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Abstract—One of the persistent challenges in building machine-
learned models for mobile health applications of fine-grained
activity is the generation of accurate annotations with well-
defined start/end time labels. Large amounts of unlabeled data
exist, and annotation is often labor-intensive and costly. Moreover,
it is not clear whether labeling all the data is even necessary
to building the most effective machine-learned model. Active
learning approaches harness model uncertainty by selecting the
most informative samples, reducing the time and effort in labeling
unnecessary segments of the data. Model uncertainty, however,
is strongly linked to classifier performance, introducing bias
in sample selection and impacting model generalizability. In
this paper, we propose and study the effects of a new active
learning framework on the Necksense dataset which harnesses
intrinsic uncertainty as well as model uncertainty by utilizing the
Area Under the Margin (AUM) statistic, leading to a significant
reduction in the number of samples needed to annotate. We also
show that we are able to design a more generalizable model
training on 0.15% (n=192 samples) of the data compared to the
original model trained on 85% (n=104,681 samples) of the data.

Index Terms—Active Learning, Data Map, Model Uncertainty,
Machine Learning

I. INTRODUCTION

With the advent of portable and wearable devices, such
as mobile phones and smartwatches, users effortlessly create
large amounts of sensory data [1], [2]. As a result, human
activity recognition (HAR) systems that detect lifestyle habits
like eating [3], brushing [4], and smoking [5] have been
actively growing in recent years, and improving their ability to
identify and recognize users’ actions in a controlled setting [6].
These systems function through activity classifiers that rely
on sufficient and representative amounts of accurately labeled
data to generalize well in real-world settings.

Data labeling and annotation is a crucial bottleneck to
machine learning systems that can lead to costly, task-
intensive, error-prone labor work (e.g., labeling Electronic
Health Records [7]). In [8], researchers propose a recall
approach for the labeling process, which is fraught with burden
and memory recollection error. More recently, researchers are
using data from wearable video cameras to generate more
reliable annotations [9]. However, having humans watch the
video footage to label redundant and irrelevant instances
containing minimal information for a machine learning (ML)
system can waste a lot of time and cost .

Human-in-the-loop machine learning algorithms, such as
“active learning” methods, help minimize the data annotation

effort by adaptively selecting a subset of samples from the
unlabeled set, based on a defined query budget in each
querying iteration. These candidate samples are designed to
be maximally informative to the classifier being built, which
intuitively leads to improvements in classification decision
boundaries if accounted for in the classification process [10].
Typically, the classifier is initialized by a “labeled batch” used
for active learning model initialization to form the model
classifier’s initial decision boundaries.

In general, there are three types of selective sampling
strategies within active learning: 1) membership query syn-
thesis (MQS), 2) stream-based sampling, and 3) pool-based
sampling. In MQS, the algorithm generates data instances from
a certain underlying distribution and a labeler is then asked
to annotate. In the stream-based sampling scenario, samples
are generated sequentially in an online/real-time setting, and
a decision needs to be made in real time whether this sample
should be labeled. In pool-based sampling, annotators have
access to all unlabeled samples, and can assess each before
deciding which sample to label [10]. Within each of these
methods, uncertainty sampling is one of the most widely
adopted query strategies for selecting the most informative
sample to label [11]. Under this paradigm, an uncertainty
metric needs to be defined to determine data samples or
segments for which the model is least certain in its decision
and prioritize them for annotation and training. In [12],
Thomaz et al. build an active learning system that reduces
the number of labels needed by applying pool-based sampling
strategies and requiring annotation of only 8% of the training
data to achieve similar performance. They chose cluster-based
query strategies (which select the most informative samples
within each cluster) to make sure that sample diversity is
accounted for. Huang et al. [13] study the cluster structure
of unlabeled data and how that affects performance, and show
that clustering methods impact active learning classification
outcomes. In [14], Aldana et al. followed an information
theoretic approach to create clusters with the highest entropy
levels from the samples, which help the ML models learn the
underlying data patterns. In [15], Ashari et al. build a memory-
aware active learning system, to reduce response time to the
query, and use a maximum entropy uncertainty metric with
data clustering to measure how certain the model is about its
predicted label. Among all the different querying strategies
that measure sample uncertainty, maximum entropy is one of
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the most commonly used approaches [10].

Nevertheless, defining uncertainty metrics that can capture
the samples necessary for building a generalizable model is
still a major challenge within active learning. Most approaches
calculate sample uncertainty based on the informativeness
determined by model uncertainty, which is often captured by
variability of the model’s confidence in predicting an instance
without paying too much attention to the model’s confidence
value or intrinsic uncertainty, i.e., lower quality signals which
are representative of complicated patterns in the signal itself
and are often harder to learn. Simply taking model uncertainty
into account is known to introduce bias in sample selection
[16], which affects model generalizability. Introducing samples
that are both model-uncertain and intrinsically uncertain is
likely to enable faster model convergence (i.e., yield good
results faster). This paper aims to assess the effect of intrinsic
uncertainty on the speed of model convergence.

In [17], Swabha et al. introduced a model-based tool known
as Data Map, which assists in diagnosing easy-to-learn and
hard-to-learn samples during the training phase based on train-
ing dynamics, allowing us to classify uncertainty as a function
of correctness, confidence, and variability of a model. While
Data Map allows us to visualize variability and confidence of
model predictions, Data Map requires assessing a Deep Neural
Network in a supervised-learning fashion, across multiple
epochs, and needs ground truth labels (the very labels we
aim to optimize in obtaining from the annotators). Needed
is a method to retrieve intrinsic uncertainty in a way that is
unsupervised, prior to obtaining the ground truth.

Inspired by [18], in which Pleiss et al. introduce the
concept of Area Under the Margin (AUM) statistics to identify
mislabeled samples, we repurpose AUM to determine samples
that the model is intrinsically uncertain about. Similar to Data
Map, we are able to then assess easy-to-learn and hard-to-learn
samples based solely on the sample itself (prior to requiring its
ground truth label). Due to Data Map limitations, we adopt the
power of the AUM statistic to determine which samples exhibit
intrinsic uncertainty. In this paper, we propose and test a novel
pool-based active learning framework that combines cluster-
based maximum entropy (CME) with AUM (CME+AMU) to
determine the effectiveness of the oracle in selecting samples
that are both model-uncertain and intrinsically uncertain. We
compare our approach to using the AUM-only and CME-
only methods. We evaluate this framework on the Necksense
free-living dataset [19]. The Necksense free-living dataset
is a multi-sensor dataset obtained from 10 participants in a
naturalistic setting, with the goal of detecting eating behavior,
a known challenge in mobile health. The data used are from
a neck-worn device that captures chewing sequences using
proximity, ambient light, and inertial measurement unit (IMU)
sensors. We make the key following contributions:

o We investigate the AUM statistic’s ability to measure
hard-to-learn and easy-to-learn samples and its relation-
ship with uncertainty visualization through Data Map.

« We propose and test a novel pool-based active learning
model that attempts to capture intrinsic uncertainty (mea-
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Fig. 1: Uncertainty Visualization through Data Map for the
Necksense Dataset. Here we see that the easy-to-learn seg-
ments are those with high confidence, low variability, and high
correctness in model prediction. Hard-to-learn segments are
typically those with lower confidence and correctness in model
prediction. As shown in the distribution plots, the majority of

the segments are considered easy-to-learn.

sured by AUM statistic) as well as model uncertainty
(measured by cluster-based uncertainty sampling). In ad-
dition, we compare it against sampling strategies that use
only model uncertainty or only intrinsic uncertainty. We
evaluate our proposed model against the best evaluation
model obtained from the Necksense free-living dataset.

II. METHODOLOGY

This section begins with a brief introduction about the
Necksense dataset (section II-A) followed by data uncertainty
visualization using Data Map (section II-B) with the training
dynamics (i.e., confidence, variability, and correctness). Then
in section II-C, we measure the logit values (pre-softmax
output) obtained from the final layer neurons of the MLP
network and utilize them to compute AUM values for data
instances in the training phase. In section II-D, we explore how
the AUM statistic is linked to the Data Map representation of
the samples through visual substantiation and show examples
of selected easy and hard chewing signals. In section II-E,
we introduce our novel framework combining cluster-based
maximum entropy and AUM.

A. Necksense Dataset

Necksense free-living dataset is obtained from 10 partici-
pants with and without obesity with varying Body Mass Index
(BMI) in a naturalistic setting. The data is collected by a
multi-sensor necklace, worn around the neck throughout the
day, that comprises an IMU sensor, an ambient light sensor,
and a proximity sensor to capture motion, leaning forward,
and chewing actions occurring during an eating episode. The
candidate segments from classification are obtained from the
proximity sensor. Therefore, the device captures periodicity in
the chewing signal when oriented towards the jaw. More than
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Fig. 2: Uncertainty Visualization by Data Map and AUM statisti

c distribution for hard and easy chewing intervals. a) Snippets

from long chewing signals, one hard-to-learn (blue) and one easy-to-learn (red); b) Distribution of 144 candidate segments
extracted from the hard-to-learn signal and 80 segments extracted from the easy-to-learn signal; ¢c) The Data Map visual for
the hard-to-learn signal (squares), and easy-to-learn signal (stars).

137 hours of data were acquired, which provide information
about chewing, feeding gestures, and neck motion to detect
eating episodes. In this study, to evaluate our proposed active
learning method, we use the Necksense free-living study,
comprising 123155 candidate segments (9.4% of the segments
correspond to actual chews, and 90.6% correspond to non-
chews).

B. Uncertainty Visualization Through Data Map

Data Map visualization generates three different statistics
(confidence, variability, and correctness) obtained from the
training phase of a Deep Neural Network across multiple
epochs. Consider a training dataset D of size N where
D= {(x,y*)i}Nizl, x is the candidate segment (or data
instance), and y* is the ground truth class label for the data
instance. We assume the model predicts a probability distri-
bution across all classes and data instances over E epochs.
Confidence is the first training dynamic, defined as the average
model’s confidence of a data instance across different epochs,
and estimated by:

E
1
i = EZ; PH(yi”xi) (1)

where p§ is the model’s probability distribution over the
instance i at the end of epoch number e. Intuitively, a higher
confidence value for an instance means the sample, in terms
of learnability, is easier to learn from the model’s perspective.
Variability is another statistic defining model’s confidence

variation in predicting one instance with respect to ground
truth over epochs estimated by the following:

2

E
e=1

(P (yi*|a:) — pi)®

E
Correctness is another statistic measured by the number of
times the model has predicted a sample correctly across dif-
ferent epochs. Fig 1 demonstrates how Necksense instances are
scattered based on the three defined training statistics. It can
be observed that the trainset is decomposed into easy-to-learn
and hard-to-learn regions. A vast majority of the data instances
are easy-to-learn with high confidence and low variability in
the top-left of Fig 1. In the right side of Fig 1, there are
instances with relatively high variability. The bottom-left of
Fig 1 corresponds to the hard-to-learn region, which contains
instances with low confidence and low variability. Easy-to-
learn samples play an important role in model convergence
and learning, while hard-to-learn instances are needed for
the model’s robustness and out-of-distribution generalizability
[17]. It should be noted that uncertainty sampling strategies
utilizing the metrics (e.g., entropy or margin in confidence)
choose instances with highest variability in confidence from
the data during the training phase since it implies the model’s
indecisiveness about these samples.

C. Area-Under-margin (AUM) for Necksense

We used a four-layer feed forward deep neural network to
obtain AUM values and trained it on the Necksense candidate
segments. During the training phase, the AUM statistic cap-
tures the mean differences between the logit values obtained

2

g; =
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Fig. 3: Part i is the traditional active learning pipeline with uncertainty sampling strategy (CME). Part ii is the AUM-only
method which selects « instances with AUM values. Part iii shows the proposed active learning framework (CME+AUM)

from the neurons in the final layer of the deep learning
model across different epochs. Originally used for identifying
mislabeled instances, we repurpose this statistic and apply it
to find the candidate segments that should be labeled based
on intrinsic uncertainty. We show its link to Data Map to
be able to generate a measure of difficulty and improve our
understanding of the segments the oracle selects for labeling.
The AUM statistic is formulated as follows:

1
AUM(xy) = 5 2 M 6xy) 3)
M© (x,y) = zi(e) (x) — maxi#z;e) (x) 4)

To elaborate more on the previous formulation, M(®) (x, y)
is the margin at the end of epoch e which is equal to the
difference between logit z; of the ground truth subtracted
by the largest other assigned logit max;.;z;. Logit value is
defined as the pre-softmax output of the final layer of the
DNN (Deep Neural Network). This representation allows us
to have another measure to identify hard, ambiguous, and easy
samples, which can be translated as another metric for training
loss (e.g., easy samples have low training loss). The AUM
statistic is modified to suit the unsupervised setting formulated
by: AUM(x,y) = + Zle IM(®)(x,y)| where M(®)(x,y)
is defined as in equation (4). Since the ground truth for logit
value z; is unknown prior to querying, we take the absolute
value of the M(®)(x, y) in the binary classification setting and
add them up across epochs.

D. Data Map and the AUM statistic for Hard and Easy
Chewing Intervals

This section explores the relationship between Data Map
training dynamics and the AUM statistic. Therefore, we can
analyze further how visually high/low-quality chewing inter-
vals are translated in terms of the AUM statistic distribution for
the candidate’s segments and compare it against uncertainty
visualization using Data Map. When a model fails to predict
one instance correctly, innately, this error originates from
two sources. Model uncertainty is referred to as the model’s
limitation to classify and predict the instance correctly [20].
It is observed that model uncertainty has a strong correlation
with the variability statistic. However, intrinsic uncertainty is
inherent ambiguity that the sample has on its own, which
human annotators can notice. Intrinsic uncertainty has a strong
relationship with model confidence, highlighting that when
the model is highly confident about an instance, there is a
strong agreement between the annotator and the model. To the
authors’ best knowledge, no uncertainty metric in the literature
accounts for both model uncertainty (model variability) and
intrinsic uncertainty (model confidence). The AUM statistic
provides the desired filtering approach combined with un-
certainty sampling using cluster-based maximum entropy to
represent and account for the model and intrinsic uncertainty.

We can visually evaluate the quality of the chewing intervals
by looking at their raw signals. Figure 2a shows that the hard-
to-learn signal on the left reaches proximity sensor saturation
at some periods and does not follow a normal chewing pattern
where peaks are noticeable and well-separated. Figure 2a
shows that the easy-to-learn chewing signal on the right indi-
cates a visually higher quality chewing interval where peaks in
the proximity signal are distinct and exhibit periodicity in jaw
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Fig. 4: ActiveSense Result on Necksense dataset

motion. Figure 2b displays the AUM values distribution for
the segments of two hard-to-learn and easy-to-learn chewing
intervals. The AUM model could determine that the harder-
to-learn chewing segments follow a distribution with a lower
mean of 5.30 compared with the easy-to-learn interval with a
mean of 25.23. Figure 2c displays the uncertainty visualization
for the segments of easy-to-learn and hard-to-learn chewing
intervals. It can be inferred from Fig. 2b and Fig. 2c that
lower values in AUM distribution are translated to lower model
confidence and higher sample ambiguity, which we visually
confirmed earlier.

E. AUM-based Active Learning Framework

Fig 3 shows the high-level pipeline of the proposed active
learning framework. The top diagram i shows how a traditional
active learning method e.g., cluster-based maximum entropy
would work. A cluster-based active learning algorithm would
first perform efficient clustering on the unlabeled batch of data
to account for sampling diversity from the data clusters which
arise from potentially different distributions. It should be noted
that the number of data clusters might not match the number of
class labels that exist in the dataset. In each querying iteration,
the active learning algorithm picks a subset of samples, called
the query budget «, from the unlabeled batch of data as
labeling candidates nominated to be labeled and identified with
respect to the existing class labels by the annotator. The labeled
batch then is updated by the newly labeled instances. Samples
selected by active learning algorithms (e.g., maximum entropy)
tend to account for model uncertainty due to significant
changes in decision boundaries in each querying iteration.
This is one of the primary reasons that model uncertainty
is best translated into the Data Map variability statistic. The
performance of the active learning method is evaluated on
an unseen labeled test set in each querying iteration. The
middle diagram ii depicts the AUM-only approach where the
algorithm picks « least AUM values from the unlabeled pool
as candidates for annotation. This approach only accounts
for sample ambiguity in sample selection where the model’s

confidence for the selected samples is relatively lower. The
bottom diagram iii displays the framework for the proposed
active learning approach. Similar active learning approaches
e.g., cluster-based maximum entropy is utilized to consider
model uncertainty. However, to cast a wider confidence net,
we increase the querying budget to § >> «. Since Data Map
is unable to be employed in an unsupervised setting, we
harness AUM statistic, which is originally proposed to identify
mislabeled data, and modified it to suit the unsupervised
setting. Therefore, an AUM filter is added to select the «
samples with least AUM values (considered harder-to-learn
with lower confidence).

III. EVALUATION AND RESULTS

A. Evaluation

We evaluate our active learning framework on the Neck-
sense free-living study data. We randomly select 85% of
the data as the unlabeled batch and 15% of the data as
the unseen labeled set in a participant independent fashion.
We assess the performance of the proposed model against
random sampling, AUM-only, and cluster-based maximum
entropy methods. We select a labeled subset of 0.1% (set
empirically) of all the instances for model initialization and
a query budget of six [15] for all methods. For cluster-based
maximum entropy, we cluster the unlabeled batch using k-
means with the same initialization of clusters across all algo-
rithms. Based on the Silhouette metric [21], which captures
cluster separation quality, we set k=6 clusters. During each
querying iteration, one sample with highest entropy is selected
from each data cluster, resulting in six samples selected for
annotation. In our proposed model, we set 8 = 120, which
selects 20 samples with highest entropy from each cluster.
The selected samples are filtered and ranked with respect to
their AUM values. At the end, we select 6 samples with the
least AUM value. In order to get AUM values, we train a
feed-forward multi-layer perceptron with 4 hidden layers (100
neurons in each layer) for fast computation and low complexity
in each query iteration. Stochastic gradient descent method for
weight optimization is used, and the network is trained on the
labeled batch and evaluated on 120 selected samples chosen
by maximum entropy method for 100 epochs in each iteration.
The pre-softmax values are retrieved at the end of each epoch
from the final layer. For the AUM-only approach, we train
the network on the labeled batch and retrieve and rank the
AUM values for the unlabeled pool in each querying iteration.
The random sampling method, also named passive learning,
randomly selects unlabeled instances in each querying iteration
and updates the labeled batch. The best evaluation shows
the results which utilize the whole training set. We use the
XGBoost [22] as the optimal classifier used for the Necksense
dataset. The results are aggregated and shown at per-second
level, where overlapping candidate segments are combined to
determine whether each second is a chew or not.
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B. Results

Fig 4 shows the results for CME-only, AUM-only,
CME+AUM, and random sampling, and compares them with
the best evaluation used in Necksense. We can see that our
proposed method outperforms other approaches and reaches
the best evaluation performance after 12 query iterations,
which is equivalent to 0.18% of the unlabeled data. However,
cluster-based maximum entropy (CME) reaches the perfor-
mance of best evaluation after 30 iterations equivalent to
0.29%, performing better than random sampling and AUM-
only methods after 10 iterations. The AUM-only approach
shows weak performance when it comes to model conver-
gence due to selecting and training primarily on hard-to-
learn samples. Also, since the sample selection process is
not diverse in the AUM-only method, the algorithm might
become biased and keep sampling from limited regions of
the data sub-spaces. It is noted that at some points, active
learning approaches outperform the best evaluation. Therefore,
it highlights that the right composition of model uncertainty
and intrinsic uncertainty needs to be considered in order to
ensure proper representation of the underlying data distribution
to assist with model generalizability. This signifies the fact that
adding trivial or redundant samples might actually lower the
model’s performance. Further analysis and quantification of
this is needed on other datasets to confirm.

IV. LIMITATIONS AND CONCLUSION

In this paper, we propose a new active learning framework
which harnesses intrinsic uncertainty as well as model uncer-
tainty and is tested on a data from a neck-worn sensor worn
in the real-world. We show the proposed method achieves
best evaluation performance when using 0.15% of the data
compared to 85% of the data in the best evaluation method.
We also show how the AUM statistic, originally designed to
detect mislabeled data, can be repurposed to capture segments
that are easy and hard to learn without the need for ground
truth labels. The main limitation of the proposed method is
the need to retrain the neural network during each query
iteration. Future research should look into ways of reducing
training time and test our proposed method on other real-world
datasets, while assessing its benefits in reducing the time and
cost of generating annotations.
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