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Abstract

Two sulphur-oxidizing, chemolithoautotrophic aerobes were isolated from the chemocline of an anchialine sinkhole located
within the Weeki Wachee River of Florida. Gram-stain-negative cells of both strains were motile, chemotactic rods. Phylogenetic
analysis of the 165 rRNA gene and predicted amino acid sequences of ribosomal proteins, average nucleotide identities, and
alignment fractions suggest the strains HH1" and HH3" represent novel species belonging to the genus Thiomicrorhabdus. The
genome G+C fraction of HH1" is 47.8 mol% with a genome length of 2.61Mb, whereas HH3" has a G+C fraction of 52.4 mol%
and 2.49Mb genome length. Major fatty acids of the two strains included C,, , C,.. and C,, ., with the addition of C,_ 3-OH in

HH1Tand C,,  in HH3". Chemolithoautotrophic growth of both strains was suéér;ortsa by ele;:w.gental sulphur, sulphide, 1tUeDtrathion—
ate, and thiosulphate, and HH1" was also able to use molecular hydrogen. Neither strain was capable of heterotrophic growth
or use of nitrate as a terminal electron acceptor. Strain HH1" grew from pH 6.5 to 8.5, with an optimum of pH 7.4, whereas
strain HH3" grew from pH 6 to 8 with an optimum of pH 7.5. Growth was observed between 15-35 °C with optima of 32.8 °C
for HH1" and 32 °C for HH3™. HH1T grew in media with [NaCl] 80-689 mM, with an optimum of 400 mM, while HH3" grew at
80-517mM, with an optimum of 80 mM. The name Thiomicrorhabdus heinhorstiae sp. nov. is proposed, and the type strain is
HH1T (=DSM 111584"=ATCC TSD-240Q7). The name Thiomicrorhabdus cannonii sp. nov is proposed, and the type strain is HH3"
(=DSM 111593"=ATCC TSD-241").

The genera Thiomicrospira (T.), ‘Thiosulfativibrio’ (‘Tsv.), “Thiosulfatimonas’ (‘T5s.’), Thiomicrorhabdus (Timr.), Hydrogenovibrio
(H.) and Galenea (G.) cluster together within the Thiotrichales of the Gammaproteobacteria [1-3]. They are commonly detected
either by sequencing or cultivation from a variety of sulphidic environments, including hydrothermal vents, brackish lakes, marine
sediments, hot springs and soda lakes (reviewed in [1-9]).

These organisms typically use reduced sulphur species as electron donors, with a few species capable of using molecular hydrogen
[4, 10-12] or ferrous iron [10, 11, 13, 14]; reviewed in [1]. Molecular oxygen is the only electron acceptor supporting their
growth, except in Tmr. sediminis (reviewed in [1, 3-7]). Members of these genera grow chemolithoautotrophically using the
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The GenBank/EMBL/DDBJ accession numbers for the 165 rRNA and genome sequences of strain HH1™ are MZ029054 and GCA_013391765.1.

The genome is also available from the Integrated Microbial Genomes and Microbiomes (IMG; https://img.jgi.doe.gov/), genome ID no. 2901320023.
Strain HH1" has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 111584) and ATCC (=ATCC TSD-240").
The GenBank/EMBL/DDBJ accession numbers for the 165 rRNA and genome sequences of strain HH3™ are MZ029089 and GCA_013391695.1. The
genome is also available from IMG, genome ID no. 2873448755. Strain HH3T has been deposited at the DSMZ (=DSM 1115937) and ATCC (=ATCC TSD-
2417).
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Table 1. Chemocline chemistry from Hospital Hole

Parameter Valuezsd (=3)
Temperature (°C) 24.2+0.0
pH 7.1520.12
Total alkalinity (mg1™) 116£7
Salinity (mg 1) 13.3+2.3
Dissolved O, (uM) 9.68+3.85
Sulphide (uM) 0.44+0.65
Sulphate (mM) 5.94+0.29
Ammonium (uM) 3.06+2.35
Nitrite (M) 1.130.87
Total nitrogen (mg1™) 1.87£0.85
Total phosphorus (mg1™") 0.26+0.07
Total organic carbon (mg 1) 0.96+0.31

transaldolase-variant of the Calvin-Benson-Bassham cycle [2, 15, 16]. Most are unable to grow heterotrophically (e.g. [3, 17, 18],
although for some, growth yields can be increased with the addition of organic compounds, suggesting mixotrophy is possible [19],
and H. thermophilus is capable of bona fide heterotrophic growth [20]. The majority of members of these genera are mesophilic
(28-32 °C optima) neutralophiles (pH 7.0-8.5 optima; reviewed in [1]).

Though members of Thiomicrorhabdus, Hydrogenovibrio and Thiomicrospira have been isolated from a diverse array of sulphidic
habitats (described above), they have never been isolated from sinkholes. Since a single sinkhole can provide a variety of electron
donors and acceptors, including reduced sulphur species, along with a variety of physical conditions (temperature, pH, salinity)
[21], we reasoned that it might harbour novel sulphur-oxidizing chemolithoautotrophs. Here we describe two new species culti-
vated from a stratified, sulphidic sinkhole, and propose the names Thiomicrorhabdus heinhorstiae sp. nov. and Thiomicrorhabdus
cannonii sp. nov. for these organisms.

HABITAT AND ISOLATION

Strains HH1" and HH3" were isolated from the chemocline of Hospital Hole, a vertically stratified sinkhole in Florida, USA,
with inputs from the Weeki Wachee River and saltwater intrusion from below, located at 28.53° N, 82.62° W [21]. Four strata
are apparent: a surface layer of water from the Weeki Wachi River (1-3 m deep) above the halocline, a brackish hypoxic layer
(3-21m deep), a cloudy chemocline (3 cm to 6 m mixing zone centred around 25m depth), and a higher-salinity anoxic
layer below the chemocline, ending at a debris mound at circa 40 m depth. The chemocline is centred just below the ingress
of saltwater from active conduits from the Upper Floridan Aquifer [21]. Typically, the waters below the chemocline contain
c. 100 uM total sulphide, and those within the chemocline ¢. 5pM [21].

In December 2018, scientific divers collected samples from the chemocline with sterile 50 ml polypropylene centrifuge
tubes. Chemocline water samples were analysed as in [21]. Salinities for these samples suggest mixing of fresh and saltwater
(Table 1). Though nitrate concentrations were not measured for these particular samples, prior samples from this site had
nitrate concentrations of ~13 pM [21]. Two samples were set aside for cultivating microorganisms and stored overnight at
4°C. The following morning, they were diluted 1:100 by volume with thiosulphate-supplemented artificial seawater [22],
with NaCl lowered to 9.5g 17!, pH 7.5 (A"TASW), and incubated unshaken at 20 °C. Once turbid, cultures were spread as two
dilution series on solid %2 TASW medium. Many small colonies were visible after 1 week, and 10 colonies ultimately from
each sample were streaked to isolation on % TASW solidified with 1.5% w/v Fisher Bioreagents agar. Five colonies from
each sample were selected for 16S rRNA gene sequencing. Within each sample, all five 16S rRNA gene sequences had 100%
identity but were distinct from those from the other sample.

Unless otherwise stated, cultures were propagated in solid or liquid %2.TASW under a headspace of air at 20 °C. Liquid cultures
were agitated at 100 r.p.m. with a New Brunswick Scientific Excella E24 incubator shaker. Frozen stocks were prepared by
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adding sterile glycerol (15% v/v) to exponential-phase liquid cultures, flash-freezing with liquid nitrogen, and storing at
-80°C.

PHENOTYPIC AND CHEMOTAXONOMIC CHARACTERIZATION

Colonies of strains HH1" and HH3" on %2TASW plates are small (<1 mm diameter) and white, likely from elemental sulphur
deposition, though the products of thiosulphate oxidation were not characterized in this study (Fig. 1a, b). When cultivated
on swim plates (0.3% w/v agar [23]), rings form and expand, indicating that these organisms are chemotactic and motile.
Gram-stain-negative cells are rod-shaped, with maximum dimensions in transmission electron microscopy images of
2.9x0.7 um (HH1T) and 2.8x0.8 um (HH3T). Dark inclusions of approximately 0.12 um in diameter, likely carboxysomes,
are apparent in cells cultivated in chemostats under dissolved inorganic carbon limitation (Fig. 1c, d).

To identify the range of conditions permitting growth, cells were cultivated in %2 TASW at 5-55°C, 0-2.6 M NaCl and pH
5.0-8.5. Liquid cultures (10 ml) were incubated for 72 h in an incubator shaker, and growth was determined turbidometrically
(A=440 nm). Cultures often turned milky, likely due to elemental sulphur production during growth on thiosulphate, making
it difficult to distinguish growth extent under these conditions, so additional experiments (described below) were needed
to determine optimal conditions.

For temperature and NaCl optima, 50 pl cultures in %2 TASW supplemented with pH indicator phenol red (0.0005% w/v)
were incubated in sterile 200 ul PCR tubes in a thermocycler that maintained steady temperature over the course of the
experiment. For temperature optima experiments, the gradient feature of the thermocycler was used to create a range of
temperatures. For NaCl optima experiments, cultures were maintained at 25 °C. The apparent rates of proton extrusion were
calculated from the time, in hours, necessary for the cultures to turn from magenta (pH 8) to yellow (pH 6.8).

Optimal pH values and oxygen tensions were determined by monitoring growth as [**C]-bicarbonate incorporation into
biomass (0.2 uCi ml™%; 0.02 uCi umol ™). For both pH and oxygen experiments, cells were cultivated in 5 ml liquid %2 TASW.
Cultures to determine pH optima were grown in sterile 50 ml polypropylene centrifuge tubes, while cultures at different
oxygen partial pressures were incubated in sealed 100 ml glass serum bottles, with a range of oxygen tensions in the headspace
generated with mixtures of argon, air and oxygen (1 atm total pressure). After incubation in an incubator shaker at 25°C
for 24 h, 1 ml portions were acidified with 0.5ml glacial acetic acid, and ["*C]-bicarbonate incorporation was measured via
scintillation counting [24]. To provide further evidence for optimal oxygen tensions, cells were stab-inoculated into %2 TASW
slush agar tubes (0.5% w/v bacteriological agar) to observe their position relative to the surface of the culture.

Optima were calculated from third order polynomial curves fitted to the data. Maximum specific growth rate coeflicients
(#4y,,) Were determined from washout kinetics of cells cultivated in chemostats under optimal conditions [25-27]

['“C]-bicarbonate incorporation by strains HH1" and HH3" was highest at oxygen concentrations of 5-21% in the head-
space (Fig. 2A and B). Low ["C]-bicarbonate incorporation by strain HH3" was not improved by extending the length of
the incubation beyond 24 h (values were low after 2 and 7 days). Both strains HH1" and HH3" grew as plates below the
surface of slush agar tubes (Fig. 1E and F), with HH1" positioning itself approximately 1 mm below the surface, and HH3"
approximately 1.5-2 mm, suggesting that both are microaerophiles. This observation is consistent with genome sequences
from these organisms (described below), which include genes encoding cbb,-type cytochrome c-oxidases (E.C. 7.1.1.9) in
both organisms, which typically have high affinities for O, [28].

Both strains are mesophiles, with optimal temperatures for growth of 32.8 and 32.0 °C, respectively (Fig. 2c). Temperature
coefficients (Q, ) calculated from Arrhenius plots [25] are 1.05 (HH1") and 1.99 (HH3"). Both strains are neutralophiles, with
optimal growth at pH 7.4 (HH1") and pH 7.5 (HH3"; Fig. 2d). Strain HH1" was moderately halophilic (optimum at 0.41 M),
while HH3" grew best at 0.08 M, the lowest [NaCl] tested, and the lowest NaCl optimum for any member of Thiomicrorhabdus
(Fig. 2e, Table 2). Maximum specific growth rate constants were determined at 25°C, pH 7.5, 20 mM thiosulphate, with 0.41
M (HH17Y) or 0.08 M (HH3") NaCl, and were found to be 0.29+0.04h™! (HH1") and 0.21+0.01 h~! (HH37).

Both strains could use elemental sulphur (flowers-of-sulphur, >99% a-cyclooctasulphur; 0.5% w/v), thiosulphate (20 mM),
or tetrathionate (5mM) as electron donors for chemolithoautotrophic growth. Growth on sulphide was also possible but
was only observed as turbid layers in gradient tubes [29]. Sulphite, thiocyanate (7 mM), ammonium (10 mM) or nitrite
(10 mM) did not support chemolithoautotrophic growth. Strain HH1" grew on molecular hydrogen (1% headspace) when
1, ASW was supplemented with Fe(IT) and Ni(II) [30], but HH3" did not. Growth on molecular hydrogen as an electron
donor is uncommon among members of Thiomicrorhabdus (Table 2); thus far, Tmr. hydrogeniphila is the only other member
to do so [11].

For tests to determine carbon and nitrogen sources, all ionic species were provided as their sodium or chloride salts. Cells
were grown in %2 ASW medium (no thiosulphate) to determine whether organic compounds could serve as carbon sources
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Fig. 1. Growth on solid media and ultrastructure of strains HH1" and HH3. Colonies of strain HH1" (a) and HH3" (b) on solid 2TASW supplemented with
phenol red (0.0005% w/v). Transmission electron microscopy images (x14000 magnification, bars indicate 2 um) of strain HH17 (c) and HH3™ (d) when
cultivated in chemostats under optimal [NaCl] and pH, under dissolved inorganic carbon limitation (dilution rate 0.05h") at 20 °C. Growth of strains
HH1T (e) and HH3T (f) when stabbed into 2TASW slush agar deeps supplemented with phenol red (0.0005% w/v).
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Fig. 2. Determination of optimal growth conditions for strains HH1T (solid squares; a, ¢, d, e) and HH3T (open circles; b—e). Curves in graphs depicting
growth response to temperature, pH and NaCl concentration have been fitted to the data with third-order polynomial equations to determine optima.
For (a), (b) and (d), CO, fixed was measured 24 h after inoculation, after the cultures had reached stationary phase. For (c) and (e), apparent proton
production rates were calculated from the time necessary to lower pH from 8 to 6.8. For both strains, no pH drop was observed after 40 h of incubation
at 40 °C. Error bars, which in some cases are obscured by the symbols used to plot the data, indicate standard deviations.

and electron donors. For testing nitrogen sources, thiosulphate was provided as the electron donor (¥2.TASW). Neither strain
was able to use any of the organic carbon compounds tested as carbon source and electron donor for heterotrophic growth in
liquid culture; growth in liquid 2ASW medium (without thiosulphate) was not supported by yeast extract and tryptone (as a
1:10 dilution of lysogeny broth), glyceraldehyde (20 mM), p-arabinose (6 mM), D-glucose (10 mM), p-fructose (10 mM), D-
rhamnose (10 mM), sucrose (5mM), acetate (10 mM), pyruvate (10 mM), citrate (10 mM), 2-oxoglutarate (5 mM), succinate
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(10 mM), malate (10 mM), oxaloacetate (10 mM), ethanol (25 mM), propan-2-ol (10 mM), glycerol (10 mM) or p-mannitol
(5 mM). No methylotrophic growth was apparent on any of the one-carbon (C,) species provided: monomethylammonium,
dimethylsulphoxide (20 mM), formate (10 mM), formaldehyde (2mM) or methanol (50 mM). As nitrogen sources, both
strains used ammonium (7 mM) and rL-glutamine (3.5mM). HH1" could also use nitrite, nitrate, monomethylammonium
and L-cysteine (7mM for each). Neither strain could use EDTA (3.5 mM), L-serine (7mM), L-glycine (7 mM), L-aspartate
(7mM), or molecular nitrogen. Anaerobic growth at the expense of nitrate was not observed in either strain.

To identify the dominant cellular fatty acids and respiratory quinones, cells were grown in flasks of %2 TASW liquid medium.
Cells were harvested by centrifugation (Sorvall GSA rotor, 4000 g, 4°C, 20 min), and stored at —80 °C. Fatty acids and quinones
were extracted and analysed by the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, as
described in [31, 32]. For both strains, the dominant fatty acids are in keeping with those of closely affiliated species (Table 3).
Palmitic (C,, ), palmitoleic (C, ), and vaccenic (C, ) acids are dominant. Odd-chain fatty acids (C, ; C . ) are also present,
while hydroxylated fatty acids (C,, 3-OH) are particularly abundant in HH1". For both strains, ubiquinone-8 (UQ-8) is the
dominant respiratory quinone, as is typical for the Thiotrichales.

GENOMIC CHARACTERIZATION

DNA was extracted from cells using CTAB [33]. Genome sequencing was provided by MicrobesNG (www.microbesng.uk),
and protocols used for library preparation, sequencing via Illumina HiSeq, and trimming are described online (https://
microbesng.com/documents/5/MicrobesNG_Methods_Document_-_PDEpdf). 592666 and 862434 reads were produced
from strains HH1" and HH3", respectively, and were assembled into scaffolds (strain HH1": 102-fold average coverage, 97
scaffolds, 26924 nt avg scaffold length, 2.61 Mb total length, 47.8mol% G+C fraction, 2550 genes; strain HH3™: 162-fold
average coverage, 62 scaffolds, 40233 nt avg scaffold length, 2.49 Mb total length, 52.4mol% G+C fraction, 2422 genes). These
sequences were annotated via the IMG/ER pipeline [34], and are publicly available (HH1": IMG genome ID 2901320023,
Genbank GCA_013391765.1; HH3": IMG genome ID 2873448755, GenBank GCA_013391695.1).

Genome sequence data for these two strains have many parallels with members of genera Thiomicrospira, Thiomicro-
rhabdus and Hydrogenovibrio. Genes for enzymes and complexes necessary for using reduced sulphur species are present
in the genome, including bacterial sulphide: quinone oxidoreductase (EC 1.8.5.4, sqr), sulphide-cytochrome-c reductase
(flavocytochrome ¢, EC 1.8.2.3, fccAB), and the enzymes of the Lu-Kelly cycle of thiosulphate oxidation (‘Sox complex;
soxXYZABCD: L-cysteine S-thiosulphotransferase, EC 2.8.5.2, soxAX; S-sulphosulphanyl-L-cysteine sulphohydrolase, EC
3.1.6.20, soxB; S-disulphanyl-L-cysteine oxidoreductase, EC 1.8.2.6, soxCD; and the thiosulphate-binding protein soxYZ).
Strain HH1" carries genes encoding both a group 1d and sensory class 2b [NiFe] hydrogenase (EC 1.12.99.6, hyaABC
and hupUYV, as classified using HydDB [35]). Strain HH1" also carries genes encoding enzymes necessary for assimilatory
sulphate reduction, which make it possible for this organism to grow by using H, as its electron donor in the absence
of reduced sulphur species (sulphate adenylyltransferase, EC 2.7.7.4, cysDN; adenylsulphate kinase, EC 2.7.1.25, cysC;
phosphoadenosine phosphosulphate reductase (thioredoxin), EC 1.8.4.8, cysH; assimilatory sulphite reductase (NADPH,
EC 1.8.1.2, cysI])). Both strains carry genes for the high-affinity cbb -type cytochrome c oxidase (EC 7.1.1.9, ccoNOQP).

Both strains carry genes encoding the transaldolase-variant of the Calvin-Benson-Bassham cycle [36-38], with three types
of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO; EC 4.1.1.39): both carboxysomal (IAc) and cytosolic (IAq)
types of the form IA isozyme (cbbLS), and one form II isozyme (cbbM). Encoded downstream from the carboxysome loci are
multisubunit DIC-accumulating complexes [39, 40]; the presence of genes encoding both carboxysomes and these complexes
suggests these organisms express CO,-concentrating mechanisms when grown in the presence of low concentrations of CO,
[41]. Indeed, inclusions resembling carboxysomes are abundant when cells are grown under dissolved inorganic carbon
limitation (Fig. 1). The inability of these organisms to use multicarbon compounds for heterotrophic growth is consistent
with the presence of an incomplete form of the Krebs cycle, lacking genes encoding enzymes to convert 2-oxoglutarate to
succinyl-CoA (‘Smith’s horseshoe’ [42, 43]). As for members of Thiomicrospira, Thiomicrorhabdus and Hydrogenovibrio, genes
encoding malate dehydrogenase (NAD*; EC 1.1.1.37) are absent, though genes encoding malate dehydrogenase (quinone)
are present (EC 1.1.5.4, mqoB [2, 18]).

The presence of genes encoding enzymes responsible for nitrogen metabolism is also consistent with the results from cultivating
these organisms. Nitrogenase genes are absent, while genes encoding ferredoxin-nitrate reductase (EC 1.7.7.2, narB) and nitrite
reductase (NADH; EC 1.7.1.15, nasB) are present in strain HH1™. Strain HH3" has genes encoding cyanase (EC 4.2.1.104, cynS),
suggesting cyanate could serve as a nitrogen source.

As previously observed for other taxonomically affiliated organisms [2], these strains are poised to sense and respond to changes
in their environment. Chemotaxis and motility are facilitated by a large number of genes encoding methyl-accepting chemot-
axis proteins (10 in HH1%, 19 in HH3"), and GGDEF/EAL-domain proteins and histidine kinase/response regulators are well
represented in these genomes.
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Hydrogenovibrio spp.

Thiomicrorhabdus indica 13-15AT (Ga0398173_1980)
Thiomicrorhabdus sediminis G17 (Ga0451571_01_1896662_1898205)
Thiomicrorhabdus xiamenensis G2T (Ga0451572_01_332655_334198)
91 Thiomicrorhabdus arctica DSM 134587 (F612DRAFT_2093)
Thiomicrorhabdus psychrophila SVAL-DT (AJ404732)
— Thiomicrorhabdus chilensis DSM 123527 (BO76DRAFT_0255)
Thiomicrorhabdus sp. Milos-T2 (BS34DRAFT_1672)
o9| | Thiomicrorhabdus hydrogeniphila MAS2T (LC010781)
ogll Thiomicrorhabdus frisia JB-A2T (AF013974)
97" Thiomicrorhabdus frisia Kp2 (A379DRAFT_1509)
— |71~ HH3 (Ga0438910_20_354 1897)
HH1 (Ga0438909_048_380_1921)
‘Thiosulfativibrio zosterae’ AkT22 (Ga0442965_01_327580 329125)
‘Thiosulfatimonas sediminis’ aks77 (Ga0443151_01_2153100 2154643)
Thiomicrorhabdus aquaedulcis HaS4T (Ga0397736_1734)
Galenea microaerophila P2DT (JQ080912)

Thiomicrospira spp.
100

Thiothrix nivea JP2T (Thini_R0028)

—_—
0.10

Fig. 3. Maximum-likelihood tree showing the position of HH1" and HH3T relative to Thiomicrorhabdus, Galenea, ‘Thiosulfatimonas', ‘Thiosulfativibrio’,
Thiomicrospira and Hydrogenovibrio isolates, on the basis of the 16S rRNA (rrs) gene. Compressed taxa Hydrogenovibrio and Thiomicrospira use the
sequences given in [1]. Sequences were curated from the GenBank and IMG/ER databases favouring the complete gene over PCR amplicons and
aligned using the MuscLE algorithm [56] in MEGA X [57] per [1]. The aligned data were model-tested in MEGA X on the basis of the lowest corrected Akaike
information criterion (AIC. [58, 59], per [60]). The outgroup is the same gene from Thiothrix nivea JP2". Type species of each genus are emboldened.
Numbers in parentheses refer to genome accession numbers in the GenBank (short) and IMG/ER (long/containing underscore characters). The tree
was reconstructed in MEGA X with partial deletion of gaps (95% cut-off) and the final analysis used 1384 nt. The model of Kimura (1980) [61] was
used with a discrete gamma distribution (five categories, gamma parameter=0.2206) with 37.21% of sites evolutionarily invariant. Tree shown had
the highest log-likelihood (-7,494.87). Branch lengths are proportional to the number of substitutions, the bar representing 0.10 substitutions per site.
Bootstrap values at nodes are on the basis of 5000 replications (values <70% are omitted for clarity).

Strain HH3" has a prophage encoded in its genome in a ~32 kb region spanning IMG gene IDs 2873448806-2873448853. This
region includes genes encoding a lambda repressor-like predicted transcriptional regulator as well as structural components
of phage particles, including phage-related tail fibre proteins, head proteins, baseplates, and sheaths. Analyses in PHASTER
[44] placed top matches to the genes in this region to prophages found primarily in other members of Gammaproteobac-
teria—those in Vibrio species being the most common matches (top matches for 15 of the 49 prophage genes).

PHYLOGENETIC AND GENOMIC ANALYSES

16S rRNA (rrs) gene sequences of strains HH1T and HH3T affiliate them with the genera Thiomicrorhabdus, Hydrogenovibrio
and Thiomicrospira (Fig. 3). Closest pairwise matches for HH1" are HH3" (95.25% identity) and Thiomicrorhabdus xiamensis
(94.87% identity). The closest pairwise match for HH3" is Thiomicrorhabdus aquaedulcis (95.56 % identity; Table 4). On the
basis of the Stackebrandt threshold for species (98.7% 16S rRNA gene identity [45]), and the Yarza cut-off for the rank of
genus (94.50% 16S rRNA gene identity [46]), which we have used previously [1, 47], HH1" and HH3" represent members
of genus Thiomicrorhabdus. Based on the Yarza median for rank of family (<92.25% [1, 12, 46]), the genera Galenea,
Thiomicrorhabdus and Hydrogenovibrio are members of the same family, while Thiomicrospira is in a different family.
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Table 4. 165 rRNA (rrs) gene identities (%) for HH1T and HH3" versus type strains of species of Thiomicrorhabdus species and allied genera

Accession numbers in parentheses refer to the IMG/ER database locus tags with the exception of Tmr. frisia, Tmr. hydrogeniphila and Tmr. psychrophila,
for which they refer to the GenBank database.

Strain HH1" HH3"
(Ga0438909_048_380_1921) (Ga0438910_20_354_1897)
HH1" (Ga0438909_048_380_1921) 100 95.25
Tmr. frisia JB-A2" (AF013974) 93.49 94.33
Timr. aquaedulcis HaS4" (Ga0397736_1734) 92.73 95.56
Tmr. arctica DSM 13458" (F612DRAFT_2093) 93.26 94.56
Tmr. chilensis DSM 12352" (BO76DRAFT_0255) 93.42 94.87
Tmr. hydrogeniphila MAS2" (LC010781) 93.03 94.18
Tmr. indica 13-15A" (Ga0398173_1980) 94.79 94.26
Tmr. psychrophila SVAL-D" (AJ404732) 93.11 94.41
Tmr. sediminis G17 (Ga0451571_01_1896662_1898205) 93.72 94.95
Tmr. xiamenensis G2" (Ga0451572_01_332655_334198) 94.87 93.64
Galenea microaerophila P2D" (NR_126238) 92.57 93.42
“Tss. sediminis’ aks77" (Ga0443151_01_2511058_2512601) 93.26 94.26
“Tsv. zosterae’ AKT22" (Ga0442965_01_724513_726058) 92.50 93.87
Hydrogenovibrio spp. 92.72-94.49 93.34-94.95
Thiomicrospira spp. 91.81-92.11 91.73-92.04

For genome-level comparisons, genome sequences are available for the type strains of the type species of the genera Thiomi-
crospira (Thiomicrospira pelophila DSM 1534") and Hydrogenovibrio (Hydrogenovibrio marinus MH-1107T). As the equivalent
strain for Thiomicrorhabdus (Thiomicrorhabdus frisia JB-A2T) has yet to be genome sequenced, data from Tmr. frisia Kp2 was
used. The 16S rRNA gene sequence of this strain has 99.3% identy to that of Tmr. frisia JB-A2". Digital DNA-DNA hybridiza-
tion (ADDH) values for comparisons of strains HH1" and HH3" against other species are all <70% (Table 5), consistent with
both strains being distinct from these species [48]. The highest dDDH values were within genera Thiomicrorhabdus and
Hydrogenovibrio, but with no affiliation close enough to indicate that they are members of extant species of either genus.
Phylogenetic analysis based on an alignment of 53 ribosomal-protein-amino-acyl-sequence concatamers generated using
the rMLST database [49] includes strains HH1" and HH3" in a strongly supported clade with Thiomicrorhabdus (Fig. 4).
Genome-level comparisons with the type species of genera Thiomicrorhabdus, Hydrogenovibrio and Thiomicrospira via
average nucleotide identities of orthologous genes (ANI) and alignment fractions of orthologous genes (AF), as described
in [50], also suggest closest affiliation with Thiomicrorhabdus (Fig. 5, Tables 2 and 5). AF values place both strains among
members of Thiomicrorhabdus, while their ANI values (Table 2) are a bit lower than those for other members of this genus.
Indeed, their ANI values are slightly higher when compared to H. marinus than Tmr. frisia (Fig. 5, Tables 2 and 5). However,
their ANI and AF values both have best matches with members of Thiomicrorhabdus (Table 5). Whether compared to H.
marinus or Tmr. frisia, their ANI values are slightly lower than the boundary previously suggested for these genera (71.98
and 70.85%, respectively [50]). Recently described members of two newly proposed genera (albiet without validly published
names at this time), ‘Thiosulfativibrio zosterae’ (‘Tsv. zosterae’) and “Thiosulfatimonas sediminis’ (‘Iss. sediminis’) [3] also fall
among HH1", HH3", and other members of Thiomicrorhabdus (Fig. 5), suggesting that membership within Thiomicrorhabdus
may need to be revised as more strains are isolated and characterized. For now, based on their phenotypes (Fig. 1, Table 2),
positions on the rMLST tree (Fig. 4), AF values, and top matches based on dDDH, ANI and AF values (Tables 2 and 5),
strains HH1" and HH3" are most closely affiliated to Thiomicrorhabdus. As such, we propose that each of these strains
represents a novel species of Thiomicrorhabdus; we propose Thiomicrorhabdus heinhorstii sp. nov. for which the type strain
is HH1%, and Thiomicrorhabdus cannonii sp. nov. for which the type strain is HH3".
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Table 5. Whole-genome comparison parameters, namely digital DNA-DNA hybridization (dDDH) percentages, average nucleotide identities (ANI) and
alignment fractions (AF), for strains HH1" and HH3" compared to type strains of species of Thiomicrorhabdus, Hydrogenovibrio, and Thiomicrospira

The type species of each genus is emboldened.

Organism 1 Organism 2 dDDH ANI1->2 ANI2>1 AF1>2 AF2>1
HH1" HH3T" 21.0 73.8 73.8 40.0 45.2
Tmr. aquaedulcis HaS4™ 221 71.3 71.3 34.1 35.4
Tmr. arctica SVAL-E" 20.7 71.1 71.1 39.7 41.7
Tmr. chilensis Ch-1" 20.8 72.7 72.7 43.6 46.3
Tmr. frisia Kp2* 20.5 71.6 71.6 43.3 41.8
Tmr. indica 13-15A" 232 72.2 72.2 39.7 36.9
Tmr. sediminis G1" 20.7 73.6 73.6 39.9 44.1
Tmr. xiamenensis G2" 21.9 753 752 48.4 49.1
“Tsv. zosterae’ AKT22" 20.0 70.4 70.4 353 339
“Tss. sediminis’ aks77" 20.6 727 727 41.4 40.2
HH1" H. crunogenus XCL-21 215 70.6 70.7 33.6 39.3
H. halophilus HL 5" 222 70.5 70.5 28.6 31.2
H. kuenenii JB-A1" 21.3 70.7 70.7 36.2 37.9
MH-110"H. marinus 232 71.6 71.7 37.5 37.0
HHI1" T. aerophila AL 3" 18.5 69.1 69.1 25.0 28.8
T. cyclica ALM 1" 20.2 69.4 69.4 225 28.8
T. microaerophilia ASL8-2" 18.9 69.4 69.3 26.4 22.1
DSM 1534T. pelophila™ 19.1 69.3 69.3 294 35.2
T. thyasirae TG-2" 18.4 69.3 69.3 29.8 335
HH3" Tmr. aquaedulcis HaS4" 20.0 72.1 72.1 39.0 39.3
Tmr. arctica SVAL-E" 19.1 70.6 70.6 42.5 43.3
Tmr. chilensis Ch-1" 193 75.0 75.0 59.1 60.8
Tmr. frisia Kp2* 19.8 70.7 70.7 46.5 43.5
Tmr. indica 13-15A" 202 70.8 70.8 359 324
Tmr. sediminis G1" 20.1 73.0 73.0 42.2 45.2
Timr. xiamenensis G2" 20.7 73.7 73.7 422 41.6
“Tsv. zosterae’ AKT22" 19.9 70.6 70.6 37.8 352
“Tss. sediminis’ aks77" 20.6 71.9 71.9 39.5 39.5
HH3" H. crunogenus XCL-21 19.8 70.3 70.3 39.0 40.3
H. halophilus HL 5" 182 71.9 71.9 34.0 35.9
H. kuenenii JB-A1" 20.1 70.2 70.2 36.1 36.6
MH-110"H. marinus 20.8 71.0 71.0 36.5 34.8
HH3" T. aerophila AL 3" 18.5 69.6 69.6 26.6 29.7
T. cyclica ALM 1" 18.6 69.7 69.7 252 313
T. microaerophilia ASL8-2" 17.4 69.9 69.9 30.7 24.9
DSM 1534T. pelophila™ 18.9 69.6 69.6 331 38.5
T. thyasirae TG-2" 18.3 69.9 69.9 32.8 32.8

*The genome of Tmr. frisia JB-A2", the type species for genus Thiomicrorhabdus, has not been sequenced. ANl and AF values were computed using the genome of Tmr. frisia Kp2, whose 16S sequence is 99.3% identical to Tmr. frisia JB-A2".
1The genome of H. crunogenus TH-55", the type strain for this species, has not been sequenced. ANI and AF values were computed using the genome of H. crunogenus XCL-2, whose 165 sequence is 99.9% identical to TH-55"
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Fig. 4. Maximum-likelihood tree of Thiomicrorhabdus, Thiomicrospira, ‘Thiosulfatimonas', ‘Thiosulfativibrio’ and Hydrogenovibrio isolates for which
genome sequences are available, on the basis of the 53 concatenated ribosomal protein gene sequences translated in silico into amino acyl sequences,
pertaining to rpsA-rpsU, rplA-rplF, rplL-rplX and rpomA-rpmJ. Omissions of sequences with detected problems (internal stop codons, partial sequences,
etc) were made, viz. Tms. pelophila DSM 15347 (rpmF), Tms. thyasirae DSM 53227 (rpsA), Tmr. aquaedulcis HaS4™ (rpsR, rplD, rplE, rplO, rplR) and strain
HH3 (rpmE). Gene concatamer sequences were downloaded en bloc from the ribosomal multilocus sequence typing (rMLST) database (http://pubmlst.
org/rmlst) and were translated in silico before aligning using the MUscLE algorithm [56] in MEGA X [57] per [1]. The aligned data were model-tested
in MEGA X on the basis of the lowest corrected Akaike information criterion (AIC_ [58, 59], per [60]). The outgroup is the equivalent concatamer from
Thiothrix nivea DSM 5205". Type species of each genus are emboldened. Thiomicrorhabdus frisia Kp2 is used in lieu of the type strain of the type species
of Thiomicrorhabdus (Tmr. frisia JB-A27), for which the genome has not been sequenced. Numbers in parentheses refer to genome accession numbers
in the rMLST database. The tree was reconstructed in MEGA X with partial deletion of gaps (95% cut-off) and the final analysis used 6751 aa. The model
of Le and Gascuel [62] was used with a discrete gamma distribution (five categories, gamma parameter=0.5695) with 22.52% of sites evolutionarily
invariant. Tree shown had the highest log-likelihood (-82736.29). Branch lengths are proportional to the number of substitutions, the bar representing
0.10 substitutions per site. Bootstrap values at nodes are on the basis of 5000 replications (values <70% are omitted for clarity).
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Fig. 5. Pairwise comparisons of genome-derived parameters from type strain members of family Piscirickettsiaceae to (a) Thiomicrorhabdus frisia
Kp2, (b) Hydrogenovibrio marinus DSM 112717 and (c) Thiomicrospira pelophila DSM 15347, which are type strains of the type species of their respective
genera, excepting Tmr. frisia Kp2 (see Fig. 4 legend). Symbols on the plots indicate the averages of the values from comparing the genomes (average of
genome 1 vs. genome 2, and genome 2 vs. genome 1), and error bars indicate the individual values (genome 1 vs. genome 2, and genome 2 vs. genome
1). Boundary values for alignment fractions (AF) and average nucleotide identities (ANI) suggested for genera Thiomicrorhabdus, Hydrogenovibrio and
Thiomicrospira [50] are demarcated with dotted lines.
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DESCRIPTION OF THIOMICRORHABDUS HEINHORSTIAE SP. NOV.

Thiomicrorhabdus heinhorstiae [hein.hor'sti.ae. N.L. gen. n. heinhorstiae, of or pertaining to Heinhorst, named to honour Professor
Sabine Heinhorst (b. 1952), microbiologist at University of Southern Mississippi who made significant contributions to the study
of the structure and function of carboxysomes in autotrophic Bacteria].

Cells are motile, chemotactic rods of 1.9-2.9 um long and 0.5-0.7 um diameter and contain 120 nm diameter polyhedral bodies
resembling carboxysomes, the genes for which are also present in the genome. On %2 TASW plates grown under air, colonies are white
with powdery deposits likely to be elementary sulphur, circular, entire and <1 mm in diameter. On plates supplemented with phenol
red, colonies are yellowish owing to acid production during thiosulphate oxidation. Moderately halophilic, neutralophilic mesophile.
Growth occurred at 15-35 °C, pH 6.5-7.5 and at 80-689 mM NaCl with optimal growth at 32.8 °C, pH 7.4, and at 410 mM NaCl.
Vitamins are not required for growth. Obligate aerobes growing optimally under 5-21% v/v molecular oxygen. Obligate chemolitho-
autotrophs using thiosulphate, elemental sulphur, sulphide, tetrathionate, and molecular hydrogen as electron donors but not sulphite,
thiocyanate, ammonium or nitrite. Heterotrophic growth was not observed in liquid 2ASW broth supplemented with the following
potential carbon sources: diluted lysogeny broth, glyceraldehyde, p-arabinose, p-glucose, b-fructose, b-rhamnose, sucrose, acetate,
pyruvate, citrate, 2-oxoglutarate, succinate, malate, oxaloacetate, ethanol, iso-propanol, glycerol, b-mannitol, monomethylammonium,
dimethylsulphoxide, formate, formaldehyde, or methanol. Nitrogen sources used during growth on thiosulphate were ammonium,
nitrate, nitrite, L-glutamine, monomethylammonium and L-cysteine, but EDTA, L-serine, glycine, L-aspartate and molecular nitrogen
could not be used. Dominant fatty acids in biomass grown on thiosulphate are palmitoleic acid (C, ), vaccenic acid (C,, ), palmitic
acid (C,, ) and 3-hydroxycapric acid (C,  3-OH). Dominant respiratory quinone is UQ-8. Genes encoding the high-affinity cbb,-type
cytochrome ¢ oxidase (EC 7.1.1.9) are present in the genome, which is consistent with isolation site. G+C fraction of genomic DNA
is 47.8mol% (from genome sequence), with a genome size of 2.61 Mbp containing 2550 genes of which 2485 are predicted to be
protein-coding.

The type strain, HH1" (=DSM 111584"=ATCC TSD-240"), was isolated from the chemocline of Hospital Hole, an anchialine
sinkhole in the Weeki Wachee River (Spring Hill, Florida, USA).

DESCRIPTION OF THIOMICRORHABDUS CANNONII SP. NOV.

Thiomicrorhabdus cannonii [can.no'ni.i. N.L. gen. n. cannonii, of or pertaining to Cannon, named to honour Professor Gordon
C. Cannon (b. 1953), microbiologist at University of Southern Mississippi who made significant contributions to the study of the
structure and function of carboxysomes in autotrophic Bacteria].

Cells are motile, chemotactic rods of 1.5-2.8 um long and 0.6-0.8 pm diameter and contain 120 nm-diameter polyhedral bodies
resembling carboxysomes, the genes for which are also present in the genome. On %2TASW plates grown under air, colonies are white
with powdery deposits likely to be elementary sulphur, circular, entire and <1 mm in diameter. On plates supplemented with phenol
red, colonies are yellowish owing to acid production during thiosulphate oxidation. Moderately halotolerant neutralophilic mesophile.
Growth occurred at 15-35 °C, pH 6.0-8.0, and at 80-517mM NaCl with optimal growth at 32.0 °C, pH 7.5 and at 80mM NaClL
Vitamins are not required for growth. Obligate aerobes growing optimally under 5-21% v/v molecular oxygen. Obligate chemolitho-
autotrophs using thiosulphate, elemental sulphur, sulphide, and tetrathionate as electron donors but not molecular hydrogen, sulphite,
thiocyanate, ammonium or nitrite. Heterotrophic growth was not observed in liquid 2ASW broth supplemented with the following
potential carbon sources: diluted lysogeny broth, glyceraldehyde, p-arabinose, p-glucose, b-fructose, b-rhamnose, sucrose, acetate,
pyruvate, citrate, 2-oxoglutarate, succinate, malate, oxaloacetate, ethanol, iso-propanol, glycerol, b-mannitol, monomethylammonium,
dimethylsulphoxide, formate, formaldehyde or methanol. Nitrogen sources used during growth on thiosulphate were ammonium and
L-glutamine, but nitrate, nitrite, monomethylammonium, L-cysteine, EDTA, L-serine, glycine, L-aspartate and molecular nitrogen
could not be used. Dominant fatty acids in biomass grown on thiosulphate are palmitoleic acid (C,_,), vaccenic acid (C , ), palmitic
acid (C,, ) and lauric acid (C,, )). Dominant respiratory quinone is UQ-8. Genes encoding the high-affinity cbb.-type cytochrome ¢
oxidase (EC 7.1.1.9) are present in the genome, which is consistent with isolation site. G+C fraction of genomic DNA is 52.4mol%
(from genome sequence), with a genome size of 2.49 Mbp containing 2422 genes of which 2360 are predicted to be protein-coding.

The type strain, HH3" (=DSM 111593"=ATCC TSD-241"), was isolated from the chemocline of Hospital Hole, an anchialine
sinkhole in the Weeki Wachee River (Spring Hill, Florida, USA).
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