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Prior work indicates that children have an untrained ability to
approximately calculate using their approximate number system
(ANS). For example, children can mentally double or halve a large
array of discrete objects. Here, we asked whether children can per-
form a true multiplication operation, flexibly attending to both the
multiplier and multiplicand, prior to formal multiplication instruc-
tion. We presented 5- to 8-year-olds with nonsymbolic multipli-
cands (dot arrays) or symbolic multiplicands (Arabic numerals)
ranging from 2 to 12 and with nonsymbolic multipliers ranging
from 2 to 8. Children compared each imagined product with a vis-
ible comparison quantity. Children performed with above-chance
accuracy on both nonsymbolic and symbolic approximate multipli-
cation, and their performance was dependent on the ratio between
the imagined product and the comparison target. Children who
could not solve any single-digit symbolic multiplication equations
(e.g., 2 � 3) on a basic math test were nevertheless successful on
both our approximate multiplication tasks, indicating that children
have an intuitive sense of multiplication that emerges independent
of formal instruction about symbolic multiplication. Nonsymbolic
multiplication performance mediated the relation between chil-
dren’s Weber fraction and symbolic math abilities, suggesting a
pathway by which the ANS contributes to children’s emerging
symbolic math competence. These findings may inform future
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educational interventions that allow children to use their basic
arithmetic intuition as a scaffold to facilitate symbolic math
learning.

� 2021 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://creativecom-

mons.org/licenses/by-nc-nd/4.0/).
Introduction

Early arithmetic is of great importance in determining readiness for more advanced mathematics
and serves as a strong predictor of later academic achievement (Duncan et al., 2007). As one of the four
basic mathematical operations, multiplication is an essential arithmetic skill learned in primary edu-
cation. It constitutes a foundation for many other mathematical operations such as division and expo-
nentiation. In school math curriculum, multiplication instruction often focuses primarily on rote
learning of multiplication tables. It takes years for most children to memorize the set of exact,
single-digit multiplication facts (De Visscher and Noël, 2014). Unlike subtraction and addition which
rely more on calculation (Fayol & Thevenot, 2012), symbolic multiplication is thought to greatly
involve automatic retrieval of multiplication facts. Brain imaging studies indicate that addition and
subtraction calculation rely heavily on the intraparietal sulcus, whereas multiplication further recruits
verbal brain regions such as the left angular gyrus and left middle temporal to superior temporal gyri
(Lee, 2000; Polspoel, Peters, Vandermosten, & De Smedt, 2017). These findings suggest that multipli-
cation facts are retrieved via verbal processing during multiplication calculation even into adulthood.

However, before children memorize multiplication tables, they may rely on simpler schemas for
multiplication. One early model for multiplication is repeated addition. For example, 3 times 4 can
be interpreted as 4 + 4 + 4 (Fischbein, Deri, Nello, & Marino, 1985). Another early model of children’s
understanding of multiplication originates in one-to-many correspondence, which is defined by a con-
stant relation between two quantities, formally put as x = f(y). For example, when a child is presented
with the word problem, ‘‘Tom bought three sweets. One sweet cost three pence. Howmuch money did
he spend?”, the child could map three pence to one sweet and solve this problem as ‘‘three threes”
(Park & Nunes, 2001). These early models of multiplication are highly dependent on the problem
structure and size of the number combinations used (Mulligan, 1992).

In addition to these early models of multiplication, children may develop their understanding of
the multiplication concept by grounding it within their approximate number system (ANS). The
ANS allows adults, infants, and animals to represent large sets of items approximately (Feigenson,
Dehaene, & Spelke, 2004). A hallmark of the ANS is that the discriminability of two numerosities is
dependent on the ratio between them rather than their absolute difference, following Weber’s Law
(Barth, Kanwisher, & Spelke, 2003; Izard & Dehaene, 2008). A handful of studies demonstrate that
young children, even before the onset of formal schooling, are capable of performing arithmetic cal-
culations on large nonsymbolic numerosities (Barth, Beckmann, & Spelke, 2008; Barth et al., 2006;
McCrink, Shafto, & Barth, 2017; McCrink & Wynn, 2004). The accuracy with which children perform
these nonsymbolic, approximate calculations is dependent on the ratio between the estimated out-
come and the comparison quantity, indicating that children used imprecise representations generated
by the ANS. For example, Barth et al. (2006) showed that 5-year-olds were capable of adding nonsym-
bolic visual sets and that their performance did not depend on non-numerical continuous quantities or
the adoption of any non-arithmetic strategies. Moreover, preschoolers’ approximate number knowl-
edge appears to bolster their understanding of basic logical relationships of arithmetic, which allows
preschoolers to solve multistep approximate addition and subtraction problems presented in either
symbolic or nonsymbolic format (Gilmore & Spelke, 2008).

Beyond addition and subtraction, young children can also perform a scaling operation over non-
symbolic representations of large arrays of discrete objects (Barth, Baron, Spelke, & Carey, 2009;
McCrink et al., 2017; McCrink & Spelke, 2010, 2015). In these studies, children without knowledge
of symbolic multiplication and division are nevertheless able to learn that a magic wand doubles,
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halves, quadruples, or quarters an array of dots (Barth et al., 2009; McCrink & Spelke, 2010, 2015).
McCrink and Spelke (2010) presented children with a video of an array of objects, which were then
hidden behind an occluder. The video displayed a magic wand waving at the occluder that doubled
or quadrupled the array. Children were instructed to compare the occluded array with a visible com-
parison array and judge which array was greater. Children performed with above-chance accuracy on
this task, and their accuracy was dependent on the ratio between the imagined doubled or quadrupled
array and the visible comparison target array, suggesting that children used their ANS to solve this
task. However, scaling by a factor is only one specific case of the multiplicative operation. The scaling
transformation solely requires the extraction of the constant proportional relationship between the
multiplicative factor and the product, whereas true multiplication or division requires that the mul-
tiplier or divisor and the multiplicand or dividend be allowed to vary.

A recent study by Szkudlarek, Zhang, DeWind, and Brannon (2021) examined the ability of 6- to 9-
year-old children and college undergraduates to perform symbolic and nonsymbolic approximate
division. In their novel approximate division task, both the divisor and dividend were allowed to vary.
Specifically, participants were presented with either dots (nonsymbolic format) or Arabic numerals
(symbolic format) representing pollen pieces that were evenly distributed onto flower petals. During
a demonstration phase, children were shown animations where the pollen pieces were always equally
distributed among the petals. Their job was to compare the quotient (quantity on one flower petal)
with a comparison target to choose the large quantity. Whereas the quotient was visible in the demon-
stration trials, on subsequent experimental trials the division operation was obscured by fog before
the pollen pieces were distributed onto the petals so that participants needed to imagine how many
dots landed on each petal and then compare their imagined quotient with a new visible quantity. Both
the starting number of pollen pieces (dividend) and the number of flower petals (divisor) varied across
trials, differentiating this experimental design from previous ones where children only needed to
divide by a constant scaling factor. Results indicated that elementary school children could intuitively
divide in both nonsymbolic and symbolic formats. Importantly, successful approximate division cal-
culation was not dependent on formal division knowledge and was associated with sharper ANS
acuity.

The current study was designed to investigate whether children are also capable of performing a
true multiplication operation prior to formal schooling in the multiplication operation. To ask this
question, we adapted the task used by Szkudlarek et al. (2021) for multiplication rather than division.
Children aged 5–8 years were presented with nonsymbolic multiplicands (dot arrays) ranging from 2
to 12 and nonsymbolic multipliers ranging from 2 to 8. To solve the task, children needed to compare
their imagined product with a visible comparison quantity. To assess whether children’s successful
approximate multiplication calculation was dependent on knowledge of symbolic multiplication,
we quantified children’s symbolic multiplication knowledge level with a test of their formal symbolic
multiplication knowledge. We predicted that children who did not exhibit any knowledge of symbolic
multiplication would nevertheless be capable of multiplying approximately.

Our second goal was to address whether children can access their intuitive sense of multiplication
when presented with numerals to represent numerical magnitude. If children can integrate their intu-
itive multiplication knowledge within the symbolic number system, they may be more likely to use
their intuitive knowledge of multiplication in the context of a math classroom. To answer this ques-
tion, we provided children with a symbolic, approximate version of our novel approximate multipli-
cation task. The only distinction between the symbolic and nonsymbolic versions of the task was that
in the symbolic version children were presented with numerals (instead of dot arrays) to represent the
multiplicand and the comparison target. We predicted that children could extend their intuitive mul-
tiplication ability beyond simple concrete representations of quantity to abstract mathematical sym-
bols even without any formal training on symbolic multiplication.

A third goal of the current research was to determine whether children use their ANS to perform
approximate multiplication. We assessed whether approximate multiplication performance displayed
two different hallmarks of the ANS and whether it correlated with an independent measure of ANS
acuity. First, we examined whether accuracy was modulated by the ratio between the imagined pro-
duct and the comparison quantity. Second, we assessed whether accuracy was modulated by the mag-
nitude of the operands. Operations with numerosities are thought to be aided by a mapping to mental
3
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magnitude representations (Gallistel & Gelman, 1992). If an operand is represented approximately, the
fuzziness of its representation should increase linearly with numerical magnitude (Pica, Lemer, Izard,
& Dehaene, 2004). In this case, approximate multiplication accuracy would decrease with the magni-
tude of the multipliers. Third, we directly correlated ANS acuity with intuitive multiplication perfor-
mance. If intuitive multiplication is grounded in the ANS, children with sharper ANS acuity should
have higher accuracy on our multiplication tasks.

Our fourth goal was to test whether nonsymbolic approximate multiplication serves as a pathway
between ANS acuity and symbolic math abilities. There is an association between sharper ANS acuity
and greater symbolic math competence across development (Chen & Li, 2014; Feigenson, Libertus, &
Halberda, 2013; Schneider et al., 2017). In the first longitudinal study to show this, individual differ-
ences in ANS acuity in 14-year-olds were strongly linked to children’s past scores on standardized
math tests, extending back to kindergarten even after controlling for IQ (Halberda, Mazzocco, &
Feigenson, 2008). Despite previous findings demonstrating a link between the ANS and symbolic
math, the mechanism underlying this relation remains unknown. Recent evidence indicates that
approximate arithmetic ability in young children might account for unique variance in symbolic math
performance that cannot be explained away by ANS acuity (Starr, Roberts, & Brannon, 2016;
Szkudlarek & Brannon, in press), suggesting a potential pathway that underlies this link. In
Szkudlarek et al. (2021), performance on the nonsymbolic division task mediated the relation between
ANS acuity and symbolic math performance in both child and adult participants. Thus, we hypothe-
sized that nonsymbolic multiplication performance would mediate the relation between ANS acuity
and symbolic math. Specifically, we hypothesized that sharper ANS acuity would lead to better non-
symbolic multiplication performance. In turn, a better intuitive sense of nonsymbolic multiplication
might facilitate the conceptual understanding of the logical principles of the multiplication operation
and therefore may precede and support instruction-based symbolic math performance. If this poten-
tial mechanism exists, better nonsymbolic multiplication calculation skill originating in sharper ANS
acuity should lead to more advanced symbolic math performance.

Our hypotheses, procedures, and main analyses were preregistered on the Open Science Frame-
work (OSF) at https://osf.io/u82fn/ Videos of the approximate multiplication tasks and our data are
available in the OSF repository.

Method

Participants

A total of 44 5- to 8-year-old children participated in our experiment (Mage = 7.26 years, SD = 0.98;
27 females). We were unable to reach our preregistered sample size of 120 participants due to COVID-
19 research closures. This age group was chosen because it consists of children who have learned
counting and basic addition but will show variability in knowledge of symbolic multiplication. Writ-
ten parental consent and children’s verbal assent were obtained in accordance with a protocol
accepted by the institutional review board in the University of Pennsylvania. An additional 12 children
were consented but were excluded from the final sample because they did not complete the two
experimental tasks. Children in our sample were from a range of racial and ethnic backgrounds
(10.7% Asian, 42.9% Black or African American, 25.0% White, 7.1% Hispanic or Latino, and 14.3%
unknown) and a broad socioeconomic spectrum based on annual family income (17.9% $0–25,000,
16.1% $25,000–50,000, 14.3% $50,000–75,000, 1.8% $75,000–100,000, 14.3% $100,000–150,000,
14.3% $150,000+, 3.6% preferred not to answer, and 17.9% are unknown. A subset of the 44 children
who completed both experimental tasks completed additional assessments (formal multiplication
knowledge test, n = 44; numeral identification task, n = 44; Corsi Block Task, n = 40; dot comparison,
n = 36; KeyMath-3 Numeration assessment, n = 37; Woodcock–Johnson Reading cluster, n = 37).

Procedure

Children performed the tasks individually with an experimenter in a quiet room either in their
after-school program or in our laboratory. Children completed the nonsymbolic and symbolic
4
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multiplication tasks first, with the order of the two tasks being counterbalanced across children (non-
symbolic first, n = 23; symbolic first, n = 21). The order of the other assessments was dependent on the
task duration as well as children’s availability. We gave each participant a small toy as a ‘‘thank you”
gift on completion of all tasks.
Approximate multiplication tasks

Both the nonsymbolic and symbolic approximate multiplication tasks were built as Android apps
using APIs in the Android framework and were run on a Samsung Galaxy S2 tablet with a 9.7-inch
screen. All children, regardless of whether they were given the nonsymbolic or symbolic version of
the approximate multiplication task first, watched a short introduction animation about the back-
ground story of the game on the tablet. At the start of the animation, children were introduced to a
cartoon bee, ‘‘Buzz,” who collects food in a garden. Children were told, ‘‘Buzz likes a special kind of
flower that always has the same number of food pieces on each petal. See, there’s the same number
on each petal.” Three examples of flowers that had the same number of pollen pieces on each petal
were displayed. Children then heard, ‘‘Buzz collects all of the food pieces from the flower and puts
them in his honeypot before eating them.” Children were shown Buzz and his honeypot below a
flower with two petals, each of which contained three dots. Children were then told, ‘‘Buzz takes
his honeypot and brings it up to the flower and collects all of the food in his honeypot. All of the food
from each petal goes into the honeypot. The same amount of food comes from each petal.” Children
could see as the two sets of three pollen pieces moved from the petals into the transparent honeypot.
Children then watched three more examples of Buzz’s food collecting process where each example
had a different combination of petal number and pollen pieces on each petal.
Nonsymbolic approximate multiplication
The demonstration phase started right after the introduction animation (Fig. 1A). On demonstra-

tion trials, children were able to see the exact number of petals (the multiplier), the exact number
Fig. 1. Diagram of the procedure for the approximate multiplication tasks. (A) Demonstration trials for nonsymbolic version in
which children learned that each petal on a given flower has the same number of pollen pieces and that Buzz the bee collects
them all with his honeypot. (B) Demonstration trials for symbolic version in which children saw the same numerals on each
petal go into Buzz’s honeypot and change into the numeral of the product. Children completed 8 demonstration trials for both
multiplication tasks by picking the honeypot with greater quantity. (C) Experimental trials for the nonsymbolic version where
children could see only one flower petal and needed to mentally multiply to compare their imagined product with the
comparison target on the right side. (D) Experimental trials for the symbolic version where the quantity on each petal and the
comparison target were Arabic numerals rather than dot arrays.
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of dots on each petal (the multiplicand), and the total number of dots that fell into the honeypot (the
product). Children completed 8 demonstration trials. The purpose of this phase was to ensure that
children could understand the basics of the game. After children watched Buzz collect all the pollen
pieces into a transparent honeypot, the flower faded away and the honeypot moved to the left side
of the screen. A second honeypot with pollen pieces inside appeared on the right side of the screen
as a comparison target. Children were instructed to help Buzz pick the honeypot that contained the
larger number of food pieces. If a correct response was made, a happy bee showed up with a positive
tone and the written words ‘‘Great job!” If an incorrect response was made, a sad bee with a negative
tone and the written words ‘‘Try again!” appeared as feedback. During the demonstration phase, chil-
dren saw flowers with 2, 5, or 8 petals. These trials were not included in our data analysis.

After the completion of the demonstration phase, children watched another instruction animation.
Children were told, ‘‘On foggy days, Buzz can only see one flower petal. But there are still the same
number of food pieces on each petal. You have to imagine how many pieces of food are on each petal.
Buzz takes his honeypot and collects all the food. All of the food from each petal goes into the honey-
pot. The same amount of food comes from each petal. If you imagine howmany pieces of food were on
each petal, you can imagine how many are in the honeypot now.” Then children were shown two
examples of the foggy day trials with other petal numbers. In experimental trials, children were no
longer able to see the total number of dots in the flower; instead, a single flower petal was presented
for 2 s. Thus, on experimental trials children needed to mentally multiply the visible dots on one petal
by the number of petals to infer how many dots were collected into the opaque honeypot. To respond,
children then compared their imagined product with a new visible target quantity and were
instructed to choose the array of dots with greater quantity. During testing, children were explicitly
instructed not to count or calculate. An experimenter was seated next to children and reminded them
not to count if the experimenter noticed any verbal or finger counting by saying: ‘‘Remember, this is
not a counting game. Try your best to get the right answer as fast as you can!” Children completed 32
trials with feedback during which they saw flowers with 2, 5, and 8 petals and 24 more trials with 3, 4,
and 6 petals without feedback to test whether they could generalize to new multipliers. The task
recorded children’s accuracy and reaction time for each of the experimental trials. This paradigm
allowed a test of children’s ability to perform true multiplication because both the multiplier (number
of petals) and the multiplicand (number of dots on each petal) flexibly varied from trial to trial.
Symbolic approximate multiplication
The symbolic version of the approximate multiplication task contained identical instructions and

numerical values as the nonsymbolic version. As shown in Fig. 1, the only difference between the
two tasks was that in the symbolic task the multiplicand (number of dots on each petal) and the com-
parison target (number in the comparison honeypot) were Arabic numerals rather than dot arrays.
Stimulus set for the approximate multiplication tasks
We chose the specific numerical values for the test trials to ensure that participants could not rely

on a strategy other than approximate multiplication. Given that the multiplier (number of petals) ran-
ged from 2 to 8 and the multiplicand (number of pollen pieces on each petal) ranged from 2 to 12, we
first required that all the target comparison values be within the upper bound of the product value
(8 � 12 = 96) so that children could not pick the comparison target merely because it was numerically
larger than any product they imagined during the course of the experiment. Second, to prevent chil-
dren from simply attending to the multiplier or multiplicand, we included trials where the multipli-
cand and the multiplier were large relative to the range of their potential values, whereas the correct
answer was the right comparison target. Specifically, we included 22 of 56 trials where the multipli-
cand was larger than the median multiplicand value (5), whereas the comparison target was the cor-
rect answer, and we included 24 of 56 trials with multipliers larger than the median multiplier value
(4.5), whereas the correct answer was the comparison target. In addition, we created the stimulus set
to avoid the possibility of children creating a mental model of the average of all the comparison values
used in the experiment and making their choice by comparing that median number with each com-
parison value they saw. To do this, we included 22 of 56 trials where the right-side comparison target
6
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was larger than the median number of the comparison value (27.5), whereas the correct answer was
the left product. Further analyses of these alternative strategies can be seen in Appendix C.

The numerical values were chosen to create four ratios between the imagined product and the
comparison target (Ratio Level 1 � .8, Ratio Level 2 � .6, Ratio Level 3 � .45, and Ratio Level
4 � .35). To allow an assessment of the impact of the magnitude of the multiplier, we further ensured
that at each multiplier there was the same number of trials corresponding to each ratio level with
equal probability (50%) of correctness for each side. Finally, dot size varied randomly across trials in
the nonsymbolic multiplication task (range = 0.1–0.25 cm diameter). Numerical values for
experimental trials on both multiplication tasks are shown in Appendix A.

Numeral identification task

Children were presented with the numerals 1 to 30 in random order printed on index cards and
were instructed to read the numerals aloud. The accuracy of their responses was recorded by the
experimenter.

Formal multiplication knowledge test

We created a formal multiplication knowledge test composed of 16 questions (Appendix B). Of
these 16 items, 6 were addition and multiplication word problems, 4 were symbolic addition equa-
tions, 4 were symbolic multiplication equations, and 2 examined children’s ability to recognize the
multiplication symbol (�) and the division symbol (�). For each question, children were shown a
flashcard with relevant pictures or arithmetic equations and the experimenter read the problem aloud
to the children. Children’s verbal responses were recorded.

Corsi Block Task

The Corsi Block Task was used to assess visuospatial working memory (Corsi, 1972). We aimed to
incorporate visuospatial working memory as a control variable in the mediation analysis because
arithmetic calculations require spatially represented numerical information to be stored and manip-
ulated, and this largely relies on visuospatial strategies. Furthermore, visuospatial working memory
has consistently been found to be correlated with early math performance (St Clair-Thompson &
Gathercole, 2006; Toll, Kroesbergen, & Van Luit, 2016). We ran a standardized administration proce-
dure for the Corsi Block-Tapping Task on the Android tablet (Kessels, Van Zandvoort, Postma, Kappelle,
& De Haan, 2000). Nine cubes were displayed on the screen. Children saw a hand tap a sequence of
blocks and were instructed to touch the blocks in the same sequential order. Correct responses
resulted in increases in the length of the sequences. Children’s performance was measured by the pro-
duct of the block span (the length of the last correctly repeated sequence) and the number of correct
trials.

Numerosity comparison task

The numerosity comparison task was programmed using the Psychophysics Toolbox extension in
MATLAB (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) and was run on a 15-inch touch-
screen laptop computer. Before the start of the task, children heard the following narrative for instruc-
tions as they viewed printed slides shown by the experimenter: ‘‘This is our friend Dani the Dinosaur.
Dani needs your help today. You are going to see circles that have dots in them just like this one. And
your job today is to tell Dani which circle has more dots inside. Look at these two. Can you tell Dani
which has more dots?” Children were given two practice trials with feedback. In the experimental tri-
als, a colorful readiness cue was presented in the center of the screen. and children were instructed to
tap it to start the next trial. Then two circles with dot arrays inside displayed simultaneously on the
right and left of the screen for 750 ms. The dot arrays were then occluded, and children’s response was
measured. The stimulus set was constructed to spread numerical and non-numerical stimulus dimen-
sions evenly along a logarithmic scale, with the distance between values in the space proportional to
7
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the ratios of their various features (number, dot size, and spacing), yielding a total of 13 ratio levels.
The numerosities used ranged from 8 (23) to 32 (25), with 11 more powers of 2 spaced evenly between
23 and 25. All 13 values were rounded to the nearest whole number (e.g., 24.5 was rounded to 23). Chil-
dren completed 100 trials with an adaptive procedure developed by Lindskog, Winman, Juslin, and
Poom (2013). The ratio between the two arrays advanced to a harder level if accuracy was above
80% and retreated to an easier level if accuracy was lower than 70% using a 5-trial running average.
To increase the reliability of ANS measures, each child’s Weber fraction was calculated as a quantita-
tive index of ANS acuity using a novel model that controlled for the influence of non-numerical fea-
tures of the stimuli (DeWind, Adams, Platt, & Brannon, 2015; DeWind & Brannon, 2016).
KeyMath-3 Diagnostic Assessment

The Numeration subtest of the KeyMath-3 Diagnostic Assessment (Connolly, 2008), which consists
of 49 items, was used to assess children’s general math abilities such as early number awareness, place
value, magnitude of numbers, basic concepts of integers, and fractions. The standardized assessment
was administered and scored following basal and ceiling rules given in the manual.
Woodcock–Johnson IV test of cognitive abilities

Children’s reading abilities were measured by the Letter–Word Identification andWord Attack sub-
tests of the Woodcock–Johnson IV Tests of Achievement (Schrank, F. A., Mather, N., & McGrew, K. S.
(2014)). The Letter-Word Identification subtest required children to identify letters and words. In
the Word Attack subtest, children were instructed to read aloud as many nonsense words as possible.
The scoring procedure following basal and ceiling rules was administered.
Fig. 2. (A) Accuracy on the nonsymbolic and symbolic multiplication tasks for children. The dashed line denotes chance
performance. Error bars represent standard error of the mean. (B) Children’s performance on the nonsymbolic and symbolic
multiplication tasks broken down by their performance on the formal multiplication knowledge test. The feedback and non-
feedback phases are combined for each task. Children who could not solve any multiplication equations performed significantly
above chance on both the nonsymbolic and symbolic tasks. Children who could solve at least one multiplication equation
performed significantly better than children who could not. ***p < .001.
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Results

Nonsymbolic and symbolic approximate multiplication performance

As shown in Fig. 2A, and consistent with our preregistered prediction, children performed the non-
symbolic approximate multiplication task with above-chance accuracy on both the feedback phase
(72.1% accuracy, 95% confidence interval (CI) [.69, .75], t(43) = 13.79, p < .001) and non-feedback phase
(66.7% accuracy, 95% CI [.63, .70], t(43) = 10.14, p < .001). There were 29 children who could not solve
any of the four multiplication equations from the formal multiplication assessment. Consistent with
our preregistered prediction, and as shown in Fig. 2B, children who could not solve any multiplication
equations successfully completed the nonsymbolic multiplication task with above-chance accuracy
(feedback: 69.5% accuracy, 95% CI [.66, .73], t(28) = 10.42, p < .001; non-feedback: 64.0% accuracy,
95% CI [.60, .68], t(28) = 6.85, p < .001). Children who could solve at least one simple multiplication
equation performed with higher accuracy than children who could not solve any multiplication equa-
tions (Wilcoxon rank sum test, M1 = 74.9%, M2 = 67.2%, W = 114, p < .01).

On the symbolic multiplication task, consistent with our preregistered prediction, children per-
formed well above chance on both the feedback phase (68.8% accuracy, 95% CI [.64, .74], t
(43) = 7.99, p < .001) and non-feedback phase (65.0% accuracy, 95% CI [.61, .70], t(43) = 6.76,
p < .001) of the task (Fig. 2A). As can be seen in Fig. 2B, children who could not solve multiplication
equations nevertheless performed the symbolic multiplication task with above-chance accuracy
(feedback: 65.1% accuracy, 95% CI [.60, .70], t(28) = 6.03, p < .001; non-feedback: 61.0% accuracy,
95% CI [.57, .65], t(28) = 5.35, p < .001). Similar to results with the nonsymbolic task, children who
could solve at least one multiplication equation were more accurate than children who could not solve
any multiplication equations (Wilcoxon rank sum test, M1 = 74.6%, M2 = 63.3%, W = 132, p = .017).
These data indicate that formal multiplication knowledge is not a prerequisite for engaging in approx-
imate multiplication in either the nonsymbolic or symbolic format but that some symbolic multipli-
cation knowledge may benefit approximate multiplication performance.
Fig. 3. (A) Performances on the symbolic and nonsymbolic approximate multiplication tasks were highly correlated. Dashed
lines denote chance accuracy. (B) Children solved the nonsymbolic task faster than the symbolic task. Error bars indicate
standard error of the mean.
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Approximate multiplication task format effect

Children’s performance on the nonsymbolic and symbolic multiplication tasks were highly corre-
lated [r = .68, t(42) = 5.93, p < .001] (Fig. 3A). Accuracy on the nonsymbolic version was not signifi-
cantly different from accuracy on the symbolic version [nonsymbolic: 70.0% accuracy; symbolic:
67.2% accuracy;MD = 0.03, t(43) = 1.66, p = .10]. We found no significant task format effect on accuracy
even among children unable to identify all the numerals 1 to 30 (n = 14) (Wilcoxon signed rank test,
nonsymbolic: 64.1% accuracy; symbolic: 60.0% accuracy; V = 68.5, p = .12). Unlike the accuracy data,
there was a significant effect of format on median reaction time, indicating that children were faster to
complete the nonsymbolic task than the symbolic task (95% CI [�.32, �.04], t(43) = �2.68, p = .01)
(Fig. 3B).
Fig. 4. (A) Mean accuracy across participants on each ratio level between the product and the comparison target. Performance
on the nonsymbolic and symbolic multiplication tasks was ratio dependent. The dashed line denotes chance performance. Error
bars represent standard error of the mean. Ratio Level 1� .8; Ratio Level 2� .6; Ratio Level 3 � .45; Ratio Level 4� .35. (B) Mean
accuracy for both tasks across participants at each multiplier. Children’s performance was modulated by the magnitude of
multipliers. Gray shaded rectangles denote multipliers involved in the feedback phase. (C) Mean accuracy for each participant
as a function of his or her formal multiplication knowledge score.
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Predictors of approximate multiplication performance

Our preregistered prediction was that both ratio and multiplier magnitude would modulate perfor-
mance for both tasks. We fit a generalized linear mixed-effects model (GLMM) following a binomial
error distribution predicting children’s item level accuracy (correct or incorrect) from the ratio level
between the product and the comparison target, children’s formal multiplication knowledge (total
scores of formal multiplication knowledge test), magnitude of the multipliers, whether the task was
in a symbolic or nonsymbolic format, age, and order of the two multiplication tasks while controlling
for the random effects of participant. The GLMM was constructed in R using the lme4 package (Bates,
Mächler, Bolker, & Walker, 2014).

As shown in Fig. 4, the ratios between the product and the comparison target, children’s formal
multiplication knowledge, and magnitude of multipliers all were significant predictors of trial correct-
ness (Akaike’s information criterion [AIC] = 5876.5). A 1-unit increase in ratio level between the pro-
duct and the comparison quantity led to a 13% increase in the odds of a correct response (bRL = .12,
SE = .02, z = 7.10, p < .001, 95% CI [.10, .17]). A 1-unit increase in scores of the formal multiplication
knowledge test led to a 5% increase in odds of a correct response (bMK = .05, SE = .01, z = 4.08,
p < .001, 95% CI [.02, .07]). An increase in the magnitude of multipliers led to a 7% decrease in the odds
of a correct response (bMM = �.08, SE = .01, z = �8.16, p < .001, 95% CI [�.09, �.06]). Modeling results
revealed no significant fixed effects of age (bage = .00, SE = .05, z = 0.05, p = .96), task format (bTF = �.07,
SE = .04, z = �1.93, p = .054), or the order of the two tasks (bOD = �.01, SE = .09, z = �0.10, p = .92).

Given the surprising result that age was not a significant predictor of performance in the GLMM, we
looked at the correlation between age and performance in each of the two approximate multiplication
tasks. The correlation between age and the approximate multiplication performance was not signifi-
cant in either format (nonsymbolic: r = .29, 95% CI [�.01, .54], p = 0.06; symbolic: r = .17, 95% CI [�.14,
.44], p = .28).
The relation among ANS acuity, approximate multiplication, and symbolic math skills

Our preregistered prediction was that accuracy on the nonsymbolic approximate multiplication
task would mediate the relationship between ANS acuity and symbolic math performance. To test
for this mediation relation, we first discarded outliers greater or less than 3 times the interquartile
range for each measure. This process removed two ANS scores and two KeyMath-3 Numeration scores.
We next ran a normality check for each measure and transformed highly skewed distributions to
approach normality. Specifically, we conducted natural log transformation for ANS acuity (Shapiro–
Wilk, W = .94), scores of Corsi Block (W = .96), and Woodcock–Johnson Reading cluster (W = .94).
Table 1 displays the descriptive statistics and the age-standardized correlations between the nonsym-
bolic and symbolic approximate multiplication performance, ANS acuity, KeyMath-3 Numeration
Table 1
Descriptive statistics and age-standardized Pearson correlation matrix.

M SD 1 2 3 4 5 6

1 Nonsymbolic multiplication 0.70 0.09
2 Symbolic multiplication 0.67 0.14 .68***
3 ANS acuity 0.33 0.13 �.51** �.47**
4 KeyMath-3 Numeration 11.30 5.12 .62*** .49** �.48**
5 Woodcock–Johnson Reading cluster 46.30 20.47 .47** .40* �.42* .83***
6 Corsi Block 15.67 13.37 .33 .37* �.37* .11 .08
7 Formal multiplication 7.36 3.82 .51** .52** �.49** .83*** .81*** .06

Note. The bivariate correlations are controlling for age. Approximate number system (ANS) acuity is calculated from the dot
comparison task. The nonsymbolic and symbolic multiplication measures are the total accuracy across the feedback and non-
feedback trials.
*p < .05.
**p < .01.
***p < .001.
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Fig. 5. Mediation models test for whether the associations between approximate number system (ANS) acuity and symbolic
math outcome measures were mediated via the nonsymbolic multiplication performance, with c representing the total effect
before controlling for the mediator, the product of standardized path coefficients a and b representing the size of the mediation
effect (the indirect effect), and c’ representing the relation of ANS acuity to outcome measures adjusted for the mediator (the
remaining direct effect). The mediation framework is constrained by the assumption that c = ab + c’. (A) Nonsymbolic
multiplication performance mediates the relation between ANS acuity and children’s scores on KeyMath-3 Numeration. The
remaining direct effect (c’) is no longer significant, whereas the indirect effect (ab) is significant. (B) The relation between ANS
acuity and children’s scores on the formal multiplication knowledge test was mediated by nonsymbolic multiplication
performance. The unmediated direct effect (c’) and the indirect effect (ab) both are significant. *p < .05, **p < .01, ***p < .001.
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section, score of formal multiplication knowledge test, Corsi Block score, and Woodcock–Johnson
Reading cluster. More detailed descriptive information on each measurement can be seen in
Appendix D.

To examine whether nonsymbolic approximate multiplication performance mediates the relation
between ANS acuity and symbolic math, we ran the preregistered mediation analysis with the
KeyMath-3 Numeration section as an outcome measure. Traditionally, standard mediation analyses
require strong functional form assumptions to be met (Baron & Kenny, 1986). Given our small sample
size, we also used a bootstrap procedure based on a nonparametric resampling test to provide stan-
dard errors and confidence intervals (Preacher & Hayes, 2004, 2008). The main feature of this test is
that it does not rely on either power or distributional assumptions (Pardo & Román, 2013). As
Fig. 5A illustrates, the regression coefficient between ANS acuity and KeyMath-3 Numeration score (s-
tandardized b = �.50, p < .01) and the regression coefficient between ANS acuity and nonsymbolic
multiplication performance (standardized b = �.58, p < .001) both were significant. Nonsymbolic mul-
tiplication accuracy mediated the relation between ANS acuity and KeyMath-3 Numeration score (s-
tandardized b = .53, p < .01). ANS acuity was no longer a significant predictor of children’s KeyMath-3
Numeration score after controlling for nonsymbolic multiplication (standardized b =�.23, p = .15). The
significance of the indirect effect was tested by conducting bootstrapping procedures with 5000
Monte Carlo simulations, and the 95% confidence interval was computed by determining the indirect
effect at the 2.5th and 97.5th percentiles (indirect effect = �.27, 95% CI [�.53, �.10], p < .001). The
direct effect was not significant (direct effect = �.23, 95% CI [�.50, .09], p = .12). The proportion of
the effect of ANS acuity on the KeyMath-3 Numeration score that goes through the mediator was
0.54 (p < .01, 95% CI [.22, 1.31]). The indirect effect remained significant when controlling for the
Corsi Block score as a covariate factor (indirect effect = �.25, 95% CI [�.50, �.09], p < .001; direct
effect = �.26, 95% CI [�.59, .06], p = .09; proportion mediated = 0.49, 95% CI [.19, 1.16], p < .01).
However, the indirect effect was no longer significant when the Woodcock–Johnson Reading
assessment was controlled as a covariate factor.
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We then conducted the same mediation analysis using our formal multiplication knowledge test as
an outcome measure. As shown in Fig. 5B, ANS acuity was a significant predictor of children’s scores
on the formal multiplication knowledge test (standardized b = �.58, p < .001) and of accuracy on non-
symbolic multiplication (standardized b = �.58, p < .001). The effect of ANS acuity on the score of the
formal multiplication knowledge test was mediated by the accuracy on nonsymbolic approximate
multiplication (standardized b = .40, p = .011). This significant indirect effect was tested with a boot-
strapping method with 5000 resampling simulations (indirect effect = �.23, 95% CI [�.50, �.07],
p = .001; proportion mediated = 0.40, 95% CI [.14, .90], p = .002). The relation between ANS acuity
and formal multiplication knowledge remained significant after controlling for the mediator, nonsym-
bolic multiplication accuracy (direct effect =�.35, 95% CI [�.57,�.05], p = .030). As was the case for the
KeyMath-3 measure, the indirect effect still held after entering Corsi Block score as a covariate factor
into the mediation model (indirect effect = �.23, 95% CI [�.48, �.08], p < .001; direct effect = �.38, 95%
CI [�.65, �.11], p = .02; proportion mediated = .37, 95% CI [.15, .77], p < .001), whereas this indirect
effect was no longer significant when controlling for the correlation between a child’s score of the for-
mal multiplication knowledge test and Woodcock–Johnson Reading cluster.
Discussion

Our study provides the first evidence that young children can intuitively multiply using both large
quantities of objects and Arabic numerals prior to formal knowledge of multiplication. Even children
who were unable to solve any simple multiplication equations, such as 2 � 3, were nevertheless cap-
able of performing both approximate multiplication tasks with above-chance accuracy. As predicted,
performance on the two multiplication tasks was significantly modulated by the ratio of the product
to the comparison target and the numerical magnitude of the multipliers, indicating that children used
numerical representations generated by the ANS to solve our tasks.

Previous research demonstrated children’s ability to perform scaling operations. In those experi-
ments, children learned that a magic wand resulted in a change in the numerosity of a dot array by
a constant multiplicative or fractional factor (Barth et al., 2009; McCrink & Spelke, 2010). The current
experiment took this finding a step further to demonstrate that children can engage in true approxi-
mate multiplication. Multiplication requires the integration of both a multiplier and a multiplicand in
the computation (Barth et al., 2009). The current study allowed both the multiplier and the multipli-
cand to hold multiple values and thus demonstrated a flexibility with intuitive multiplication that had
not yet been observed beyond the special case of the scaling transformation. During non-feedback
testing, children switched to multiplying with novel multipliers, demonstrating that they were able
to perform a true multiplication operation that is not restricted to specific scaling values.

Our study also provides evidence that children can extend their rapid and intuitive approximate
multiplication skills beyond nonsymbolic numerical representations to engage in approximate arith-
metic with Arabic numerals. In contrast to recent findings that children performed with higher accu-
racy on the nonsymbolic version compared with the symbolic version (Szkudlarek & Brannon, in
press; Szkudlarek et al., 2021), children’s accuracy in the current study did not differ as a function
of task format. However, consistent with previous research, children in the current experiment were
faster on the nonsymbolic version of the task compared with the symbolic version. This pattern of
accuracy and reaction time suggests that children are capable of integrating their intuitive sense of
multiplication with their knowledge of numerals but that this integration may require an additional
cognitive processing step.

Children often use addition and counting strategies when they are first learning symbolic multipli-
cation (Anghileri, 1989; Ter Heege, 1985). However, we designed our task with the goal of preventing
children from relying on counting. First, children were explicitly instructed and supervised not to
count. Second, whereas the number of petals ranged from 2 to 8, the number of pollen pieces varied
from 4 to 96 with only 2-s exposure duration, leaving insufficient time to count. Furthermore, our
reaction time analyses provided strong evidence that children were not using a sequential addition
strategy. Specifically, children’s reaction time did not increase with the number of petals, indicating
that the approximate multiplication process was parallel rather than sequential (Appendix C).
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Our findings raise important questions about the underlying cognitive processes of intuitive mul-
tiplication computations. Systematic variability in performance likely emerges during both the multi-
plication calculation process and the comparison of the product with the target comparison quantity
(Cordes, Gallistel, Gelman, & Latham, 2007; McCrink, Dehaene, & Dehaene-Lambertz, 2007). During
calculation, operands larger than 4 were represented by the ANS, whereas operands smaller than 4
may have been represented more precisely by parallel enumeration (Feigenson et al., 2004). Thus,
greater variability in children’s representation of larger operands may lead to greater variability in
their imagined product, which in turn may lead to worse performance when children compare this
product with a comparison target quantity. Consistent with previous findings (McCrink & Spelke,
2010), our analyses indicated that accuracy decreased as the multiplicative operand (number of
petals) increased. This operand effect was distinct from the ratio effect. It is an open question how
much information is preserved from the initial visible operands to the representation of the product.
In other words, how similar is the representation of the products of 2 � 16 and 8 � 4? A future study
that compares accuracy for trials with different operands but equivalent products may help to identify
the source of the operand effect.

Moreover, open questions remain as to the domain-general cognitive skills that affect approximate
multiplication ability. Interestingly, there was no significant age-standardized correlation between
children’s visuospatial working memory and their nonsymbolic approximate multiplication perfor-
mance. Although clearly there is spatial ability involved in the nonsymbolic calculation, it is unclear
how linked children’s abstract representation of numerical quantity is to the visual representation
of the individual multiplicands. Future work can systematically manipulate the spatial layout of the
dots and flower petals or use continuous representations of magnitude, such as circles, to test whether
spatial layout of the nonsymbolic stimulus affects the calculation of an approximate product.

We found multiple sources of evidence that children relied on their ANS to solve the approximate
multiplication tasks. First, we observed two characteristic signatures of the ANS: ratio dependence and
poorer performance as the numerical magnitude of the operands increased. Second, there was a high
correlation between accuracy on both tasks and children’s ANS acuity measured independently by the
numerosity comparison task. Together, these results suggest that both symbolic and nonsymbolic
approximate multiplication computation depends on numerical representations generated by chil-
dren’s ANS, which further complements a growing body of studies addressing the role of the ANS in
various approximate arithmetic operations (Barth, La Mont, Lipton, & Spelke, 2005; McCrink et al.,
2017; McCrink & Spelke, 2015; McCrink & Wynn, 2004; Szkudlarek et al., 2021).

Consistent with recent findings by Szkudlarek et al. (2021), our results indicate that nonsymbolic
multiplication performance mediated the relation between ANS acuity and symbolic math perfor-
mance in young children. We found convergent evidence for this mediation effect with two distinct
outcome measures for symbolic math: the KeyMath-3 Numeration section and a questionnaire that
assessed formal multiplication knowledge. Collectively, our findings and those of Szkudlarek et al.
(2021) and Szkudlarek and Brannon (in press) suggest a pathway by which the ANS contributes to
children’s emerging symbolic math competence at the beginning of formal arithmetic instruction.
The established correlation between symbolic math performance and ANS acuity may reflect variabil-
ity in children’s ability to integrate intuitive arithmetic representations grounded in the ANS with the
corresponding symbolic arithmetic concepts.

Furthermore, nonsymbolic multiplication accuracy significantly mediated the relation between
ANS acuity and symbolic math even after controlling for visuospatial working memory, suggesting
that the mediation effect cannot be attributed to the domain-general skill of visuospatial working
memory. However, it is crucial to note that for both math outcome measures, the indirect effect for
the mediation model was no longer significant when controlling for the Woodcock–Johnson Reading
cluster as a covariate factor. This parallels findings by Szkudlarek et al. (2021) that also found that
approximate division no longer mediated the relation between ANS and math when controlling for
the Woodcock–Johnson Reading cluster as a covariate factor, although verbal skills did not affect this
mediation relation in adults. As is typical in developmental studies (Durand, Hulme, Larkin, &
Snowling, 2005; Hart, Petrill, Thompson, & Plomin, 2009), we found a strong correlation between both
symbolic math measurements and the Woodcock–Johnson Reading cluster. Therefore, there may have
been too little variance left in math ability after controlling for reading skill to detect the mediation
14
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effect. It remains possible that this mediation effect would hold when testing our hypothesis with a
much larger sample.

The current study has several limitations. First, due to COVID-19 research closures, our sample size
was relatively small. This restricted sample size may have obscured a potential increase in accuracy
with age on our multiplication tasks. However, despite this small sample size, all our main preregis-
tered predictions held. Second, although we varied dot size randomly across trials, a limitation of our
design is that we did not employ rigorous stimulus controls for physical extent in the nonsymbolic
multiplication task. A full counterbalance of all non-numerical features was unachievable in the lim-
ited number of trials children could complete in the time available. It is well known that continuous
quantity variables such as object size, cumulative surface area, and density affect numerical estima-
tion (Gebuis & Reynvoet, 2012; Leibovich, Katzin, Harel, & Henik, 2017). Although it is theoretically
possible that children used some combination of continuous and discrete magnitude features on
our nonsymbolic multiplication task, children’s above-chance accuracy on the symbolic version of
the approximate multiplication task demonstrates that children can engage in approximate multipli-
cation using only numerical cues.

In summary, despite the challenges children face in learning multiplication and memorizing mul-
tiplication facts (Campbell & Graham, 1985; Koshmider & Ashcraft, 1991; van der Ven, Straatemeier,
Jansen, Klinkenberg, & van der Maas, 2015), our study illustrates that they have an intuitive concept of
multiplication that is independent of their acquisition of formal multiplication facts and procedures.
This intuitive multiplication sense is grounded in the ANS. Indeed, our findings suggest that approx-
imate multiplication might serve as a pathway between ANS acuity and children’s symbolic math abil-
ities. An important next step is to test whether educational interventions that harness this intuitive
multiplication capacity would improve symbolic arithmetic learning for children before and during
early mathematics instruction. Although rote memorization of multiplication times tables is impor-
tant, approximate multiplication exercises might allow children to use their basic intuition as a
stepping-stone to form more advanced conceptual understanding of abstract arithmetic principles
even before they are ready for the introduction of precise symbolic multiplication.
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Appendix A

See Table A1.
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Table A1
Stimulus set for experimental trials in the approximate multiplication tasks.

Multiplicand Multiplier Comparison value Ratio level Phase

8 8 49 1 Feedback
4 5 15 1 Feedback
5 5 20 1 Feedback
4 2 6 1 Feedback
4 8 42 1 Feedback
3 5 20 1 Feedback
7 2 18 1 Feedback
5 2 13 1 Feedback
9 8 43 2 Feedback
3 5 9 2 Feedback
12 5 36 2 Feedback
4 2 5 2 Feedback
3 8 40 2 Feedback
5 5 42 2 Feedback
3 2 10 2 Feedback
10 2 33 2 Feedback
11 8 40 3 Feedback
10 5 23 3 Feedback
4 2 4 3 Feedback
3 5 7 3 Feedback
2 8 35 3 Feedback
4 5 44 3 Feedback
12 2 53 3 Feedback
2 2 9 3 Feedback
12 8 34 4 Feedback
3 5 5 4 Feedback
11 8 31 4 Feedback
4 2 3 4 Feedback
2 8 46 4 Feedback
2 5 29 4 Feedback
5 2 29 4 Feedback
10 2 57 4 Feedback
2 3 5 1 Non-feedback
8 6 38 1 Non-feedback
9 4 29 1 Non-feedback

6 3 24 1 Non-feedback

3 6 24 1 Non-feedback
10 4 50 1 Non-feedback
4 3 7 2 Non-feedback
10 6 36 2 Non-feedback
12 4 28 2 Non-feedback
5 3 25 2 Non-feedback
2 6 20 2 Non-feedback
12 4 80 2 Non-feedback
3 3 4 3 Non-feedback
12 6 33 3 Non-feedback
7 4 13 3 Non-feedback
11 3 73 3 Non-feedback
2 6 27 3 Non-feedback
4 4 35 3 Non-feedback
4 3 4 4 Non-feedback
12 6 25 4 Non-feedback
7 4 10 4 Non-feedback
2 3 17 4 Non-feedback
2 6 35 4 Non-feedback
8 4 91 4 Non-feedback
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Appendix B

Script: Formal multiplication knowledge test
Stack each card on top of each other directly in front of the child and say the following:
1. Do you know what 2 plus 3 is?
2. If Sam has 4 apples and Kate gives him 2 more, how many apples will he have?
3. What number is twice of 4?
4. What number is twice of 9?
5. You are having pizza with your friends. There are 4 plates. If you put 2 slices on each plate, how

many slices are there altogether?
6. Pretend you are a squirrel. There are 3 trees. If you find 5 acorns under each tree, how many

acorns did you find altogether?
7. Do you know what this symbol is? �
8. And what about this one? �
Can you solve any of these problems? (continue to stack them on top of each other for the child, but

do not read the cards to the child)
9. 6 + 3 = ?
10. 8 + 2 = ?
11. 5 + 5 = ?
12. 12 + 4 = ?
13. 2 � 3 = ?
14. 2 � 4 = ?
15. 8 � 3 = ?
16. 9 � 5 = ?
Appendix C

The alternative strategy analyses
To rule out the possibility that children were using alternative strategies instead of conducting true

approximate multiplication, we first assessed for evidence that children used a ‘‘median-split” strategy
when merely attending to the range information of the multiplicative operands or the comparison target.
For example, if children used this strategy, they would construct an intuitive estimation of the median or
average of the comparison target values across trials and make their choice based on the comparison
between the target value and the median comparison value. Specifically, they would pick the target value
if it was greater than the median comparison value; otherwise, they would pick the imagined product.
Based on our stimulus set, children would get 34 of 56 trials correct if they perfectly executed the
median-split strategy on the comparison target. Likewise, children were expected to be 60.7% correct
(34 of 56 trials) when using this median-split heuristic on themultiplicand and 57.1% correct when apply-
ing this strategy to the multiplier. In other words, children should not perform above 60.7% accuracy if
they relied exclusively on any of these alternative heuristics. A one-sample t test showed that children’s
performance was significantly above 60.7% accuracy in both the nonsymbolic and symbolic formats (non-
symbolic: 69.8% accuracy, 95% confidence interval (CI) [.67, .73], t(43) = 6.53, p < .001; symbolic: 67.2%
accuracy, 95% CI [.63, .71], t(43) = 3.07, p < .01), indicating that children’s above-chance performance
on approximate multiplication tasks cannot be attributed to reliance on the median-split heuristics.

Another possible alternative strategy is to implement a sequential addition computation rather
than performing a true multiplication computation. For example, a trial with 3 petals and 3 dots on
each petal can be interpreted as 3 + 3 + 3, whereas a trial with 4 petals and 3 dots on each petal
can be solved as 3 + 3 + 3 + 3. As such, the greater the multipliers are, the longer reaction time must
be required to compensate for incremental additive steps. Therefore, we modeled the reaction time by
conducting a generalized linear mixed-effects model following a gamma distribution. The magnitude
of the multiplier (the petal number) was entered as a predictor while controlling for the fixed effects of
the ratio level and the task format as well as the random effects of individual participants. Results
revealed no significant effects of the multiplier on predicting the reaction time (b = .004, SE = .002,
t = 1.72, p = .09), indicating that the sequential addition process was unlikely.
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Appendix D

See Table D1.
Table D1
Descriptive statistics of individual assessments.

M SD Min First
quartile

Mdn Third
quartile

Max

ANS acuity 0.33 0.13 0.11 0.25 0.31 0.38 0.78
KeyMath-3 Numeration 11.30 5.12 3.00 7.00 12.00 15.00 22.00
Woodcock–Johnson Reading cluster 46.30 20.47 17.00 28.00 46.00 66.00 85.00
Corsi Block 15.67 13.37 0.00 6.00 12.00 20.00 60.00
Formal multiplication 7.36 3.82 1.00 4.00 8.00 10.00 15.00

Note. Approximate number system (ANS) acuity is calculated from the dot comparison task. Formal multiplication is the scores
of the formal multiplication knowledge test.
Appendix E

See Table E1.
Table E1
Zero-order correlation matrix.

1 2 3 4 5 6 7

1 Nonsymbolic multiplication
2 Symbolic multiplication .68***
3 ANS acuity �.54*** �.49**
4 KeyMath-3 Numeration .60*** .55*** �.50**
5 Woodcock–Johnson Reading cluster .52** .50** �.50** .81***
6 Corsi Block .42** .48** �.41* .21 .25
7 Formal multiplication .51*** .54** �.58*** .85*** .80*** .27
8 Age .29 .17 �.45** .28 .45** .27 .40**

Note. The nonsymbolic and symbolic multiplication measures are the total accuracy across the feedback and non-feedback
trials. ANS, approximate number system.
*p < .05.
**p < .01.
***p < .001.
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