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Abstract—In a smart space influenced by multiple parties,
conflicts can arise when competing users try to control the same
devices in different ways. Such conflicts usually require user
negotiation to resolve and thus lower people’s satisfaction and
trust in the smart system. Finding a conflict is the first step to
resolving it, and the timing when a conflict is identified impacts
the options for resolution. Most existing approaches identify
conflicts only at the time they occur, which offers little help
to the users in resolving the conflicts, especially without them
having to compromise. A better solution is to predict potential
conflicts in advance so that the users can coordinate themselves to
avoid conflict situations beforehand. In this paper, we propose a
novel context-aware conflict prediction framework that addresses
the research gaps identified in existing literature. We mine habit
patterns from the user’s previous interactions with smart devices
in the various environments they occupy. These habits serve
as inputs to our conflict prediction algorithm which takes the
habits of pairs of users and outputs context situations in which
those users have the potential to conflict. To support eventual
flexible resolution, we use explicit models of the uncertainties
of users’ behaviors to associate each potential conflict scenario
with a probability of that conflict occurring for these particular
users. We evaluate our framework on real-world datasets to
demonstrate the effectiveness of the proposed approach.

Index Terms—Internet of Things(IoT), conflict prediction,
smart space

I. INTRODUCTION

In an ambient intelligence (Aml) world, devices are inter-
connected and distributed in the environment to proactively
provide services that are aware of users’ presence and pref-
erences. Most Aml environments are under the influence of
multiple people simultaneously, whether because they support
multiple cohabiting occupants or because both an occupant
and a building manager have designs on how a space should
be used. In supporting the potentially competing interests of
multiple parties in a particular AmlI system, one of the most
important challenges is managing conflicts [1], [2].

We define a conflict as a situation when two parties’ pref-
erences over the state of an IoT device differ'. For example,
an Aml system may receive a command “turn on the light”
from one user as they enter the space. Meanwhile, the devices
may have already been maintaining the policy “keep the

'We assume a conflict involving more than two parties can be reduced to
multiple pairwise conflicts.

illumination level low” in support of a user who was already
present. As another example, a user may instruct an Aml space
to heat the environment to 21°C, but the building manager
may restrict the use of radiant heating until the first of October.
Such conflicts, if not handled, cause users to lose confidence in
smart spaces and stop using them. On one hand, these conflicts
are difficult for a system to handle automatically because they
usually require negotiations between users. On the other hand,
negotiation between users, automated or otherwise, requires
support for pre-emptively identifying potentially conflicting
behaviors so as to minimize the negative impacts.

The need to identify and resolve conflicts in Aml has, of
course, not gone unnoticed. While resolving conflicts is an
ultimate goal, finding conflicts is a first step, and the timing
of identifying a conflict impacts the options for its resolution.
If a conflict is only detected after it occurs [3], [4], resolving
it can only “repair” the situation—the users have already
been interrupted. Some efforts seek to detect conflicts that
are about to happen [5]. Before executing a command or
changing a device’s state, these approaches verify the effect
of the action against some specific policies or rules. Although
they can resolve a conflict by avoiding the situation (i.e.,
rejecting a command that raises a conflict), they achieve a
win-lose resolution as one user must yield. To achieve a win-
win, a smart system must allow sufficient time to negotiate
an acceptable resolution either through automation or explicit
user intervention. Consider a case when two users need a room
for a conference call—detecting the situation after the first
user’s call has started requires the second user to compromise.
Instead, if a smart system can identify such a situation ahead of
time, it could automatically adjust the users’ calendars. We use
“a priori” conflict prediction to refer to the act of identifying
a conflict before either party has engaged in an activity that
could cause the conflict. While existing frameworks [6], [7]
achieve conflict prediction, their approaches lack flexibility
and can therefore lower users’ satisfaction. In particular, we
identify three research gaps that this work fills:

« Lack of Context-awareness: Context is any ambient in-
formation that captures the shared state of users in a smart
environment (e.g., time, location, or weather). Capturing
conflicts with associated context enables flexible resolu-
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Fig. 1: We learn from users’ previous interactions with the devices to
predict potential conflict scenarios. Though the resolution of conflict
is out of our scope, we keep it mind when designing our framework.

tion. For example in smart home control, maintaining
the ambient temperature may or may not conflict with
a desire for fresh outdoor air, depending on the weather.
The key observation is that the same conflict might occur
differently in different contexts, thus conflicts should be
reported alongside a contextual description. Most existing
frameworks either do not support context-awareness [8]
or consider only time as the context of a conflict [6].

o Determinism: Existing frameworks treat conflicts deter-
ministically [2], [7], that is a conflict either exists, with
100% certainty, or it does not occur at all. However, due
to the dynamics of user’s behaviors, predicted conflicts
are not guaranteed to happen in all circumstances. Thus
predicting conflicts with associated likelihood (probabil-
ity) of occurring not only provides more information for
flexible resolution but also faithfully reflects the severity
of the identified conflicts. While this benefit of proba-
bilistic conflict prediction is noted in other domains [9],
no existing work in AmlI clearly outputs conflict situations
with associated probabilities.

o User Overhead: High user cognitive load is another
shortcoming of existing frameworks. Rule- or policy-
based solutions [1], [10] predict conflicts by parsing and
reasoning about a given set of policies to find conflicts.
Such an approach cannot generalize across different AmI
spaces as it requires the user to express their intentions.

To the best of our knowledge, no existing framework
explicitly accounts for all three of these aspects in predicting
conflicts. We propose CoPI: a novel data-driven framework for
a priori Conflict Prediction for IoT devices. We target spaces
equipped with smart devices (e.g., thermostats, televisions and
lighting) and controlled by multiple — potentially conflicting
— parties. We focus on repetitive conflicts rooted in differ-
ences in daily habits which are commonly present in our daily
lives but neglected by many [11]. Fig. 1 shows our approach.
The input are traces of user-device interaction histories, tagged
with contextual data, which can be collected in modern sensor
networks with minimal user involvement [12], [13]. We first
build habit patterns for each user from these interaction
histories. Although pattern mining is well-studied, existing
work is undertaken in different problem settings and cannot be
applied to probabilistic conflict prediction directly [14]-[17].
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Thus we propose a novel pattern mining approach specifically
designed to account for context and non-determinism. The
second part of our framework is predicting conflicts among
mined habit patterns. We find overlapping scenarios across
users and compute the probability of a conflict happening
under the identified scenarios. We generate conflict scenarios
with associated context descriptions that can not only be con-
sumed by automated conflict resolution systems but also can
be understood by users with no particular technical expertise.

II. RELATED WORK

We start this review by introducing existing definitions and
categorizations for conflicts in Aml and placing CoPI within
these existing taxonomies. We then examine existing conflict
management frameworks to identify the research gaps. We
conclude this section by looking at related efforts that address
a key aspect of our approach: routine habit mining.

A. Conflict Categories

Conflicts in smart environments are usually defined based
on smart devices. Since actions of devices can influence the
characteristics of the space (e.g., temperature, illumination),
some efforts [4], [18] define conflicts as situations when one
service opposes another one in changing the value of a spatial
characteristics. Conflicts can also occur between the user and
the system when the user misuses or misunderstands the smart
control system [19], [20]. These definitions represent efforts
that are parallel to ours, as we focus on conflicts resulting from
contradicting requests from two users for the same device.

Resendes er al. [21] conducted an extensive review of
conflicts in smart environments, which resulted in a taxonomy
of conflicts with four dimensions:

« Source: what is the entity the conflict arises over, e.g.,
the use of device, the ownership of a resource;

« Intervenients: who are the parties having the conflict, e.g.,
two occupants, an occupant and a building manager;

o Time of detection: when does detection happen, e.g.,
before or after the occurrence of the conflict;

« Solvability: can the detected conflict be solved by the
system or does it require user intervention.

Following this taxonomy, the sources of conflicts for our
problem are the states of devices; the intervenients are two
users; and the time of detection is a priori, i.e., sufficiently
in advance of the conflict that preventive action can be taken.
We do not consider solvability in this work, and defer system
for conflict resolution to future works.

B. Conflict Management

Conflict management is an important topic in many areas.
Aircraft systems are usually equipped with robust probabilistic
conflict prediction models based on the trajectories and geom-
etry [9], [22]. Despite that their algorithms cannot be applied
to our problem, they articulate the need for early resolution and
probabilistic prediction to reduce the cost of conflict. Similarly,
merge conflict prediction [23] in source control also benefits
from associating conflicts with meta-information. In terms
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of managing conflicts in smart spaces, many efforts support
detection only at the time of occurrence [24]-[26]. Some
frameworks [4], [5] require a model of the space’s ambient
characteristics and knowledge about how devices influence
those characteristics, and this model must be provided a priori
using a standard language, which limits adoption. Context-
awareness is also proposed in other works [27], [28] to
facilitate the detection and resolution of conflicts. However,
instead of computing patterns over contextual information,
they require the users to manually input reasons or conditions
of their behaviors to conduct context reasoning. We argue
that such frameworks incur significant user overhead and
are not generalizable across applications. ToTC? [29], and
similar IoT middlewares [30] evaluates any commands from
the controllers before sending them to the device to execute
by checking if they conflict with other issued commands at
run-time. This causes delay in detecting conflicts and limits
the options for resolution.

Install-time conflict prediction is also broached in other
efforts. Most of these efforts focus on solving the problem
in a rule-based environment where actions and behaviors of
devices are programmed to follow a set of rules [7], [31].
For instance, Shah et al. [10] adopts IF-THEN rules that
detect conflicts with disjunctive normal form. Similarly, Sun
et al. [1] proposed a framework to detect conflicts based on
rules in XML format. These works detect conflicts among a
static set of rules and assume the behavior of a Aml system
is fully controlled by those rules. While their contributions
focus on providing formal reasoning tools to detect conflicts
deterministically, we adopt a more dynamic view and acknowl-
edge uncertainties in users’ preferences. We argue that the
behavior of the devices, controlled by a user instead of static
rules, cannot be predicted with 100% certainty and so are the
conflicts. A more recent work [6] shares this idea by modeling
uncertainties in the device usage habit for each user. However,
their framework supports time as the only context and does
not provide probability for predicted conflicts.

C. Routine Habit Mining

The essential input to conflict prediction is some represen-
tation of humans’ interactions in the space. To reduce human
burdens and achieve better feasibility, these human habits
should be learned from data instead of required from the users.

Learning human habits and preferences is an important as-
pect of Aml [32] and is well studied by many researchers [33]—
[35]. Although existing approaches have compelling results,
they cannot be applied directly for conflict prediction. Many of
them focus on activity recognition schemes [14], [36], [37] that
employ various classification models. They predict activities
based on various contextual input from sensor readings but
they do not output frequent habit patterns suitable for fur-
ther analysis. Some efforts focus on discovering transitions
between activities and thus predict the next action from
previous activities [38]-[40] which are parallel to our target.
Association rule mining (ARM) is another widely adopted
approach to find relations between context, activities and smart

devices [15], [16], [41]. Common algorithms for ARM like
the Apriori algorithm [42] and FP-growth [43] mine frequent
patterns and associate each with a confidence level. However,
the general versions of them target discrete items. In our cases,
the “item” to predict is the state of the device which can be
continuous and thus makes them unsuitable for our application.

III. PROBLEM MODEL

In this section, we provide more details about the scope
of the problem we seek to solve and define several terms to
support our problem definition. We then introduce CoPI’s view
of the problem and how we approach it at a high level.

In CoPI, we predict conflicts at the device level. If one
user wants the bedroom light on to read, but another wants
the bedroom light off to sleep, this is a conflict. If one user
wants the television on but another user wants the television
off so they can read, this is a conflict. However, if one user
wants the television on and another user wants the radio on in
the same room, we do not explicitly capture this as a conflict.
However, such a conflict can be discovered because a user who
has the habit of turning the television on, given some context,
also has the habit of requesting the radio to be off in that
same context. This example not only showcases the potential
of CoPI but also showcases the complexity of relying on
humans to explicitly enumerate rules or policies that capture
their habits or behaviors like in existing solutions [10]. We
focus on conflicts between two users and assume a user never
conflicts with themselves. We next provide some key concepts
which lead to our problem definition.

A. Key concepts

IoT device. An IoT device, d, provides a function to the
users of the space in which it is situated. Each device can
have a state, which is characterized by one or more attributes.
Each attribute is a key-value pair that includes the name of
the attribute and its value, which can be either categorical
or numerical. Every device has a distinguished categorical
attribute named ‘“‘status” that takes one of two values: “on”

or “off”. Formally, the state of an IoT device d at time ¢ is:
ST g = {(ai,vi)} @)

where a; is the name of the i*" attribute, and v; is the
attribute’s value at time ¢. For a categorical attribute, v; is
an element in Fy ,, which is the set of all possible values for
this attribute. For a numerical attribute, we assume v; is a real
number. We also define a set A, which stores the names of
all attributes that the IoT device d can exhibit.

We identify two types of IoT devices: i) shareable devices
(e.g., thermostat, light, TV, radio), over which two users may
simultaneously set the device to the same state, which does not
result in a conflict; and ii) non-shareable devices (e.g., kitchen
burner, computer, microwave), for which any simultaneous
use is considered a conflict. For simplicity, we assume that
devices labeled non-shareable have states that are dedicated
to a specific user (e.g., rather than setting the burner state to
“cooking”, a user u sets the state to “cooking for u”). In this
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way, we can proceed with just a single definition of conflict
that relies on the state of a given device.

User requests. In our problem model, users specify desired
states for the IoT devices in their spaces. For any IoT device
a user desires to influence, the user can specify the desired
attributes by providing a device state ST";, which represents
the user’s preferences for the state of device d at time t.
Here the “off” value for attribute “status” is a special case.
Sometimes a person turns off a device because they no longer
need the device and other people can use it freely. In other
cases, however, one may turn off a device because they really
need the device to be off (e.g., turning off the television in
order to study). Thus, within a device state ST, that captures
a user’s preferences for the state of device d, we include the
possibility of a “don’t care” value for the “status” attribute
to capture the former situation and reserve the “off” value to
indicate the latter. Practically, the “don’t care” value can be
provided by the user explicitly or it can be captured implicitly
(e.g., a user’s previous explicit request expires after a timeout
or a significant change in the context).

Conflict. When two users share a space but desire the
space’s devices to be in different states, this results in a con-
flict. Conflicts are identified at the level of attributes (i.e., when
the users specify incompatible values of a device’s attributes).
More formally, at a given time ¢, two users request the state of
a device d to be STy, = {(a;,v;)} and STy, = {(a;,v;)}
respectively. A conflict arises if Ja; = a;, such that v; # v,
when a; is a categorical attribute or |v; —v;| > T when q; is
a numerical attribute. We rely on a user-defined threshold 7
for numerical attribute because when users specify values that
are close to each other, this may not be a perceived conflict
(e.g., one user wants the thermostat set point to be 22°C' while
another user wants it to be 22.5°C).

Context. Users’ interactions in IoT enabled spaces are
heavily influenced by the context. Context is any information
that can be used to characterize the situation of an entity [44].
In smart spaces, users’ requests for changes in the states of
IoT devices can be directly tied back to the ambient context.
For instance, changes to the state of smart lights can be
influenced by the time of day or the weather; changes to the
state of the thermostat can be influenced by the temperature,
etc. We define a context snapshot as a set of key-value pairs
Cy = {{c;,z;)}, where ¢; is the name of a context type, and
x; is its value at time ¢, which can be either a categorical
value or a numerical one, depending on the particular context.
Different spaces may be differently capable of capturing
various measures of context, so there is no guarantee that all
aspects of the context may be captured in all spaces.

Interaction histories. Users interact with IoT devices in a
variety of everyday spaces, and these interactions give clues
about how the user prefers their spaces to be configured. Con-
ceptually, an interaction history captures the users’ continuous
interactions with their surroundings and the context in which
those interactions occurred. Formally, for every device d, a
function hg(t) = (Ct, ST; ;) maps an instant in time, ¢ to
the context snapshot C; and the user’s desired device state

ST, , that the user requests at time ¢. Practically, an interaction
hist(;ry can be collected by recording the changes in the device
states and the context using modern sensor networks [12], [13].
For practicality, we represent a user w’s interaction history as
a sequence of tuples H, = (..., (Cy, STy ;),...) where each
tuple indicates either a change in context, captured in a delta of
C; relative to C;_1 or a change in the desired state of a single
device d, captured in a difference between ST} , compared to
the previous device state S T(’“f ;- We assume that changes
in devices’ states are atomic and serializable.

Problem definition. From these definitions, we can now
explicitly state the problem we seek to solve. In particular,
we seek to identify the conflicts that a user might experience
when they enter a new IoT space with other users. We term
this space the target space. Our problem definition is:

Given context-tagged interaction histories for two
users, predict the contexts in which these two users
may conflict over an IoT device in the target space
and the probability with which that conflict arises.

B. The CoPI Perspective

CoPI’s task is to learn from users’ interaction histories to
predict the potential for conflicts over the use of IoT devices
in a target space. However, since the target space is a new
space with different devices, we cannot learn directly from
interactions with the target devices. Thus to use an interaction
history, a user (or a user delegate) selects a single device from
the histories to serve as a reference for a device in the target
space. For each device d in the target space, user u can choose
to specify a source device d* from the interaction history to
represent how the user would interact with device d in the
target space; we write such a mapping as d* — d. If a user
chooses not to specify a source device for a device in the
target space, CoPI simply will not predict conflicts on that
device for this user. For simplicity, we will use notation d
to refer to a device in the target space and we use d“ to
refer to the corresponding device from the interaction histories
of user u. We create the set D, to contain the devices in
the target space for which user w provides a mapping (i.e.,
D, = {d: d" — d exists}); CoPI will only predict conflicts
for user u for devices in D,,. Since d and d" may support
different attributes, our mapping considers only attributes that
are present in both d and d"“.

When predicting conflicts, CoPI creates a description of
a conflict scenario, that associates a characterization of the
conflict with a description of the context in which that conflict
may occur. The conflict itself is captured by the tuple (d, a),
where d is the device that the two users conflict over and a is
the specific attribute for which the two users have conflicting
values. A conflict that involves more than one attribute for a
given device is captured as multiple separate conflict tuples,
one for each conflicting attribute. Characterizing the context
in which a conflict occurs is somewhat more difficulty. For
starters, some context values are continuous, and therefore
attempting to capture discrete characterizations of the contexts
in which a conflict might occur would result in infinite
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numbers of conflict scenarios. To handle this complexity, in
CoPI, we define a context range to contain a potentially infinite
set of contextual situations for a single context type.

Definition 1. (context range R) A context range R, represents
a set of values for the context type with the name c. If ¢ is
a numerical context, R, = [z7,2Y) meaning that any value
between 2~ and 2V is included (.e., Vel <z < J;U, T € Ry).
Note that we use an open range because the upper bound 2V
is not included. For a categorical context, R. = ) where )
is a finite set of categorical values (i.e., V& € Q,z € R.). We
also define the domain of a context ¢ as Rc; and we assume a
known maximum upper bound and minimum lower bound for
numerical context and a finite domain for categorical values.

The contexts of a user’s interactions are captured by multiple
context types, which we term a context scenario:

Definition 2. (context scenario C'O) A context scenario is
captured by a set of context ranges, one for each type of
context i.e., CO = {(c;, R.,)}. Each context type ¢; appears
at most once in CO.

As an example, the context scenario described by the text
“Monday 2 pm to 3 pm when raining” is written as:

{ (dayOfWeek,{Monday”}),
(hourOfDay, [14, 15)),

(weather, {“rain”}) }
We now define a conflict scenario as:

Definition 3. (conflict scenario CS) A conflict scenario de-
scribes a situation where an IoT device conflict for the two
users may arise. It is represented as:

CS = ((d,a), CO,p) 2

where (d, a) is the conflict tuple, CO is a context scenario in
which this conflict might happen, and p is the probability of
the conflict happening; when p = 0 no conflict exists.

IV. CONFLICT PREDICTION FRAMEWORK

In this section, we present our framework for probabilistic
conflict prediction. We propose a data-driven approach as
shown in Fig. 2. The input to CoPI is the context-tagged
interaction history for each user (H,). CoPI comprises two
major components. The pattern builder processes the records
in the interaction histories and mines each user’s habit patterns.
In particular, for each user-device pair, the pattern builder
identifies a set of patterns representing the user’s prefer-
ences of the state of that device under different contexts.
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The second component, the conflict predictor, takes all of
the mined patterns of two users and finds conflict scenarios
among them. Ultimately, CoPI outputs the predicted conflict
scenarios, which can subsequently inform the users to adjust
their interactions or to enable automatic conflict resolution.

A. Building Habit Patterns

To predict conflicts, we need a systematic way to represent
and compare users’ preferences over devices in the target
spaces. When modeling human habit, most existing work [15]
employs classification approaches and predicts a subsequent
action the user will take. Such solutions do not apply to our
problem of probabilistic conflict prediction as they do not
provide a probability distribution for all possible actions. A
key innovation of CoPI is that we explicitly consider the uncer-
tainty in human interactions with IoT-enabled environments by
including fuzziness when building habit patterns. Specifically,
we define a notion of a fuzzy device state to capture the fact
that users do not always interact with the same devices in
exactly the same ways, even in the same contexts.

Definition 4. (fuzzy device state F'ST) A fuzzy device state
FST, describes an uncertain state for device d. Compared to
a normal device state STy, = {(a;,v;)}, a FST, captures
a probability associated with the user’s preferences for a
device d. Specifically, FST 4 = {(a;, v;)} where v; represents
the probability distribution of v;. For a categorical attribute,
vy = {{fijsPij)|fi,j € Faa;} represents the likelihood of
fi,; being the categorical value for attribute a; is p; ;. For a
numerical attribute, v; = (u;,07) represents the mean and
variance of the numerical value. We model the numerical
attribute as a normal distribution: v; ~ N (1, 02).

Based on this, we define the habit pattern for a user, which
associates these fuzzy device states with the context scenarios
in which they occur. In particular:

Definition 5. (Habit Pattern HP) A habit pattern HP,4
(CO, FST4) captures the distribution of the user’s habits
relative to a device d in the target space, given a concrete
context scenario (CO). HP; can be interpreted as conveying
that the user’s preference over the state of d follows the
distribution described by F'ST.

A habit pattern connects a single context scenario to a single
fuzzy device state. For instance, a habit pattern may capture the
distribution of the likelihood that the user turns on a specific
light in the target space when the context scenario is “Monday
between 2pm and 3pm when raining.” A habit relative to a
specific device d in the target space, therefore, consists of a
set of such patterns. In CoPI, we construct a habit for each
device in the target space. To build habit patterns, CoPI must
estimate the fuzzy device states that correspond to various
encountered context scenarios using the samples in a user’s
interaction history. Thus, as shown in Fig. 2, the first step in
the pattern builder is to generate potential context scenarios for
candidates of habit patterns. Then we group the device states
in the interaction histories based on the potential scenarios to
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estimate the fuzzy device states in the candidate habit patterns.
At last we remove candidates that appear infrequently in the
interaction histories based on a system-defined threshold.
Generating context scenarios. To build habit patterns, we
first need to generate a discrete set of context scenarios. For
each user u, we consider all context types that are available for
u in the interaction histories and their corresponding domain
R.. As described previously, CoPI operates over a multi-
dimensional definition of context, where each type of context
defines one dimension. To make the problem of working with
continuous context domains tractable, we divide each context
dimension into m. equal-sized slots. For a categorical context
type (e.g., dayOfWeek), each slot contains a possible value for
the context (e.g., { “Monday”, “Tuesday”, ...}) and thus m,
equals to the size of domain of c. For a numerical context type
(e.g., hourOfDay), m. is determined based on the range of the
context and the desired granularity (e.g., if m. = 12, then a
slot is created for every two hours). In general, a smaller m,
captures the user’s preferences more accurately but requires
more detailed interaction histories to succeed. In Section V, we
evaluate how the choice of m. impacts CoPI's performance.
Formally, the domain R, for a context ¢ is divided by

m,. into a set of ranges {R;1,...,Rc,i,..., Rem,}. For a
categorical context type:
Rei={4i: Vi € R} 3)
In contrast, for a numerical context type:
U L U L
¥ —x ¥ —x
Rei=|ab +(i—1)- ,xL—}—zWi) @)
Me Me

where ¥ and zV are the min and max values for context c.
After the split, we can generate the potential context scenarios.
As defined in Definition 3, a context scenario is represented
by a set of context ranges. Thus each potential scenario is a
unique combination of context ranges by selecting one from
the set {R.;} for every context type c. For instance, if a user
has two categorical context (weather, dayOfWeek) and one
numerical context (hourOfDay) with a m. of 12, then each
potential scenario represents a 2 hour block for every possible
combination of weather and dayOfWeek. To give a sense of
this set, the total number of context scenarios is [ [ m.. In our
example, assuming we have 10 possible values for weather,
then we have 12 x 10 x 7 potential context scenarios in total.
We use CO,, to represent the set of all scenarios for user u.
Since the context types available for different users can be
different, each CO,, can be different as well.

Building habit patterns. Algorithm 1 shows the process
of building habit patterns. For each user w, we run BUILD-
PATTERNS for every device d € D,,, where D,, is the set of
devices in the target space for which user u has a device d“
mapped from w’s interaction histories. A captures, for a given
device d in the target space, a set of the user’s preferred device
states for the mapped device d* in the interaction history. We
associate A with a specific context scenario, CO; as such, it
captures the user’s preferences for d in the past, any time the
context scenario CO appeared in the interaction history.

Algorithm 1: Building habit patterns

1 u,d: the user and the device being processed

2 H,: the interaction histories for user u

3 CO,: set of candidate context scenarios for user u
4 Function BUILDPATTERNS:

5 initialize candy < {(CO;, A; = 0)|CO; € CO,}
6 | for (C,ST.,) € H, do

7 for CO; € CO, s.t., contain(CO;,C) do

8 | insert STy ; to A;

9 end

10 end

1 for (CO;, \;) € candy s.t., |A;| > threshold do
12 FST,L — {ah GETV(CL,;7 AZ)‘CLZ S Ad N Adu}
13 HPd,i — <COZ,FST~L>

14 end

15 HPu,a < U; HPq

16 return HP, 4
17 end
18 Function GETV(aq;, A;):

19 if a; is categorical then

20 for f; ; € Fy,, do

. ‘ piy |{ST:STeA,,-,lAA<;z|,,;,f,,-,,j)eST}|

22 end

23 0 = {{fi,:Pig)fij € Faai}

24 else

25 pi, o are the mean and variance of
{vi: ST € A; A {a;,v;) € ST}

26 '171 — </Li, 0'72>

27 end

28 return v;

29 end

In Algorithm 1, we initialize a set of candidates for ex-
ploration, one for each potential context scenario. Initially, A
for each candidate is empty; the goal is to fill in the fuzzy
device states associated with each potential context scenarios.
At the outset (lines 6-10), Algorithm 1 examines each entry
in the user’s interaction history; because we are building habit
patterns for a specific device d in the target space, line 6 selects
only interaction history entries that reference d“, the device
from the user’s interaction history mapped to the target device
d. For every potential context scenario (CO;) that contains
the context snapshot C' from the interaction history entry, we
add the user’s preferred state of d* in that context (S Tfiu,t)
to A; in the set of candidates. In Definition 1, we defined
what it means for a context range R. to contain a context
value z. Here we extend that definition to a context scenario
CO = {{ci, R.;)} and a context snapshot C' = {(c;, z;)} as:

FALSE,if 3i, s.t. z; ¢ R,

contain(CO,C) = )
TRUE, otherwise

&)

After we group the relevant samples from the interaction
history into the candidate habit patterns (i.e., the tuples
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(CO;, A;)), we then estimate the fuzzy device state (F'ST') for
each context scenario and build the final set, HP,, 4 containing
all generated habit patterns for user u and device d. Lines
11-14 in Algorithm 1 construct this set of habit patterns.
In particular, the algorithm examines each of the candidate
patterns (CO;, A;) in candg. The first step is to filter out
any candidate patterns that have very few samples in the
user’s interaction history; for this we use a system-provided
threshold; if there are fewer samples for a given context
scenario than threshold, we do not construct a habit pattern for
that scenario for device d. This threshold marks the confidence
the system has that the samples in the interaction history
are representative of the user’s actual preferences, given a
particular context scenario. A higher value for the threshold
results in a higher quality estimation of the user’s preferences,
but requires a larger interaction history to succeed.

On lines 11-14 of Algorithm 1, we estimate the fuzzy device
state for this device and context scenario, given the interaction
history samples. Note that not all of the attributes in A, can
be estimated from the samples because some attributes may
not referenced in Ag.. Thus, we only consider the attributes
that both d and d“ have (line 12). The above process relies
on the GETV subroutine, whose behavior in turn depends on
whether the attribute for which we are computing the fuzzy
device state is a categorical one or a numerical one. For each
categorical attribute, we compute the probability distribution
U = {(fi,j,pij)|fi; € Faa,} from the device states in A;
that contain attribute a;. Each probability p; ; is estimated as
the number of occurrences of value f; ; in A; divided by the
size of A;. For each numerical attribute, we compute the mean
and variance v; = (u;, 02) for the values in A; of attribute a;.
Once we compute the habit pattern for the context scenario
CO;, we add it to the complete set of habit patterns, which
we return at the end of the BUILDPATTERNS function.

B. Predicting conflicts

Conceptually, potential conflicts arise when two users have
different habits under the same context. Practically, we find
them by checking all pairs of overlapping habit patterns from
the two users to determine whether the associate device states
are incompatible. As shown in Fig. 2, the CoPI conflict
predictor has three stages. First, because many of a user’s habit
patterns represent similar behaviors, CoPI processes these
to find clusters of similar patterns and combine them, thus
reducing the complexity of the problem and the potential for
reporting a large number of redundant potential conflicts to the
users. CoPI then compares the clusters of patterns for pairs of
users to find instances with the associated context scenarios
overlap. Finally, for identified overlapping context scenarios,
CoPI predicts the probability of the users desiring devices in
the target space to be in different, conflicting states.

Clustering habit patterns. We merge users’ habit patterns
based on similarities in the user preferences captured in the
fuzzy device states for a given device in the target space.
Consider two fuzzy device states for a device d for a particular
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user, FST g1 = {{ai, 0;}, FSTq2 = {(a;j,v;)}. We define the
distance (a measure of dissimilarity) of these two states as:

dist(FST 4.1, FSTq,1) = Z |v; _5j|2

a;=aj
5 — 7| = Zi;’ Dik — Pj.k|> if a; is categorical
L (i — pj, 07 — o3)||, if a; is numerical

where ||-|| is the L2 norm of the vector. Conceptually, we com-
pute distance by comparing the fuzzy values v;, v; for each
attribute that is in both FiST;; and FST 9. As mentioned
previously, every F'ST for user v and device d contains the
same attributes from Ay N Agu; therefore we only compute
the distance for two FiST that have the same set of attributes.
One problem with the above definition is that for a numerical
attribute, 11 and o2 are not between O and 1 like p, which
makes the distance function biased. To combat this problem,
we normalize the values for each numerical attribute to 0 and
1 when pre-processing the interaction histories.

The problem of clustering habit patterns can thus be formu-
lated as grouping all patterns in HP,, 4 into non-overlapping
clusters. “Non-overlapping” has two meanings: 1) no habit
pattern belongs to two clusters and 2) no context snapshot is
contained by the context scenarios of two clusters. The latter
requirement ensures that any context snapshot is contained
by at most one habit pattern to avoid ambiguity. We define
clusters so as to minimize the following loss function, which,
intuitively, tries to minimize the distance between patterns in
each cluster while having as few clusters as possible:

1
Loss = Z(a + ==
T |CL|

> dist(HP,HPcr))  (6)

HPECL

where each cluster CL C HP, 4 is a subset of the habit
patterns for the same user and device; « is a tunable penalty
for each cluster (i.e., a higher o favors fewer clusters); and
HPcy, = (COc¢r, FST ¢1) is an average of the patterns in
the cluster.

CoPI computes the fuzzy device state F'ST ¢, by averaging
the values across the cluster. The mean y; and variance o for
numerical attributes and the probability p; ; for categorical
attributes are computed as the average of all corresponding
values in the fuzzy device states of the cluster’s habit patterns
for the same attribute.

The context scenario CO ¢, = {{c;, Re,)} for a cluster is
defined as the bounding box of all the context scenarios in
the cluster. Because we assume that the set of context types
associated with a given user’s habit patterns is static, each
context scenario for a given user contains the same set of
context types. Intuitively, we define the context scenario for
the cluster by creating the union of the ranges for each context
type. For categorical context types, we simply union the ranges
of categories used (e.g., if one context scenario happens only
on Mondays, while another happens only on Tuesdays, the
union is { “Monday”, “Tuesday” }); for numerical context
types, we take as the lower bound the minimum of all of the
lower bounds used in the composite context scenarios and the
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Algorithm 2: Recursively generating clusters

1 Function spLIT: CL
2 U« {(CLy, CLy) : all pairs of CL; and CLy split
CL along every context value}

3 Gain < Lo — (L L
maxGain (CLlI,nC?gZ)E\I'( cr — (Lern, + Lor,))

4 if maxGain > 0 then

5 | return SPLIT(CLy) |J SPLIT(CLy)
6 else

7 | return {CL}

8 end

9

end

upper bound is the maximum of all of the composite upper
bounds (e.g., for the context type time, if two ranges are 1 pm
to 3 pm and 2 pm to 4 pm, the union is 1 pm to 4 pm).

The “non-overlapping” requirement states that no context
snapshot is contained in two clusters. To verify this property
for categorical context ¢, given two clusters’ context scenarios
COc¢r, and CO ¢y,, we simply check that the intersection of
R, from CO¢r, with R, from CO¢r, is empty. To verify
this property for a numerical context type ¢, we check whether
Ll in CO¢y, is greater than 2¥ in CO¢p, and vice versa
(i.e., that the two open ranges are not overlapping).

Given these definitions, Algorithm 2, shows how we com-
pute a set of clusters from a set of habit patterns. We invoke
the SPLIT function in Algorithm 2 using an initial input of a
single cluster that is equivalent to HP,, 4. We then recursively
split this single cluster into sets of smaller clusters.

To find the split, we mimic the CART algorithm [45], using
context type as the feature for splitting. Here we choose one
context type for each split and divide the bounding box for
the cluster’s context scenario based on the selected context
type. For a categorical context type, ¢, we test all pairs of two
subsets that split the range R. of the bounding box without
intersection. For a numerical context type, we split the range
based on possible pivot values (i.e., a pivot value ¥ splits a
range [#¥,2Y) into two ranges [z7, z), 27, zY)).

To support the process, we represent the loss function in
Equation 6 as Loss = ZCL Lcr; this allows us to compute
the maxGain for each candidate split. After we generate all
possible splits, we compute the loss of the two new clusters
in each split L¢r,, Lor, and compare them to the original
loss Lo, as shown on line 3. If the maxGain of the split that
maximizes the decrease in loss is greater than 0, we perform
the split and recursively find sub-clusters for the new sets
(line 5). If the gain is not greater than 0, we return the current
cluster as the optimal clustering because no further split can
decrease the loss (line 7). For simplicity of writing, we still
use HPy,q = {HPcL} to refer to this new set of patterns.

Finding overlapping context scenarios. After clustering,
we have the final set of habit patterns for each user-device
pair HP, 4. A conflict may arise when two habit patterns for
the same device from two users overlap, in particular when
two users express preferences for the same device d in the

same context. As mentioned before, “overlapping” is defined
as the situation when the intersection of the context scenarios
of the two habit patterns is not empty. To determine conflict
situations, therefore, we first find all pairs of habit patterns
HP.,HP; such that HP; € HP,, s and HPy € HPy, s,
whose context scenarios overlap: ({CO;1, CO2} # . To
compute the intersection, we construct a context range . n
for each context type c that appears in CO; or CO;. If ¢ only
appears in one of the two context scenarios, assuming in CO1,
R~ simply equals to the corresponding context range I2. in
CO;. If c appears in both context scenarios, we compute the
intersection of the two context ranges. For categorical context
types, we intersect the ranges of the categories used (e.g., if
one context scenario happens on Mondays and Tuesdays, while
another happens on Tuesdays and Wednesdays, the intersection
is {“Tuesday”}). For numerical context types, we take as the
lower bound the maximum of the two lower bounds in CO
and CO4 and the upper bound is the minimum of the two
upper bounds (e.g., for the context type time, if two ranges
are 1 pm to 3 pm and 2 pm to 4 pm, the intersection is 2 pm
to 3 pm). We use COq, to denote ({CO1, CO3}.

If device states associated with overlapping context scenar-
ios have different attribute values, this results in a potential
conflict that is reported to the users. A novel aspect of CoPI,
however, is the ability to report a probability of that conflict
occurring; we next describe how this probability is computed.

Computing the probability of a conflict. In CoPI, the
inconsistency and uncertainty in users’ preferences are repre-
sented using fuzzy device states. We use these fuzzy device
states to compute the probability of conflicts when users’
context scenarions overlap. Given two fuzzy device states,
FSTs1 = {{a;,0;)} and FSTso = {{a;,v;)}, for every
attribute that is in both states, there is a chance that a conflict
may arise due to difference in values for that attribute.

If the attribute in question is a categorical one, the fuzzy
values for this attribute are ¥; = {(f; k,Dik)|fik € Fsa}
and v; = {(fj,k,0jk)|fik € Fsa,}. Given that a; = a;, the
probability of a conflict between the two users for this attribute
(termed a, below) on device d is:

Py = Z Dik — Pi,k X Pj,k @)

1<k<ns,a

If the attribute is a numerical one, the fuzzy values for each
user are v; = (u;, 07) and U; = (u;,07). Unlike a categorical
attribute, this attribute’s value is a real number, and thus two
values conflict when the difference between them exceeds a
user-defined threshold 7. Given that a; = a; (which we again
term a), the probability of the two users conflicting for this
device and attribute is computed as:

P,=PWNi>T)+PWN2>T) 8)

where N1 = N (ki — pj, 07 +073), No = N (pj — i, 07 +073).

Recall that every device has a designated “status” attribute
that indicates whether it is on or off; in addition, a user can
specify a “don’t care” state for the “status” attribute within the
user preferences. We treat the “status” attribute as a special
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case, and position the “don’t care” value as the first possible
in the list of the attribute’s potential values. Thus, p; 1 and p; 1
are, respectively, the likelihood that the user u; and uo “don’t
care” about the state of device d. For “status” attribute a, the
probability of having conflict is:

Z Dik — Dik X Pk — DPik XDj1 (9)
2<k<ns.a

P, status —

The difference for “status” is that when a user specifies a
“don’t care” state, it never conflicts with the state specified by
the other user even if they are different values. Thus we do
not account for differences caused by “don’t care”.

Overall, for each p, > 0, we generate a conflict scenario
CS = <<d7 a’>7 COﬁvpa>'

V. EVALUATION

In this section, we evaluate CoPI on two real-world datasets.
We seek to answer the following research questions:

e« RQI: Is CoPI capable of producing informative and
human-readable conflict scenarios?

¢ RQ2: Is probabilistic prediction preferred when predict-
ing conflicts in (noisy) real-world situations?

« RQ3: How important is context in predicting conflicts?

o RQ4: How does the granularity of contexts and the value
« used for conflict prediction impact the performance of
CoPI?

To answer these questions, we implement the aforemen-
tioned algorithms in Python?. We use scikit-learn [46] to
realize the clustering algorithm in Algorithm 23. The threshold
in Algorithm 1 is set to 10 considering the size of the data and
the desired number of samples. For the first three experiments,
o 1s determined using a grid search and the optimal discovered
value is selected. We evaluate how CoPlI is sensitive to the
choice of « in the fourth experiment.

In the experiments, we use datasets containing IoT device
interactions for multiple users during the same period of time.
We generate ground-truth conflicts by extracting overlapping
traces of different users and checking if the state of device
attributes set by the users would cause conflicts. We first
describe the two datasets we used, and then we describe in
depth how we generate such ground-truth conflicts.

A. Datasets and Evaluation Setup

The first dataset, REFIT [47] contains electrical data of
20 households in Loughborough, UK collected from 2013 to
2015. The records consist of timestamped power consumption
measures for each appliance in Watts, sampled at 8 second
intervals. Since it is not possible to differentiate multiple
residents in a single household in the data, we treat each
household as one user. To minimize the impact of multiple
residents, we choose 5 households with fewer than 3 residents
and a time range longer than 1.5 years. From the appliances,

Zhttps://github.com/UT-MPC/ConflictDetection/tree/IoTDI

3scikit-learn currently does not support categorical features for CART
algorithm. Thus we adopt integer encoding to convert categorical contexts
which would have slightly worse results but is computationally more efficient.
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we choose TV and washing machine as the devices because
they have the highest numbers of user interactions in the traces.

The raw power consumption cannot be used as the device
state in CoPI, so we pre-process the data to create on and
off states for each device. We manually determine a threshold
for each device and assume that the device is on when the
power consumption is above the threshold and off when it is
below. Due to noise in the measurements, we ignore states
that last for less than 5 minutes. We then create the event
sequence to mimic the user’s interactions with these devices to
generate these states. For this dataset, the state of the device is
described with only this single attribute, “status”. We use three
context types for REFIT dataset: minuteOfDay, dayOfWeek
and weather. The first two are derived from the timestamps
in the dataset. The weather context is a string describing the
current weather condition (e.g., rain, sunny, cloudy), which we
retrieve from an online database # for the same period of time
in Loughborough. In the experiments, we treat minuteOfDay as
numerical context and other two types as categorical context.

Our second dataset records HVAC settings of an office
building in Ottawa, Canada at the room level from 2018 to
2019 [48]. It contains the thermostat set temperature in Cel-
sius, the outdoor temperature, and the occupancy information
of 14 rooms sampled in 15 minute intervals. For this dataset,
we use the thermostat as the device, and we assume each room
is used by a single user. Thus the temperature set in this room
is assumed to reflect the preferences of that user. However,
because the data is recorded in an office building, the default
set temperature is determined by the building manager, and
it will reset everyday to a default value if not overridden.
To work around this, we use the occupancy information to
only process records when the room is occupied. Because of
this, the number of valid records is reduced. We choose 3
rooms that have sufficient data (over 1500 hours) for both
training and testing. For this dataset, the device “thermostat”
has one numerical attribute “setpoint”, which is a temperature
in Celsius. Note that we ignore the attribute “status” because
the thermostat is always on in the building and thus no conflict
would result from a difference in the value of “status”. We use
three context types for the thermostat dataset: minuteOfDay,
mode and outdoorTemp. The first context is the same as the
previous dataset. The second one, mode, is a binary value
describing the mode of the thermostat (heating or cooling) set
by the building manager’. The outdoorTemp is a numerical
context type representing the outdoor temperature.

In summary, we test 3 types of devices in the experiments:
television (TV), washing machine (WM) and thermostat (AC).
A conflict arises for the first two devices when one user
wants the device to be “on” while another wants the device
to be “off’. For the AC, since the attribute “setpoint” is
numerical, we assume that a conflict arises when the difference
in the set points of two users exceeds 1 degree Celsius. For
context types, we use minuteOfDay, outdoorTemp, dayOfWeek,

“https://www.worldweatheronline.com/
SNote that mode is a context type rather than a device attribute because the
user has no control over the value of the attribute.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 14,2022 at 18:03:26 UTC from IEEE Xplore. Restrictions apply.



weather and mode. The first two are numerical context types
and the rest are categorical. When discretizing numerical
context types as described in Section IV-A, we use m, = 24
for minuteOfDay and m. = 12 for outdoorTemp.

B. Ground-truth and metrics

In both datasets, the interactions from different users overlap
in time, and users are either in the same building (HVAC) or
the same community (REFIT). Thus we assume that context
snapshots for different users are the same, and we find ground-
truth conflicts by pretending the users live in a shared space.
A conflict observation® is generated for any pair of users
who set the state of a device in conflicting ways at the same
time. To estimate the ground-truth probabilities of conflict, we
generate samples similar to the process of generating context
scenarios in Section IV-A. We discretize numerical contexts to
create potential context scenarios, then we count the number
of occurrences of each scenario in the data; this value captures
how many times a user has experienced a certain context
scenario. At each occurrence, if there is a conflict observation,
we increase the count of conflicts. This count is recorded
separately for each pair of users and device. Thus the ground-
truth probability for two users having conflicts for a device
under a potential scenario is computed as the count of conflicts
for that pair of users for that device divided by the number of
occurrences of that context scenario. To ensure the quality
of our ground-truth estimation, we only consider scenarios
that occurred more than 20 times. Each sample is associated
with a pair of users and a device specifying the ground-truth
probability of the two users having conflicts over that device.

Throughout the experiments, we use the mean absolute error
(MAE) to represent the performance. After the samples are
generated, we can compare the ground-truth probability with
the probability predicted by the method under evaluation. For
instance, if we are evaluating CoPI, we compute the predicted
probability for each sample by finding the probability in the
predicted conflict scenario that contains this sample. If no
conflict scenario can be found, it means we predict the context
scenario as non-conflict and thus the predicted probability is
0. For a set of samples, the MAE = % > |p — p| where N is
the number of samples, p is the ground-truth probability and
p is the probability predicted by the method under evaluation.

C. Predicted conflict scenarios

To answer RQ1, we show the predicted conflict scenarios
produced by CoPI for real users. We process the TV data for
users H3 and H9 and the AC data for users R1 and R9. We
generate 6 conflict scenarios for AC and 9 for TV in total.
Among them, we choose one with the highest probability and
another one that has similar context but different probability
to showcase the potential of CoPI.

As defined in Definition 3, the conflict scenario we produce
is in the form: (d,a, CO,p). We present the four conflict
scenarios by connecting the components with some words:

OWe use the phrase conflict observation in the ground truth to contrast with
the conflict scenario that CoPI predicts.

o H3 and H9 have a likelihood of 71.3% to conflict over
the status of TV when time is (8§ pm to 10 pm), day
is {“Monday”}, and weather is {“Clear”, “Rain”, “Fog”,
“Cloudy”}.

o H3 and H9 have a likelihood of 25.4% to conflict over
the status of TV when time is (6 pm to 7 pm), day
is {“Monday”} and weather is {“Clear”, “Rain”, “Fog”,
“Cloudy”}.

« R1 and R9 have a likelihood of 99.5% to conflict over
the setpoint of AC when time is (12 pm to 5 pm), outdoor
temperature is (30°C' to 35°C’) and mode is {“cooling”}.

o R1 and R9 have a likelihood of 50.1% to conflict over
the setpoint of AC when time is (2 pm to 8 pm), outdoor
temperature is (15°C to 20°C') and mode is {“cooling”}.

The predicted conflict scenarios can be understood by a
human without much explanation. Our result is informative,
as we output the corresponding probability and context with
it. This experiment also qualitatively answers RQ2 to support
our statement that context-awareness is needed for conflict
prediction. In TV conflicts, the probability changes from
71.3% to 25.4% with a difference in time of one hour even
though the other contexts remain identical. While interactions
with TV may be related to the time of day, the setpoint of the
AC is related to outdoor temperature, as a 10 degree difference
in temperature incurs a 49.4% difference in probability. This
comparison demonstrates that 1) context impacts the likelihood
of conflict for real users, and 2) a conflict prediction frame-
work should support various context types because different
devices and users may be sensitive to different contexts types.

D. Conflict prediction accuracy

In the second experiment, we compare CoPI with 3 variants
to answer RQ2 and RQ3. The variants are:

o No conflict prediction (NC): This variant serves as a
baseline for not predicting conflicts. It always predicts
the probability as O (i.e. p = 0) and thus the MAE equals
to the average of the ground truth probability.

o Deterministic prediction (Det.): This variant represents
some existing solutions that predict conflicts determinis-
tically [2], [7]. We implement this variant by considering
only the highest probability in the fuzzy device state.
When computing the probability for categorical attributes
in Equation 7, the highest probability is changed to 1
while the rest are changed to 0. For numerical attribute
in Equation 8, we assume the variance is 01-2 = 0]2- =0.

o Static prediction (Static): For each pair of users, this
method predicts an optimal constant probability that
equals the median of the ground-truth probabilities. Note
that this number cannot be computed in real life and thus
it only shows the best possible performance if we do not
predict dynamically based on context.

To test CoPI and the variants, we split the data into training
and testing based on days. 40% of the total days in the input
data are randomly selected for testing purposes. The ground-
truth samples and the MAE are computed for the interaction
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TABLE I: Average MAE for all variants in %.

device | method conflict non-conflict overall

NC 5.240.5 0.0£0.0 0.140.0

WM Det. 52405 0.0£0.0 0.1£0.0
Static 52£0.5 0.0£0.0 0.1£0.0

CoPI 4.8+0.5 0.1£0.0 0.240.0

NC 23.440.7 0.0£0.0 10.14+0.5

™V Det. 27.9+1.8 0.2£0.1 12.5+0.8
Static 21.9£0.8 0.9£0.2 10.0+0.4

CoPI 9.0£0.3 1.2£0.1 4.610.2

NC 50.243.0 0.0£0.0 47.042.1

AC Det. 459+3.1 0.0£0.0 43.1£3.2
Static 16.7£2.6 43.5+5.0 18.3+£2.8

CoPI 13.1£1.4 24.446.0 13.8£1.7

AC Time 18.442.6 38.6+19.4 19.74+2.1
TV Time 8.9+0.2 1.3+0.1 4.7+0.2

histories in the test days. We repeat the process for 10 times
for all three devices. Table. I shows the mean and standard
deviation of MAE in percentage for conflict (p > 0) and
non-conflict (p = 0) samples. For TV and WM from the
REFIT dataset, we generated over 2700 samples each. For AC
from the HVAC dataset, we generated about 110 samples on
average. As a result, the variance for AC is noticeably larger.
The method “Time” in the last two lines means running CoPI
with only one context, minuteOfDay. We only show it for TV
and AC because WM have very few conflict observations and
thus the results have no changes.

For WM, all four methods have almost identical perfor-
mance. From the MAE of NC in conflict samples, we can see
that the ground-truth probability of conflict is low (< 6%). The
reason is that users interact with WM infrequently and rarely
have conflicts. In this case, simply predicting O probability
(NC) could be sufficient, but CoPI also strikes a balance by
having similar overall performance.

For TV and AC, CoPI has, overall, the best performance.
In comparison, deterministic prediction (Det.) can capture
the non-conflict cases better, but it has significantly worse
performance in conflict cases. The reason is that it predicts
either 100% or 0% and thus cannot capture conflicts with
diverse probabilities. Especially for AC, since the ground-
truth probability is higher, the overall performance of Det. is
much worse than CoPl. Therefore probabilistic prediction is
preferred when predicting conflicts for real-world situations.

On the other hand, static prediction (Static), even with un-
realistic ground-truth knowledge, cannot capture both conflict
and non-conflict cases well at the same time. For devices like
TV, where the ground-truth probabilities for conflict cases are
relatively small (23.4%), it captures non-conflict cases well but
not the conflict cases. While for devices like AC where the
probabilities are higher (50.2%), it captures the conflict cases
but not the non-conflict cases. Overall, predicting conflict
dynamically based on context is important for real use cases.

Although we demonstrate that supporting various contexts
is important in the first experiment, we also want to show
that supporting more contexts can quantitatively improve the
performance. In the last two lines of Table. I, we show the
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Fig. 3: Changes in MAE with various context step size and alpha

performance of running CoPI with only the context minuteOf-
Day. For TV, since the interaction patterns are more related
to time, removing other contexts has little impact on the
performance, But for AC, since the outdoor temperature is
a key element that influences people’s behaviors, removing it
makes the performance noticeably worse. Especially for non-
conflict samples, the MAE and variance increase significantly.
Therefore, supporting only time as the context as in some
previous works [6] is not sufficient for conflict prediction.

E. Context granularity

In the third experiment, we evaluate how the granular-
ity in context discretization impacts performance. Context
discretization is the process of generating potential context
scenarios for the habit patterns as described in Section IV-A.
For each numerical context, we divide the domain into m,
equal-sized slots. We evaluate how the choice of m, impacts
the performance of conflict prediction.

We run the experiment for only TV and AC because
they have more conflict samples. The numerical contexts are
minuteOfDay (time) for both TV and AC and outdoorTemp
(temp) for AC. Fig. 3a shows average MAE. We vary the
granularity for one context at a time; the X axis is the step size
which is the inverse of m.. For consistency across contexts,
it is shown in percentage on a logarithmic scale.

The performance of CoPlI is relatively insensitive to the step
size when it is in a reasonable range (1% to 10%). From the
line “TV-time” we can see that when the size of the data is
sufficiently large, we should choose a small step size. On the
contrary, from the two lines for AC, we can see the small step
size increases the error because the quality of the estimation
for each potential scenario is poor due to insufficient samples
in the interaction history. In addition, by comparing the AC
lines, we can see that since the behavior of a thermostat is
related more to the temperature than the time, the changes in
time context have less impact than changes in temperature.

E CoPI’s sensitivity to o

Similar to the previous experiment, we also evaluate CoPI’s
sensitivity to the value of « from Equation. 6. The purpose
of « is to reduce redundancies in the generated conflicts
by merging similar patterns. A higher value of o results in
fewer redundancies but potentially more error. Thus in this
experiment, we vary the choice of o from 0 to 0.5 and predict
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conflicts for TV and AC. Fig. 3b shows the average MAE
against the value of a on a logarithmic scale.

From the results, we can see that the average MAE grows
quickly when o is above 1073. The optimal value for o
appears between 107° and 10~* for both devices but the
change in performance is small when « is small. Thus in
general, CoPI's performance is not sensitive to the choice of
o for small values.

G. Discussion

CoPI successfully captures users’ intentions and predicts
potential conflicts. In this work, CoPI leverages all available
contexts to make predictions. As shown in the experiments,
when some contexts have more impacts on users’ behaviors
than the others, CoPlI learns to treat them with finer granularity
because of the clustering algorithm in Algorithm 2. However,
when processing more context types, CoPl requires more
samples for the interaction history. In the future, this may
be alleviated by pre-processing interaction histories to remove
context types that are less relevant.

With CoPI, we target applications that require a priori
conflict prediction (e.g., roommate matching, space design).
For example, a smart home system can predict conflicts for
the next day based on the results from CoPI and the weather
forecast to adjust the service accordingly. If the likelihood of
raining tomorrow is 80% and CoPI predicts the probability
of conflict when raining is 90%, then the actual likelihood of
having conflict tomorrow is 72%. This example demonstrates
the flexibility of CoPI and the importance of predicting conflict
with probabilities in that subsequent system can easily utilize
our results to make further computation.

In this paper, we assume CoPI mostly runs offline and
infrequently for a priori prediction. Thus, we only discuss
the scalability problem of CoPI qualitatively. CoPI scales well
with the number of devices because the conflicts for each
device in a space can be processed in parallel. On the other
hand, CoPI finds conflicts for every pair of users and therefore
the execution time for CoPI increases exponentially with the
number of users. In our implementation, we employ a spatial
index tree [49] to store and query more efficiently. In the
future, more heuristics can be applied to improve this aspect.

VI. CONCLUSION

In this paper, we proposed CoPlI, a first demonstration of
the potential of probabilistic conflict prediction. CoPI enables
many new applications such as informing the users of potential
conflicts with new roommates or adjusting the IoT resources
when designing a new office based on the conflicts among em-
ployees. Although we do not focus on resolving conflicts, our
context-enriched conflict scenarios are informative to support
prioritizing, negotiating and eventually resolving the conflicts
in a more efficient and fine-grained way. However, work with
CoPI is not complete. Privacy is a missing aspect and future
works can focus on providing conflict scenarios with more
privacy concerns. In CoPI, we only consider ambient context
which we assume every user shares. For personal context (e.g.,
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activity of a user), conflicts may occur when the context is
different for the users and thus additional process is required
when searching for potential conflict scenarios. In conclusion,
CoPI provides an important step in the direction of ambient
intelligence for multiple residents by predicting IoT device
conflicts with context-awareness.
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