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Abstract

Tree planting and natural regeneration contribute to the ongoing effort to
restore Earth’s forests. Our review addresses how the plant microbiome can
enhance the survival of planted and naturally regenerating seedlings and
serve in long-term forest carbon capture and the conservation of biodiver-
sity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts
that protect against pathogens. We first show that fungal and oomycetous
pathogen richness varies greatly for tree species native to the United States
(n = 0-876 known pathogens per US tree species), with nearly half of tree
species either without pathogens in these major groups or with unknown
pathogens. Endophytes are insurance against the poorly known and chang-
ing threat of tree pathogens. Next, we review studies of plant phyllosphere
feedback, but knowledge gaps prevent us from evaluating whether adding
conspecific leaf litter to planted seedlings promotes defensive symbiosis,
analogous to adding soil to promote positive feedback. Finally, we discuss
research priorities for integrating the plant microbiome into efforts to ex-
pand Earth’s forests.

337


mailto:posy.busby@oregonstate.edu
https://doi.org/10.1146/annurev-phyto-021320-010717
https://doi.org/10.1146/annurev-phyto-021320-010717
https://www.annualreviews.org/doi/full/10.1146/annurev-phyto-021320-010717

Annu. Rev. Phytopathol. 2022.60:337-356. Downloaded from www.annualreviews.org
Access provided by Oregon State University on 10/07/22. For personal use only.

338

To keep every cog and wheel is the first precaution of intelligent tinkering.
—Aldo Leopold (75)

INTRODUCTION

Forests, particularly those found in the tropics, have long been known to be hotspots of biodiver-
sity, inhabited by a wide variety of plants, insects, birds, amphibians, and mammals. More recently,
we have come to appreciate the multitude of tree-associated microbes (fungi, bacteria, and ar-
chaea inhabiting various tree habitats), their complex interactions, and the mechanism by which
they can promote forest biodiversity (8). The best understood and longest studied part of the tree
microbiome is its most ecologically important symbiosis: mycorrhizal fungi (63). The ectomycor-
rhizal (EM) symbiosis is limited to approximately 2% of all plant species (although 60% of Earth’s
3.1 trillion trees), whereas the more ancient, arbuscular mycorrhizal (AM) symbiosis is much more
common across Earth’s 60,065 tree species (122). Mycorrhizal symbioses are recognized as being
fundamental to plant nutrition and the structure and function of forest soils (7, 63). In contrast, the
organismal groups that make up the majority of the tree microbiome, mostly bacteria and fungi,
are often characterized either as pathogens or as nonpathogens of uncertain role. Moreover, their
identities are frequently represented simply by sequence-based approximations at the genus level
or higher. Plant disease protection, conferred by many of these members of the plant microbiome,
is increasingly documented, with communities of endophytic microbes in soil, roots, stems, leaves,
flowers, and seeds combating or competing with pathogens and priming host immunity (34, 100,
130, 135). Together, this body of work suggests that the functional influence of the microbiome on
its tree host is beneficial and protective (82). In this review, we address strategies for integrating
diverse tree microbiomes into a massive effort to expand the global forest.

Ongoing tree planting and natural forest regeneration efforts are components of a larger strat-
egy to address interrelated crises aggravated by deforestation. Over the course of human history,
we have reduced the number of trees on Earth by half, from six trillion to three trillion (36). In
many regions of the world, losses are continuing (121). The loss of forest habitat caused by land-
use conversions is a major contributor to Earth’s sixth mass extinction (69), most acutely seen
in the tropics (57, 58). These large-scale losses are one crisis. A second crisis exacerbated by de-
forestation is climate change (96). Deforestation returns carbon stored in tree stems and soil to
the atmosphere, contributing to warming (87). Half of all terrestrial carbon stored in vegetation
is stored in tropical forests alone (23). Earth’s largest tropical forests are in Amazonia, where a
17% loss in forest is associated with profound, system-wide effects, including regional shifts from
carbon sinks to sources (53).

Reforestation is one way to address these interrelated crises. This includes conserving existing
forests, promoting natural forest regeneration, and actively planting trees. These efforts are of spe-
cial urgency for people living near forests, totaling 1.6 billion, or 21% of the current human popu-
lation (93). Most of these people are in the tropics where the shade of trees offers critical protection
against heat waves (91, 119). Many groups are contributing to the massive effort to restore Earth’s
forests; examples include the United Nation’s Trillion Tree Campaign, Plant-for-the-Planet, One
Tree Planted, Trees for the Future, the Arbor Day Foundation, Trees for Cities, International Tree
Foundation, The Woodland Trust, Tree Canada, Casey Trees, Trees for Life, and Trees, Water
& People. New groups emerge frequently. In the Netherlands, for example, one group collects
volunteer tree seedlings where they are not wanted (e.g., a flower bed or vegetable patch) and gives
them away to those who will plant them. To coordinate the many tree-planting efforts, the World
Economic Forum established 1t.org (https://www.1t.org/) to “serve the global reforestation
community by mobilizing private sector ambition and engagement, accelerating restoration in
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priority regions, and empowering a new generation of ecopreneurs to take action on climate
change.”

In the most basic sense, success in global reforestation hinges on the survival of planted and
naturally regenerating tree seedlings. The seedling stage is the most vulnerable in a tree’s life
cycle (12, 46, 59), and plants depend heavily on their symbionts to tolerate both abiotic and bi-
otic threats to their existence (139, 147). Plant disease has always been a concerning threat to the
establishment of tree plantings (111); this threat is now exacerbated by climate change and the
movement of pathogens by human activities (21, 123). Yet with few exceptions, restoration efforts
are planting trees without knowledge of, or consideration for, their microbial symbionts, includ-
ing pathogens. This is problematic given that historically, large-scale tree-planting projects often
failed for reasons that involved microbes.

Tree-planting practices are typically borrowed from plantation forestry, which is rooted in tree
genetics, silviculture, pathology, and entomology, a worldview in which productivity is prioritized,
and microbes are narrowly viewed as pathogens to be avoided. These views persist today, where the
microbiome is not considered relevant to forest management (129). For plantation methods that
have been developed for a few of the world’s 60,065 tree species (14), success has been achieved by
planting trees outside their native range, where their native pathogens do not occur. For example,
disease has been avoided by introducing pines of the Northern Hemisphere into plantations of
the Southern Hemisphere, Amazonian rubber into southeast Asia, or African oil palm into the
neotropics. Alternatively, when trees have been planted within native ranges, plantations can fail
due to native pathogens and unnaturally close spacing of the trees; Henry Ford’s failed rubber
plantation in the Amazon (i.e., native range of Hevea brusiliensis) in the 1920s is one infamous
example. Plantations under attack by pathogens are often managed with specific remedies (e.g.,
genes for resistance) (141) that apply only to a particular tree species, pathogen, and environment.
Silvicultural methods of disease control are effective in some cases (20), but here we focus on
a more general approach involving microbial symbionts to combat the wide array of pathogens
(e.g., parasitic plants, fungi, bacteria, nematodes, phytoplasmas, and viruses) that affect trees
globally.

At the other end of the spectrum, an absence of beneficial microbes can also lead to plantation
failure. This is because when we plant forests, we rarely think to simultaneously “plant” a tree’s
symbionts. Although a tree’s pathogens can be found in its leaves and soil, so are its key mutual-
ists. Early efforts to establish pine plantations in the Southern Hemisphere failed until scientists
thought to co-introduce associated mycorrhizal fungi, critical members of the forest microbiome
(81). More generally, the importance of actively introducing symbiotic soil organisms to facilitate
plant growth in novel landscapes has been known for more than a century (24, 62), and recent work
has discovered the importance of soil microbiome restoration for facilitating ecosystem restora-
tion. Native grasses in restored American Midwest prairies grow more vigorously and are more
likely to survive when inoculated with the soil microbiome inhabiting intact prairie remnants (17,
71). Grassland restoration on abandoned Estonian mining landscapes could only be achieved by
cointroducing native AM fungi (133). Restoration of high-latitude grassland communities could
only achieve plant communities similar to those of intact remnants if soil microbial communities
were cointroduced at the time of planting (142). Taken together, this body of work suggests an
incredible, and largely unrealized, opportunity to enable and accelerate the restoration of Earth’s
forests by reintroducing tree microbiomes.

The potential for belowground microbiome restoration to facilitate ecosystem restoration
suggests an analogous opportunity within the aboveground forest microbiome given the potential
for dispersal of immigrant inoculum from plants or litter nearby. Indeed, beneficial tree symbionts
are also found in the phyllosphere but have received far less attention than their belowground
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counterparts (86). In particular, fungal leaf endophytes found in all plants can contribute to plant
defense against pathogens (29, 107), in addition to influencing various other aspects of plant
growth, development, and resilience (102, 113). The mechanisms by which endophytes increase
or decrease disease severity in their hosts are complex (e.g., parasitism, antibiosis, host-triggered
immunity), but perhaps most simply, by occupying space and competing for resources, these
commensal symbionts can exclude pathogens. Once leaves senesce and drop, they form a layer of
dead leaves (litter) containing live endophytes beneath the tree. Endophytes complete their life
cycle in the leaf litter; they sporulate and send their spores upward to reinfect newly emerging
leaves. Thus, leaf litter, like soil, is an important reservoir of beneficial microbes (97, 131).

Given the ambitious goal of restoring Earth’s forests, and the importance of microbial sym-
bionts for tree seedling defense and survival, a key question is what knowledge is needed to in-
tegrate the tree microbiome into forest restoration efforts. In this review, we focus on whether
our current understanding of interactions between tree pathogens and leaf endophytes can in-
form low-cost, low-tech ways to promote aboveground defensive symbiosis in reforestation. We
also discuss burgeoning efforts to integrate belowground symbionts into planting efforts as well as
what success means in terms of carbon and diversity for the long-term. For example, by tolerating
slow, initial growth we may successfully reduce the magnitude of the otherwise climate-unfriendly
tradeoff between fast initial tree growth and tree longevity (101). Thus, our approach is distinct
from the plantation forestry paradigm, which selects for fast, initial growth of single tree species.
And our approach is distinct from the agricultural paradigm, which seeks to eliminate pathogens
from crop monocultures. Instead, we explore approaches that integrate diverse tree microbiomes,
which include pathogens, thereby supporting forest biodiversity, carbon capture, and long-term
forest resilience.

CHARACTERIZING PATHOGEN COMMUNITIES OF TREE SPECIES

Understanding the pathogen communities of tree species used in tree-planting campaigns is a first
step in managing disease during the vulnerable seedling stage. A common assumption is that all
plants are affected by pathogens (79). In fact, a general introduction to plant pathology states that
each species of plant appears to be attacked by 50-100 pathogens (3). If this is true, characterizing
the pathogens of the world’s 60,065 tree species is a daunting place for reforestation efforts to
begin. To probe our knowledge of tree species affected by pathogens, we used the databases of the
US National Fungus Collections (BPI) to search for the fungal and oomycetous pathogens of the
1,312 tree species in the United States, given that fungi and oomycetes are the two major classes
of plant pathogens (13). These trees were identified using a geographically constrained search of
the 60,065 tree species in Global TreeSearch (14), where a tree species is defined as “a woody plant
with usually a single stem growing to a height of at least two meters, or if multi-stemmed, then at
least one vertical stem five centimeters in diameter at breast height.”

Our search of the BPI databases for fungal and oomycetous pathogens of the 1,312 tree species
found in the United States showed that pathogen richness varied greatly among tree species, rang-
ing from 0 to 876 known fungal and oomycetous pathogens per US tree species), with nearly half
(48%) of tree species lacking known pathogens (Figure 1). In other words, the assumption that
all plants, including trees, have pathogens may not be true. Of course, there are some tree species
for which pathogens have simply not been studied. But for many of the US tree species without
fungal/oomycetous pathogens, evolutionary escape following long-distance dispersal is a plausi-
ble explanation (27). For example, most species lacking pathogens are Hawaiian endemics, whose
mainland relatives host a diverse array of pathogens. The Hawaiian flora has long been understood
as the product of many long-distance dispersal events (103). Those founding events, leading to the
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Figure 1

Results of a US National Fungus Collections database search for known pathogens of all tree species found
in the United States. Almost half of tree species in the United States lack known fungal and oomycete
pathogens, and a significant portion of these are endemic to Hawaii. Pseudotsuga menziesii (Douglas fir) has
876 pathogens, which is the most reported of any US tree species. The x-axis indicates the number of known
pathogens for each tree species, and the y-axis indicates the quantity of species per pathogen count. The
frequency (y-axis) has been log transformed and the bars are overlaid. The blue bars represent species found
in the United States overall, except for the Hawaiian endemics. The green bars represent species endemic to
Hawaii.

speciation of Hawaiian endemics, have similarities to anthropogenic enemy release expected for
introduced plants and their pathogens (88).

Of the 363 tree species native or endemic to Hawaii, 312 (i.e., 86%) may have lost their
pathogens, as there are no BPI pathogen records. Many Hawaiian endemics have been studied for
pathogens because the diseases they cause threaten small populations. For example, Cyanes com-
prises 85 species endemic to Kauai (114). One such endangered species, Cyanea kubibewa, is closely
monitored and traps are currently being used to control rats that might damage the remaining two
mature individuals, two juveniles, and 11 seedlings (114); we found only one pathogen of Cyanes
species overall in our BPI search, and it was not affecting C. kubibewa. Of the many studies of the
ecology and genetics of five species of Metrosideros endemic to Hawaii (98), pathology has usu-
ally been included (11). In BPI records for Mezrosideros, we found pathogen richness varied from
0 pathogens for Metrosideros rugosa and Metrosideros waialealae to 150 pathogens for Metrosideros
polymorpha, which occurs across the Hawaiian Islands (11).

A further 324 (of 949, or 34%) non-Hawaiian tree species in the United States are also un-
accompanied by pathogen records, suggesting that the phenomenon of natural enemy release is
not restricted to Hawaii. Although an extensive analysis of range size relative to pathogen di-
versity is needed to clarify why some tree species may have escaped or lost their pathogens, it
appears that the most widely distributed tree species are accompanied by many pathogens: 180
for Prunus serotina, which ranges through eastern North America, 108 for the wide-ranging Prunus
americana, and 876 for Pseudotsuga menziesii, the dominant conifer of the Pacific Northwest. Such
widely distributed trees are likely to be included in reforestation efforts, and thus defense against
pathogens is crucial for their survival. In contrast, the most isolated tree species with the smallest
populations are without pathogens: Prunus eremopbhila, a critically endangered species of perhaps
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2,000 individuals native to the Mojave Desert (104), and Prunus fremontii, desert apricot of
California and contiguous Mexico.

Disease-protective fungal leaf endophytes might seem to be of little value or concern for trees
without pathogens, but pathogen reunions following the introduction of exotic pathogens are
always a possibility. Some threatened Hawaiian endemics have been rescued from introduced,
but perhaps ancient, pathogens, with endophytes from related plants with more robust popu-
lations (144). Indeed, endophyte-mediated approaches in conservation have become a frontier
in endophyte ecology, with additional examples from Hawaii (32, 41). Hawaii has also pledged
to add 100 million trees by 2030 through a combination of conservation, restoration, and tree
planting. Thus, even in an environment where many tree species appear to have escaped their
pathogens, endophytes could serve as insurance against pathogen reunions or encounters with
novel pathogens (67).

FOLIAR ENDOPHYTES AS DEFENSIVE SYMBIONTS

Low-cost, low-tech solutions are needed in global tree-planting efforts to boost seedling defense
against pathogens (21, 111, 123). Here, we explore whether defensive symbionts of the phyllo-
sphere can fill this need, yet we recognize that a plant’s primary mechanisms of defense are genetic.
Nonhost resistance, or complete resistance, is conferred by several genetic factors (48). Pathogens
cannot infect nonhosts. For known host-pathogen combinations, the next best defense against
pathogens is major gene resistance (i.e., gene-for-gene relationship) (47). Plants containing R
genes are often selected for cultivation given their protection against disease. This practice has
been successful for the few tree species that are cultivated in plantation forestry. But for most
of the world’s tree species, breeding programs do not exist and are challenging and expensive
to implement given long generation times. Seed for planting efforts could be selected from tree
populations where R genes are likely to occur. Indeed, selecting genetically appropriate plant ma-
terial (within a species) is one strategy for enhancing resilience to biotic and abiotic stressors in
tree-planting efforts (125).

When pathogen infection does occur, ubiquitous fungal leaf endophytes can produce robust
defensive responses (reviewed by 29, 107), rivaling the contributions of quantitative genetic resis-
tance (108). This body of work suggests that harnessing these defensive symbionts could indeed
bolster defense in regenerating forests. Diverse fungal leaf endophytes communities are found in
all tree species; they are dominated by Ascomycetes, including ubiquitous taxa like Alternaria and
Cladosporium, but also include basidiomycetous yeasts and many rare taxa (9, 60,99, 132, 148). The
incredible fungal diversity found within individual leaves was first discovered using culture-based
methods (4, 50) and has been confirmed with culture-free methods (25). The consequences of
hosting diverse endophytic communities are an active area of research in plant and fungal ecol-
ogy. But an early (5) and commonly reported benefit of hosting endophytes is disease protection
(reviewed by 29, 107).

Plant disease modification is a central function of many fungal leaf endophytes. These defen-
sive symbionts occur in diverse fungal lineages (145) and have been studied in several tree species
(5, 28, 33, 52). Populus has become a model in the study of plant-endophyte—pathogen interac-
tions, with several studies showing that common fungal leaf endophytes reduce the severity of the
tree’s major leaf rust pathogen (28, 76, 108). Several of the taxa identified as reducing leaf rust
disease, like fungi such as Eudarluca, Cladosporium, and Trichoderma, or bacteria such as Bacillus, are
known to antagonize pathogens via mycoparasitism (10, 95) and/or by inducing plant genetic re-
sistance (43). Communities are also protective, with the arrival order of endophytes into the com-
munity modulating the level of disease protection (76). At face value, priority effects in community
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assembly may seem to suggest that early integration of endophytes into tree-planting efforts will
boost their abundance and their efficacy in reducing disease. However, we urge caution before
drawing general conclusions, as much remains to be learned about how endophyte interactions
impact the functional influence of the microbiome on plant health (61). For example, Leopold &
Busby (76) found that downstream differences in plant disease modification resulting from varying
endophyte arrival order were not the result of the differential relative abundance of endophytes or
shifts in community composition. Instead, early arriving endophytes may have interacted with the
plant’s immune system to reduce disease. In another study, simply changing the arrival order of
endophytes into a community resulted in a switch from a protective interaction to a pathogenic in-
teraction (1). Together, this work highlights how the composition of the plant microbiome can be
decoupled from its functional influence on plant disease, and the challenge of precisely predicting
the impact of the tree microbiome in reforestation.

The complex interactions between plants and endophyte communities that result in disease
protection are not known for the vast majority of global tree species. However, a variety of
mechanisms have been identified. Endophytes can exclude pathogens via competition for space
and resources (82). These interactions are likely to occur between endophytes and necrotrophic
pathogens given their competition for space and nutrients in the apoplast. However, direct
pathogen antagonism via parasitism or antibiosis may be more likely between endophytes and
biotrophic pathogens. Endophytes can also trigger host immunity and thereby reduce disease (42,
83). Given the complexity of mechanistic interactions underlying endophyte-mediated disease
modification, one might conclude that designing applications that are generalizable across the
world’s 60,065 tree species is futile. To the contrary, given that endophyte communities are tax-
onomically diverse and that endophytes capable of modifying disease occur across diverse fungal
lineages, we expect that promoting endophyte symbiosis will result in a diversity of interactions
that protect tree seedlings from their pathogens. Such a boost by inoculation may be needed to
eliminate a deficit in endophyte diversity in nursery-grown seedlings compared to their naturally
regenerated counterparts (51). A positive relationship between endophyte diversity and disease
protection could result from complementarity among the effects of many species or a greater
chance that the community includes a particularly strong pathogen antagonist (72, 127). Indeed,
diversity within phyllosphere bacteria communities was previously shown to be associated with
greater disease protection in Arabidopsis (31). Beyond diverse fungal leaf endophyte communities,
plants deploy a variety of other above- and belowground defensive symbionts to aid in pathogen
defense—e.g., bacterial endophytes (34, 106, 138), viruses (115), mycorrhizae (66, 80), and ne-
matodes (70)—further suggesting that conserving diversity in the microbiome will protect this
associated function.

PHYLLOSPHERE FEEDBACK CAN BE POSITIVE

To explore the potential for fungal leaf endophyte communities to serve as defensive symbionts
in regenerating forests, we searched the literature for studies of plant phyllosphere feedback.
This is an emerging area of research that adapts the experimental framework from plant soil
feedback, builds on considerable work with nurse plants and mulch in forest restoration (19),
and asks questions about how foliar microbes may either support or hinder the performance
(growth, defense, etc.) of conspecific seedlings (140). These feedbacks can be tested by inoculating
aboveground plant tissues with microbes sourced from the phyllosphere (synthetic communities
or bulked from litter) and comparing plant performance relative to either uninoculated controls
or those inoculated with microbes sourced from heterospecific litter. Likewise, plant soil feed-
back experiments investigate these interactions with soil-inhabiting microbial communities by
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examining the extent to which belowground communities facilitate or inhibit growth of con-
specific seedlings (18). Past research has shown that host-specific soil pathogens can accumulate
and suppress seedling growth in conspecific soils (16, 35, 68, 78), whereas mycorrhizae facilitate
positive feedbacks in conspecific soils (35). In some cases, endophytic bacteria (Pseudomonas spp.)
in roots directly antagonize root pathogens of forest trees linked by the mycorrhizal network
(39). However, rarely are phyllosphere microbes considered in feedback studies.

In a strict sense, a plant phyllosphere feedback study is one in which microbes sourced from the
phyllosphere, rather than the leaf litter in its entirety, are applied to experimental plants. This dis-
tinction ensures that any treatment effect on plant performance can be attributed to the microbes
rather than to other factors associated with leaf litter that have been shown to influence seedling
fitness, such as metabolites or shading (136, 137). Unfortunately, our literature search identified
very few published plant phyllosphere feedback studies that fit our definition, and no studies fo-
cusing on tree species or pathogen protection (Table 1). All experiments used Asteraceae plant
hosts and found that microbes sourced from conspecific litter reduced seedling fitness relative to
heterospecific litter (45, 140, 146). Plants that are phylogenetically or physiologically different
from those used in these studies, like tree species, may exhibit a different feedback strength or
type.

Other plant phyllosphere feedback studies, although not strictly fitting our definition as stated
above, used low-tech protocols for applying phyllosphere microbes and could thus serve as models
for reforestation efforts. Such studies diverged from our definition in that the inoculum source was
litter in its entirety (rather than microbes sourced from litter), or the experiment did not include
conspecific inoculum. Although several of these studies have demonstrated conspecific litter in-
hibiting the growth of seedlings (6, 77), others suggest circumstances in which plant phyllosphere
feedback is positive. For example, a recent study found that conspecific litter of the common
ragwort, facobaea vulgaris, reduced seed germination rates yet increased growth for established
seedlings (90). These findings imply that the way plants interact with microbial communities varies
by life stage. Litter microbes have also been found to provide plant hosts with disease protection.
In one example, the host was a conspecific tree seedling that had been inoculated with conspecific
litter (33), whereas, in another, the host was an agricultural crop and the litter inoculum had been
sourced from a nearby pine forest (110). Overall, these studies highlight context dependency in
plant phyllosphere feedback. Experiments have the potential to play an integral role in informing
how to best harness the aboveground microbiome in planting efforts. However, to do so effec-
tively, these experiments will need to replicate the context in which the litter microbes are to be
applied.

Douglas fir (P, menziesii), a dominant conifer of the Pacific Northwest of the United States
(109), will be a focal species used in a reforestation project in Willamette National Forest, Ore-
gon. This ready application makes P, menziesii an ideal candidate for a plant phyllosphere feedback
experimental case study that could inform the use of leaf litter as a source of microbial inoculum
for seedlings in this tree-planting project. In a greenhouse inoculation experiment, we found that
coastal Douglas fir (P. menziesii var. menziesii) seedlings inoculated with microbes sourced from
Douglas fir litter (moist-incubated to enhance fungal sporulation) and applied directly to needles
displayed greater growth than uninoculated control plants (A.S. Neat, F.A. Jones, J. LaManna,
K.A. Gervers, PE. Busby, unpublished data). However, feedback varied between two tree popula-
tions: the upper-elevation population benefited from phyllosphere microbes, whereas the lower-
elevation population was unaffected. Similarly, the forestry literature reports coastal Douglas fir
(P, menziesii var. menziesii) seedlings perform best on bare mineral soils, whereas Rocky Mountain
Douglas fir (P, menziesii var. glauca) seedlings benefit from a litter layer (65). Although these ex-
amples illustrate the benefit of litter microbes for seedling growth and their inexpensive and easy
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application, they also highlight complexities in outcomes that are not currently understood. Thus,
even for one of the most well-studied tree species in forestry, knowledge gaps prevent us from an-
swering the question of when, where, and how adding conspecific leaf litter to planted seedlings
promotes defensive symbiosis. Below, we highlight research priorities that can accelerate our un-
derstanding of the role of diverse microbiomes in tree performance, defense, and resilience as well
as our ability to optimize these benefits in global forest restoration.

THE IMPORTANCE OF INTEGRATING PLANT AND MICROBIAL
DIVERSITY INTO GLOBAL FOREST RESTORATION

Given the urgency in responding to the climate and biodiversity crises, and the known problems
associated with planting tree species outside their native ranges, it will be necessary to expand
tree populations in situ where their pathogens commonly occur. An alternative to the plantation
forestry paradigm is needed, one that integrates both local tree species diversity and microbial di-
versity. The importance of tree diversity (e.g., plantations of species mixtures) has received some
attention in forestry and conservation (2, 68, 106). In this review, we have focused on how tree
microbiome diversity can promote pathogen defense in regenerating forests. In addition, trans-
planting the tree microbiome should also promote forest biodiversity broadly (86). For example,
at the scale of a forest ecosystem, tree pathogens are not necessarily negative. Specialized, host-
specific pathogens diversify plant communities by attacking only their hosts, thus providing a
local advantage to their hosts’ competitors (15). Pathogens can also diversify forest communities
via habitat formation, e.g., by creating witches’ brooms and stem cavities for birds and mammals
(126). Forest endophytes can promote plant diversity by acting as commensal symbionts on their
host plants but pathogens on their hosts’ competitors (i.e., apparent competition) (56, 92). Thus,
justas a tree seedling will suffer if it is not transplanted with its associated microbes, a forest cannot
be truly restored without its microbiome.

Plantations are well known to lack the biodiversity found in nearby forests (22). Similarly,
arboretums illustrate how tree planting without consideration for microbial diversity can fail to
become forests. For example, the University of Idaho’s 100-year-old arboretum is superficially like
the natural forests of Moscow Mountain 16 kilometers away—both contain a mixture of mature
coniferous and deciduous tree species. The founding goal of the arboretum was to introduce and
observe exotic tree species. The pervasive consequences of that goal are striking. The obvious
difference is that there are non-native tree species in the arboretum and native trees in the natural
forest; less obvious is the recapitulation of this pattern by understory flora (30). In addition,
the mycofloral diversity of the arboretum is lacking compared to the natural forest. Common
pathogens of native trees such as dwarf mistletoe of Douglas fir and decay fungi such as species
of Fomitopsis are also absent from the arboretum. In contrast, non-native pathogens of non-native
trees (e.g., powdery mildew of Acer platanoides) and herbaceous plants (e.g., an oomycetous
pathogen of Lunaria annua) are present. The contrast between plantings and forests reminds
us that tree plantings should not only remove carbon from the atmosphere but also conserve
biodiversity. Symbionts, with their interactions and processes, make plantings into forests.

The idea of promoting biodiversity to benefit ecosystem health and productivity is not new.
In the mid-nineteenth century, Darwin hypothesized that diverse plant communities were more
productive than species individually (37). The relationship between plant species diversity and
ecosystem productivity was later confirmed (128) and then shown to be driven by microbes (116).
In forestry, muvuca de sementes (Portuguese for mixture of seeds) in the Amazon and the Japanese
method developed by the late Akira Miyawaki are two examples in which tree diversity seeks to
enhance forest biodiversity (89). Miyawaki was also an early advocate of integrating mycorrhizae
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Figure 2

A tree-planting site. Plant-for-the-Planet trial, Yucatin Peninsula of México. (2) 16,000 seedlings were planted in a randomized block
design situated on an abandoned cattle pasture in a Mexican semi-evergreen tropical forest in 2020. The blocks were paired with
natural regeneration control plots. Survival and growth rates are measured to track response. (b) Planting ~50-cm tall seedlings of eight
native, arbuscular mycorrhizal fungi-associated tree species. Half of the planting holes were inoculated with 500 mL of soil from a
nearby forest in which the same species frequently occur to accelerate restoration by reintroducing symbionts. The other half of the
seedlings were planted without inoculum.

into forest restoration to enhance seedling growth and survival, a practice now recognized in
grassland restoration (17, 71, 142). Also, ongoing, large-scale field trials in Wales, UK and the
Yucatin Peninsula of México are testing the idea that restoration of both trees and a complex
soil microbiome from nearby intact forests can facilitate tree growth and survival. For example,
in a Plant-for-the-Planet trial in the Yucatdn, seedlings of eight native, AM fungi—associated tree
species are being planted with or without 500 mL of soil from a nearby forest in which the same
species occur (Figure 2). This treatment aims to accelerate restoration by reintroducing fungal
symbionts. If positive microbial restoration—ecosystem function outcomes are strong, they could
form the foundation of a microbiome restoration industry built on top of emerging forest carbon
and biodiversity markets. However, as we work to incorporate the microbiome into a more holistic
picture of ecosystem restoration, it is critical that introduced microbes are complex, diverse, and
sourced from local populations. Doing so represents the best chance to rebuild and maintain the
incredible biodiversity of microbial life inhabiting Earth’s forests.

RESEARCH PRIORITIES FOR FACILITATING REFORESTATION
THROUGH THE PLANT MICROBIOME

We have illustrated knowledge gaps in our understanding of tree pathogens and endophytes that
raise questions about how to best promote microbiome-mediated defense against pathogens dur-
ing a tree’s most vulnerable stage of development and beyond, as trees age and face an unpre-
dictable array of abiotic and biotic challenges (101). These gaps exist because plant-microbiome
interactions have traditionally been studied in model systems (e.g., Arabidopsis) and crop plants,
with objectives that are about neither conservation of biodiversity nor carbon removals from the
atmosphere. Thus, tree-planting and natural forest regeneration projects must pioneer new op-
portunities to study tree microbiomes as they broadly relate to host health across a diverse array
of tree species. Our overarching hypothesis is that conserving the tree microbiome in planting
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efforts will enhance tree seedling defense and survival and ultimately the success of forest restora-
tion in terms of carbon capture, forest biodiversity, and long-term forest resilience. The research
priorities described below provide a framework for testing this hypothesis.

Identifying Causal Factors that Give Rise to Variation in Tree Microbiome
Composition and Its Functional Influence on Tree Seedlings

How do the benefits of hosting a diverse microbiome vary among tree species and environments?
Many studies have documented variation in the plant microbiome across host species, guilds (e.g.,
EM versus AM, evergreen versus deciduous), developmental stages, trait values, and along com-
plex environmental gradients (e.g., temperature, moisture, elevational, latitudinal gradients) (38).
For example, variation among tree hosts (73, 134) and along climatic gradients (9, 55, 148) influ-
ences microbial composition in the phyllosphere. Yet how such variation, in turn, influences the
functional influence of the microbiome on its host is poorly understood. Functional convergence
among compositionally distinct soil microbial communities has been shown at continental scales
in Pinus forests (124). However, plant-soil feedback can vary along environmental gradients (74),
with particular microbes enabling plant survival in extreme environments (i.e., habitat-adapted
symbiosis) (112). Given the urgency in global forest restoration, we must learn as we go, exper-
imentally manipulating hosts and microbiomes across regenerating forests to determine optimal
parameters for maximizing success. At the same time, we must also continue to learn from intact
forests, asking questions such as whether endophytic communities of tree species vary along gra-
dients of forest age and diversity. Formally recognizing thousands of undescribed species in this
effort may be necessary for consideration in conservation. Do communities of endophytic bacteria
and fungi constitute an extension of the tree defense system provided by mycorrhizal networks
(120) or a separate system? Collaboration among forest ecologists, microbiologists, pathologists,
and tree planters is essential for making progress on this and other research priorities.

Determining How Planting and Transplanting Techniques for Both Seedlings
and Associated Microbes Influence the Benefit of the Microbiome to its Host

What planting and transplanting practices best promote above- and belowground tree symbionts?
How well do transplanted microbes establish and persist in forest restoration sites? How do the
age of the intact forest and its distance to planted or naturally regenerated tree seedlings influence
benefits derived from the forest’s mycorrhizal network? In native prairie restoration, the benefit
of inoculating plants with AM fungi extended to uninoculated plants two meters away (84, 85).
Does it make a difference if the network is EM or AM (118)? Comparisons of agricultural fields
and intact forests have revealed little diversity of Glomales (AM forming) in arable land and more
diversity in the forest soil (64). If older forest soil is used as inoculum, spores and other propagules
must be present and viable; fortunately, fungal propagules remain viable for years (94). As with
the first research priority, these questions can be addressed in the context of ongoing restoration
efforts with effective collaboration between scientists and restorationists.

Transplanting the phyllosphere microbiome involves additional considerations. Can we trans-
plant the phyllosphere microbiome as readily as we transplant the soil microbiome? Fungal leaf
endophytes have been applied individually to bolster plant defense. For example, seedlings are
inoculated with Beauveria bassiana, an endophyte of Pinus monticola (51) and an entomopathogenic
member of Cordycipitaceae, to protect against insects. And seedlings are commonly inoculated
with species of Tiichoderma, common antagonistic endophytes of many tree species, to protect
against a variety of pathogens (26). However, even in the few well-studied systems in which good
candidates for inoculation are known, there are logistical obstacles to generating and applying
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inoculum. Isolating and applying an individual endophyte require technical skills and access to
specialized equipment, whereas diverse leaf litter can be applied by anyone given simple instruc-
tions. Some evidence for disease protection in tree seedlings treated with conspecific litter (33), in
combination with the benefits of mulching (19), suggests that planting tree seedlings with conspe-
cific litter is a tractable method for conserving phyllosphere microbial diversity in tree-planting
efforts. Litter can be transplanted to naturally regenerating tree seedlings, which may help to ac-
celerate a process that s often viewed as passive (143). Yet these are hypotheses that require testing
in ongoing reforestation efforts.

Identifying Keystone Microbes in the Forest Microbiome

The tree microbiome is a part of the broader forest microbiome, i.e., microbes associated with
trees but also with other forest habitats like soil, snags, rocks, insects, mammals, birds, lichens, etc.
Successfully restoring forests, with their diverse organisms, processes, and interactions, hinges on
restoring the forest microbiome as a whole, including pathogens. But how do we do this? The
renowned forest restorationist Payeng, or “Forest Man” (54), swore by his practice of transplant-
ing tree seedlings with worms, ants, termites, and other soil builders. Starting on barren ground
and with no professional credentials, Payeng single-handedly built a forest on his island in the
Brahmaputra River, India, that now attracts diverse megafauna like tigers and elephants. On the
other side of the world, in the US Pacific Northwest, live Douglas fir trees and snags, and there-
fore their associated microbiomes and necrobiomes, are retained after cutting to accelerate forest
development (49). Retaining live trees and their associated mycorrhizal networks is now well rec-
ognized as benefiting forest regeneration (117). But what are other keystone forest microbes?
Identifying critical forest microbes and associated processes will allow us to prioritize elements of
the forest microbiome for conservation.

Determining the Relationship Between Forest Microbiomes and Greenhouse
Gasses Beyond Carbon Dioxide

Forest microbes play a critical role in carbon capture. Yet we know little about how forest microbes
influence greenhouse gasses other than carbon dioxide, e.g., nitrous oxide (a greenhouse gas 300
times more potent than carbon dioxide). Urea is applied in agriculture to compensate for limited
nitrogen, but this can lead to an increase in atmospheric nitrous oxide. An early study showed
that excluding EM fungi increased nitrous oxide emissions (44). More recent work, with both EM
and AM fungi, has shown that these symbionts can reduce emissions of nitrous oxide (123, 125).
Additional studies on both nitrous oxide and methane emissions from forest trees are needed, with
the contributions of specific microbes addressed (105).

CONCLUSION

A growing body of work supports the notion that the functional influence of the microbiome
on its tree host is beneficial and protective. Yet the full extent of microbial interactions and their
potential contributions to global reforestation are not clearly understood (86). We identified
major knowledge gaps by reviewing the pathogen status of US tree species, and the functionality
of phyllosphere microbes. Even for the world’s most simple forest—Pando, the 47,000-stem
aspen monoculture in central Utah that is the world’s largest and oldest organism (40)—the tree
microbiome is largely unstudied. Forest microbiologists and ecologists will play an important role
in advancing the science of forest microbiomes as we begin the Decade of Ecosystem Restoration
called for by the United Nations. With variation in new forests ranging from monoclonal
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plantations to highly diverse Miyawaki forests and naturally regenerated or surviving old forests,
there is ample variation to study and understand. From tree species without pathogens and trees
whose pathogens have yet to be described to the functions of phyllosphere microbes in widely
ranging species with hundreds of known pathogens, we have a great deal to learn. We will need to
consider the presence or absence of genes for resistance, particular symbionts that protect their
hosts, the functions of endophytes in trees lacking pathogens, and the overall contribution of
the forest microbiome to ecosystem function. We may discover ways to better protect seedlings
and young saplings with low-tech, cost-effective exposures to leaf litter. We may find that greater
initial diversity shortens the period that new plantings spend as carbon sources before becoming
carbon sinks. Above all, we must engage in this urgent effort to restore Earth’s forests.
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