P o P
e Journal of !

it . . MDPI
s Composites Science \)
I. .l I..IE /
Article

Validation of Deep Learning Segmentation of CT Images of
Fiber-Reinforced Composites

Aly Badran 1,#( Dula Parkinson 200, Daniela Ushizima 200, David Marshall 1 and Emmanuel Maillet 3

check for
updates

Citation: Badran, A.; Parkinson, D.;
Ushizima, D.; Marshall, D.; Maillet, E.
Validation of Deep Learning
Segmentation of CT Images of
Fiber-Reinforced Composites. J.
Compos. Sci. 2022, 6, 60. https://
doi.org/10.3390/jcs6020060

Academic Editor: Gérard L.
Vignoles

Received: 8 January 2022
Accepted: 14 February 2022
Published: 18 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Aerospace Engineering and Sciences, University of Colorado, Boulder, CO 80303, USA;

david.marshall@colorado.edu

2 Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA;
dyparkinson@lbl.gov (D.P.); dushizima@lbl.gov (D.U.)

3 GE Global Research, Niskayuna, NY 12309, USA; emmanuel. maillet@ge.com

Correspondence: aly.badran@colorado.edu

Abstract: Micro-computed tomography (uCT) is a valuable tool for visualizing microstructures and
damage in fiber-reinforced composites. However, the large sets of data generated by pCT present
a barrier to extracting quantitative information. Deep learning models have shown promise for
overcoming this barrier by enabling automated segmentation of features of interest from the images.
However, robust validation methods have not yet been used to quantify the success rate of the
models and the ability to extract accurate measurements from the segmented image. In this paper,
we evaluate the detection rate for segmenting fibers in low-contrast CT images using a deep learning
model with three different approaches for defining the reference (ground-truth) image. The feasibility
of measuring sub-pixel feature dimensions from the pCT image, in certain cases where the uCT image
intensity is dependent on the feature dimensions, is assessed and calibrated using a higher-resolution
image from a polished cross-section of the test specimen in the same location as the uCT image.

Keywords: ceramic-matrix composites; ceramic fibers; structural characterization; mechanical testing

1. Introduction

X-ray micro-computed tomography (1CT) has been widely adopted to investigate
internal microstructures and damage of multi-phase structural materials such as fiber-
reinforced composites [1-10]. In situ uCT experiments generate multiple 3D images, each
consisting of 2000 slices (~30 gigabytes). These large images make manual analysis a
time-consuming task and limit the extraction of quantitative information. This limitation
can be overcome by using automated image segmentation to label image pixels according
to their constituent material phases. Classical automated methods include simple grey level
thresholding as well as more complex image analysis techniques such as classifiers and
clustering [11-14]. All of these methods perform well with images that have minimal noise
and artifacts, along with sufficient difference in grey level between the material phases
being segmented; however, they often fail, with images having high noise and low contrast.

Previous studies on automating the segmentation of pnCT images of fiber-reinforced
composites include techniques based on template matching such as in Ushizima et al. [15]
and Czabaj et al. [16]; early machine learning methods by Emerson et al. [17]; and deep
learning (DL) methods that rely on convolutional neural networks (CNNs) [18]. The
template-matching technique uses pre-saved templates of fiber cross-sections to detect
center coordinates of individual fibers in a graphite-epoxy composite. In Emerson’s work,
a supervised segmentation technique requires users to train a dictionary by manually
annotating image intensities of fiber centers. The algorithm looks up the dictionary to
decide if certain pixels belong to a fiber. These first two approaches depend to some
extent on differences in grey level between the fibers and surroundings. A deep learning
model, on the other hand, allows for automated segmentation of fibers by distinguishing
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shape and edge information rather than relying only on image intensities [18]. This is
especially useful in images of composites that consist of fibers and matrix of the same
material composition, as in SiC-SiC composites consisting of SiC fibers in a matrix of SiC,
with a fiber coating of a different material. Whereas CT images of SiC-SiC composites
show no difference in grey level between the fibers and matrix, Figure 1c, the presence of
thin fiber coatings generally provides edge information from which the fibers and matrix
can be distinguished. Although deep learning models have been shown to be capable of
precisely labeling multiple phases in 3D images of such composites, the accuracy of the
performance of the deep learning models is yet to be measured reliably. Although visual
assessment is a good first step to identify the functionality of image segmentation, it does
not provide a quantitative measure of the detection rate for identifying fibers or accuracy
of measurement of material constituents.

The objective of this paper is to assess the success rate of segmentation by deep
learning in low-contrast CT images of SiC-SiC composites. Two measures of the success
rate are of interest in this case. One is the percentage of fibers identified correctly. The other
is the accuracy of assigning individual pixels to specific material phases. In both instances,
a reference (or ground-truth) segmentation is needed, both for training and for validation.
Here, we assess the relative merits of three approaches for defining the ground truth: use of
synthetic images, use of manually segmented CT image slices, and use of a high-resolution
optical image from a polished cross-section of the test specimen in the same location as the
CT image slice. The optical image will also be used to calibrate sub-pixel measurements of
fiber coating thicknesses. Creveling et al. [19] recently validated their template-matching
approach for segmenting fibers in graphite-epoxy composites by comparing with training
using synthetic images that mimic the quality and resolution of CT images, including
artifacts such as beam hardening and noise. The use of synthetic data avoids the effort
of manual labeling of fibers and the human errors that might result [20]. Emerson et al.
validated their machine learning method for fiber segmentation using high-resolution
optical and SEM images [21].

2. Material and Imaging

The materials of interest in this work are ceramic-matrix composites (CMCs), which
are used for high-temperature applications such as turbine engines, aerospace propulsion,
and nuclear power generation [22-25]. The CT images analyzed in this paper are from an
earlier study [2,26,27] in which a SiC-5iC composite was loaded in tension with in situ
uCT imaging, to relate damage such as matrix cracks and fiber breaks to microstructural
properties. The test specimen was in the form of a dogbone, prepared from a multi-ply
unidirectional laminate with fibers aligned in the direction of the tensile loading. The
SiC fibers (diameter ~8-16 pm) were surrounded by a thin coating (~0.2—4 pm thickness)
of boron nitride (BN) which serves as a weak interphase (necessary for damage tolerant
behavior) and the SiC matrix was formed by melt infiltration (MI). Although the 3D images
from these previous studies provide a visual insight into microstructure and damage,
further quantitative measurements of variations in microstructure and the extent of damage
are needed to allow the analysis of CMC performance.

The test specimen was loaded monotonically in tension at room temperature using
an in situ loading stage at the Advanced Light Source (ALS) Lawrence Berkeley National
Lab Synchrotron beamline 8.3.2. [28]. The loading was paused to allow CT imaging
(nine times) immediately after matrix crack events were detected using Acoustic Emission
transducers [27]. A white X-ray beam was used for imaging, with an exposure time of
300 ms for each of the 1025 radiographs over 180-degree rotation, giving a total scan time
of 6 min/scan. Radiographs were reconstructed using inverse radon transforms yielding
2160 cross-sectional image slices with a voxel size of 1.3 um/voxel. A region from a
cross-sectional slice of the CT image is shown in Figure 1c.

After the completion of testing, the specimen was sectioned and polished normal
to the load axis, sequentially at three different locations along the axis. At each location,
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high-resolution optical images were captured and stitched together to form a complete
cross-sectional image (Figure 1a). The CT slice corresponding to each of these optical
images was aligned manually with the optical image (Figure 1b,c).

The CT image was obtained before the test specimen was loaded to failure, whereas
the optical image was obtained after failure. Damage that occurred during loading after
the CT image was obtained can be seen in (a) and (b): gaps (black filled circles) remaining
where fibers broke at locations coinciding with the plane of the cross-section and cracks
normal to the plane of the cross-section near the left end of the image in (a).

The optical image, with pixel size 0.17 um, reveals more detailed microstructural
information than the lower-resolution CT image (Figure 2).

Free Si
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Figure 1. (a) Optical image of cross-section of test specimen. (b) Enlargement of area indicated in (a).
(c) CT image slice from same area as in (b). The CT image was obtained before the test specimen was
loaded to failure, whereas the optical image was obtained after failure. Damage that occurred during
loading after the CT image was obtained can be seen in (a,b): gaps (black filled circles) remaining
where fibers broke at locations coinciding with the plane of the cross-section and cracks normal to the
plane of the cross-section near the left end of the image in (a).
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Figure 2. (a) Optical, (b) CT. Higher magnification images of an area from Figure 1a, with grey level
profiles along lines indicated. Pixel sizes: 0.17 um/pixel in optical image; 1.3 um/pixel in CT image.

The optical image reveals that BN coatings around the fibers have a variable thickness
between 0.2 and 4 um (varying both around a given fiber and between different fibers),
whereas the lower-resolution CT images show no clear difference in widths of thick and
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thin coatings. However, there is a clear trend of thicker coatings in the optical image
corresponding with darker coatings in the CT image, as illustrated by the grey level profiles
in Figure 3.
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Figure 3. CT images of three fibers with coatings of different thicknesses spanning the range seen in
Figure 1b (thickest in (a), medium in (b) and thinnest in (c)). (d) Radial grey level profiles for each
fiber averaged over a set of 48 radial lines obtained by rotating the line indicated in red (a) about the
center of the fiber in increments of 271/48.

The correlation between coating width and minimum grey level in radial profiles such
as Figure 3 is assessed in Section 3.2 as a potential method for measuring coating thickness
from the CT image. The optical image also shows that the SiC matrix contains a small
amount of silicon, both in isolated islands of diameter less than ~1 um and in irregular
connected channels of width up to ~10 um. The channels are also visible in the CT image,
whereas the isolated islands of silicon are not resolved in the CT image. We also note that
the presence of the isolated islands of silicon in the matrix does not alter the average X-ray
absorption in the matrix sufficiently to give significant grey level contrast between the
fibers and matrix in the CT image. However, in the optical image, there is clear grey level
contrast between fibers and matrix.

The images in Figure 1 also show non-uniformity in the spatial distribution of fibers,
corresponding with the locations of plies, and a consistent correlation between variations
of fiber coating thickness and location within the plies (thicknesses being smaller near the
center of the plies than near the exterior). To determine whether these microstructural
variations might influence the mechanical behavior and damage of CMCs, it is necessary to
quantify the deviations from an ideal composite microstructure having perfectly aligned,
uniformly distributed fibers with uniform coatings.

3. Analysis Methods
3.1. Image Segmentation and Correlation

Segmentation of CT images was carried out with a deep learning method based on
a convolutional neural network (CNN) in image processing software supplied by Object
Research Systems (ORS Dragonfly, Montreal, QC, Canada) (described in [18]). The deep
learning model (U-Net architecture) was trained using one cross-sectional image slice that



J. Compos. Sci. 2022, 6, 60 50f17

was manually labeled by highlighting pixels associated with fibers. The training slice was
taken from the image recorded at the highest load before failure of the composite, after
extensive cracking of the matrix and fibers had occurred, in order to train the deep learning
model to segment fibers while avoiding matrix cracks and fiber breaks (see Figure Al).
Note that the focus of the present study is on the segmentation of fibers from the remainder
of the image; the same model has also been trained separately to segment matrix cracks
and fiber breaks [18]. Details on the deep learning model training parameters are in the
Appendix A. The deep learning model was then used to segment all nine image stacks
scanned within the gauge section during the in situ loading experiment, a Hough transform
plugin (developed in Image] by UCB vision sciences under the GNU Public License) in
Image] being used to extract the center locations of fibers by finding elliptical features in
the segmented CT image. The fibers highlighted in orange in Figure 4 are a result from this
automated fiber segmentation from the slice of a CT image recorded at an early stage of the
loading (100 MPa) from the location corresponding to one of the high-resolution optical
images captured after failure.

(o) 1))

Figure 4. Comparisons of segmented fibers with optical image of an area within Figure 1a. (a) Optical
image. (b) Superposition of optical image in (a) with fiber segmentation mask derived from CT
image of the same area. (c—e) Superposition of fiber segmentation masks derived from optical image
(black) and CT image slice (red). Green lines connect corresponding fibers in the two masks (the
correlation allowed a tolerance up to 7 pm to account for possible misalignment between the optical
and CT images).
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The segmentation of the optical image was done by conventional image threshold-
ing, since as noted earlier; there is a grey level difference between fibers, coatings, and
matrix. The thicknesses of the fiber coatings were then measured as described in [29]. The
segmented fibers of the optical image are shown in black in Figure 4c-e.

Locations of individual fibers in the segmented CT and optical images were matched
to allow fiber-to-fiber correlation for comparing the detection rate of the deep learning
segmentation. Figure 4 shows the correlation of segmented fibers from the optical images
(black) and the segmented fibers from the CT image (orange) with a green line joining the
matched fibers centers. The correlation between the locations of segmented fibers in the
optical and CT images accounts for relative displacements due to possible misalignment
between the CT and optical images (e.g., due to a slight tilt (up to ~0.7°) in the sample while
polishing or a tilt while CT or optical imaging). In this manner, fibers that were within
~7 um in the CT image from their corresponding fibers in the optical image were matched,
Figure 4c—e. A full view of the cross-sectional image of the fibers in the optical and CT
images with their corresponding segmentation is given in Figure A2.

3.2. Measurements of Fiber Coating Thicknesses

After locating the center of each fiber in the CT image slice and corresponding optical
image, profiles of grey level in the image along a set of fiber radii at 48 equally spaced angles
were averaged to obtain a location and magnitude for an averaged minimum grey level
for the coating surrounding that fiber in the CT image. Typical results for three fibers with
coatings of different thicknesses, spanning the range of thicknesses observed in the optical
image, are shown in Figure 3. There is a clear correlation in these three cases between the
magnitude of the minimum grey level and the average coating thickness obtained from the
optical images, with the average minimum grey level varying by more than a factor of two
between the fibers with the thickest and thinnest coatings. Results of a detailed correlation
for all of the fibers in the three optical images are given in Section 4.2.

The accuracy with which the fiber radii can be measured from the CT image is deter-
mined by the accuracy of locating the edge of a fiber, which is limited by contributions to the
image contrast from the presence of the coating (of unknown variable thickness below the
resolution of the image) and by near-field diffraction effects, which are influenced by scan
parameters including the distance between the detector and test specimen. An approach
for improving the accuracy of locating the fiber edge by making use of the location and
magnitude of the minimum grey level in the average radial profile could be potentially
used to improve measurements of fiber radii.

4. Results
4.1. Deep Learning Segmentation Validation

Validation of the deep learning segmentation (DL) involves a comparison between
the segmented image and a reference image or “ground truth” (GT). Here, we compare
the validation results obtained using three different ground-truth images: the first is a
synthetically generated image; the second a manually segmented CT image; and the
third a threshold segmented optical image with relatively high resolution from a polished
cross-section at the same location as the CT slice.

Various metrics are explored for quantifying the detection rates of fibers using the
three validation approaches. Pixel-based metrics for image validation rely on correctly
labeled pixels in an image assuming that pixels are a true representation of material
phases in the image and are not affected by image noise or artifacts. Although pixel-based
metrics are essential in the image training and validation stage, other validation methods
based on identifying physical features of the material are needed to relate the accuracy of
segmentation to the true structure of materials (which can sometimes be misrepresented by
pixel-based methods due to limitations in the resolution). The presence of diffraction effects
mentioned in the previous section is an example of how image contrast and edge location
can be influenced by scan parameters and thus influence the accurate representation of
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material phases in the pixels of an image. Material-based metrics such as fiber detection
rate do not rely on image pixels for ground truth. The fiber detection rate is a metric based
on feature identification and is defined as the number of fibers segmented correctly in
the CT images by the deep learning divided by the number of fibers in the ground truth,
which may not be sensitive to mislabeling of some of the pixels. Pixel-based metrics on
the other hand are a function of all possible outcomes for all the pixels: (i) true positive
(TP, number of correctly labeled fiber pixels), (ii) false positive (FP, number of incorrectly
labeled fiber pixels), (iii) true negative (TN, number of pixels correctly labeled background),
and (iv) false negative (FN, number of pixels incorrectly labeled as background). Different
pixel-based metrics are commonly used: (i) Intersection Over Union (IOU) is the area of TP
segmented fibers divided by the area of the union of the DL segmented fibers and the fibers
in the GT; (ii) the DICE score is two times the area of TP segmented fibers divided by the
sum of the number of pixels in the DL and GT; (iii) accuracy is the percentage of correctly
labeled pixels in the DL segmentation compared to all labeled pixels; (iv) precision is the
ratio of correctly predicted pixels of fibers to the total number of predicted pixels in the DL;
(v) recall is the ratio of correctly predicted pixels of fibers in the DL to the ground-truth
pixels of fibers. Equations for these validation metrics are as follows:

Number of TP Fibers segmented in CT image by DL

Detection Rate = Total Number of Fibers in Ground Truth (GT) Dataset ™
Precision = %fFP 2

Recall = TPZ—% (©)

Aceuracy = 757 g I g\\i] ¥TN @

DICE = % ®)

10U = e ©

4.1.1. Ground Truth from Synthetic Data

In this section, the fiber detection rate and pixel-based accuracy of the DL model
to segment synthetically generated images of fiber-reinforced composites are assessed
using image data from Creveling et al. [19]. Synthetic images were generated to resemble
real X-ray CT images of a carbon/epoxy laminate in different pixel sizes and resolutions
while accounting for image artifacts and noise [30]. A DL model was trained on one
synthetically generated composite image as shown in Figure 5a. The U-Net model training
parameters were kept identical to the ones used for the CT images in this study as described
in Appendix A. After being trained, the DL model was used to segment all image slices
from the synthetic dataset for validation.

The detection rate of the DL model to segment fibers in the synthetic data is 100%
(Figure 5b), while the five pixel-based metrics fall in the range of 99.5-100% (Table 1).

Table 1. A comparison between three segmentation validation methods.

Metric
Detection PN o o o o
Method Rate % Precision % Recall %  Accuracy % DICE% IOU %
Synthetic 100 99.8 99.6 100 99.7 99.5
GT from Manual 89.6 93.9 86.5 76.2 93.3 80.6

GT from Optical 93.7 88.4 89.2 NA 88.8 80.0
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Figure 5. Superposition of synthetic image with (a) ground-truth segmentation (GT, blue) and
(b) deep learning segmentation (DL, orange). Locations of false positives (FP) and false negatives
(FN) are indicated by yellow pixels in (c).

All of the errors result from a few incorrectly labeled pixels (FP + FN) at the edges of
some fibers, as shown in Figure 5c. These could be due to fiber edges that intersect only part
of a pixel and therefore are classified as a fiber pixel. Overall, the DL model successfully
trained and segmented the synthetically generated images with a 100% fiber detection rate.

4.1.2. Ground Truth from Manually Segmented CT Images

A ground-truth image was prepared by manually segmenting a region of a CT image
slice (621 x 549 pixels) in Figure 1b, shown in Figure 6.

Manual segmentation can be conducted by selecting the pixels of fibers in an image
with image highlighting tools in any image processing software (Dragonfly, in this case).
The manually segmented image was not used in the training of the DL model so it could
provide an unbiased evaluation of the performance of the model. The training of the U-Net
model was carried out using a manually trained 549 x 2560 pixel image as described in the
Appendix A. The DL model was run to segment the images from all loads including the
manually segmented region used for ground truth in Figure 6.

Comparison of the image slice segmented by the trained DL model to the ground-truth
image slice yielded a fiber detection rate of 89.6%. Only the TP pixels of the DL segmented
fibers were used for the estimate of the detection rate. The intersected pixels between the
manually defined ground truth and the segmentations (colored green, Figure 6) are the
correctly labeled fibers (TP). Fibers that were in the ground-truth image but missed by the
DL segmentation are colored blue (FN). The yellow pixels were erroneously segmented
by the DL model as fibers (FP). The reasons for the FN and FP cases are discussed in
Section 5. The pixel-based accuracy scores, which ranged from 76% to 94% (Table 1), are
much lower than those for the validation method that used ground truth from the synthetic
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data. Although the variation of scores in Table 1 provides insight to the precision, recall,
and accuracy of the DL model, the question is raised as to which pixel-based accuracy score
is the most relevant in this case. Since the main objective is to detect and measure fiber
locations reliably, validation metrics based on pixels might not be the best indication of
segmentation accuracy when the goal is to relate fiber locations to material properties.

Figure 6. Superposition of CT image with two segmentations: (i) ground-truth segmentation
(GT) obtained by manual segmentation of the CT image and (ii) deep learning segmentation (DL).
Green = intersection of DL and GT; yellow = fibers identified by DL but not in GT (FP); blue = fibers
in GT but missed by DL (FN).

4.1.3. Ground Truth from High-Resolution Optical Images

The high-resolution optical image that was segmented by grey level thresholding was
used as ground truth to assess the fiber detection rate from the deep learning segmentation
of CT images. The DL U-Net model was trained using manually highlighted images as
described in the Appendix A. Since the fiber coating plays a key role in distinguishing fibers
from the matrix in these CT images, and fibers with the thinnest coatings can be difficult
to identify, either by eye or by automated segmentation techniques (Figure 1), use of the
high-resolution optical image as ground truth is expected to be the preferred approach.

Superposing the segmented fibers from the CT image onto the optical image, as in
Figure 4, allows visual evaluation of the effectiveness of automated segmentation to identify
fibers in CT images. The detection rate of the DL segmentation is 93.7%. To assess whether
the detection rate is influenced by microstructural parameters such as fiber radius, coating
thickness, and fiber location, the combined numbers of fiber detections and misses for all
three optical images (total of 2966 fibers) are plotted as a function of these parameters in
Figure 7.

The total number of fibers in the optical image with certain radii, coating thicknesses,
and locations are shown as grey bars in Figure 7. The red bars represent the subset of the
fibers in the optical image that were matched with their corresponding DL segmented
fibers from the CT image (detected by CT). Fibers from the optical image with no matched
fibers from the CT images (missed by CT) are shown as blue bars. The detection rate does
not appear to be dependent on the fiber radius (Figure 7a), whereas it is affected by the
coating thickness (Figure 7b), with a bias for fibers with thin coatings being missed by the
DL segmentation. In direct examination of images such as Figure 1, it is clear that some
of the fibers with thin coatings are challenging to distinguish from the matrix because the
dark rings around the fibers become less distinct as the coating thickness decreases.
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Figure 7. Fiber detection rates as a function of (a) fiber radius, (b) coating thickness, (c) location in
horizontal direction in the image of Figure 1 (x-coordinate), and (d) location in vertical direction in
the image of Figure 1 (y-coordinate). The combined detection rate is 93.7%. In (a) missed fibers are
not correlated with variations in fiber radii. In (b) fibers with thin coatings are more likely to be
missed. In (d) most of the missed fibers are located in the centers of the plies.

The fiber detection rate was also plotted as a function of the locations of the fibers
within the image, left to right Figure 7c and top to bottom Figure 7d. There is no obvious
variation in fiber detection rate across the image from left to right in Figure 7c. How-
ever, a bias towards missed fibers being located in the centers of the plies is evident in
Figure 7d. This is consistent with the result in Figure 7b (fibers with thin coatings being
missed) since the fibers with the thinnest coatings tend to be located in the centers of the
plies. Additionally, many fibers at the edges of the cross-section were missed by the DL
segmentation (Figure 7d). This is attributed to the presence of image artifacts at the edge
of the test specimen as well as damage introduced during preparation of the polished
cross-sections for optical imaging (fibers that are chipped or have no matrix around them).
In calculating the detection rate listed in Equation (1), fibers along the edges were removed
from consideration to avoid these artifacts. If the fibers at the edges were to be included, the
detection rate would drop from 93% to 89%. The precision, recall, DICE, and IOU metrics
were also evaluated for the validation with ground truth from the optical image as shown
in Equations (2)—(6); however, in this case, all TP, FP, FN were considered as numbers of
fibers in the CT data. The accuracy metric is not applicable in this case since TN does not
apply to fibers as it applies to pixels.

4.2. Calibration of CT Measurements of Coating Thickness with Optical Measurements

After matching the fibers in the three optical cross-section images and the correspond-
ing CT image slices, an averaged minimum grey level for the coating surrounding each
fiber in the CT images was computed as described in Section 3.2 and plotted as a function
of the average coating thickness measured directly from the corresponding optical image
of the fiber. The results are shown in Figure 8.
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Figure 8. Correlation between minimum grey level in averaged radial profile for each fiber in CT
image and thickness of fiber coating obtained from optical image.

A consistent inverse relation is evident between the averaged minimum grey level
and the coating thickness. A linear regression analysis indicated a correlation with an R?
value of 0.75. With the linear fit to the data shown in Figure 8, the coating thickness can be
inferred from a measured grey level with an accuracy of about £0.5 pm.

The error of the correlation was evaluated by the difference between the CT and
optical coating thickness measurements divided by the absolute value of the optical (CT-
Optical)/Optical, shown in Figure A3.

5. Discussion

The validation of DL segmentation of CMCs has been examined using three different
approaches for defining ground-truth images.

5.1. Ground Truth from Synthetic Data

Validation based on synthetic images as ground truth is the most accurate approach for
benchmarking and comparing the performance of segmentation algorithms (Equations (2)—(6)).
However, we note that synthetic datasets are not ideal for validating the segmentation of
real images of the composite studied here. Synthetic images may be the best for a more sim-
ple composite microstructure as in the graphite-epoxy composite used by Creveling et al.
Generation of synthetic data to replicate real images requires considerable expertise and
time that may exceed the effort involved with manual labeling of real images and can fail
to include all microstructural variations and artifacts found in real images. The synthetic
data used here (from Creveling et al. [30]) do not account for statistical variations in mi-
crostructural features such as the thickness of fiber coatings, which has a major effect on
the details of the image feature used to identify fibers in the composite of this study. For
this reason, the use of synthetic data for training followed by validation with real images
was not undertaken.

5.2. Ground Truth from Manually Segmented Images

Visual inspection of the manually labeled ground-truth image in Figure 6 reveals that
most of the false negatives were fibers with thin coatings that were not detected in the
automated segmentation. The false positives were either (1) artifacts in the image that had
groups of pixels with relatively low grey levels arranged in a ring shape that resembled a
fiber, or in a few cases fibers that were missed by the manual labeling of the ground-truth
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image. The potential for missing or mislabeling ground-truth pixels due to human errors is
a drawback of this validation method. However, the use of manually trained ground-truth
images remains the most convenient and accessible method for generating diverse training
data that encompass most variations in an image. Although the success of a deep learning
model relies on the quality of the ground-truth image, the human errors in the training
image, if sufficiently rare, can be treated as outliers in the training set and given less weight
by the deep learning training procedure. This leads to successful networks that can learn
to segment fibers with thin coatings, even if there are misses in the manually segmented
ground-truth images.

5.3. Ground Truth from High-Resolution Optical Images

The use of a higher-resolution image as ground truth, an optical image in this case,
allows for a more accurate evaluation of the segmentation performance than the use of
ground truth from manually labeled CT images or synthetically generated data. Similar to
the validation method using GT from manually segmented images, a fiber detection rate
is evaluated by comparing the fibers segmented by deep learning to their corresponding
matched fibers in the optical image. However, there are no labeling errors in the optical
validation method.

The detection rate metric gives more insight on the performance of the segmentation
because it relies on a one-to-one fiber detection correlation instead of an accuracy based on
overlapping pixels. In Figure 9, there is a clear correlation between missed fibers and fibers
with thin coatings.

(a) (b) (c)

Figure 9. Higher magnification views of images and segmentations from a small region within
Figure 3, showing the effect of damage and image artifacts near the edge of the test specimen:
(a) optical image; (b) CT image; (c) superposition of fiber segmentation masks derived from optical
image (black) and CT image slice (red). Green lines connect corresponding fibers in the two masks.

This is another visual evidence of the dependence of the DL model detection rate on
the fiber coating thickness. The effect of image distortion on the edge of the sample, seen
in Figure 9, can cause the DL segmentations to miss fibers. In addition, reconstruction
artifacts can distort the circularity of the fibers in the CT image, shown in the missed fibers
of Figure 9. Fibers in the CT images are observed to have deviations from circularity, shown
clearly in Figure 3a—c. This deviation is due to shifting in the center of image reconstruction.
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5.4. Measurements from CT Image

The correlation shown in Figure 8 between minimum grey level in the coating image
and coating thickness enables assessment of the uniformity of coating thickness along the
lengths of individual fibers. The coating thickness was computed using this approach at
several locations along each fiber within the 3 mm field of view of the CT images. Examples
are shown for three fibers with coatings of different thickness, one representative of the
thickest coatings, one of medium thickness and one representative of the thinnest coatings,
as shown in Figure 10.

(a) L]
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200 200 190
180 190 7]
160 180
180
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120 0.5mm 160 o — l0mm
— 10mm — LO0mm med sl
100 | — 15mm 150 {/= 15mm : ‘

Figure 10. CT images and radial grey level profiles from three fibers with coatings of different
thickness at three locations along the length of each fiber: (a) coating of high thickness; (b) coating of
medium thickness; and (c) coating of low thickness.

The radial profiles and the minimum grey level values are almost identical along
a given fiber, indicating that the fiber coating thicknesses do not vary greatly along the
fiber length.

6. Conclusions

Segmentation training and validation using synthetic images provide higher accuracy
than other training and validation methods. Consequently, synthetic images are commonly
used for benchmarking segmentation algorithms [31,32]. However, expertise and time
are required to generate synthetic images including noise and artifacts. Any variations in
material constituents or imaging parameters would require generation of new synthetic
replicas for training. Manually labeled CT image slices for DL model training are more
accessible and easier to use. However, validation with manually defined ground truth
is not ideal because of the human errors introduced. In this work, validation of image
segmentation with ground truth defined by a higher-resolution optical image resulted in
an accurate assessment of fiber detection rate compared to the physical sample, instead
of solely relying on an image-based verification method. Although validation methods
relying on high-resolution images can be laborious in some cases, they provide a more
accurate assessment of detection rates and measurements.

Measurements of sub-pixel features in images are feasible but only limited to a relative
minimum grey level difference that could be calibrated in the presence of a ground truth
from a high-resolution image. The superior resolution of the optical image allowed for accu-
rate measurements and a one-to-one correlation with estimates extracted from CT. Coating
thickness measurements from the CT images were directly correlated to measurements
from the optical image. In this work, the minimum grey level value of the fiber radial profile
correlated with coating thickness measurements from the high-resolution optical image
has an R? value of 0.75. This demonstrated that it is possible to estimate measurements
of features below the resolution of CT while validating and calibrating estimates with a
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higher-resolution image. The calibrations carried out for the measurements in this work
are limited to images from similar material with identical scan parameters. However, the
methodology for extracting relative measurements from sub-pixel features can be adapted
to other images. The segmentations and measurements from this work have been used to
study the effect of microstructural variability on matrix cracking and fiber fracture in this
class of SiC-SiC composites [33].
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Appendix A. Details of Analysis Methods
Appendix A.1. Deep Learning Image Segmentation

A U-Net model (layer depth of 3 and initial filter count of 64) was trained for 77 epochs
with early stopping enabled to avoid overfitting (The model stops early if the validation
loss increases). Other model parameters were assigned as follows: the input patch and
batch size were set to 32; the stride to input ratio was 0.25; the loss function used was
ORSDiceLoss, and the optimization algorithm used was adadelta.

From the image used for training (consisting of 549 x 2560 pixels), 60% of the pixels
were used for training, 20% were reserved for training validation, and 20% were reserved
for test. The training image shown in Figure A1, was augmented to increase the training
volume by flipping vertically, horizontally, sheared, rotated and scaled differently at every
epoch cycle. Validation and test pixels were reserved, unseen by the model while training,
to ensure an unbiased evaluation of model accuracy. These pixels were used by model
optimization functions and are kept separate from the manually segmented ground truth
used for inference validation in Section 4.1.2. Once the training accuracy reached a DICE
accuracy of 89% on the validation dataset the model was used to segment previously
unseen image stacks.

Figure A1l. A cropped (a) raw (b) manually labeled CT image used for deep learning training.
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Appendix A.2. Hough Transform

A Hough transform was used to find the circular features of the segmented fibers. The
segmented images were converted from filled circles of fibers to empty circles with the
default edge detection in Image]. The Hough transform parameters used for extracting
fiber centers and radii were as follows: minimum search radius, 6 pixels; maximum search
radius, 10 pixels; radius search increment, 1 pixel; maximum number of circles to be found,
3500; Hough score threshold, 0.7; and the number of steps per transform were 1000. From
an input of a binary image of fiber segmentations, an output matrix file of fiber X&Y center
location and an estimated fiber radius was extracted.

Figure A2. (a) Segmented CT cross-sectional image and its corresponding (b) optical image
(c) alignment and correlation of optical and CT fiber segmentations optical fibers mask (black),
CT fibers (red) and a line (green) joining center coordinates of fibers. The optical fiber to CT Fiber cor-
relation and alignment has a tolerance of matching fibers centers 7 um apart, to account for possible
misalignment between cross-section slice in 3D CT and the sectioned /polished plane in optical.
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Figure A3. Absolute error in the fiber coating thickness correlation (CT-Optical)/Optical.
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