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Abstract—Screen time is associated with several health risk
behaviors including mindless eating, sedentary behavior, and
decreased academic performance. Screen time behavior is tra-
ditionally assessed with self-report measures, which are known
to be burdensome, inaccurate, and imprecise. Recent methods
to automatically detect screen time are geared more towards
detecting television screens from wearable cameras that record
high-resolution video. Activity-oriented wearable cameras (i.e.,
cameras oriented towards the wearer with a fisheye lens) have
recently been designed and shown to reduce privacy concerns,
yet pose a greater challenge in capturing screens due to their
orientation and fewer pixels on target. Methods that detect
screens from low-power, low-resolution wearable camera video
are needed given the increased adoption of such devices in
longitudinal studies. We propose a method that leverages deep
learning algorithms and lower-resolution images from an activity-
oriented camera to detect screen presence from multiple types of
screens with high variability of pixel on target (e.g., near and far
TV, smartphones, laptops, and tablets). We test our system in a
real-world study comprising 10 individuals, 80 hours of data, and
1.2 million low-resolution RGB frames. Our results outperform
existing state-of-the-art video screen detection methods yielding
an F1-score of 81%. This paper demonstrates the potential
for detecting screen-watching behavior in longitudinal studies
using activity-oriented cameras, paving the way for a nuanced
understanding of screen time’s relationship with health risk
behaviors.

Index Terms—Object Detection, Egocentric Videos, Fisheye
Lens, Wearable Camera

I. INTRODUCTION

In recent years, there has been a growing interest in the
use of wearable cameras to automate the detection of screens
to improve our understanding of screen time behavior. Screen
time behavior is known to be associated with an increase in
sedentary behavior (and hence reduction in physical activity),
mindless eating activity which increases calorie intake, and
it has also been shown to have negative effects on academic
performance among youth [1]. Specifically, there are studies
that show that there is a correlation between screen time and
eating habits [2]. Being able to successfully detect screens in a

scene can help understand an individual’s fine-grained context
better. However, in studying screen behavior, prior research
has predominantly relied on controlled lab studies and/or self-
report, the accuracy of which is known be affected by memory
recall.

While several techniques have been proposed using thermal
sensors and photovoltaic effects in PN junction, to reliably
visually confirm screen behavior, researchers have turned their
attention to optimizing image processing methods to detect
screens from wearable cameras. Recent use of egocentric cam-
eras (i.e., first-person view cameras oriented to approximate
the wearers field of view) have shown promise in capturing
screens in real-world settings, however, the majority of ex-
isting work has focused on detection of screens from high-
resolution wearable cameras. While promising, high resolution
cameras impose battery constraints, impacting our ability
to deploy such a system longitudinally to capture behavior
throughout an entire day. The utility of wearable cameras in
longitudinal studies has stipulated the need for low-resolution
day-long wearable cameras that mitigate privacy concerns.
The performance of these models in detecting screens from
such cameras has not been adequately studied in real-world
environments.

In this paper, we explore the possibility of detecting
the presence of screens in activity-oriented video cameras.
Activity-oriented cameras have been shown to reduce privacy
concerns by orienting the lens towards the wearers face, but
a fish-eye lens has the potential to capture other context in
the surrounding environment, such as screens. Specifically, we
aim to answer the following question: “Can we automatically
detect screens from low-resolution activity-oriented video cam-
eras worn by participants in a real-world environment?”. We
define screens more generally to comprise the latest techno-
logical manifestations ranging from smartphones and tablets
to laptops/desktops and infrastructure-deployed televisions.
Being able to reliably detect screens in low-resolution cameras
will ultimately enable improved and timely understanding of
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screens as it relates to health behaviors, and also enable timely
interventions to create and maintain behavior change.

Our task of detecting screens from video has several chal-
lenges: (1) Screens can be of various shapes and sizes. So, our
screen-detection system should be capable of automatically
detecting screens of any size in a video. (2) The position
and size of the screen in an activity-oriented camera can vary.
Users can interact with their mobile phones in numerous ways
and thus the system should be robust enough to consider
the position and size of the screen. (3) Distant objects in
low-resolution videos result in lower pixel-count on target
(screen). Indeed, it is sometimes difficult for even a human to
detect screens in these videos. Finally, (4) Objects, including
a wearer’s hand, can occlude part of the screen. Thus, it is
necessary to detect screens even when they are only partially
visible.

In this paper, we address these challenges and design a
system that can robustly detect screens from low-resolution
wearable activity-oriented cameras. This investigation makes
the following contributions:

1) We present the design of a system that can robustly
detect screens in real-world settings. Through a user
study with 10 participants with obesity, we show that
the system can detect screens with an F1-score of 0.81.

2) We present the architecture of the image processing
model for detecting screens. We show that compared to
existing screen detection models, our model can detect
screens from low-resolution egocentric videos with 30%
improvement over existing state-of-the-art methods.

This paper is organized as follows: Section II considers
the related work in the space of egocentric vision and object
detection using wearable devices. Section III explains the data
collection hardware along with the curation of our dataset.
Section IV describes the system framework which involves
the network architecture and pipeline. Section V-A defines
our evaluation process, shares the performance of our system,
and draws comparisons with existing benchmarked methods.
Section VI elaborates on the key challenges we faced during
our experiment.

II. RELATED WORKS

In this section we provide an overview of research on activ-
ity recognition using computer vision algorithms and discuss
the relevant works in screen activity detection and localization.
There has been significant prior research in activity recognition
using egocentric videos. In this realm, many studies have used
screen exposure tracking and its association with health-related
behaviors. Screen prediction is increasingly taking on multiple
form factors. Several large-scale object-detection models have
“phone,” “tablet,” and “television” in their label space. Recent
screen-detection techniques use deep learning approaches to
produce either a bounding box or object segmentation as
output.

Zhang et al. used a head-mounted, egocentric camera to
track head motion and detect screen watching, and attained
an F-score of 0.8 in detecting screens [3]. Zhang et al. used

a computational model to track head movements correlated
with TV watching [3]. Their approach uses head tracking
along with an attention mechanism to gauge the amount of
screen exposure to the participant. In addition to understand-
ing screen interaction, their work focused on detecting and
tracking the screen within the participant’s field of view.
Harper et al. [4], on the other hand, used eye tracking.
They statistically computed the number of times when the
participant changed their attention and the activity associated
with the attention shift. Apaolaza et al. developed an approach
involving manual labeling to classify the gaze of a participant
toward a screen [5]. They created an open source tracking
technique called ABC (Automated Behavioral Coding) [6].
ABC logs participant movement and interaction and involves
tracking the positional data. This approach is slow and involves
excessive manual annotation effort, but its performance is very
high in contrast with other approaches. Several researchers
have combined gaze estimation with object detection [7], [8].
Egocentric videos are often high resolution and researchers
have identified approaches to extract coarse-grained activities
of the user and contextual information from them [9]. The key
difference between these approaches and our approach is that
our data are obtained from a low-resolution, activity-oriented
RGB camera.

Fig. 1. Dataset Introduction: Indoor (left) and outdoor (right) examples from
our study. Faces are blurred to preserve subject privacy

III. SYSTEM DESIGN
A. Screen Presence Definition

Our system is designed to detect the presence of a screen
or part of a screen in the camera’s field of view. Examples

HCCS 2022: Third Workshop on Human-Centered Computational SensingHCCS 2022: Third Workshop on Human-Centered Computational Sensing

404Authorized licensed use limited to: Northwestern University. Downloaded on October 14,2022 at 19:55:27 UTC from IEEE Xplore.  Restrictions apply. 



of screens include devices with a digital display like a televi-
sion, smartphone, laptop/computer. For hand-held devices (i.e.,
smartphones), if the participant is clearly holding the device
and using it, but the screen is not visible (i.e., the viewer sees
only the back of the device), we still consider it as screen
presence.

Although screen presence does not directly mean screen
time, they are highly correlated when the screen is oriented
in the field of view of the participants of our study. The limi-
tations about the screen detection environment are elaborated
on with other key challenges in Section VI.

B. Hardware Overview

The data collection system, WildCam, is designed using an
activity-oriented camera and a fisheye lens. WildCam consists
of an ARM-Cortex M4 microcontroller [10], comprising a
dual-stream RGB camera (OmniVision OV2640 and a 180
degree fish eye lens) [11] and a low-cost low-power 8 × 8 IR
sensing array (Panasonic GridEye 8x8). Participants wear this
device as a necklace around their neck. The data is recorded
offline and is processed once they return the device.

C. Dataset Overview

The dataset comprises data from 10 participants wearing
the WildCam for 3 days in an Institutional Review Board
(IRB) approved study. Participants were instructed to wear the
device throughout the day while going about their activities
of daily living. We have selected 8 hours of data for each
participant across the 3 day time frame. The recorded dataset
has 80 hours of data, comprising of 1,200,000 frames of
RGB images. We further partitioned the data into 3 folds for
generalized testing and training, as shown in Table I.

Our dataset introduces new challenges with regards to
screen presence. The video is captured in 240x320 pixel
resolution by the camera as opposed to common HD resolution
images. The subject wearing the device casually performs their
errands throughout the day, therefore there is a healthy mix
of indoor and outdoor activity within our dataset. Diversity of
environment constitutes new challenges for screen detection as
the recorded data has varied degrees of brightness, contrast,
etc. Figure 5 provides example images from our dataset.

D. Data Labeling

We had an exhaustive labeling process across our dataset
with 4 trained annotators. Each frame was labeled by 2 an-
notators working from an exhaustive rubric generated through
weekly discussions. This process resulted in 300,000 frames
each with a binary label for screen time across the entire
dataset. Additionally, we also generated bounding box level
annotations for 24,000 frames of screens/monitors/mobile
phones to increase the accuracy of screen time detection.

IV. SYSTEM FRAMEWORK

A. Network Architecture

1) Backbone Model: Our screen dataset is captured in the
egocentric field of view. Our approach is to use a backbone

model that performs exceptionally well on global screen
detection to extract features of screen presence. These features
from the backbone model are further processed through our
screen prediction network. After an extensive survey of state of
the art models for screen detection, we settled on EfficientDet-
D7x [12], which is pretrained on the CoCo dataset [13].
The primary reason for the selection of this backbone is
the presence of an efficient feature pyramid network (biFPN
layer). This network within our backbone is able to fuse
features from different resolutions and caters well to our
dataset. This backbone is able to learn the importance of screen
detection features and is scalable across different resolutions.
This functionality is to be a good fit for our problem primarily
due to our input resolution and because 3/80 object categories
within the CoCo dataset are ”Phone,” ”Tablet,” and ”Televi-
sions.” Currently, this backbone model is ranked in 5th in real
time object detection and 2nd in object detection on the CoCo
dataset.

The FPN layer provides a control over fusing the features
in a top-down approach. This feature fusion technique is a
recent contribution in the domain of robust object detection
[14]. The feature pyramid networks have proven to perform
exceptionally well on different resolution scales [15]. This
FPN layer is followed by a series of convolutional layers with
the region of interest output being a detected screen.

2) Screen Prediction Network: Our approach to rely on
transfer learning using the predicted features from a backbone
is similar to Li et al. [14]. The screen prediction network
takes the input from our backbone model and is trained fully
on our dataset. In a nutshell, the output from the backbone
model provides the starting point for its optimization. We
used the backbone model to filter through our dataset and
provide features with high concentrations of screen presence
in the ground truth. Many works using the same backbone
have larger input images and have stacked FPN layers. Similar
to Tan et al. [12] the biFPN layer is fed into five Conv2D
layers followed by two dense fully connected layers. This
cascading Conv2D net is similar to the approach used by Li
et al [14]. Finally, our model employs a softmax layer with
binary cross entropy and measures a distance from the ground
truth labels to detect screen presence. The screen prediction
model was trained for 90-110 epochs until convergence on a
Nvidia TITAN V GPU cluster.

V. EVALUATION

A. Evaluation Summary

We have evaluated the performance of our model at
both frame and episode levels. The frame level results are
displayed in Table II. Further, we generated screen-level
episodes using an episode creation method called DBSCAN
[16]. The density based clustering provides an effective
way to find high-density regions of screen time activity.
Given the presence of a screen time activity per frame, the
DBSCAN approach generates screen time episodes as several
specific groups. DBSCAN parameters were chosen based on
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RGB Frames from WildCam Video

EfficientNet-D7x

Pretrained on CoCo dataset

Backbone:EfficientNet Neck: Bi-FPN

Screen Prediction Network

Final Detection

Annotated Data

Conv FC Softmax

Fig. 2. Screen detection framework

Fig. 3. EfficentDet-D7X model architecture [12]

a cumulative distribution function drawn across the dataset
for frame level screen labels. Our dataset shows that each
episode should at least include around 81 seconds of screen
time (positive samples) to reach to a reasonable performance.
Moreover, there must be no more than 142 seconds between
two positive samples for them to be clustered into one episode.

As mentioned previously, we consider televisions, laptops,
and mobile phones as screens. Table II shows the variation
in model performance for each participant at a frame level.
The F1 score varies from 0.18 to 0.54 throughout all of
the participants. This is primarily because screen presence
is distributed very unevenly among the participants. This
prompted a need for an episode-level evaluation. To evaluate
the precision, recall, and F1-score, we calculated the true
positives (TP), false positives (FP), and false negatives (FN)
in detecting episodes. The formulas for these computations
are defined as: precision = TP

TP+FP , recall = TP
TP+FN , and

F1-score = 2 × precision × recall
precision + recall .

Overall, we observed 112 screen episodes for the 10
participants and several screen instances for each participant.
Table III presents the performance of our system in detecting
screens from RGB frames. From the table, we observe that
we could achieve 82.6% recall, 80.23% precision and 81.42%
F1-score in detecting screens, indicating that we could detect
92 out of the 112 screen episodes.

TABLE I
DATASET SPILT

Fold Participants Frames

1 p1, p2, p3 402828

2 p4, p5, p6, p7 372243

3 p8, p9, p10 355911

TABLE II
FRAME LEVEL RESULTS

Fold Participant Precision Recall F1 Frames

1 p1 0.61 0.44 0.51 121566
1 p2 0.52 0.28 0.36 133630
1 p3 0.88 0.39 0.54 147632
2 p4 0.51 0.11 0.18 127404
2 p5 0.72 0.33 0.45 142495
2 p6,p7 0.68 0.28 0.40 102345
3 p8 0.41 0.56 0.47 132431
3 p9 0.26 0.43 0.32 98012
3 p10 0.71 0.32 0.44 125468

TABLE III
EPISODE LEVEL RESULTS

Participant Precision Recall F1 Episodes

p1 0.78 0.78 0.78 12
p2 0.88 0.88 0.88 13
p3 0.67 0.8 0.73 10
p4 0.5 0.25 0.33 9
p5 1 1 1 16
p6 0.75 0.86 0.8 10
p7 1 1 1 10
p8 1 1 0.86 14
p9 0.8 0.8 0.73 5

p10 1 1 0.92 13
Total 0.83 0.80 0.81 112

B. Comparison with existing screen prediction models

In this section we demonstrate the performance of four
additional models on a test set of 10,000 frames from our
dataset. These models are publicly available benchmarks in
the space of object detection with the CoCo dataset [17],
[18] and activity recognition on egocentric videos [19], [20].
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Our system is designed for screen detection on the WildCam
dataset with custom annotations and labeling. Table IV pro-
vides the result of a comparison of our proposed system with
the systems reported in the literature using our dataset. The
best performing model is our system with an F1 score of 0.78,
followed by our backbone model detnet-d7x [12] with an F1
score of 0.54.

TABLE IV
PERFORMANCE COMPARISON

Performance (F1) Model

0.27 coco-minival [18]

0.31 screenvoider [19]

0.42 yolov3 [17]

0.54 detnet-d7x [12]

0.78 screen prediction framework

VI. IDENTIFYING THE KEY CHALLENGES

A. Dataset Quality

Given the resolution and the egocentric field of view of our
dataset, the screens in our dataset are different in represen-
tation as compared to a traditional screen. Once the video is
processed into frames they are stored with JPEG compression.
This makes modeling an object detection framework more
challenging, especially for screen activity, even with a strong
backbone. Due to the camera’s JPEG compression and motion
artifacts, there was a reduction in the capture of sharp edge
features from our ground truth.

B. Screen Detection Environment

A few of the participants wore the device in an indoor
setting, and their interaction with screens was relatively higher
compared to that shown in data collected outdoors. The
participants wore the device as a necklace, the camera’s field
of view centered around the participants face and body. Hence,
the majority of the screen presence recorded is not centered
in the camera’s field of view. Furthermore, the camera lens
captured the screen presence with fish eye distortion. This
is very different from the traditional screen layout used for
training the majority of existing screen detection models,
presenting our study with a unique challenge.

Table II shows the evaluation of our system in detecting
screens on a frame level for each participant. The variance
on F1 score throughout the participant set is 0.36, primarily
due to the variation in screen presence in the video capture.
Each participant recorded screen interaction in different en-
vironments and the folds selected for evaluation were chosen
accordingly in Table I.

C. Assessment of False Positives and False Negatives

1) Absent Predictions: The low resolution of the screens
in the training set contributes to our model predicting screens
in the absence of screens. In the future, we could maintain a

Fig. 4. Challenging Cases - Artifacts: Top Left - Edge Case, Top Right -
Motion Artifact, Bottom left + Right - Bright Artifacts. Faces are blurred to
preserve subject privacy

Fig. 5. Challenging Cases - Hand Held Devices: Top Left - Edge Case, Top
Right - Touch Screen Interaction, Bottom left + Right - Hands in Line of
Sight. Faces are blurred to preserve subject privacy
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minimum number of pixels on target for detection, or slightly
increase the resolution of the RGB camera to prevent these
FPs.

2) Motion and Bright Artifacts - FP + FN: Each participant
operates in a different environment with changes in illumi-
nation, lighting, and motion through interaction with various
objects. Our screen model is sensitive to illuminated artifacts
and motion artifacts. As the backbone model predicts cell
phones as a label, smaller illuminated artifacts contributed to
a fair share of FP screen activities.

3) Screens at the edges - FN: Because participants wear the
device as a necklace, the field of view captures the scene in
front of them from an egocentric perspective, as shown in Fig
5. Most of the captured screen activity involves small, hand-
held devices. The RGB camera has a wide field of view and
captures a significant amount of screen activity in the edges
of the scene.

VII. CONCLUSION AND FUTURE WORK

We have built a system to detect screen presence in activity-
oriented video captured in a privacy-preserving manner using
a wearable device. This system is efficient in tracking the daily
interactions with screens (televisions, laptops, and mobiles) by
the subjects of our study. Our study comprises 10 individuals,
80 hours of data, and 1.2 million low-resolution RGB frames.

Our system leverages deep learning algorithms and detects
screen presence on lower-resolution images. Our data collec-
tion system is WildCam and is designed using an activity-
oriented camera with a fisheye lens. Our results outperform
the existing state-of-the-art video screen detection methods,
yielding an F1 score of 81%.

We have also analyzed the broad challenges in building
object detection models within the egocentric domain. Addi-
tionally, we have provided a performance comparison for our
approach with the existing state of the art on our data. We have
performed an assessment of the performance of our model by
gauging the false positive and false negative cases.

The future work for our experiment is to detect objects with
integrating temporal information within the egocentric domain.
Including additional infrared sensor information from the
WildCam system and detecting other activities (e.g., eating)
and social presence would provide even deeper insight into
subject behavior.
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