracies across their SDMs (Table 2; 
Supporting information). Finally, we found that SDMs for 
short-lived species tended to have lower MTIs (Table 2; 
Supporting information).

Attributes of distributions

Several attributes of species’ geographic ranges were use-
ful predictors of model transferability between-regions. Of 

Figure 3. (a) Comparisons of the mean within-region Pearson ( ri ) per species and mean between-regions Pearson ( rij ). The models pre-
dicted within the same region had substantially higher prediction accuracy than between regions. The white circles represent the mean per 
category. The violin plots represent the distribution of means among species and the boxplot shows the quartile spread of the data. (b) 
Histogram of the model transferability index (MTI) per species, where large values of MTI indicate high model transferability.
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the 96 species used in this analysis, 77.1% (74 species) had 
prediction data fitting at least one of the three hypotheses 
tested (Fig. 4a; Supporting information). We found strong 
support for the geographic distance hypothesis for 28.1% of 
species (Fig. 4a; example in Fig. 4b). As expected, larger 
distances between regions decreased model transferability. 
Further, the analogue environment hypothesis was supported 
for 54.2% of species; the greater the amount of extrapola-
tion from the environmental conditions observed in the 

model training region, the greater the fall-down in predic-
tion success. However, one covariate stood out as being the 
most impactful; 21.9% of species had model transferability 
decreased by extrapolation in the amount of vegetation (B3 
mean) between regions (Fig. 4a; example in Fig. 4b). Overall, 
31.3% of species were affected by extrapolation in at least 
one land-cover covariate and 26.0% of species by extrapola-
tion in at least one climate covariate. Unexpectedly, the core-
boundary hypothesis was supported for only 5.2% of species. 

Figure 4. For each species, we compared 11 models in a model selection analysis. The top model(s) of each species is represented by a bar in 
this graph. The colors represent the hypothesis tested by each model. The blue bar represents the geographic distance hypothesis, the yellow 
bar represents the core-boundary hypothesis and the green bars represent each variable tested as part of the analogue environment hypothesis. 
We added a null model (in black) to each species. Out of 96 species, most species (77.1%) had model transferability results that fitted at 
least one of the three hypotheses. Most species had prediction accuracies correlated with geographical distance between regions and with 
extrapolation in the amount of vegetation (B3 mean) between regions. (b) Example results showing how the attributes of a distribution 
influence model transferability among study regions (hexagons). (I) Increases in geographic distances between training and testing regions 
decreased model transferability for warbling vireo (Vireo gilvus) (II). Model transferability was improved with a decrease in extrapolation in 
the amount of vegetation (B3 mean) for the western wood-pewee (Contopus sordidulus) and (III) model transferability was improved with 
a decrease in extrapolation in maximum summer temperature for the magnolia warbler (Setophaga magnolia).
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Overall, 8.3% of species were affected by both distance and 
extrapolation, i.e. these species had two hypotheses reflected 
among the top models (delta BIC < 2), one representing the 
geographic distance hypothesis, one representing the analogue 
environment hypothesis.

Discussion

Overall, we found that most species exhibited low prediction 
accuracies when transferring models across their geographic 
ranges. Between-regions predictions were 43% poorer than 
models making predictions within-regions – suggesting poor 
model transferability and possibly a violation of the stationar-
ity assumption. While selection of modeling tool can impact 
between-region model performance (Heikkinen et al. 2012, 
Qiao et al. 2019), our results support previous studies indi-
cating that an increase in geographical distances (Qiao et al. 
2019) and degree of extrapolation (Torres  et  al. 2015, Bell 
and Schlaepfer 2016, Qiao et al. 2019, Charney et al. 2021) 
between model training and testing areas reduce prediction 
accuracies. Moreover, our results suggest that extrapolating 
between regions with different amounts of vegetation is espe-
cially problematic for model transferability.

Species’ model transferability indices (MTI) were corre-
lated with three ecological and life history traits. We found 
that short-lived species and species with large geographic 
distributions were more likely to have lower model transfer-
ability prediction accuracies. As predicted, we also found that 
species with distributions in areas with low topographic relief 
are more likely to have lower prediction accuracies across their 
SDMs. We recommend caution when transferring models 
across space for such species. If the objective is prediction to 
new areas, we recommend that model training areas include 
as broad a range of environmental and land-cover variables as 
possible. For instance, in mountain landscapes, environmen-
tal conditions in a region can often reflect those encountered 
by species across their entire geographic ranges. This limits 
the risks posed by extrapolation. The inclusion of mechanis-
tic variables (e.g. dispersal, factors influencing survival and 
reproduction) may also decrease the risks posed by extrapola-
tion regardless of the species (Evans et al. 2016, Higgins et al. 
2020, Betts et al. 2021).

Similar mechanisms likely drove our findings that 1) spe-
cies with larger geographical ranges are more likely to have 
low model transferability, and 2) increases in geographic 
distance reduce prediction accuracies. However, the nega-
tive effect of geographic distance was not consistent across 
all species. In other words, species with large distributions 
were not always more affected by long distances. This could 
be due to the presence subspecies or subpopulations across 
space, with each population responding slightly differently 
to environmental conditions. While an increase in distance 
elevates the likelihood of encountering different populations, 
in some circumstances (e.g. in the presence of a geographical 
barrier), populations could be relatively close to each other 
(Pomara et al. 2014, Kopuchian et al. 2020).

Two mechanisms could influence the degree to which 
models can be transferred across space. First, the actual bio-
logical processes governing a species’ distribution could vary 
across geographic space; such factors influence what we term 
ecological stationarity. For instance, different biotic interac-
tions in the form of, for example, new competitors, could 
arise in particular parts of the species range, which could 
alter relationships between observed predictors and species 
abundances (Jankowski  et  al. 2010). Similarly, geographic 
isolation and different climatic conditions could combine to 
enable subpopulations within species – each with somewhat 
different environmental niches (Bush 1994, Peterson and 
Holt 2003, Rollinson et  al. 2021). In short, a lack of eco-
logical stationarity could be caused by the presence of unac-
counted differences in biotic interactions or processes such as 
emergence of sub-population structure across a species’ range.

However, even if a species exhibits a high degree of eco-
logical stationarity, extrapolating models to new environ-
ments can also impinge severely on model prediction success 
(Fig. 5). Indeed, there are substantial risks of model failure 
due to over-extrapolation to new environments; this situation 
is particularly likely to occur under global change. Indeed, 
several of our results (including support for the analogue envi-
ronment hypothesis) indicate that reduced model transferabil-
ity is due to over-extrapolation.

Model misspecification is yet another mechanism that 
likely affects model stationarity and transferability (Miller 
2012, Dale and Fortin 2014, Rollinson  et  al. 2021). For 
instance, SDMs often use predictor variables collected at 
broad spatial scales, but organisms often respond to the envi-
ronment at finer scales (Potter et al. 2013, Frey et al. 2016). 
Species also likely have changing biotic interactions across 
their range (Dormann  et  al. 2018), but such data, while 
important, are often unavailable across large spatial extents. 
Moreover, adding additional covariates to a model could 
help, but it involves costs, both statistically in terms of model 
complexity, and the economic costs of gathering additional 
data. Considering limited conservation and management 
resources, it becomes important to balance the level of accu-
racy in model prediction with the cost involved in improving 
the model accuracy (Montanari and Koutsoyiannis 2014).

Our results emphasize the importance of assessing the 
degree of extrapolation used in model transferability analysis 

Table 2. Results of phylogenetic linear models assessing relationship 
between model transferability index MTI and species traits. Traits in 
bold had 95% confidence intervals that did not include zero.

Species trait Estimate 95% CI

(Intercept) 0.675 0.356 to 0.994
Within-region mean Pearson 0.140 0.005 to 0.275
Distribution size (1 000 000 km2) −0.009 −0.014 to −0.003
Topographic variation (km) 0.065 0.002 to 0.127
Maximum temperature (°C) −0.0004 −0.006 to 0.0005
Habitat – forest versus non-forest −0.009 −0.064 to 0.045
Migration status – migrants  

versus residents
−0.009 −0.109 to 0.092

PCA axis 1 (longevity) 0.007 0.001 to 0.013
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and documenting the results in publications (Qiao et al. 2019, 
Guillaumot et al. 2020). We also recommend testing the sta-
tionarity assumption in SDMs prior to transferring models 
to new geographic locations or into the future (Legendre 
and Fortin 1989, Betts  et  al. 2006, Dormann  et  al. 2007, 
Hawkins 2012, Ghorbani 2013, Sequeira et al. 2018). While 
it may be difficult to disentangle the effects of extrapolation 
and non-stationarity, it may be possible to account for each 
separately. A first option is to limit extrapolation in model 
specifications by selecting regions with analogue environ-
ments (Owens et al. 2013).

Management and conservation applications

Our results highlight the challenges associated with predict-
ing abundance across space for most species of birds breeding 
in North America. If unaccounted for, poor model transfer-
ability could mislead conservation efforts by inaccurately 
predicting species occurrences and abundances across space 
and time. The problems associated with extrapolation are 
well known, and yet many applications of SDMs ignore the 
consequences. Moreover, only rarely are attempts made to 
directly test for stationarity in space or time. Once extrapola-
tion is accounted for, ecological non-stationarity (Legendre 
and Fortin 1989, Ghorbani 2013, Dale and Fortin 2014) 
may not be a problem in itself but a source of information 
to be quantified. It can elucidate potential patterns in habitat 
use and selection across geographic ranges that could imply 
population structure (Hawkins 2012).

As mentioned by Milly  et  al. (2008, 2015), ‘In a non-
stationary world, continuity of observations is critical’. To 

improve the accuracy of SDMs and to better identify station-
ary versus non-stationary ecological processes, will require 
dependence upon an ever-expanding pool of biodiversity data 
– both in terms of responses (e.g. species’ abundance) and 
covariates (Yates et al. 2018) – which are increasingly quan-
tified at fine resolutions using remote sensing (Goetz  et  al. 
2010, He et al. 2015). The future of conservation and success 
of management actions must reflect chronic non-stationar-
ity in species responses to their environment (Wiens 2012, 
Wolkovich et al. 2014). Continual and consistent monitor-
ing of our environment and constituent biodiversity is there-
fore essential (Yates et al. 2018).
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