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and more difficult to pronounce, while also often sharing very
similar pronunciations across different words (such as names
of procedures, diseases, medications, etc.). Therefore, a more
advanced approach to speech recognition is needed. Since this
problem is so new, there have only been a few prior efforts
to investigate the design of an ASR for medical purposes [1].
One approach to designing such a system is to collect medical
speech data and and build a speech corpus that can be used to
train a system from scratch. Edwards et al. [2] present a speech
recognition system trained with 270 hours of medical speech
data and 30 million tokens of text from clinical episodes,
resulting in a word error rate (WER) that is below 16% in
realistic clinical cases. Chiu et al. [3] trained two models, a
Connectionist Temporal Classification (CTC) phoneme based
model and a Listen Attend and Spell (LAS) grapheme based
model, with 14,000 hours of medical conversations, yielding
WERs of 20.1% and 18.3%, respectively. Another option is
to use an existing ASR system and adapt it to the medical
domain. Liu et al. [4] evaluate two well-known ASR systems,
Nuance Dragon and SRI Decipher, on spoken clinical ques-
tions, and adapt the SRI system to the medical domain using
a language model, achieving an WER of 26.7%. Salloum et
al. [5] propose a method called “crowdsourced transcription
process” to continuously refine ASR language models. Mani
et al. [6] perform medical domain adaptation of Google ASR
and ASPIRE via machine translation, which is achieved by
learning a mapping from out-of-domain errors to in-domain
medical terms, yielding a WER of 7%.

In this paper, we use and adapt the ASPIRE model [7] to
the medical domain to reduce the need for data collection and
ASR re-training. However, to increase the performance, we
propose to use a post correction module that corrects ASR
outputs according to the domain the ASR is used for. The
main contributions of this paper are: (1) the use of an open-
source model (ASPIRE) instead of commercial models, which
provides us more control over the model, (2) a machine learn-
ing based post correction module that addresses transcription
errors, and (3) a model design and evaluation for speech mixed
with different levels of real-world background noise, making
sure that the proposed approach will be able to work well in
real-world environments.

Abstract—The use of Automatic Speech Recognition (ASR) 
systems in medical applications is receiving rapidly growing 
interest due to their ability to reduce distractions and the 
cognitive workload of physicians, particularly during critical 
medical procedures. However, state-of-the-art ASR systems still 
experience recognition errors, especially in noisy environments 
where speakers rely on medical-domain terminologies. This paper 
proposes a customized language model and a neural network 
based sequence-to-sequence (seq2seq) error correction module for 
medical ASR systems to provide domain adaptation and more 
reliable transcription results. Specifically, t he e rror correction 
module learns the error patterns in noisy scenarios and is able 
to correct such errors during inference. Our experiments show 
that the proposed method can reduce the sentence error rate 
(SER) by up to 81% for formatted input and up to 31% SER 
for unformatted input in noisy environments.

Index Terms—medical ASR system, error correction, sequence-
to-sequence model, attention mechanism

I. INTRODUCTION

Automatic Speech Recognition (ASR) systems often sig-
nificantly i ncrease t he e fficiency an d co nvenience of  human-
computer interactions for a variety of applications and do-
mains. In recent years, the medical and healthcare field is 
one such domain that has received increasing attention from 
the ASR community. For example, in hospitals, manual in-
teractions with computing systems (e.g., recording physician 
notes, retrieving patient data, and searching for medical in-
formation) can be distracting, tedious, and time-consuming. A 
speech-based system could even be used during surgeries or
emergency interventions, where such a system could also more 
quickly alert physicians of recommended steps or help prevent
deviations from usual treatment protocols and workflows. 
However, there are several challenges that need to be addressed
before using an ASR in the medical field will be feasible. First,
the system has to work reliably in environments with different 
levels and types of noise, such as multiple speakers, sounds
generated by medical equipment, etc. Second, it is difficult 
to identify a universal dataset to be used for training and
evaluating medical speech recognition tasks. And third, med-
ical terminology can be much more complex than everyday
expressions, e.g., medical terms may be longer than most other
dictionary words, they are often combined in unusual ways
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II. RELATED WORK

In this section, we provide an overview of ASR systems
and sequence-to-sequence (seq2seq) models, while also intro-
ducing basic terminologies and concepts that are used in the
proposed approach.

An ASR system integrates multiple knowledge sources
(acoustic model, language model, context model, etc.) to-
gether [8], where the decoding network usually consists of
the following models: a Hidden Markov Model (HMM) H that
outputs the acoustic probability of a phoneme in the observa-
tion of speech frames, namely the Acoustic Model (AM), a
Context Model C that converts triphones (context-dependent)
to monophones (context-independent), a Lexicon Model L
that maps the phone sequences to words, and a Grammar
Model G, namely the Language Model (LM), that encodes
the probabilities of specific sentences. The commonly-used
approach for knowledge source integration is mainly based on
the notion of Weighted Finite State Transducers (WFSTs) [9].
With the help of WFST, each knowledge source is represented
by a unified mathematical expression. Then all these WFSTs
can be integrated through some transformations including
composition, determinization, and minimization, which help
obtain the final result and apply optimizations at the same
time.

The seq2seq model has already been used widely for
machine translation tasks [10]–[12], where it has been shown
as an effective model. The advantage of seq2seq is that it
can arbitrarily map one sequence to another sequence, and the
mapping can be customized by defining attention mechanisms.
Basically, seq2seq has two components: one is the Encoder,
which extracts the features of the input sequence; the other
is the Decoder, which predicts the output sequence based
on input information. The Encoder and Decoder are usu-
ally implemented using a Recurrent Neural Network (RNN),
because RNNs are capable of learning context information.
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) are commonly-used RNN architectures, designed for
solving the problem of vanishing gradients. In addition to
machine translation tasks, the seq2seq based model has also
been applied to ASR error correction tasks. Wang et al. [13]
utilize an augmented Transformer for entity retrieval, and
Weng et al. [14] propose a word confusion network (WCN)
model with multi-heads self attention for error correction and
language understanding.

III. MEDICAL ASR SYSTEM

Our medical ASR system intends to achieve two main goals.
One is domain adaptation, i.e., being able to recognize medical
terms that are uncommon in daily language. The other one is
system robustness, i.e., maintaining satisfactory transcription
accuracy in noisy environments. The proposed workflow is
shown in Figure 1. First, the input is transcribed using a
decoding network, which is built based on the ASPIRE model.
The domain adaptation to the medical field is obtained through
re-training the LM. Then the results are further optimized

using a pre-trained seq2seq model, which has previously
learned the error patterns.

Fig. 1. Workflow of the proposed method.

Fig. 2. Adaptation to multiple different domains.

A. Domain Adaptation

A common way for domain adaptation is to train the AM
and the LM for the medical field from scratch. However, train-
ing a good AM typically requires a large speech dataset. It is
not easy to collect sufficient medical data in real applications;
therefore, we propose to build the system based on one general
model – the ASPIRE model. We then directly apply the AM
of ASPIRE and only re-train the LM for the medical domain.

The medical ASR system decodes physicians’ medical
commands and queries, where the transcriptions can be utilized
by various higher layer applications, e.g., to record the medical
procedures or medications given to a patient, to provide
guidance and support to a physician, and to prevent medical
errors. There are two types of ASR inputs: one is formatted
input, i.e., the input follows specific patterns, the other type
is unformatted input, i.e., there are many varieties of sentence
structures. An example of formatted input is “amlodipine 10
mg”, which follows the pattern of NAME + DOSAGE + UNIT.
An example of unformatted input is “Is there history of use of
seretide”, which is more similar to common real-world user
expressions.

We encounter a conflict when training the medical LM, i.e.,
on one hand, we hope that the medical LM could be a universal
one, because once the decoding network is deployed, it would
be costly to modify it. On the other hand, the medical LM
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Fig. 3. Overview of the seq2seq model with attention mechanism.

would be imbalanced if trained from the imbalanced medical
corpus itself. An imbalanced LM means that it can distinguish
high-frequency input from low-frequency one. For example, if
“aspirin 15 mg” is shown more often than “aspirin 50 mg” in
the corpus, then the former one will have higher probability.
However, this kind of imbalance has strong dependence on the
corpus and it can easily change when there is a different sce-
nario. It is reasonable to assume that “Command 1” will have
a higher probability than “Command 2” in one circumstance,
while a higher probability of “Command 2” will may make
sense under other circumstances. To eliminate this kind of
imbalance and to maintain equal probabilities for all inputs, we
apply a different training strategy rather than directly training
the LM from medical corpus.

The solution is to store the input patterns rather than the
content. For formatted input, storing pattern means that all
the inputs following the same pattern will have the same
probability, no matter what entity exactly it is, e.g., “aspirin
50 mg” and “amlodipine 10 g” will have the same prob-
ability, because they follow the same pattern of NAME +
DOSAGE + UNIT. For unformatted input, the situation is more
complicated, because we cannot list all the combinations of
different entities as with the formatted input. One possible
approach is to find similar words in the ASPIRE LM for each
new medical word and define the n-gram parameter values of
new words [15]. This approach is beyond the scope of the
paper; instead, in this paper, propose to train the LM directly
for unformatted input. This way, when we need to perform
adaptations for different circumstances, it is not necessary to
modify the decoding network. We can maintain different LMs,
which are independent of the decoding network, to re-score the
outputs. The advantage is that this kind of structure can then
easily be updated.

This basic framework can be applied to multiple domain
adaptations, which is shown in Figure 2. We can simply build

one universal ASR system for recognition tasks in different
domains, e.g., medical, educational, industry, etc., instead
of designing different ones for each separate domain. This
is achieved by merging the LMs of different domains and
keeping the rest of the components of ASPIRE unchanged. It is
also possible to highlight some “hot” domains or eliminate the
domain imbalance due to unequal dataset sizes by assigning
different weights to different domains. This way, we can save a
lot of overheads, i.e., we do not need to collect large amounts
of speech data for model re-training and maintain multiple
ASR systems for different domains. This will be increasingly
important for ASR systems on resource-constrained edge or
end devices and when domain changes for the same system
may be common.

B. Seq2seq Based Post Correction Module

A seq2seq model can be very effective in decreasing decod-
ing error rates. There exists an error pattern when transcribing
noisy speech; specifically, particular words only have a limited
number of incorrect transcriptions. When a word would be
transcribed as “A” or as “B” depends on the context. The
seq2seq model is capable of learning this pattern, acquiring the
knowledge of frequent mappings, and making the prediction
contextually. Therefore, it is possible to recover the medical
input from the erroneous decoding results.

The model structure used in this paper is shown in Figure 3.
The encoder consists of one word2id layer, one word embed-
ding layer with embedding size of 512, and one LSTM layer
with hidden layer size of 512. The decoder also consists of
one word embedding layer and one LSTM layer of the same
size as the encoder. Further, it includes one id2word layer and
one linear layer. The input sentence, the ASR decoding result,
is first broken down into a sequence of words, and then each
word is translated into a word embedding. Then the LSTM
layer extracts the features of the input and provides them to
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the decoder. Finally, the LSTM layer of the decoder makes
the prediction sequentially based on the input information and
prediction history. The loss function is a cross entropy loss
and the outputs are the probabilities of every possible word.
A linear layer is required to unify the dimensions of the LSTM
and the output.

Additionally, an attention mechanism is introduced to our
post correction model. The standard seq2seq model only takes
the last hidden state as the input of the decoder, so the
impact of past input becomes weaker and weaker as the
sequence length increases. An attention mechanism directly
addresses this issue by retaining and utilizing all the hidden
states of the encoder during the decoding process. It assigns
different weights to encoder outputs and generates unique
context vectors at different time steps of the decoder. With
the help of the attention mechanism, the correction can be
more accurate by leveraging more comprehensive contextual
information.

There are two major types of attention: Bahdanau Atten-
tion [16] and Luong Attention [17]. The main difference is at
which position the attention is being introduced. Further, the
alignment scores are calculated in different ways. There are
three types of calculation for the Luong Attention, while the
Bahdanau Attention only has one single type as follows.
Bahdanau Attention:

score = Wcombined · tanh(Wdecoder ·Hdecoder

+Wencoder ·Hencoder) (1)

Dot Attention:

score = Hencoder ·Hdecoder (2)

General Attention:

score = W ·Hencoder ·Hdecoder (3)

Concat Attention:

score = W · tanh(Wcombined · (Hencoder +Hdecoder)) (4)

where Hencoder and Hdecoder are encoder output and de-
coder output, respectively, and W , Wencoder, Wdecoder, and
Wcombined represent different weight matrices.

Here we apply the Luong Attention with a multilayer
perceptron (MLP) and calculate alignment scores using the
Dot Attention function.

IV. EXPERIMENTATION

Figure 4 shows the steps of the experimentations performed
in this work. It also presents the knowledge sources and tools
that are used in each stage. We have two independent types
of medical input: formatted and unformatted. The dataset is
generated as follows. We generate the text of the medical input,
convert the text to speech, and synthesize the clean speech
and the noise. Then we evaluate two approaches; one is to
directly decode using our medical ASR system, and the other
is to continually optimize the transcription with the help of
the seq2seq based post correction model.

A. Dataset Creation

First we demonstrate the creation of the formatted dataset,
which contains drug ordering commands. The legal drug
names are obtained from the U.S. National Library of
Medicine (NIH). The original list has 3051 drug names. We
format the list by removing the names that contain numbers
or symbols, and then obtain 681 names. For each drug, we
randomly generate its valid dosage in order to simulate the
actual correct scenario, because in practical scenarios only
some specific dosages would be ordered by a physician. Note
that each drug does not necessarily have only one valid dosage;
different drugs have different numbers of valid dosages. After
we obtain all these candidate names and their corresponding
dosages, we generate 30,000+ medical commands by combin-
ing the entities – name, dosage, and unit. All the commands
in this dataset follow the same pattern of NAME + DOSAGE
+ UNIT.

The unformatted dataset is created through directly making
use of the emrQA [18] datasets, which are domain-specific
large-scale question answering (QA) datasets generated by
re-purposing existing annotations for other NLP tasks. They
consist of 400,000+ question-answer pairs, but we only use the
medical portions. In the beginning we have over 1,300,000
medical questions, and 138,456 questions are left after we
perform data cleaning, i.e., deleting the questions that contain
numbers or symbols.

After we acquire the text of the medical input, it is converted
to speech with the help of Google Text-To-Speech (TTS).
To make the situation more practical, the clean speech of
the medical input is mixed with real-world noises such as
air-conditioner sounds, babbling, copy machine sounds, and
vacuum cleaners, which are all included in the Microsoft
Scalable Noisy Speech Dataset (MS-SNSD) [19]. Each dataset
is divided into 3 different sets for both the formatted and
unformatted data. For the formatted data, we have 30,000
samples for training, 3,000 samples for validation, and 3,000
samples for testing. For the unformatted data, we have 110,766
samples for training, 13,845 samples for validation, and 13,845
samples for testing.

B. ASR System Implementation

The ASR system is implemented using Kaldi. We make
use of the ASPIRE model and adapt it to the medical domain
by replacing the original LM with the medical one, which is
trained from the medical corpus (explained in Section III-A).
In the LM training, we use the n-gram model and apply the
algorithm of Ney’s absolute discounting with a smoothing
parameter of 0.5. All other components for constructing the
ASR decoding networks are unchanged, i.e., we directly use
the pre-trained ASPIRE model.

The decoding utility in Kaldi used in this work is “online2-
wav-nnet3-latgen-faster”, which provides fast and accurate
decoding. We turn off online decoding to maximize accuracy.
The parameter of “max-active” is 7000, which controls the
maximum number of states that can be active at one time;
“beam” is 15, which controls the process of beam pruning; and
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Fig. 4. Experimental setup and steps.

Fig. 5. EER of name. Fig. 6. EER of number. Fig. 7. EER of unit. Fig. 8. Total EER.

TABLE I
EVALUATION OF CORRECTION PERFORMANCE OF EACH ENTITY AT DIFFERENT SNR LEVELS (RR REPRESENTS RIGHT TO RIGHT AND RW REPRESENTS

RIGHT TO WRONG)

SNR Name Entity Number Entity Unit Entity
(dB) RR RW WR WW WCR RCR RR RW WR WW WCR RCR RR RW WR WW WCR RCR
-20 392 7 160 2441 0.018 0.062 390 26 93 2491 0.062 0.036 1011 15 926 1048 0.015 0.469
-10 893 19 296 1792 0.021 0.142 877 95 155 1873 0.098 0.076 1912 25 468 595 0.013 0.44
0 1695 30 472 803 0.017 0.37 1801 113 210 876 0.059 0.193 2735 18 95 152 0.007 0.385

10 2190 16 562 232 0.007 0.708 2629 75 111 185 0.028 0.375 2984 6 8 2 0.002 0.8
20 2299 8 566 127 0.003 0.817 2832 62 72 34 0.021 0.679 2996 3 0 1 0.001 0.0
30 2336 11 573 80 0.005 0.877 2883 46 63 8 0.016 0.887 2998 2 0 0 0.001 0.0

Fig. 9. SER of formatted dataset with various SNRs.

“acoustic-scale” is 1, which determines the weight of acoustic
probabilities.

Fig. 10. WER of unformatted dataset
with various SNRs.

Fig. 11. SER of unformatted dataset
with various SNRs.

C. Training the Seq2seq Model

First we decode all the speech samples of the two datasets,
i.e., formatted and unformatted. Then we train the neural
network based on the training sets: the direct decoding result
from the ASR system is the neural net input and the correct
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medical text is the neural net output, i.e., the input is an
erroneous transcription and the output is the label. We adjust
the hyper-parameters to minimize the loss on the validation
set, so the network can learn the error patterns better and
make corrections more accurately. The network settings are:
the batch size is 32, the epoch is 50, and the optimizer is
Adam [20] with a learning rate of 1e-4. Additionally, we
apply the mechanisms of teacher forcing learning and gradient
clipping.

D. Results and Analysis

We evaluate different metrics for the two different dataset.
We analyze two metrics for the formatted dataset: entity error
rate (EER) and sentence error rate (SER), and two metrics for
the unformatted dataset: word error rate (WER) and SER.

1) Formatted Dataset: According to the dataset, we know
that we have 3 entities: name, dosage, and unit. Each entity
is important in medical treatment, and none of the errors are
negligible. Our goal is to reduce SER, but the EER is also an
important metric that can help us understand which parts of
the model will need to be improved further.

The experiments are carried out using different levels of
SNR: -20 dB to 30 dB. We take the direct decoding as the
baseline and compare it with the proposed method. The EER
of each entity, total EER, and SER are shown in Figures 5-
9, respectively. The improvement represents a relative value
rather than an absolute one compared to the baseline. Ob-
serving the results, we find that the proposed method does
achieve good improvement through the seq2seq optimization.
The improvement of SER is surprising with higher SNR: the
SER decreases from 23.1% to 4.3%, i.e., it decreases by
more than 80% when SNR is 30 dB. The improvement is
also satisfactory with medium SNRs: the SER decreases from
33.1% to 14.4%, i.e., it decreases by 56.5% when SNR is 10
dB. We also notice that the proposed method is not as effective
when the speech quality is extremely low (lower than 0 dB):
the SER is still above 80% after the seq2seq model. In this
case the ASR system cannot provide useful information for
the seq2seq model to recover the commands, i.e., the noise
power is too strong.

We can also learn something from the EER of each entity.
Table I shows the correction performance of each entity at
different SNR levels, where RR represents “right to right”,
i.e., the direct ASR decoding result is right and the result is
still right after seq2seq based error correction. Similarly, RW
represents “right to wrong”, WR represents “wrong to right”
and WW represents “wrong to wrong”. Wrong correction
rate (WCR) and right correction rate (RCR) are calculated
as (5) and (6), which reflect the correction performance in
two aspects: the probability of incorrect correction and the
capability of recovering from mistakes.

WCR = RW/(RR+RW ) (5)

RCR = WR/(WR+WW ) (6)

The results show that name entity contributes most to the
improvement: it has higher RCR (above 70%) and lower WCR
(below 10%) when SNR is rather high (higher than 0 dB). And
number entity is more difficult to be corrected: the RCR is not
as high and the WCR is also not as low. As for unit entity,
we only have limited candidates for it, so direct decoding is
enough for the recognition.

2) Unformatted Dataset: It is not easy to extract entities
from the unformatted sentences. Therefore, we simply calcu-
late WER rather than EER to make the problem easier.

The experiments are the same as for the formatted dataset,
i.e., using different SNR levels from -20 dB to 30 dB.
The baseline is direct decoding and it is compared with the
proposed method. The WER and SER values are shown in
Figures 10-11, respectively. The results show that the proposed
method does well in improving the decoding accuracy with
higher SNRs: when SNR is 30 dB, WER is decreased by
42.9% from 7.9% to 4.5%, while SER is decreased by 31.2%
from 39.4% to 27.1%. It is also verified that the post correction
model cannot help in processing low-quality speech: SER is
above 80% when SNR is lower than -10 dB.

3) Conclusions for Experimental Results: Comparing the
experimental results of the formatted and unformatted datasets,
the effectiveness of the proposed method is shown. When
SNR is higher than 0 dB, the decoding accuracy can be
significantly improved with the help of the seq2seq based
post correction model, which provides great support for down-
stream tasks such as language understanding. However, the
proposed method also has limitations, i.e., it does not perform
well when the speech is completely submerged in noise, i.e.,
SNR is lower than 0 dB (note, however, that the real-world
impact of this is limited since 0 dB is the so-called hearing
threshold for the human ear and speech with SNR below 0 dB
is very uncommon in real application scenarios).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an ASR system model that
can recognize medical speech more accurately. We apply a
domain-specific ASR model together with a seq2seq based
post correction module. We transfer the ASR model to the
medical domain by re-training the LM of the ASPIRE model
using a medical corpus, and we apply a seq2seq neural net-
work with attention mechanism in the post correction module.
We evaluate the performance of the model on two datasets,
i.e., the formatted and unformatted datasets, which consist of
speech data synthesized based on medical text. The results
show that our system model reduces the SER by up to 81%
compared to direct decoding for formatted input and up to 31%
for unformatted input. The improvement of accuracy decreases
as the SNR goes down, and the system is not as effective
when the speech quality is extremely bad. Particularly for the
formatted dataset, only the name entity can be better corrected,
while the other entities are not corrected very well. Therefore,
in our future work, we will (1) further study techniques to
separately address transcription errors using entity-specific
techniques, especially for number and unit entity, (2) collect
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medical speech data in real applications and evaluate the
performance of the proposed method, and (3) introduce more
context knowledge, e.g., subject, speaker, procedure, to the
system so that it can acquire more intelligent inference ability.
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mer, and K. Vesel, “The kaldi speech recognition toolkit,” 2011.

[9] D. Povey, M. Hannemann, G. Boulianne, L. Burget, A. Ghoshal,
M. Janda, M. Karafiát, S. Kombrink, P. Motlı́ček, Y. Qian, K. Ried-
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