2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) | 978-1-6654-1647-4/22/$31.00 ©2022 IEEE | DOI: 10.1109/PerComWorkshops53856.2022.9767493

PeRConAl 2022: First Workshop on Pervasive and Resource-Constrained Artificial Intelligence

Prototyping Opportunistic Learning in Resource
Constrained Mobile Devices

Haoxiang Yu*, Hsiao-Yuan Chen*, Sangsu Lee*, Xi ZhengT, Christine Julien*
*Department of Electrical and Computer Engineering, University of Texas at Austin
{hxyu, littlecircle0730, sethlee, c.julien}@utexas.edu
TDepartment of Computing, Macquarie University, james.zheng@mgq.edu.au

Abstract—With the increasing capabilities of pervasive com-
puting devices, training machine learning models on-device has
become feasible. At the same time, demands for increased user
privacy and reduced communication overhead have brought de-
centralized machine learning to the forefront. In these paradigms,
individual devices collaborate opportunistically to train models
using locally available data. In this paper, we examine the
practical feasibility of such opportunistic learning. In a basic
opportunistic learning approach, when a device (the learner)
encounters another device (the neighbor), it can request the
neighbor to perform training on the learner’s behalf using the
neighbor’s own local data. To realize an opportunistic learning
in the real world, one must solve two challenges: (1) leverag-
ing device-to-device communication to discover neighbors and
exchange models and (2) training models on the device subject
to resource and latency constraints. In this paper, we examine
the feasibility of implementing opportunistic learning to learn
a convolutional neural network (CNN) model for an image
classification task using a small network testbed of diverse iOS
devices. We demonstrate success in implementing a completely
decentralized approach and characterize the challenges and
opportunities that lie ahead.

Index Terms—mobile computing, distributed machine learning,
pervasive computing, on-device training

I. INTRODUCTION

Mobile devices capture and store huge amounts of private
data, including personal health data, text messages, photos,
etc. This data can be leveraged to train models that sup-
port subsequent user interactions. Consider a model on a
user’s smartphone that can identify objects in photos to allow
keyword search over the library of photos. Training such a
model clearly requires a very large number of labeled photos.
However, in creating such models, privacy is always a central
concern, as users oppose sharing private data, like the photos
they take with their personal devices. Federated learning [1],
[2] performs model training on edge devices (such as users’
smartphones) without requiring private data to be shared with
a third party. Federated learning is coordinated by a central
server that performs model averaging for a large set of client
edge devices. Decentralized approaches have also emerged
that leverage opportunistic device-to-device interactions to
train models without relying on a central coordinator. For
example, in opportunistic learning [3], an edge device solicits
neighboring devices to assist in training using their local data.

In this paper, we examine the feasibility of implementing
opportunistic learning on real mobile devices. For any op-
portunistic learning approach, there are two basic challenges:

(1) discovering neighbors and exchanging data and models and
(2) training lightweight models entirely on-device without a
central server. While existing approaches to opportunistic and
decentralized learning have been evaluated extensively theo-
retically and through mathematical simulation, implementation
on real devices must additionally consider resource constraints,
network dynamics, and other unpredictabilities that are diffi-
cult or impossible to model in simulation. However, these real-
world conditions have a significant impact on the performance
of the entire process.

Our novel contributions focus not on evaluating the accuracy
of opportunistic learning but rather on evaluating the practical
feasibility of opportunistic learning in general and on real
devices. Therefore, we fix a learning model and focus on the
two key challenges identified above. In particular, we use a
basic opportunistic learning approach [3] in which a device
(the learner) encounters another device (the neighbor) and
asks the neighbor to perform a round of training using the
neighbor’s own computational resources and local data. The
neighbor maintains the privacy of its data, but the learner can
leverage a larger and more diverse set of data. Recognizing
that different devices in a pervasive computing environment
may have different, personalized learning goals, when a learner
discovers a new neighbor, the learner uses information about
the neighbor’s local data distribution to determine whether
collaborating would be beneficial. If the learner decides to
request collaboration, it sends the neighbor its model weights.
The neighbor performs a round of training on the learner’s
model using the neighbor’s local data before sending updated
weights back to the learner. Finally, after the learner receives
the updated weights, it updates the local model.

In this paper we evaluate the feasibility of the two key com-
ponents of practical opportunistic learning: (1) opportunistic
neighbor discovery and model exchange and (2) on-device
training. The findings in this paper are independent of the
particular learning modality and apply to any approach that
relies on decentralized (device-to-device) exchange of models
and/or on-device training. We report on a series of experiments
using 7 different iOS devices, which train a modified version
of VGG-16 model [4] to perform a simple image classification
task using the CIFAR-10 dataset [5]. We capture system-level
metrics like latency, memory, and thermal impacts that are im-
possible to capture in the large scale mathematical simulations
of decentralized learning approaches. In addition, we examine
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the feasibility of communicating model weights using off-
the-shelf device-to-device communication technologies. The
approach in this paper is an exemplar feasibility study; while
we use iOS devices for our testbed, the approach and its
findings are extensible to other mobile OS platforms, including
Android.

II. RELATED WORK

In this section, we discuss the background and related
work along the two framing challenges: (1) using device-
to-device communication to exchange model summaries and
(2) supporting on-device training. We also provide an overview
of the opportunistic learning we use for our study.

A. Device-to-Device Model Sharing

In opportunistic learning, devices need to discover one
another and then exchange information to support on-device
training (e.g., summaries of models, data distributions, etc.).
A variety of discovery mechanisms exist that rely on dif-
ferent wireless technologies. Bluetooth Low Energy (BLE)
has emerged as a commonly utilized technology [6] because
of its low energy consumption and ubiquitous availability.
BLE-based discovery is even the approach underlying several
contact tracing protocols that have emerged in recent years [7].
Continuous neighbor discovery approaches have also been
proposed for IoT-like environments [8]-[12], largely based on
precursors from wireless sensor networks [13], [14].

Once devices are mutually discovered, opportunistic learn-
ing requires them to exchange information relevant to the
learning task, which may include larger volumes of data, for
instance a CNN’s model weights. Direct device-to-device data
sharing has also been well studied in a variety of application
domains [15], [16], including applications to contact trac-
ing [17] and machine learning using edge devices [18]. These
approaches use a mixture of technologies, including BLE but
also extending to direct WiFi communication channels.

Platform-specific communication approaches also exist. For
instance, the Multipeer Connectivity Framework!, built on
Bonjour?, supports device-to-device communication among
Apple devices, using a combination of the local area network,
WiFi, and BLE. Similarly, Google Nearby Connections API®
allows similar connections of Android devices.

B. On-Device Training

As federated learning has exploded, significant attention
has been paid to on-device training of machine learning
models [19], [20]. Others have recognized potential hurdles to
practical implementations and developed techniques to address
these. For instance, TinyTL [21] reduces the memory pressure
associated with on-device training. NestDNN [22] dynamically
considers resource demands and available runtime resources to
tailor a model to a mobile device, while Lin et al. [23] explore
a battery-aware framework for inference on mobile devices.

Thttps://developer.apple.com/documentation/multipeerconnectivity
Zhttps://developer.apple.com/bonjour/
3https://developers.google.com/nearby/connections/overview

With this growing interest, platform developers have also
been building tools to support on-device training. In particular,
the following options have high visibility:

1) TensorFlow Federated (TFF)* is designed to evaluate
decentralized learning with a focus on federated learn-
ing. However, it does not yet support on-device training.

2) Tensorflow Lite’ optimizes for resource-constrained
devices and supports on-device inference for Android
and i0S, embedded Linux, and microcontrollers. As of
the writing of this paper, Tensorflow Lite does not yet
support on-device training, but this functionality is listed
in the project’s roadmap.

3) PyTorch Mobile® also enables on-device inference in
i0S, Android, and Linux-based systems. As of the
writing of this paper, it remains in beta release and does
not support on-device training.

4) OpenMined’ is an open-source ecosystem for federated
learning. It focuses on the federated learning setting and
requires a central server for coordination.

5) Core MLS is a framework for both on-device training
and inference for most of devices under the Apple
umbrella, including iPhones, iPads, Macs, Apple TV,
and Apple Watches.

While these approaches offer potential to support an oppor-
tunistic learning platform for mobile devices, we choose Core
ML for our feasibility study since, at the time of writing, it
is the most fully featured and stable platform supporting on-
device training.

C. Opportunistic Collaborative Learning

Our goal of this paper is to identify challenges in im-
plementing opportunistic learning on real-world devices. For
the purposes of our experiments we use a straightforward
implementation of opportunistic learning based on [3], applied
to a classification task. Each device has a personalized learning
goal, captured as a set of data labels the device’s model should
be able to correctly classify. In addition, each device continu-
ously collects (labeled) data based on the device’s user’s be-
haviors. Each device continuously shares an advertisement that
includes a distribution of labels in the device’s locally available
data. When one device (the learner) discovers another device
(the neighbor), it determines whether the neighbor’s advertised
label distribution sufficiently overlaps the learner’s goal set. If
it does, the learner could benefit from training on the neigh-
bor’s data. However, because the neighbor does not want to
share the potentially private raw data, the learner instead shares
its model (by sharing the model’s weights) with the neighbor.
The neighbor loads the model into memory and provides a
series of mini-batch training rounds using the learner’s model
and the neighbor’s local data. When the training rounds are
complete, the neighbor returns a set of updated model weights

“https://www.tensorflow.org/federated
Shttps://www.tensorflow.org/lite
Ohttps://pytorch.org/mobile/home
"https://www.openmined.org
8https://developer.apple.com/documentation/coreml
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Fig. 1: The opportunistic learning process

to the learner, which the learner incorporates into its local
model via a local averaging algorithm.

In this opportunistic learning approach, all of the commu-
nication (e.g., advertisement of data distributions and sharing
of model weights and updated model weights) is performed
opportunistically, without the assistance of any third party
using only device-to-device communication. All training is
performed using only resources local to the mobile devices.

III. AN OPPORTUNISTIC LEARNING PROTOTYPE

Opportunistic learning process is conceptually a modular
system with two core components: (1) device-to-device model
sharing and (2) on-device model training. The first of these
components in turn has two functions: discovering neighbors
and exchanging models. Fig. 1 shows a sequence diagram of
the opportunistic learning process.

A. Device-to-device model sharing

As described previously, we use Apple’s Core ML to sup-
port on-device training on Apple devices because it is the most
stable and flexible option. Because of this decision, we are also
motivated to use Apple’s Multipeer Connectivity Framework
to support device-to-device communication because it inte-
grates well with the Apple ecosystem. The Multipeer Connec-
tivity Framework is flexible in that it can use, in combination
and depending on the underlying devices, infrastructure Wi-
Fi networks, peer-to-peer Wi-Fi, and Bluetooth personal area
networks for the underlying communication. In this work,
we focus on localized device-to-device communication; there-
fore, we disable the infrastructure Wi-Fi network and force
the devices to communicate through peer-to-peer Wi-Fi and

Bluetooth personal area networks. In our prototype networks
described in the next section, we use 7 10S devices.

1) Discovering neighbors: When any device is partic-
ipating in a opportunistic learning network, it simultane-
ously assumes two roles; in the terminology of the Multi-
peer Connectivity Framework, these roles are advertiser and
browser. As an advertiser, the device continuously broadcasts
its data distribution alongside its peerid; this functionality
is implemented by the MCNearbyServiceAdvertiser
in the Multipeer Connectivity Framework. As a browser,
the MCNearbyServiceBrowser captures any broadcasted
data distributions from neighboring devices. For instance, if
the browser on one device (the learner in Fig. 1) receives
a signal from another device (the neighbor) containing the
neighbor’s data distribution, the learner compares its goal dis-
tribution with the neighbor’s data distribution. If the neighbor
has data that matches the learner’s goal, the learner will invite
the neighbor to proceed to model exchange. Once a neighbor
is discovered, a learner device proceeds to the next step:
exchanging the models needed for opportunistic learning.

2) Exchanging Model Information: Using the previous ex-
ample, the neighbor device will receive an invitation from
the learner to establish a model exchange session. Because
of practical limitations on the number of open communica-
tion sessions, if the neighbor is already connected to more
than 8 devices, it rejects the invitation. Once connected, the
learner will package its model and prepare for wireless model
exchange. Specifically, the learner shares a Core ML-specific
representation of the model weights and uses the established
Multipeer Connectivity session to send the weights to the
neighbor (step 2 in Fig. 1). The learner will send the model
as three different files (shown in Fig. 2 and described in more
detail below), using the Multipeer Connectivity Framework’s
sendResourceAtURL function. Once the neighbor receives
all of the files, it checks the files to confirm that no data loss
occurred during the exchange. Then the neighbor will insert
the 3 files into the local Core ML Model and perform the
on-device training process as described below.

Once the on-device training finishes on the neighbor device,
we reverse the process to return the updated weights to the
learner device. After receives the weights, it will rebuild its
model and disconnect the model exchange session.

During a model exchange session, the participating devices
may move out of communication range, and as a result the
session will be terminated. If the session is killed at any
time during the model exchange and training, the neighbor
device will stop the training and both devices will release any
resources allocated to this encounter.

B. On-Device Training

Core ML is the machine learning framework we choose for
our system design. It offers on-device training and inference
that leverages the capabilities of the low-level hardware and
can improve performance by using GPUs and Apple’s Al ac-
celerator mechanisms, when available. Within our prototype’s
use of Core ML, we must solve two practical challenges: how
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Fig. 2: File Structure of .mlmodelc

to extract a meaningful model representation that can be shared
between the learner and the neighbor and how to perform
training on the neighbor device.

1) Extracting Models: Core ML relies on an internal
compiled model representation that is stored in a .mimodelc,
whose high-level structure is shown in Fig. 2. The proprietary
format of the file makes it difficult to extract the model
weights to share in order to enable model training on
a neighbor device. However, to minimize resource
consumption during model exchange we prefer to send
only the portion of the .mlmodelc file that is relevant to
the learner and the neighbor. To determine the portion
that needs to be shared, we computed and compared
md5 hash value for each of the internal files before,
during, and after the training process and found that only
model.espresso.net, model.espresso.shape,
and model.espresso.weights change when the model
is trained. Therefore, we assume these files contain the model
information, including the weights, that needs to be shared
between the learner and the neighbor; these are the data
extracted and sent in steps 2 and 4 in Fig. 1.

2) Training Models: When the neighbor device receives the
model from the learner, it loads the model into Core ML and
performs the training on its own data. In the result, for each
encounter, the neighbor trains 10 epochs for model with all of
the data on its own. When the training process completes, the
neighbor device extracts the updated model information from
the .mimodelc file and sends the updates back to the learner.
After the learner device receives the updated weights from
the neighbor, the learner rebuilds the model and can use it for
inference (step 5 in Fig. 1).

IV. FEASIBILITY OF OPPORTUNISTIC LEARNING

To measure the performance of opportunistic learning on
real devices, we deployed our prototype to 7 different Apple
devices. We used a customized version of VGG-16 [4] tailored
to the input CIFAR-10 dataset [5] (32*32 for each image
associated with a set of 10 labels) while satisfying the memory
limitations of our test devices. Each device used the VGG-
16 model initialized with randomized weights. Each device

TABLE I: Devices Used (Ordered by Computational Power)

. . Core ML
Device Type System Version SoC Accelerator
iPad Pro 12.9 iOS 15.1 Ml Yes

iPhone 12 Mini iOS 15.1 A14 Bionic Yes
iPhone SE 2020 i0S 15.1 A13 Bionic Yes
iPhone 8 i0S 15.1 All Bionic None
iPhone 8 i0S 14.4.2 All Bionic None
iPad Pro 10.5 iOS 14.6 A10X Fusion None
iPhone 7 iOS 15.1 A10 Fusion None

randomly selected 2 of the 10 labels and then received
300 different images from these 2 labels. Each device also
randomly selected 2 labels as its goal distribution.

Table I shows the devices we used. The devices were
arranged so that all were within communication range of each
other for the entire experiment. With the exception of the
iPhone SE, the devices have other applications installed (they
are the everyday devices of real individuals). We closed all
applications other than the facilities supporting opportunistic
learning, but some background tasks were unavoidably present
on the devices. On the one hand, this leads to some unpre-
dictabilities in our results; on the other hand it simulates the
“wild” environment in which we expect opportunistic learning
to be deployed.

In the remainder of this section, we report on bench-
mark measures for the two stages in opportunistic learning:
device-to-device communication and on-device model train-
ing. Across both challenges, we found that a device’s thermal
state’ had a significant impact on the performance. Apple
defines the thermal state of a device using 4 levels:

1) Nominal: The device’s temperature is low. The device
can finish as much work as needed.

2) Fair: The device’s temperature is slightly elevated. Apple
suggests developers reduce resource usage.

3) Serious: The device’s temperature is high. At this level,
Apple suggests developers reduce CPU/GPU usage, 1/0
Operation, and network and Bluetooth usage.

4) Critical: This is the highest level of device temperature.
The device needs to cool down immediately. Most work
will be severely impacted or even terminated.

In the below, we present the benchmarks for both communi-
cation and training in the context of a device’s thermal state.

A. Communication Testing

Fig. 3 reports the average time required to perform the
needed communication steps, by phase of the device-to-device
communication and by the thermal state of each device. The
time to discover a new neighbor is calculated as the difference
between the neighbor device being online and its discovery
by the learner device. The time to establish a new connection
is measured as the time elapsed between when the learner
sends an invitation to the neighbor and the connection is fully
established. Finally, the time to exchange models is measured

9https://developer.apple.com/documentation/foundation/processinfo/
thermalstate
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Fig. 3: Average Time Spent on Device-to-

as the difference between when one device begins to send a
model and the second device has completely received it.

Fig. 3(a) shows that when the learner is in the more critical
thermal states, the speed for discovery is serious affected.
However, the thermal state of the neighbor device has limited
impact on the discovery time. Fig. 3(b) shows that the devices’
thermal states have little impact on the time establishing a
connection. Finally, Fig. 3(c) shows that when either of the
devices’ thermal state becomes more critical, the time for
model exchange is impacted. This is to be expected since both
devices have a computational role to play in model exchange.

B. Model Training

Fig. 4 shows the training time and thermal state for each
device over the experiment. Each measurement represents the
time for an epoch (i.e., a single pass over the entire training
dataset). The background color in each figure represents the
thermal state for that device during that training round. Fig. 5
shows these same result, but in aggregate for each device.

Because newer devices’ SoCs have higher efficiency than
those of older devices, we observe that the older devices
are much more prone to jump quickly to the “Fair” or even
higher thermal level. The figures also depict a clear correlation
between the model training time and a device’s thermal state.

C. Insights

Our prototype and experiments have shown that it is indeed
feasible to implement opportunistic learning on real world
devices and device-to-device networks. However, there remain
open challenges and opportunities for further innovation.

As we discussed in the related work section, there are
limited frameworks that support practical implementations of
on-device training. In addition, even though it is the most
stable and available of the on-device training frameworks,
Core ML still only supports limited layers for on-device
training. In particular, for now, we can only train the traditional
CNN layer and Dense layer on-device. We checked the ability
to support MobileNet and MobileNetV2 as they are designed
for the mobile environment, but neither of these models can
be used under the Core ML framework.
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Further, it is well known that mobile devices are resource
constrained and their operating systems are designed to mon-
itor the system performance and adapt on the fly as the
performance deteriorates. These system level adaptations can
interfere with memory and computation intensive training
schemes. For the purposes of this study, we had to dramatically
reduce the size of the model that we trained. In the future,
the operating systems could be made more training-aware and
collaborative in an on-device training process.

Finally, Fig. 4 and Fig. 5 show large differences in training
times on different devices. Given these dramatic differences,
and the expected continuation of device fragmentation in
mobile device markets, the ability for opportunistic learning
frameworks to be able to handle heterogeneous device capabil-
ities is of paramount importance. Future work should consider
adapting the model size and training intensity based on indi-
vidual devices potentially dynamic training capabilities.

V. CONCLUSION

We demonstrated the feasibility of implementing the two
key facets of opportunistic decentralized machine learning:
supporting (1) localized device-to-device sharing of data that
underpins local learning and (2) on-device training of real
models. In the process, we identified several limitations of ex-
isting platforms and several opportunities for future contribu-
tions with significant practical impact. Our efforts demonstrate
that it is essential for on-device learning schemes to directly
and explicitly consider more than just hypothetical memory,
computation, and bandwidth specifications of devices—one
must also consider the interplay of these constraints, as well as
the way the model training and communication interact with
other functions on the device.

We also identified several avenues for future systems work
in supporting opportunistic learning. First, clearly, platform
specific solutions are limiting, and we must seek frameworks
that support cross-platform collaborative learning. Second,
fragmentation in the mobile device space is a very real issue,
and the performance of on-device training on devices of dif-
fering capabilities varies dramatically. Opportunistic learning
implementations must consider the heterogeneity of devices
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and the networks that connect them. Ultimately, however, this
work shows that real world devices are ready and able to
support opportunistic decentralized learning.
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