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Abstract. We introduce a technique for proving all-genus wall-crossing formulas in the
gauged linear sigma model as the stability parameter varies, without assuming factorization
properties of the virtual class. Implementing this technique to the gauged linear sigma model
associated to a complete intersection in weighted projective space, we obtain a uniform proof
of the wall-crossing formula in both the geometric and the Landau–Ginzburg phase.

1. Introduction

The gauged linear sigma model (GLSM) was introduced in the physics literature by Witten
[45] in the early 1990’s as an example of a two-dimensional quantum field theory whose target
is a complete intersection in a GIT quotient. Since then, it has been extensively studied in
physics (see [33, 34] for references) and has become a powerful tool in understanding many
aspects of both physics and geometry.

The mathematical development of the GLSM as a curve-counting theory was carried out
by Fan, Jarvis, and the third author in [25], where the foundations were laid for the theory in
the “compact-type” subspace. The resulting theory is divided into chambers (or “phases”)
by variation of GIT on the target geometry. In the geometric phase, the GLSM recovers
the quasimap theory developed by Ciocan-Fontanine, Kim, and Maulik [19], while in the
Landau–Ginzburg phase, it recovers Fan–Jarvis–Ruan–Witten (FJRW) theory [24] when
the target is a hypersurface in weighted projective space.

Our interest in the GLSM is motivated by the celebrated Landau–Ginzburg/Calabi–Yau
(LG/CY) correspondence. Originally framed mathematically as a connection between the
Gromov–Witten theory of a hypersurface and the FJRW theory of its defining polynomial,
the correspondence can be re-cast in this new language as a wall-crossing (or “phase tran-
sition”) between different chambers of the GLSM. Two types of walls are relevant here:
between phases there are chamber walls, and within each phase, there are walls as one varies
the choice of a stability parameter ε. So far, very little is understood about the transition
across the chamber walls, though a general conjecture posits that it should involve analytic
continuation of generating functions. The ε-wall-crossing, on the other hand, has been made
remarkably explicit by Ciocan-Fontanine and Kim, as we explain below; this is the subject
of the current work. Our ultimate goal is to combine the two types of wall-crossings to
yield a proof of the LG/CY correspondence in all genus. In genus zero, this program has
been carried out when the target is a hypersurface (through the combined work of Ciocan-
Fontanine–Kim [15], Ross and the third author [41], and Chiodo and the third author [11]),
and in genus one, it has been carried out for the quintic hypersurface without marked points
(through the work of Kim–Lho [37] and Guo–Ross [31, 32]).

1



2 E. CLADER, F. JANDA, AND Y. RUAN

1.1. Statement of results. For a complete intersection Y in projective space, the definition
of quasimaps introduced by Ciocan-Fontanine, Kim, and Maulik generalizes the notion of
stable maps to Y via the additional datum of a positive rational number ε. When ε → ∞,
quasimaps coincide with the usual stable maps, so quasimap theory recovers Gromov–Witten
theory. When ε → 0, on the other hand, quasimaps become stable quotients [40], and the
resulting theory is thought to correspond to the mirror B-model of Y [12, 15, 16].

Quasimap theory changes only at certain discrete values of ε, so there is a wall-and-
chamber structure on the space of stability parameters. Ciocan-Fontanine and Kim proved
a wall-crossing formula in [15] exhibiting how the genus-zero theory varies with ε, and in
[18, 17], they formulated the following conjecture in all genus:

Conjecture 1.1 (See [17]). Let Y be a complete intersection in projective space, and fix
g, n ≥ 0. Then one has the following equality in H∗(M

ε

g,n(Y, β))[[q]]:

∑
β

qβ[Mε

g,n(Y, β)]vir =
∑

β0,β1,...,βk

qβ0

k!
b~β∗c∗

(
k∏
i=1

qβiev∗n+i(µ
ε
βi

(−ψn+i)) ∩ [M∞
g,n+k(Y, β0)]vir

)
,

where µεβ(z) are certain coefficients of the I-function of Y , b~β is a morphism that converts
marked points to basepoints, and c is the natural contraction morphism from ∞-stable to
ε-stable quasimaps.

Ciocan-Fontanine and Kim proved this conjecture in [17], using virtual push-forward tech-
niques and MacPherson’s graph construction. A different proof was given in [21] under the
assumption that n ≥ 1, using localization on a “twisted graph space”, which has the advan-
tage that it can be adapted to the more general context of the GLSM.

To explain this generalized setting, we recall that the GLSM depends on the choice of (1)
a GIT quotient

Xθ = [V //θG],

in which V is a complex vector space, G ⊂ GL(V ), and θ is a character of G; (2) a polynomial
function W : Xθ → C known as the “superpotential”; and (3) an action of C∗ on V known as
the “R-charge”. Associated to any such choice of input data and any stability parameter ε,
there is a state spaceHθ and a moduli space Zε,θ

g,n,β parameterizing ε-stable Landau–Ginzburg
quasimaps to the critical locus of W (see Section 2 below). Under the technical requirement

that the theory admits a “good lift”, Zε,θ
g,n,β is compact and admits a virtual fundamental

class, which can be paired with elements of the compact-type subspace Hct
θ ⊂ Hθ to yield

invariants.
If Y is a nonsingular complete intersection in weighted projective space P(w1, . . . , wM)

defined by the vanishing of polynomials F1, . . . , FN of degrees d1, . . . , dN , then one obtains
a GIT quotient by letting G = C∗ act on V = CM+N with weights

(w1, . . . , wM ,−d1, . . . ,−dN).

Choosing θ ∈ Hom(G,C∗) ∼= Z to be any positive character, the resulting GIT quotient is

X+ :=
N⊕
j=1

OP(w1,...,wM )(−dj).
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Denote the coordinates of X+ by (x1, . . . , xM , p1, . . . , pN), and define a superpotential by

W (x1, . . . , xM , p1, . . . , pN) :=
N∑
j=1

pjFj(x1, . . . , xM).

Finally, define an R-charge by letting C∗ act with weight 1 on the p-coordinates. Then
the critical locus of W is simply the complete intersection Y , the existence of a good lift
is automatic, and the moduli space of the GLSM reduces to the moduli space of ordinary
quasimaps to Y :

Zε,+
g,n,β =Mε

g,n(Y, β).

The state space H+ is isomorphic to the cohomology of Y , and the compact-type subspace
consists of classes pulled back from the ambient P(w1, . . . , wM). Thus, we obtain a theory
that agrees with the quasimap theory of Y with ambient insertions. 1

On the other hand, when the character θ is negative, the resulting GIT quotient is

X− :=
M⊕
i=1

OP(d1,...,dN )(−wi)

and the critical locus of the above W is the zero section. With the R-charge as above, the
moduli space Zε,−

g,n,β parameterizes marked curves equipped with a line bundle L and a section

~p ∈ Γ

(
N⊕
j=1

(L⊗−dj ⊗ ωlog)

)

satisfying certain stability conditions depending on the parameter ε. In particular, when
N = 1, one has a section p ∈ Γ(L⊗−d ⊗ ωlog), and for ε� 0, the stability condition enforces
that p is nowhere vanishing; thus, p trivializes L⊗−d ⊗ ωlog, and the resulting moduli space
of d-spin structures is precisely the moduli space of FJRW theory.

The assumption that the theory admits a good lift, explained in detail in [25], amounts
in this setting to the requirement that d1 = · · · = dN , in which case the theory is known in
the physics literature as a “hybrid model” and was developed mathematically in the narrow
sectors (a subset of the state space properly contained in Hct

−) by the first author [20].
Conjecture 1.1 can be directly generalized to this setting, and our main theorem is a

verification that the conjecture holds:

Theorem 1.2 (See Theorem 3.1). Let Y ⊂ P(w1, . . . , wM) be a nonsingular complete inter-
section defined by the vanishing of a collection of polynomials of degrees d1, . . . , dN , where
wi|dj for all i and j. Fix θ ∈ {+,−} and suppose that the associated GLSM admits a good
lift. Then, for any g and n and a tuple of insertions α1, . . . , αn ∈ Hct

θ , one has the following

1In order to know that the two theories indeed coincide, we need to match the construction of the virtual
cycle in the GLSM, defined via Kiem–Li’s cosection technique, with the construction of the virtual cycle in
quasimap theory by Ciocan-Fontanine–Kim–Maulik. This has been carried out for the quintic hypersurface
(on the level of correlators) in the seminal work of Chang–Li [3], and has since then been generalized to the
case of complete intersections in P(w1, . . . , wM ) [8, 38, 7]. See Remark 2.12 below for further discussion.
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equality in H∗(Z
ε,θ
g,n,β)[[q]]:∑

β≥0

qβ

(
n∏
a=1

ev∗a(αa) ∩ [Zε,θ
g,n,β]vir

)
=

∞∑
k=0

∑
β0,β1,...,βk≥0

qβ0

k!
b~β∗c∗

(
n∏
a=1

ev∗a(αa)
k∏
i=1

qβiev∗n+i(µ
ε
βi

(−ψn+i)) ∩ [Z∞,θg,n+k,β0
]vir

)
.

Remark 1.3. In particular, taking θ = + and w1 = · · · = wM = 1, the proof of Theorem 1.2
reproduces the results of [21] for ambient insertions, assuming the equivalence of quasimap
theory with the positive phase of the GLSM mentioned above. For this reason, we focus
in what follows on the case where θ = −, remarking where necessary on the appropriate
modifications for the positive (that is, the “geometric”) phase.

The basic idea of the proof of Theorem 1.2 is the same as the authors’ technique in the
geometric phase, as presented in [21]. Namely, we construct a larger moduli space with a C∗-
action in which the theories at ε =∞ and arbitrary ε arise as fixed loci. (This larger moduli
space is closely related to the space of mixed-spin p-fields considered by Chang–Li–Li–Liu [5,
6].) A direct application of the proof in [21], however, would require a factorization property
of the virtual class along strata corresponding to nodal curves, and the verification of such
a property is an unsolved issue dating back to the early days of FJRW theory; the problem
is that, while the theory is only defined for compact-type insertions, decomposition at nodes
may involve insertions that are not of compact type. In ongoing research, Ciocan-Fontanine–
Favero–Guéré–Kim–Shoemaker [13] are working toward a resolution of this problem via the
theory of matrix factorizations, and an analytic approach has also been proposed by Tian–Xu
[42, 43] and Fan–Jarvis–Ruan [26].

Rather than awaiting the completion of the general theory in the non-compact-type case,
though (since the compact-type theory is sufficient for the applications in which we are
interested), we present in this work a technique that avoids the necessity of factorization
along nodes. The idea is to introduce a new moduli space for each boundary stratum in
Zε,θ
g,n,β and to carefully choose the discrete data in the twisted graph space so that only very

particular degenerations occur in the contributing fixed loci. We hope that this strategy may
be useful in other situations where the factorization of the GLSM virtual class has been an
obstacle.

As in the geometric phase, the proof of Theorem 1.2 initially requires that n ≥ 1, since it
relies crucially on the fact that a certain localization expression changes in a nontrivial way
when an insertion is varied. However, in the appendix (written by Yang Zhou), the result
for n = 0 is deduced from the result for n ≥ 1 by leveraging a wall-crossing between “heavy
points” and “light points.” These ideas were developed in [46], in which Yang Zhou gives an
alternative proof of Theorem 1.2 in the case where Y is a hypersurface.

1.2. Plan of the paper. In Section 2, we review the necessary theory of the GLSM in the
setting of interest here. We state our main theorem in precise form in Section 3, and we state
the progressive refinements of the theorem that are necessary for the proof. We introduce the
twisted graph space in Section 4, where we explicitly calculate the fixed-locus contributions
to the localization formula. We also review the setting where the target is a point, in which
case the twisted graph space specializes to Mg,n(P1, δ) and was studied in detail in [21].
Finally, in Section 5, we present the proof of Theorem 1.2. The structure of the proof is
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to compute, via localization, the pushforward from the twisted graph space to Zε,θ
g,n,β of a

certain difference of cohomology classes. The contributions from degree-zero components
are closely related to the calculations for a point, and using these calculations, we show that
the class in question changes by an irrational function of the equivariant parameter when
an insertion is varied. This implies that the class vanishes, and from here, we deduce the
wall-crossing theorem when n ≥ 1. In the appendix, the notion of “light” marked points
is introduced, and the n = 0 case of the wall-crossing is deduced from the n ≥ 1 case by
proving an auxiliary wall-crossing that relates heavy to light markings and then applying
the dilaton and divisor equations in the light-marking setting.

1.3. Acknowledgments. The authors are grateful to Ionuţ Ciocan-Fontanine, Bumsig Kim,
Dustin Ross, and Yang Zhou for many useful conversations and comments. The first author
was supported by NSF grant DMS 1810969. The second author was partially supported by
an AMS-Simons travel grant. The third author was partially supported by NSF grant DMS
1405245 and NSF FRG grant DMS 1159265.

2. Definitions and setup

We review the definition of the gauged linear sigma model (GLSM) for the Landau–
Ginzburg phase in the setting of Theorem 1.2. This is a very special case of the general
construction of the GLSM by Fan, Jarvis, and the third author. When θ is negative and ε
is sufficiently large, it recovers the hybrid model defined in [20].

2.1. Gauged linear sigma model. Throughout what follows, we fix a nonsingular com-
plete intersection

Y := {F1 = · · · = FN = 0} ⊂ P(w1, . . . , wM),

where F1, . . . , FN are polynomials of degrees d1, . . . , dN and wi|dj for all i and j.
The GLSM, in general, depends on three pieces of input data: a GIT quotient Xθ =

[V //θ G], a polynomial function W : X → C known as the superpotential, and an action of
C∗ on V known as the R-charge. In our case,

Xθ := [(CM × CN) //θ G],

where

G := {(gw1 , . . . , gwM , g−d1 , . . . , g−dN ) | g ∈ C∗} ∼= C∗

acts diagonally on V := CM × CN , and there are two phases depending on whether the
character θ ∈ HomZ(C∗,C∗) ∼= Z is positive or negative. Denoting the coordinates on V by
(x1, . . . , xM , p1, . . . , pN), the unstable locus when θ is positive is {x1 = · · · = xM = 0}, so we
have

X+ =
(CM \ {0})× CN

C∗
∼=

N⊕
j=1

OP(w1,...,wM )(−dj).

Similarly, when θ is negative, the unstable locus of θ is {p1 = · · · = pN = 0}, so

X− =
CM × (CN \ {0})

C∗
∼=

M⊕
i=1

OP(d1,...,dN )(−wi).
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The superpotential in either phase is

W (x1, . . . , xM , p1, . . . , pN) :=
N∑
i=1

pjFj(x1, . . . , xM),

and the R-charge acts by multiplication on the p-coordinates. Using that Y is nonsingular,
one can check that the critical locus Z+ of W when θ is positive is the complete intersection
Y inside the zero section of X+, and the critical locus Z− when θ is negative is the entire
zero section in X−.

From here forward, we restrict to the negative phase of the GLSM unless otherwise spec-
ified, and we assume that all of the degrees dj are equal. To ease notation, we make use of
the abbreviations

d := d1 = · · · = dN ,

X := X− =
M⊕
i=1

OP(d,...,d)(−wi),

and
Z := Z− = P(d, . . . , d) ⊂ X.

2.2. State space. The state space of the GLSM is defined as the relative Chen–Ruan co-
homology group

(1) H := H∗CR(X,W+∞;C),

in which W+∞ is a Milnor fiber of W—that is, W+∞ = W−1(A) for a sufficiently large real
number A. Thus, the state space decomposes into summands indexed by the components
of the inertia stack IX, which are labeled by elements g ∈ G with nontrivial fixed locus
Fix(g) ⊂ X.

More concretely, the only (gw1 , . . . , gwM , g−d, . . . , g−d) ∈ G with nontrivial fixed locus are
those for which gd = 1. An element (~x, ~p) ∈ Fix(g) must have xi = 0 whenever gwi 6= 1, but

there is no constraint on the xi for which gwi = 1. Thus, denoting P(~d) := P(d, . . . , d) and

F (g) := {i | gwi = 1} ⊂ {1, . . . ,M},
we set

Xg :=
⊕
i∈F (g)

OP(~d)(−wi) ⊂ X

and Wg := W |Xg . Then

H =
⊕
g∈Zd

H∗(Xg,W
+∞
g ;C).

An element g ∈ Zd (or its corresponding component of H) is referred to as narrow if Fix(g)
is compact, which amounts to requiring that F (g) = ∅. In other words, if we set

(2) nar :=

{
m ∈

{
0,

1

d
, · · · , d− 1

d

}∣∣∣∣ 6 ∃ i such that mwi ∈ Z
}
,

then the narrow sectors are indexed by g = e2πim with m ∈ nar. Narrow sectors have

W |Fix(g) ≡ 0, so their contribution to H is simply H∗(P(~d)) ∼= H∗(PN−1).
For any g ∈ Zd, there is a natural map

ηg : Hk−2|F (g)|(Xg)→ Hk(Xg,W
+∞
g ).
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To define ηg, we set Xct
g
∼= P(~d) to be the zero section inside Xg. The map ηg is defined as

the composition

(3) Hk−2|F (g)|(Xg)
∼−→ Hk−2|F (g)|(Xct

g )
∼−→ Hk(Xg, Xg \Xct

g )→ Hk(Xg,W
+∞
g ),

where the second map is the Thom isomorphism and the remaining maps are induced by the
inclusions. Together, the ηg define a homomorphism

(4) η : H∗CR(X)→ H,

and we define the compact-type state space as

Hct := image(η) ⊂ H.

Note that ηg is an isomorphism when g is narrow, so the compact-type state space contains
all of the narrow sectors.

Instead of working with Hct, in what follows we take insertions from

H̃ := H∗CR(X),

which surjectively maps to Hct via η. If one wishes to take insertions from Hct instead,
then one must first lift them to H∗CR(X). We conjecture that the resulting correlators are
independent of the choice of lift; see Lemma 2.15 below.

Remark 2.1. In the geometric chamber, there is an isomorphism

H+ := H∗CR(X+,W
+∞;C) ∼= H∗CR(Y )

(see [10, Proposition 3.4]). This has a twisted sector

Xg,+ =
N⊕
j=1

OPg(−d)

for any g such that gwi = 1 for some i, in which Pg ⊂ P(w1, . . . , wM) is the sub-projective
space spanned by the coordinates xi for which gwi = 1. The zero section is Xct

g,+
∼= Pg in this

case, and if Yg := Pg ∩ Y , then ηg can be identified with the restriction H∗(Pg) → H∗(Yg).
Thus, the compact-type state space H+ consists of the ambient classes in each sector of

H∗CR(Y ) on the geometric side, and inserting classes from H̃+ := H∗CR(X+) simply means
lifting an ambient class ι∗α (in which ι : Yg → Pg is the inclusion) to an insertion of α.

2.3. Moduli space. The definition of the GLSM moduli space, which depends on the choice
of a stability parameter ε, is based on the notion of quasimaps introduced by Ciocan-
Fontanine, Kim, and Maulik [19] and studied extensively by Ciocan-Fontanine and Kim
[14, 15, 16, 17, 18].

Fix a genus g, a degree β ∈ Z, a nonnegative integer n, and a positive rational number ε.

Definition 2.2. A prestable Landau–Ginzburg quasimap to Z consists of an n-pointed
prestable orbifold curve (C; q1, . . . , qn) of genus g with nontrivial isotropy only at special
points, an orbifold line bundle L on C, and a section

~p = (p1, . . . , pN) ∈ Γ((L⊗−d ⊗ ωlog)⊕N)

(where

ωlog := ωC ⊗OC([q1] + · · ·+ [qn]),
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is the logarithmic dualizing sheaf) such that the zero set of ~p (that is, the set of points q ∈ C
such that p1(q) = · · · = pN(q) = 0) is finite. An ε-stable Landau–Ginzburg quasimap to Z is
a prestable Landau–Ginzburg quasimap to Z, satisfying the following further conditions:

• Representability: For every q ∈ C with isotropy group Gq, the homomorphism Gq →
C∗ giving the action of the isotropy group on the bundle L is injective.
• Nondegeneracy: The zero set of ~p is disjoint from the marked points and nodes of C,

and for each zero q of ~p, the order of the zero (that is, the common order of vanishing
of p1, . . . , pN) satisfies

(5) ordq(~p) ≤
1

ε
.

(Zeroes of ~p are referred to as basepoints of the quasimap.)
• Stability: The Q-line bundle

(6) (L⊗−d ⊗ ωlog)⊗ε ⊗ ωlog

is ample.

The degree of a quasimap is defined as

(7) β := deg(L⊗−d ⊗ ωlog).

By the nondegeneracy condition, the degree β is a non-negative integer.
Notice that when N = 1 and ε > 2, condition (5) implies that the section p1 is nowhere-

vanishing, so it gives a trivialization L⊗−d⊗ωlog
∼= OC . In this case, the degree must be zero,

and condition (6) amounts to the requirement that (C; q1, . . . , qn) be a stable orbifold curve.
The definition of an ε-stable quasimap, then, recovers the notion of a d-spin curve. On the
other hand, when ε ≤ 1

β
, condition (5) puts no restriction on the orders of the basepoints,

and (6) is equivalent to imposing the analogous requirement for all ε > 0. The resulting
moduli space is analogous to the moduli space of stable quotients [40].

Remark 2.3. An alternative way to view the choice of stability parameter ε is to replace,
in the definition of the GLSM, the character θ ∈ HomZ(C∗,C∗) by the rational character
θ · (dε) ∈ HomZ(C∗,C∗) ⊗Z Q ∼= Q; see [16, Section 2]. We return to this perspective later
when defining the twisted graph space.

Proposition 2.4. There is a proper Deligne–Mumford stack Zε
g,n,β parameterizing genus-g,

n-pointed, ε-stable Landau–Ginzburg quasimaps of degree β to Z up to isomorphism.

We will prove Proposition 2.4 by relating the above definition of ε-stable Landau–Ginzburg
quasimap to Z [25, Definition 4.2.11] in the setting of [25, Example 7.2.2]. For this, and for
the construction of virtual cycles, we introduce the following notion:

Definition 2.5. An ε-stable Landau–Ginzburg quasimap toX is a tuple (C; q1, . . . , qn;L; (~x, ~p)),
in which (C; q1, . . . , qn;L; ~p) is an ε-stable Landau–Ginzburg quasimap to Z, and

~x ∈ Γ

(
M⊕
i=1

L⊗wi

)
.

Proof of Proposition 2.4. We first note that the notion of ε-stable Landau–Ginzburg quasimap
to X agrees with the notion of ε-stable Landau–Ginzburg quasimap of [25, Definition 4.2.11]
in the setting of [25, Example 7.2.2] for a suitably chosen good lift. Using the notation of [25],
the groups G and Γ are C∗ = C∗ × {1} and C∗ × C∗R respectively, the character θ : G→ C∗
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is given by λ 7→ λ−d, and the good lift ϑ : G → C∗ is (g, µ) 7→ g−dµ. Tracing through the
definitions, we match the two notions.

We remark here that the trivial lift ϑ0 : G→ C∗ defined by (g, µ) 7→ g−d is another good
lift (as remarked in [25, Example 7.2.2]). Using this lift would lead to a slightly different
looking but closely related stability condition.

By [25, Theorem 5.4.1], we conclude that the substack Zε
g,n,β of Landau–Ginzburg quasimaps

to the critical locus Z (see the discussion of [25, Example 7.2.2]) is proper. �

Remark 2.6. The perspective of viewing an ε-stable Landau–Ginzburg quasimap to Z as
a section

(~x, ~p) ∈ Γ

(
M⊕
i=1

L⊗wi ⊕
N⊕
j=1

(L⊗−dj ⊗ ωlog)

)
whose image lies in the affine cone over the critical locus Z and whose order of contact with
the unstable locus is bounded, is important for defining the virtual cycle, and it also points
to how one must modify Definition 2.2 for the positive phase. Namely, Landau–Ginzburg
quasimaps to Z+ consist of sections (~x, ~p) as above whose image lies in the affine cone over
the critical locus of Z+, which precisely recovers the definition of quasimaps to the complete
intersection Y as in [19]. Replacing ~p by ~x in (5) and L⊗−d ⊗ ωlog by L in both (6) and (7)

yields the definition of ε-stability for quasimaps. Thus, Zε,+
g,n,β is the moduli spaceMε

g,n(Y, β)
of (ordinary) quasimaps defined in [19].

2.4. Multiplicities and evaluation maps. Recall that the multiplicity of an orbifold line
bundle L at a point q ∈ C with isotropy group Zr is defined as the number m ∈ 1

r
Z/Z ⊂ Q/Z

such that the canonical generator of Zr acts on the total space of L in local coordinates around
q by

(x, v) 7→
(
e2πi 1

rx, e2πimv
)
.

In our case, r is a divisor of d, so that we can take the multiplicities to lie in the set
{0, 1

d
, . . . , d−1

d
}, and for a tuple ~m = (m1, . . . ,mn) with mi ∈ {0, 1

d
, . . . , d−1

d
}, we denote by

Zε
g,~m,β ⊂ Zε

g,n,β

the open and closed substack consisting of quasimaps for which the multiplicity of L at qi is
mi. We occasionally wish to leave some multiplicities undetermined, so we denote by

Zε
g,~m+k,β ⊂ Zε

g,n+k,β

the substack on which the multiplicity of L at qi is mi for 1 ≤ i ≤ n, while the last k marked
points are allowed any multiplicity.

A crucial feature of the multiplicities is that they determine the relationship between L
and its pushforward |L| to the coarse underlying curve. Specifically, suppose that C ′ ⊂ C is
an irreducible component of C with special points {qk} at which the multiplicities of L are
{mk}. Then, if ρ : C ′ → |C ′| is the natural map to the coarse underlying curve, we have

L|C′ = ρ∗|L|C′ | ⊗ OC′
(∑

k

mk[qk]

)
,

for the degree-1 divisors qk pulled back from the coarse underlying curve |C|. Applying this
equation in the case where C is smooth yields a compatibility condition on the multiplicities,
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since the degree of ρ∗|L| is an integer. Namely, we have:

(8)
−β + 2g − 2 + n

d
−

n∑
i=1

mi ∈ Z.

By a component-wise argument, the same equality (8) still holds when C is not smooth.
Note that equation (8) is independent of mi if and only if mi = 1

d
, so this is the only case

in which there is a forgetful map on Zε
g,~m,β forgetting qi and its orbifold structure. Thus,

the role of the unit in the ε � 0 hybrid theory—in particular, in the string and dilaton

equation—is played by the fundamental class in the narrow sector H∗(PN−1) ⊂ H̃ indexed

by e2πi 1
d ∈ Zd. For this reason, we denote this element of H̃ by 1 in what follows.

Remark 2.7. The same string and dilaton equations do not hold in the theory of ε-stable
Landau–Ginzburg quasimaps for more general ε. One can deduce the appropriate modifica-
tion from Theorem 1.2; see the discussion in [18, Section 3.4].

Remark 2.8. In the geometric chamber, our convention is that β = deg(L), so the analogue
of condition (8) is β −

∑n
i=1mi ∈ Z. In particular, there is a forgetful map on Zε,+

g,~m,β =

Mε

g,~m(Y, β) forgetting qi only if mi = 0, and the role of the unit in this chamber is played
by the usual fundamental class 1 ∈ H∗CR(Y ) ∼= H+.

For each i = 1, . . . , n, there is an evaluation map

evi : Z
ε
g,n,β → IX.

Here, IX is the rigidified inertia stack of X, which in this case is simply

(9) IX :=
⊔
a∈Zd

⊕
i∈F (a)

OP(~d/ gcd(a,d))(−wi/ gcd(a, d)).

(In fact, the evaluation maps land in IZ =
⊔
a∈Zd P(~d/ gcd(a, d)), but given that our in-

sertions are elements of H̃ := H∗CR(X), it is more natural and more consistent with the
geometric phase if the target of evaluation is understood as IX.) To define the evaluation
maps, let π : C → Zε

g,n,β be the universal curve and L the universal line bundle, and let

σ ∈ Γ

(
M⊕
i=1

L⊗wi ⊕
N⊕
j=1

(L⊗−d ⊗ ωπ,log)

)
be the universal section, whose first M coordinates are zero. If ∆i ⊂ C denotes the stacky
divisor corresponding to the ith marked point, then

σ
∣∣
∆i
∈ Γ

(
M⊕
i=1

L⊗wi ⊕
N⊕
j=1

L⊗−d
∣∣∣∣
∆i

)
,

using the fact that ωπ,log|∆i
is trivial. Thus, evaluating σ

∣∣
∆i

at the fiber over a point

(C; q1, . . . , qn;L; ~p) in the moduli space yields an element of P(~d/ gcd(a, d)), and by defi-

nition, evi sends Zε
g,~m,β to the zero section P(~d/ gcd(a, d)) in the component of (9) indexed

by a := e2πimi ∈ Zd.
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Remark 2.9. In the geometric chamber, these recover the composition of the usual evalu-
ation map with the inclusion,

Mε

g,n(Y, β)→ IY → IX+,

so in particular, they factor through the inclusion IY → IP(w1, . . . , wM).

2.5. Virtual cycle and correlators. By the results of [25, Section 5.1], there exists a
virtual cycle

[Zε
g,n,β]vir ∈ A∗(Zε

g,n,β).

It is constructed using the cosection technique of Kiem–Li [37], following the application of
the technique by Chang–Li [3] to the Gromov–Witten theory of the quintic threefold and
Chang–Li–Li [4] to spin theory. We outline the basic idea, referring the reader to [25] for
details.

The key point is that Zε
g,n,β sits inside of the noncompact moduli space Xε

g,n,β of stable
Landau–Ginzburg quasimaps to X as defined in Definition 2.5. By [3, Proposition 2.5],
Xε
g,n,β admits a relative perfect obstruction theory

(10) E• :=

(
Rπ∗

(
M⊕
i=1

L⊗wi ⊕
N⊕
j=1

(L⊗−d ⊗ ωπ,log)

))∨
→ L•Xε

g,n,β/Dg,n,β

relative to the moduli space Dg,n,β parameterizing only (C; q1, . . . , qn;L), in which π : C →
Xε
g,n,β is the universal curve and L the universal line bundle on C. One hopes to define a

homomorphism

ObXε
g,n,β/Dg,n,β

→ OXε
g,n,β

via the derivatives of the superpotential that descends to a cosection σ : ObXε
g,n,β
→ OXε

g,n,β

whose fiber is zero exactly over Zε
g,n,β ⊂ Xε

g,n,β. On the components Xε
g,~m,β for which each mi

is narrow, this procedure works, and the cosection technique outputs a virtual cycle [Zε
g,~m,β]vir

supported on Zε
g,~m,β.

On the components of Xε
g,n,β where not all multiplicities are narrow, on the other hand,

an additional step is necessary. Let Xε,ct
g,n,β ⊂ Xε

g,n,β denote the subspace where x1(qk) =

· · · = xM(qk) = 0 for each marked point qk. (We have Xε,ct
g,~m,β = Xε

g,~m,β if all multiplicities

are narrow, since this condition implies that L⊗wi has nonzero multiplicity at qk for each i
and k, and hence all sections of L⊗wi must vanish at qk.)

The relative perfect obstruction theory E• can be modified to yield a relative perfect
obstruction theory for Xε,ct

g,n,β. Namely, we set
(11)

E•ct :=

(
Rπ∗

(
M⊕
i=1

(
L⊗wi ⊗O (−

∑n
k=1 ∆k)

)
⊕

N⊕
i=1

(L⊗−d ⊗ ωπ,log)

))∨
→ L•

Xε,ct
g,n,β/Dg,n,β

,

where ∆k again denotes the stacky divisor in the universal curve corresponding to the kth
marked point with its orbifold structure. Again, using [3, Proposition 2.5], one checks that
(11) is indeed a relative perfect obstruction theory. (In the narrow case, the bundles L⊗wi and
L⊗wi⊗O(−

∑
[qk]) have the same coarse underlying bundle and hence the same cohomology,

so E•ct = E•.) The derivatives of W now define a homomorphism

ObXε,ct
g,n,β/Dg,n,β

→ OXε,ct
g,n,β

.
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Namely, the fiber over a point (C; q1, . . . , qn; (~x, ~p)) ∈ Xε,ct
g,n,β is the homomorphism

M⊕
i=1

H1

(
L⊗wi ⊗O

(
−

n∑
k=1

[qk]

))
⊕

N⊕
j=1

H1(L⊗−d ⊗ ωlog)→ C

(ẋ1, . . . , ẋM , ṗ1, . . . , ṗN) 7→
M∑
i=1

∂W

∂xi
(~x, ~p) · ẋi +

N∑
j=1

∂W

∂pj
(~x, ~p) · ṗj.

A straightforward application of Serre duality checks that this indeed lands in C. Further-
more, one can check that it descends to a cosection—that is, a homomorphism

σ : ObXε,ct
g,n,β
→ OXε,ct

g,n,β

out of the absolute obstruction sheaf. The degeneracy locus of σ (the locus of points in Xε,ct
g,nβ

over which the fiber of σ is the zero homomorphism, see [3, Definition 3.3]) is precisely the
closed subset Zε

g,n,β ⊂ Xε,ct
g,n,β, and the cosection technique outputs a virtual cycle supported

on this locus.
From this discussion, it is straightforward to compute the virtual dimension of each com-

ponent Zε
g,~m,β. In particular, we have

vdim(Zε
g,~m,β) = vdim(Xε,ct

g,~m,β)

(12)

= dim(Dg,~m,β) + (h0 − h1)

(
M⊕
i=1

(
L⊗wi ⊗O

(
−

n∑
k=1

[qk]

))
⊕

N⊕
j=1

(L⊗−d ⊗ ωlog)

)

= vdim(Mε

g,~m(Z, β)) +
M∑
i=1

χ

(
L⊗wi ⊗O

(
−

n∑
k=1

[qk]

))
.

Remark 2.10. In genus zero, the definition of the virtual cycle simplifies substantially.
Indeed, the condition that wi|d implies that deg(|L⊗wi ⊗ O(−

∑
[qk])|) < 0 for each i (see

[20, Section 4.2.9]). Thus, the cosection is identically zero, so the cosection-localized virtual
class is the usual virtual class of Zε

0,n,β = Xε
0,n,β defined by way of the perfect obstruction

theory E•. Furthermore, E• is quasi-isomorphic to a vector bundle over a smooth space, so
we have

[Zε
0,n,β]vir = e

(
M⊕
i=1

R1π∗(L⊗wi ⊗O (−
∑n

k=1 ∆k))

)
∩ [Zε

0,n,β].

We are now ready to define correlators in the GLSM, following [25]. For this, we recall
that the psi classes are defined by

ψi = c1(Li) ∈ A∗(Zε
g,n,β), i = 1, . . . , n,

where Li is the line bundle whose fiber over a moduli point is the cotangent line to the coarse
curve |C| at qi.

Definition 2.11. Given

φ1, . . . , φn ∈ H̃
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and nonnegative integers a1, . . . , an, the associated genus-g, degree-β, ε-stable GLSM corre-
lator is defined as

〈φ1ψ
a1 · · ·φnψan〉εg,n,β :=

∫
[Zεg,n,β ]vir

ev∗1(φ1)ψa1
1 · · · ev∗n(φn)ψann .

Remark 2.12. The cosection construction outlined above can also be used to define a virtual
cycle [Mε

g,n(Y, β)]vir in the geometric chamber. To do so, we set Xε,+
g,n,β to be the moduli space

parameterizing tuples (~x, ~p) as above, satisfying representability and the geometric-phase
nondegeneracy and stability conditions that

ordq(~x) ≤ 1

ε

and Lε ⊗ ωlog is ample. This admits a relative perfect obstruction theory E•+ exactly as in

(10). Inside Xε,+
g,n,β, we define Xε,ct,+

g,n,β as the subspace in which p1(qk) = · · · = pN(qk) = 0
for each marked point qk, whose relative perfect obstruction theory E•ct,+ is obtained from
E•+ by replacing ωπ,log by ωπ. The derivatives of W define a homomorphism out of the
obstruction sheaf of E•ct,+ that descends to a cosection, yielding a virtual cycle supported on

Zε,+
g,n,β =Mε

g,n(Y, β).
It is a highly nontrivial statement that this construction agrees with the virtual cycle

defined by Ciocan-Fontanine–Kim–Maulik in [19], which was what appeared in our previous
work [21]. In fact, in the case where X+ is the quintic threefold and ε� 0, Chang–Li proved
in [3] that the two definitions of the virtual cycle yield the same correlators up to a sign.
Since then their work has been generalized to a statement on the level of virtual cycles, to
quasi-maps, and to more general complete intersections [8, 38, 7]. Thus, while we work with
the cosection-localized virtual class in what follows, the results of [21] for ambient insertions
can be deduced as a special case.

We note, furthermore, that the analogue of Remark 2.10 in the geometric chamber (known
as the orbifold quantum Lefschetz hyperplane principle [44]) requires that wi|dj for all i and j,

since this condition is equivalent to the requirement that the bundle
⊕N

j=1OP(w1,...,wM )(−dj)
be pulled back from the coarse underlying space of P(w1, . . . , wM).

Recall that in replacing the compact-type state space Hct by H̃, it was necessary to choose

lifts of elements of Hct under the map η : H̃ → Hct. Now that we have defined correlators,
we can more precisely address the issue of their independence of the choice of lift. The
statement relies on the following conjecture:

Conjecture 2.13 (Broad vanishing). Let Xct ⊂ X denote the zero section,2 and let φ ∈
H∗CR(X) be such that

e(TIX/IXct)φ = 0,

where TIX/IXct denotes the relative tangent bundle of the projection IX → IXct. Then, for

any i ∈ {1, . . . , n}, we have

ev∗i (φ) ∩ [Zε
g,n,β]vir = 0.

For example, Conjecture 2.13 holds in r-spin theory, and the analogue in the geometric
phase also holds (see Remark 2.16 below).

2Although Xct = Z, we use different notation to clarify the parallel in the geometric phase.
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Remark 2.14. The name “broad vanishing” refers to the fact that, if the theory satisfies
the further condition that |F (g)| ≥ N for any g ∈ Zd such that F (g) 6= ∅ (c.f. [22, Condition
(A2)]), then Conjecture 2.13 implies ev∗i (φ)∩[Zε

g,n,β]vir = 0 whenever φ is not narrow. Indeed,
under this assumption, by dimension considerations, e(TIX/IXct) vanishes on all noncompact

twisted sectors, so any non-narrow element of H∗CR(X) satisfies e(TIX/IXct)φ = 0.

From here, the independence of the correlators of the choice of lift under η is nearly
immediate:

Lemma 2.15. Assume Conjecture 2.13, and let φ ∈ ker(η), where η is as in (4). Then

ev∗i (φ) ∩ [Zε
g,n,β]vir = 0

for any i ∈ {1, . . . , n}.

Proof. By the definition of the Thom isomorphism, the composition of η with the natural
restriction map H∗CR(X,W+∞)→ H∗CR(X) is given by

ρ : H∗CR(X)→ H∗CR(X), ρ(φ) = e(TIX/IXct)φ.

Since ker(η) ⊂ ker(ρ), the lemma follows from Conjecture 2.13. �

Remark 2.16. In the geometric phase, Conjecture 2.13 does hold, so the proof of Lemma 2.15
goes through in that setting with no additional assumptions. Indeed, by Remark 2.9, the
evaluation maps factor through the inclusion

ι : IY → IP(w1, . . . , wM),

and by Remark 2.1, we have η = ι∗. Thus, in the geometric phase one actually has the
stronger statement that ev∗i (φ) = 0 whenever φ ∈ ker(η).

2.6. The J-function. The small J-function for ε-stable quasimap theory was defined by
Ciocan-Fontanine and Kim in [15] using localization on a graph space, generalizing the orig-
inal definition in Gromov–Witten theory due to Givental [27, 28, 29] and the interpretation
in terms of contraction maps due to Bertram [1]. The appropriate modifications for Landau–
Ginzburg theory, which we recall below, were carried out by Ross and the third author in
[41].

Let GZε
0,1,β denote a “graph space” version of the moduli space Zε

0,1,β, which parameterizes

the same objects as Zε
0,1,β together with the additional datum of a degree-1 map C → P1, or

equivalently, a parameterization of one component of C, and the ampleness condition (6) is
not required on the parameterized component (see [19, Definition 7.2.1 (4)]). Note that the
compatibility condition (8) implies that the multiplicity at the single marked point must be

(13) m1 =

〈
−β − 1

d

〉
,

in which the symbol 〈a〉 for a rational number a is defined by the requirement that 0 ≤ 〈a〉 < 1
and 〈a〉 ≡ a mod Z.

There is an action of C∗ on GZε
0,1,β given by multiplication on the parameterized component

C0
∼= P1. The fixed loci consist of quasimaps for which the marked point and all of the degree

β lies either over 0 or over∞ on C0. We denote by F ε
β ⊂ GZε

0,1,β the fixed locus on which the
marked point lies at ∞ and all of the degree lies over 0. More precisely, when β > 1/ε, an
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element of F ε
β consists of an ε-stable Landau–Ginzburg quasimap to Z attached at a single

marked point to C0, so
F ε
β
∼= Zε

0,1,β.

When β ≤ 1/ε, on the other hand, such a quasimap would not be stable; instead, C0 is the
entire source curve, and the quasimap has a single basepoint of order β at 0. In either case,
there is an evaluation map

ev• : F
ε
β → IX,

defined by evaluation at the single marked point ∞ ∈ C0.
The evaluation map we require must be slightly modified from the above, in order to

account for the orbifold structure of X (see [9, Section 3.1]). Let

rβ : H∗(IX)→ H∗(IX)

be multiplication by the number dm1 , in which dm1 := d/ gcd(d ·m1, d), and m1 is as defined
by (13), and let

ι : IX → IX
be the involution coming from inversion on the indexing set Zd of the twisted sectors, as well
as inverting the banding. Then we define

(ẽv•)∗ = ι∗ ◦ rβ ◦ (ev•)∗ : H
∗
C∗(F

ε
β)→ H∗C∗(IX).

Analogously to Zε
0,1,β, the graph space admits a virtual cycle defined by cosection local-

ization. From here, the J-function is defined as follows:

Definition 2.17. Let z denote the equivariant parameter for the action of C∗ on GZε
0,1,β,

and let q be a formal Novikov variable. The small ε-stable J-function is

J ε(q, z) := −z2
∑
β≥0

qβ(ẽv•)∗

(
[F ε
β]vir

eC∗(Nvir
F εβ/GZ

ε
0,1,β

)

)
∈ H̃[[q, z, z−1]].

Remark 2.18. In the geometric phase, this coincides up to the prefactor of −z2 with the
image under the pushforward

H∗CR(Y )→ H∗CR(X+)

of the small J-function of [15]. The discrepancy in the prefactor is due to two differences
between our set-up and theirs. First, we use a one-pointed graph space instead of a zero-
pointed graph space (a necessary modification, since the marked point in general carries
orbifold structure), which changes the localization contributions by a factor of −z to cancel
the contribution of automorphisms moving the unmarked point at ∞. Second, our conven-
tions differ by an overall factor of z; for example, in the case where Y is semi-positive, the
J-function of [15] is of the form I0(q) +O(z−1), whereas ours is of the form I0(q)z +O(z0).

Using Remark 2.10 and the discussion above, we can make the J-function more explicit.
In particular, when β > 1/ε, we have

[F ε
β]vir = [Zε

0,1,β]vir

and
eC∗(N

vir
F εβ/GZ

ε
0,1,β

) = z(z − ψ1),

so the terms of J ε with β > 1/ε can be expressed as GLSM correlators. The terms of J ε with
β ≤ 1/ε are referred to as unstable terms, and can be computed explicitly. For the details of
both types of terms, we refer the reader to [23, Section 2.7].
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Taking ε → 0+ (that is, requiring the stability condition (6) for all ε > 0), every term of
the J-function becomes unstable, so one obtains a generating function that can be computed
exactly. The result is known as the I-function I(q, z) := J0+(q, z), and can be calculated
explicitly, as was carried out for hypersurfaces in [41]. Truncating I(q, z) to powers of q less
than or equal to 1/β, more generally, yields an explicit expression for the unstable part of
J ε for any ε.

We denote by

[J ε]+(q, z) ∈ H̃[[q, z]]

the part of the J-function with non-negative powers of z, which has contributions only from
the unstable terms, and we let µεβ(z) denote the qβ-coefficient in −z1 + [J ]ε+(q, z):∑

β

qβµεβ(z) = −z1 + [J ε]+(q, z).

This series, which is sometimes called the “mirror transformation”, plays a particularly
important role in the wall-crossing formula.

We occasionally require a generalization of J ε(q, z) in which descendent insertions are

allowed. This is defined, for t = t(z) ∈ H̃[[z]], by

(14) J ε(q, t, z) := −z2
∑
β,k≥0

qβ

k!
(ẽv•)∗

(
k∏
i=1

ev∗i (t(ψi)) ∩
[F ε
k,β]vir

eC∗(Nvir
F εk,β/GZ

ε
0,k+1,β

)

)
,

where F ε
k,β ⊂ GZε

0,k+1,β is defined as the fixed locus in which all but the last marked point and
all of the degree are concentrated over 0 ∈ C0, while the last point marked lies at ∞ ∈ C0.
The small J-function is recovered by setting t = 0.

3. Statement of results

Ciocan-Fontanine and Kim conjectured wall-crossing formulas for stable quasimap invari-
ants in [15, 18], and they have proven these conjectures in many cases; in [17], they prove
a wall-crossing theorem in all genus for any projective complete intersection. In this sec-
tion, we review Ciocan-Fontanine–Kim’s conjecture in the Landau–Ginzburg context, and
we state our main theorem in precise form.

3.1. Wall-crossing for J-functions. In genus zero, the wall-crossing conjecture states that
the function J ε(q, z) lies on the Lagrangian cone defined by the ∞-stable hybrid theory—
that is, there exists t ∈ H[[z]] such that J ε(q, z) = J∞(q, t, z). The t in this equation can be
determined explicitly from the fact that J∞(q, t, z) = z1 + t(−z) +O(z−1), so we must have

(15) J ε(q, z) = J∞(q, z1 + [J ε]+(q,−z), z) = J∞

(
q,
∑
β

qβµεβ(−z), z

)
.

This statement was proved in the hypersurface case by Ross and the third author [41], and
in the hybrid case by Ross and the first author [23]. In the geometric phase, (15) was proved
by Cheong–Ciocan-Fontanine–Kim [15, 9].
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3.2. Wall-crossing for virtual cycles. More generally, Ciocan-Fontanine and Kim lift
their conjecture in any genus to the level of virtual cycles. To state the analogue in Landau–
Ginzburg theory, which is the statement of our main theorem in the negative phase, we
require some further notation. The relevant ideas are based on [15, Section 3.2].

Let ~β = (β1, . . . , βk) be a tuple of nonnegative integers with βi ≤ 1/ε for each i. Let
mi :=

〈
βi+1
d

〉
for all i, and let ~m = (m1, . . . ,mk). Then there is a morphism

b~β : Zε
g,n+~m,β−

∑k
i=1 βi

→ Zε
g,n,β,

defined as follows. For (C; q1, . . . , qn+k;L; ~p) ∈ Zε
g,n+~m,β−

∑k
i=1 βi

, let C̃ be the partial coarsen-

ing of C obtained by forgetting the last k marked points and their orbifold structure. The
bundle

L⊗O

(
k∑
i=1

−βi − 1

d
[qn+i]

)
has multiplicity zero at each of the last k marked points, and hence it is pulled back from a

bundle L̃ on C̃. For j = 1, . . . , N , let

p̃j ∈Γ
(
L̃⊗−d ⊗ ωC̃log

)
=Γ

((
L̃⊗−d

(
k∑
i=1

(−βi − 1)[qn+i]

)
⊗ ωC̃log

(
k∑
i=1

[qn+i]

))
⊗O

(
k∑
i=1

βi[qn+i]

))
be the section on C̃ obtained from pj ∈ Γ(L⊗−d ⊗ ωClog) by the natural inclusion O ⊂
O(
∑

i βi[qn+i]). Then, setting ~̃p = (p̃1, . . . , p̃N), we define

b~β(C; q1, . . . , qn+k;L; ~p) := (C̃; q1, . . . , qn; L̃; ~̃p),

assuming the latter is stable. It is possible, however, that C̃ contains rational tails—that is,
genus-zero components with a single special point—on which

(16) deg
(
L̃⊗−d ⊗ ωC̃log

)
≤ 1

ε
,

and which thus violate the ampleness condition (6). To define b~β, we contract such a compo-

nent and replace it with a basepoint of order equal to the left-hand side of (16) at the point
where the component was attached, as formalized below. This may create a new rational
tail, so we repeat the process inductively until stability is achieved.

The definition of the morphism

c : Z∞g,n,β → Zε
g,n,β,

which contracts unstable rational tails and replaces them with basepoints, is similar. Namely,
suppose that (C; q1, . . . , qn;L; ~p) ∈ Z∞g,n,β, where C has a rational tail C0 and

β0 := deg(L⊗−d ⊗ ωClog|C0) ≤ 1/ε.

Let C̃ be obtained from C \ C0 by forgetting the orbifold structure at the point q where C0

meets the rest of C. Then the line bundle

L
∣∣
C\C0

⊗O
(
−β0 − 1

d
[q]

)
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has multiplicity zero at q, so as above, it is pulled back from a bundle L̃ on C̃. For j =
1, . . . , N , we let

p̃j ∈Γ
(
L̃⊗−d ⊗ ωC̃log

)
=Γ
((
L̃⊗−d((−β0 − 1)[q])⊗ ωC̃log([q])

)
⊗O (β0[q])

)
be obtained from the restriction of pj to C \ C0. We then set ~̃p = (p̃1, . . . , p̃N) and let

c(C; q1, . . . , qn;L; ~p) := (C̃; q1, . . . , qn; L̃; ~̃p),

assuming the latter is stable. If not, we iterate the procedure until we reach an ε-stable
Landau–Ginzburg quasimap.

By a slight abuse of notation, we extend ev∗i to H̃[ψi] by linearity in ψi, and similarly,
we allow b~β∗ and c∗ to operate linearly in q. Equipped with these definitions, we can give a
precise statement of Theorem 1.2 in the Landau–Ginzburg phase:

Theorem 3.1. Fix g ≥ 0, n ≥ 1, and a tuple of insertions α1, . . . , αn ∈ H̃. Then∑
β≥0

qβ

(
n∏
a=1

ev∗a(αa) ∩ [Zε
g,n,β]vir

)
=

∞∑
k=0

∑
β0≥0

∑
0≤β1,...,βk≤1/ε

qβ0

k!
b~β∗c∗

(
n∏
a=1

ev∗a(αa)
k∏
i=1

qβiev∗n+i(µ
ε
βi

(−ψn+i)) ∩ [Z∞g,n+k,β0
]vir

)
.

(Note that, by the definition of µεβ(z), the expression inside c∗(· · · ) is supported on the

substack of Z∞g,n+k,β0
on which the multiplicity at the marked point qn+i is 〈βi+1

d
〉, so the

morphism b~β is well-defined.)

Remark 3.2. Note that, in contrast to the statement of Theorem 1.2, we now assume that
n ≥ 1. The n = 0 case is handled separately in the appendix.

Remark 3.3. The analogue of Theorem 3.1 in the geometric phase is Theorem 2.6 of [21],
except that in that case (1) the insertions are not required to be ambient, and (2) the weights
wi are all equal to one. Thus, assuming the equivalence of Ciocan-Fontanine–Kim–Maulik’s
virtual cycle and the cosection-localized virtual cycle (Remark 2.12), the proof discussed
below reproduces, in a fundamentally similar but more complicated way, the ambient case
of [21].

3.3. Twisted theory. In order to prove Theorem 3.1, we must introduce a twist of the
virtual class by a certain equivariant Euler class.

Denoting the universal curve over Zε
g,n,β again by π : C → Zε

g,n,β and the universal line
bundle on C by L, we let C∗ act trivially on Zε

g,n,β. We denote the equivariant parameter
by λ, and to distinguish this action from the one on the graph space considered above, we
write C∗ as C∗λ. Furthermore, we denote by C(λ) a nonequivariantly trivial line bundle with
a C∗-action of weight 1.

Define

[Zε
g,n,β]vir

tw :=
[Zε

g,n,β]vir

eC∗λ
(
Rπ∗

(
P∨ ⊗ C(λ)

)) ,
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where
P := L⊗−d ⊗ ωπ,log.

We can also define a twisted J-function by

J εtw(q, z) := −z2eC∗λ(OX(−1)⊗ C(λ))
∑
β≥0

qβ(ẽv•)∗

(
[F ε
β]vir ∩ eC∗λ×C∗z(−Rπ∗

(
P∨ ⊗ C(λ))

)
eC∗z(N

vir
F εβ/GZ

ε
0,1,β

)

)
,

where C∗z denotes the C∗-action on the graph space, and where O(−1) is the tautological
line bundle, which descends to IX. From here, we define a twisted mirror transformation
by ∑

β

qβµε,twβ (z) = −1z + [J εtw(z)]+ ∈ H̃(λ)[[q, z]].

The twisted version of Theorem 3.1 is the following:

Theorem 3.4. Fix g ≥ 0, n ≥ 1, and a tuple of insertions α1, . . . , αn ∈ H̃. Then∑
β≥0

qβ

(
n∏
a=1

ev∗a(αa) ∩ [Zε
g,n,β]vir

tw

)
=

∞∑
k=0

∑
β0,β1,...,βk≥0

qβ0

k!
b~β∗c∗

(
n∏
a=1

ev∗a(αa)
k∏
i=1

qβiev∗n+i(µ
ε,tw
βi

(−ψn+i)) ∩ [Z∞g,n+k,β0
]vir
tw

)
.

In fact, the twisted wall-crossing theorem implies the untwisted one:

Lemma 3.5. Theorem 3.4 implies Theorem 3.1.

Proof. The proof is identical to Lemma 2.10 of [21]: one recovers the untwisted theorem
from the twisted one by taking the top power of λ on both sides. �

Remark 3.6. In the geometric phase, the definitions of [Mε

g,n(Y, β)]vir
tw , J εtw, and µε,twβ are

exactly parallel to the above, except that P is replaced by L; see [21, Section 2.4].

3.4. Wall-crossing for dual graphs. The quasimap wall-crossing of [21] uses a factoriza-
tion property of the virtual cycle along nodes that is not in general known to hold for the
GLSM. Thus, the proof of Theorem 3.4 requires a new idea: an induction on topological
types, for which we must introduce one further refinement of the wall-crossing statement.

Let Γ be a prestable dual graph—that is, a set of vertices, edges, and numbered legs—for
which each vertex v is decorated with a genus g(v) ≥ 0 and a degree β(v) ≥ 0, and each
half-edge h (including the legs) is decorated with a multiplicity m(h) ∈ {0, 1

d
, . . . , d−1

d
}. We

assume that for each edge e, the multiplicities at the two half-edges h and h′ satisfy

(17) m(h) +m(h′) ∈ Z
and for each vertex v, as a consequence of (8), the multiplicities at the set H(v) of incident
half-edges satisfy

(18)
−β(v) + 2g(v)− 2 + |H(v)|

d
−
∑

h∈H(v)

m(h) ∈ Z.

Denote by ~m(v) the tuple {m(h)}h∈H(v).
In addition, we equip Γ with a number of further decorations. Namely, let

v• ∈ V (Γ)
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be any vertex such that β(v•) > 0, and let

n′ : V (Γ)→ Z≥0

be any function with n′(v•) = 0. We denote by Γn′ the graph obtained from Γ by adding
n′(v) additional legs to each vertex v and assigning multiplicity 1

d
to each of them, and we

say that (Γ, v•, n
′) is stable if Γn′ is the dual graph of an element of Zε

g,n+n′,β.
Similarly to the recursive structure of the boundary of the moduli space of curves, for any

stable (Γ, v•, n
′) and any stability parameter ε, we construct an explicit fiber product Zε

Γ and
a morphism

ιΓ : Zε
Γ → Zε

g,n+n′,β

that is a finite cover of the closure of the locus of ε-stable Landau–Ginzburg quasimaps with
decorated dual graph Γn′ . Here, denoting by V (Γ), E(Γ), and L(Γ) the vertex, edge and leg
sets, respectively, we have

(19)

g = h1(Γ) +
∑

v∈V (Γ)

g(v),

β =
∑

v∈V (Γ)

β(v),

n = |L(Γ)|,

n′ =
∑

v∈V (Γ)

n′(v).

Explicitly, for each vertex v ∈ V (Γ), denote by ~m′(v) the tuple of multiplicities at half-
edges incident to v together with n′(v) additional multiplicities of 1

d
. Then Zε

Γ is the fiber
product of the moduli spaces Zε

g(v), ~m′(v),β(v) for each v ∈ V (Γ), where the fiber product is over

(IZ)|E(V )| via the evaluation maps at the half-edges and for exactly one of the half-edges of
each edge, we compose the evaluation map with the inversion of band automorphism. (The
reason for this inversion is related to (17).) The degree of ιΓ onto its image is given by

(20)
|Aut(Γn′)|∏

h dm(h)

,

where the product is over all half-edges. Note that Zε
Γ depends on the choice of n′, although

we suppress it from the notation.
There is also another description of Zε

Γ useful for the definition its virtual class. Let
DΓ be the fiber product of the stacks Dg(v),n(v)+n′(v),β(v) of curves with a line bundle (see
Section 2.5), which is defined analogously to Zε

Γ. This stack comes with a local complete
intersection morphism jΓ : DΓ → Dg,n+n′,β (see [4, Lemma 4.4]). Using the cartesian diagram

(21)

Zε
Γ Zε

g,n+n′,β

DΓ Dg,n+n′,β,

ιΓ

jΓ

we can define a virtual cycle for Zε
Γ: namely, defining a fiber product Xε,ct

Γ in analogy to
Section 2.5, we set [Zε

Γ]vir := [Xε,ct
Γ ]vir

σ by virtual pullback along ιΓ. Alternatively, we can
define a relative perfect obstruction theory similarly to (11), except that we now utilize the
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universal curve over Xε,ct
Γ and the base of the obstruction theory is DΓ. Then [Zε

Γ]vir is a
cosection localized virtual class of Xε,ct

Γ . Let us point out that there is an additional subtlety
in the defininition of the fiber product: in addition to the inversion of band automorphism
mentioned in the previous paragraph, we need to compose one of the evaluation maps at
each edge with another automorphism, as explained on [24, Page 28].

Similarly to Section 3.3, there is also a twisted virtual cycle for Zε
Γ, but this requires the

additional choice of a coloring of the vertices

V (Γ) = V0 t V∞

such that v• ∈ V0. For any such coloring, we define

(22) [Zε
Γ]vir

tw =
[Zε

Γ]vir∏
v∈V0

eC∗λ(Rπv,∗(P∨)⊗ C(λ))
∏

v∈V∞ eC∗λ(Rπv,∗(P)⊗ C(−λ))
,

in which πv : Cv → Zε
Γ denotes the projection from the component Cv of the universal

curve corresponding to the vertex v—that is, Cv is the pullback of the universal curve over
Zε
g(v), ~m′(v),β(v) under the projection Zε

Γ → Zε
g(v), ~m′(v),β(v).

Our goal, now, is to state a wall-crossing theorem for each choice of decorated dual graph.
We require a bit of notation. First, for each l ≥ 0, let Γ + l be the graph obtained from Γ
by adding l additional legs of multiplicity 1

d
to the vertex v•, and let

πl : Z
ε
Γ+l → Zε

Γ

be the morphism that forgets these additional legs.
The insertions at these l additional legs in the wall-crossing theorem are expressed in terms

of a universal series

ελ0(z) ∈ R[[z]],

where the ground ring is R := H̃(λ)[[y]] for a formal parameter y that is given geometric
meaning in what follows. The precise definition of ελ0(z) is given in Sections 4.4 and 5 below,
in terms of the contribution to a virtual localization from unmarked trees of rational curves;
for now, we require just one property:

(23) ελ0(z) ∈ y ·R[[z]],

which is immediate from the definition in Section 4.4.
For each i ∈ {1, . . . , l}, let

evv•,i : Z
ε
Γ+l → X(1/d) ⊂ IX

be the evaluation map at the ith of the l additional markings on v•, which by construction
maps to the multiplicity-1

d
sector X(1/d) (the summand a = 1 in (9)) in IX.

Theorem 3.7. Fix g ≥ 0, β ≥ 0, and n ≥ 1, and let Γ be a prestable dual graph with these
discrete data. Fix decorations v• and n′ : V (Γ) → Z≥0 such that (Γ, v•, n

′) is stable. Then,
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for any coloring V (Γ) = V0 ∪ V∞ as above and any tuple of insertions α1, . . . , αn ∈ H̃,

(24)

∞∑
l=0

1

l!
πl∗

∏
a∈L′

ev∗v•,a(ε
λ0(ψ))

∏
v∈V (Γ)
a∈L(v)

ev∗v,a(αa) ∩ [Zε
Γ+l]

vir
tw

 =
∞∑
l=0

1

l!
πl∗

 ∑
K={kv}v∈V (Γ)

1∏
v kv!

∑
~β={βvi }v∈V (Γ),0≤i≤kv
βv0 +βv1 +···+βvkv=β(v)

b~β∗c∗

∏
a∈L′

ev∗v•,a(ε
λ0(ψ))

∏
v∈V (Γ)
a∈L(v)

ev∗v,a(αa)
∏

v∈V (Γ)
j∈[kv ]

ev∗v,j(µ
ε,tw
βvj

(−ψ)) ∩ [Z∞Γ
K,~β

+l]
vir
tw


 ,

where L(v) denotes the leg set of v (excluding the extra legs specified by n′), L′ denotes the
set of ` extra legs on v•, and evv,a denote the evaluation maps at the corresponding marked
points. The morphisms b~β and c are defined analogously to Section 3.2, and ΓK,~β is the graph
obtained from Γ by modifying each vertex v to have degree βv0 and kv additional legs.

Remark 3.8. Although we leave the multiplicities at the kv additional legs of each vertex
unspecified, the expression on the right-hand side is in fact supported on the locus where

the multiplicities are
〈
βv1 +1

d

〉
, . . . ,

〈
βvkv+1

d

〉
.

This statement implies the twisted, and hence the untwisted, wall-crossing of the previous
subsection:

Lemma 3.9. Theorem 3.7 implies Theorem 3.4.

Proof. Take Γ to be a graph with a single vertex v, and the additional decorations to be
v = v• ∈ V0 and n′(v) = 0. Then Zε

Γ = Zε
g,n,β and Z∞Γ

K,~β
= Z∞g,n+k,β0

. The resulting equality

depends on the parameter y, but setting y = 0 and applying (23), we see that only the l = 0
term contributes. This term is precisely the statement of Theorem 3.4. �

Remark 3.10. The definition of Zε
Γ and its virtual cycle via (21) work equally well in the

geometric phase, after replacing the condition (18) by

β(v)−
∑

h∈H(v)

m(h) ∈ Z.

Replacing P by L in (22) gives the definition of the twisted virtual cycle. The additional
legs in Γ + l should have multiplicity zero in the geometric phase (see Remark 2.8), but after
this modification, Theorem 3.7 and Lemma 3.9 generalize immediately.

4. Twisted graph space

The proof of Theorem 3.7 is by C∗-localization on a “twisted graph space.” This space,
which is closely related to the space of mixed-spin p-fields considered by Chang–Li–Li–Liu
[5, 6], was introduced in our previous work [21] in the geometric phase. We adapt the
definition to the Landau–Ginzburg phase in this section and derive the properties we require
for the proof of Theorem 3.7.
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4.1. Definition of the twisted graph space. In the language of the GLSM, the twisted
graph space PXε

g,n,β,δ consists of Landau–Ginzburg quasimaps to the GIT quotient

PX := ((CM × CN)× C2) //θ̃ (C∗)2,

in which the action of (C∗)2 is

(g, t) · (~x, ~p, z1, z2) = (gw1x1, . . . , g
wMxM , g

−dp1, . . . , g
−dpN , g

dtz1, tz2)

and the rational character θ̃ : (C∗)2 → C∗ (c.f. Remark 2.3) is

θ̃(g, t) = θ(g)εt3+ε

for the negative character θ used to define X. (As we will see shortly, this choice of θ̃ is
chosen carefully to avoid basepoints with z1 = z2 = 0, and to have the loci of the moduli
space where z1 ≡ 0 or z2 ≡ 0 equal to moduli spaces of Landau–Ginzburg quasimaps to X
for different stability conditions.) The superpotential is extended trivially to the new factors,
and the R-charge acts with weight 1 on the p-coordinates, weight −1 on z1, and weight 0 on
all other coordinates.

More concretely,

PXε
g,n,β,δ = {(C; q1, . . . , qn;L1, L2;x1, . . . , xM , p1, . . . , pN , z1, z2)},

where (C; q1, . . . , qn) is an n-pointed prestable orbifold curve of genus g with nontrivial
isotropy only at special points, L1 and L2 are orbifold line bundles with P1 := L⊗−d1 ⊗ ωlog,

(25) β = deg(P1), δ = deg(L2),

and

(~x, ~p, ~z) := (x1, . . . , xM , p1, . . . , pN , z1, z2) ∈ Γ

(
M⊕
i=1

L⊗wi1 ⊕
N⊕
j=1

P1 ⊕ (P∨1 ⊗ L2)⊕ L2

)
.

We require this data to satisfy the following conditions:

• Representability: For every q ∈ C with isotropy group Gq, the homomorphism Gq →
C∗ giving the action of the isotropy group on the bundle L1 is injective.
• Nondegeneracy: The zero set of ~p is disjoint from the marked points and nodes of C,

and the sections z1 and z2 never simultaneously vanish. Furthermore, for each point
q of C at which z2(q) 6= 0, we have

(26) ordq(~p) ≤
1

ε
,

and for each point q of C at which z2(q) = 0, we have

(27) ordq(~p) = 0,

or in other words, ~p(q) 6= 0. (We note that this can be phrased, as in [16, Section
2.1], as a length condition bounding the order of contact of (~x, ~p, ~z) with the unstable
locus of PX.)
• Stability: The Q-line bundle

(28) (P ε
1 ⊗ L⊗3+ε

2 )⊗ ωlog

is ample.
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This definition is chosen to coincide with the stable Landau–Ginzburg quasimaps to PX
defined in [25, Definition 4.2.11] with stability parameter ε′ = 1. In our case (see the proof
of Proposition 2.4), we have G ∼= (C∗)2 and Γ ∼= G× C∗R, and we have chosen the good lift

ϑ̃ of the rational character θ̃ with ϑ̃(g, t, µ) = ϑ(g, µ) · t3+ε.
We decompose PXε

g,n,β,δ by multiplicities, denoting by

PXε
g,~m,β,δ ⊂ PXε

g,n,β,δ

the open and closed substack on which the multiplicity of L1 at the marked point qi is mi.
(The multiplicity of L2 is always zero, since otherwise the sections z1 and z2 would both
vanish.)

Note that the nondegeneracy condition implies that z1 and z2 define a map

f : C → P(P∨1 ⊕OC).

Analogously to what was stated in Section 2.5, we let

PXε,ct
g,n,β,δ ⊂ PXε

g,n,β,δ

be the locus on which x1(qk) = · · · = xM(qk) = 0 for each marked point qk. Then there is a
relative perfect obstruction theory3

Ẽ• :=

(
Rπ∗

(
M⊕
i=1

(
L⊗wi1 (−

∑n
k=1 ∆k)

)
⊕

N⊕
j=1

P1

)
⊕Rπ∗f ∗TP(P∨1 ⊕O)/C

)∨
→ L•PXε,ct

g,n,β,δ/Dg,n,β
.

The derivatives of the superpotential once again define a homomorphism out of the relative
obstruction sheaf, which descends to a cosection

σ̃ : ObPXε,ct
g,n,β,δ

→ OPXε,ct
g,n,β,δ

.

The degeneracy locus of σ̃ is the substack

PZε
g,n,β,δ ⊂ PXε,ct

g,n,β,δ

parameterizing Landau–Ginzburg quasimaps that land in the critical locus PZ ⊂ PX of the

extended superpotential W̃ :=
∑N

j=1 pjFj(~x). Explicitly, PZ is a P1-bundle over Z = P(~d)

and PZε
g,~m,β,δ is the locus in PXε,ct

g,n,β,δ on which the sections x1, . . . , xM are all identically
zero. This locus is proper, by the existence of the good lift ϑ described above. The cosection
construction thus yields a virtual cycle

[PZε
g,n,β,δ]

vir ∈ A∗(PZε
g,n,β,δ),

and a similar computation to (12) shows that

vdim(PZε
g,n,β,δ) = vdim(Zε

g,n,β) + 2δ − β + 1− g.

To define evaluation maps, let

ς ∈ Γ(P⊕N1 ⊕ (P∨1 ⊗ L2)⊕ L2)

3This is not exactly the standard definition of the perfect obstruction theory of a GLSM moduli space,
which in this case would be relative to a moduli space parameterizing (C; q1, . . . , qn;L1, L2). However, by
the Euler sequence, the resulting (cosection-localized) virtual cycles agree.
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denote the universal section over the universal curve π : C → PZε
g,n,β,δ. If ∆i ⊂ C denotes

the divisor corresponding to the ith marked point, then

ς|∆i
∈ Γ

 N⊕
j=1

(
L⊗−d1 ⊗O (−

∑n
k=1 ∆k)

)
⊕ (L⊗d1 ⊗ L2)⊕ L2

∣∣∣∣∣
∆i

 ,

since ωπ,log|∆i
is trivial. Thus, restricting ς|∆i

to a fiber gives an element of IPZ ⊂ IPX,
and we obtain an evaluation map

evi : PZε
g,n,β,δ → IPX

that sends PZε
g,~m,β,δ to the twisted sector indexed by e2πimi ∈ Zd. Analogously to the

definition of the compact-type state space in Section 2.2, the insertions for the twisted graph

space are drawn from H∗CR(PX), which, as a vector space, is isomorphic to H̃ ⊗H∗(P1).
As in Section 3.4, one can define substacks of PZε

g,n,β,δ and finite covers thereof associated

to decorated dual graphs. Namely, let (Γ, v•, n
′) be as in Section 3.4, and define Γ̃ by adding

an additional decoration

D : V (Γ)→ Z≥0

to each vertex of Γ. We say that (Γ̃, v•, n
′) is stable if, after adding n′(v) additional legs to

each vertex v, the graph Γ̃ becomes the dual graph of an element of PZε
g,~m+n′,β,δ.

For any stable decorated graph (Γ̃, v•, n
′) as above, and any stability parameter ε, we

denote by PZε
Γ̃

the fiber product of the moduli spaces PZε
g(v), ~m′(v),β(v),D(v) over

∏
e∈E(Γ̃) IPZ.

Here, as above, ~m′(v) records the multiplicities at half-edges incident to v as well as n′(v)
additional multiplicities of 1

d
. This fiber product imposes the agreement, for each edge

e ∈ E(Γ̃) with half-edges h1 and h2 incident to vertices v1 and v2, of the evaluation maps
corresponding to h1 and h2. (There are two subtleties in the fiber product, discussed on
[24, page 28], but they are not relevant to what follows.) As before, there is a virtual local
complete intersection map

ιΓ̃ : PZε
Γ̃
→ PZε

g,n+n′,β,δ,

which is a finite cover of the closure of the locus in the twisted graph space whose elements

have decorated dual graph Γ̃n′ , where Γ̃n′ is obtained from Γ̃ by adding n′(v) additional legs
of multiplicity 1

d
to each vertex v.

By an analogous construction, we obtain a moduli space PXε,ct

Γ̃
equipped with an ob-

struction theory and cosection. By cosection localization, we obtain a virtual cycle [PZε
Γ̃
]vir

supported on the degeneracy locus PZε
Γ̃
.

Remark 4.1. The definition of PXε,+
g,n,β,δ in the geometric phase is given by replacing ~p by

~x in (26) and (27) and replacing P1 by L1 in (25) and (28). Setting PXε,ct,+
g,n,β,δ to be the locus

in which p1(qk) = · · · = pN(qk) = 0 for each marked point qk, the above yields a virtual
cycle supported on the PZε,+

g,n,β,δ. Analogously, one obtains moduli spaces spaces PZε,+

Γ̃
with

virtual cycles for any decorated graph.

4.2. C∗-action and fixed loci. There is an action of C∗ on PXε
g,n,β,δ, given by acting on

the z1-coordinate with weight −1. Let λ be the equivariant parameter, which is defined as
the dual of the weight-one representation of C∗.
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The fixed loci of this action are straightforward to compute using similar techniques to
[30, 39, 41]. First, recall that (z1, z2) define a section f : C → P(P∨1 ⊕ OC), and from this
perspective, the C∗ action can be viewed as scaling on the first homogeneous coordinate
of the projective bundle. The computation of the fixed loci then mimics the computation
for stable maps to P1. In particular, suppose that C ′ is an irreducible component of C
with special points ~q′, and set L′ = L|C′ and ~p′ = ~p|C′ . If (C ′; ~q′;L; ~p) has finitely many
automorphisms, then f must map C ′ into one of the fixed sets of P(P∨1 ⊕ OC), which are
the loci where z1 = 0 or z2 = 0. On the other hand, if (C ′; ~q′;L; ~p) has infinitely many
automorphisms, the component C ′ must be of genus zero, the map f |C′ must be a multiple
cover of a fiber of f : C → P(P∨1 ⊕ OC), and all special points and basepoints of C ′ must
have either z1 or z2 vanishing.

These fixed loci can be indexed by decorated graphs. We denote such a graph by Λ (to
avoid confusion with dual graphs Γ) and decorate it as follows:

• Each vertex v has an index j(v) ∈ {0,∞}, a genus g(v), and a degree β(v) ∈ Z≥0.
• Each edge e has a degree δ(e) ∈ Z≥1.
• Each half-edge h (including the legs) has a multiplicity m(h) ∈

{
0, 1

d
, . . . , d−1

d

}
.

• The legs are labeled with the numbers {1, . . . , n}.
By the “valence” of a vertex v, denoted val(v), we mean the total number of incident half-
edges, including legs.

The fixed locus in PXε
g,n,β,δ indexed by Λ parameterizes Landau–Ginzburg quasimaps for

which:

• Each edge e corresponds to a genus-zero component Ce on which

deg(L2|Ce) = δ(e),

and which has two distinguished “ramification points” q1, q2. The section z1 (on Ce)
vanishes nowhere except possibly at q1, while z2 vanishes only at q2, and all of the
marked points, all of the nodes, and all of the degree of P1|Ce is concentrated at q1

and q2. That is,

deg(P1|Ce) = ordq1(~p) + ordq2(~p),

so if both ramification points are special points (at which ~p is necessarily nonvanish-
ing), it follows that the degree of P1|Ce is zero.
• Each vertex v for which j(v) = 0 (with unstable exceptional cases noted below)

corresponds to a maximal sub-curve Cv of C over which z1 ≡ 0, and each vertex
v for which j(v) = ∞ (again with unstable exceptions) corresponds to a maximal
sub-curve over which z2 ≡ 0. The labels g(v) and β(v) denote the genus of Cv and
the degree of P1|Cv , respectively, and the legs incident to v indicate the marked points
on Cv.
• A vertex v is unstable if stable sub-curves of the type described above do not exist

(where, as always, we interpret legs as marked points and half-edges as half-nodes).
In this case, v corresponds to a single point of the component Ce for each adjacent
edge e, which may be a node at which Ce meets Ce′ , a marked point of Ce, or a
basepoint on Ce of order β(v) (with the special case β(v) = 0, in which v stands for
an unmarked point of Ce).
• The index m(l) on a leg l indicates the multiplicity of L1 at the corresponding marked

point.
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• A half-edge h incident to a stable vertex v corresponds to a node at which components
Ce and Cv meet, and m(h) indicates the multiplicity of L1 at the branch of the node
on Cv. If v is unstable and hence h corresponds to a single point on a component Ce,
then m(h) is the negative (additive inverse) in Q/Z of the multiplicity of L1 at this
point.

In particular, we note that the decorations at each stable vertex v yield a tuple

~m(v) ∈
{

0,
1

d
, . . . ,

d− 1

d

}val(v)

recording the multiplicities of L1 at every special point of Cv.
The crucial observation, now, is the following. For a stable vertex v such that j(v) = 0,

we have z1|Cv ≡ 0, so the stability condition (26) implies that ordq(~p) ≤ 1/ε for each q ∈ Cv.
That is, the restriction of (C; q1, . . . , qn;L1; ~p) to Cv defines an element of Xε

g(v), ~m(v),β(v).

On the other hand, for a stable vertex v such that j(v) = ∞, we have z2|Cv ≡ 0, so the
stability condition (27) implies that ordq(~p) = 0 for each q ∈ Cv. Thus, the restriction of
(C; q1, . . . , qn;L1; ~p) to Cv defines an element of X∞g(v), ~m(v),β(v). Finally, for each edge e, the

restriction of (~x, ~p) to Ce defines a constant map to X (possibly with an additional basepoint
at the ramification point q1).

Remark 4.2. It is important in what follows to observe that, if Ce is an edge component
containing a basepoint of some order β(e), then one must have δ(e) > β(e). Indeed, if this is
not the case, then z1 ≡ 0. Given that z2 must vanish somewhere, this is impossible without
violating the nondegeneracy condition in the definition of PXε

g,n,β,δ.

Denote

(29) FXΛ :=
∏

v stable
j(v)=0

Xε
g(v), ~m(v),β(v) ×IX

∏
edges e

IX
1
δ(e) ×IX

∏
v stable
j(v)=∞

X∞g(v), ~m(v),β(v),

where IX
1
δ(e) is a δ(e)th root gerbe over IX; the explicit root gerbe, and the reason for its

appearance, are explained in Section 4.3.2 below. Here, the fiber products are taken over
the evaluation map at the half-node on the vertex moduli space and the composition of the
evaluation map at the half-node on the edge moduli space with the involution ι : IX → IX
coming from inversion (to ensure that all nodes are balanced).

The preceding discussion implies that there is a canonical family of C∗-fixed elements of
PXε

g,n,β,δ over FXΛ, yielding a morphism

FXΛ → PXε
g,n,β,δ.

This is not exactly the inclusion of the associated fixed locus, because elements of PXε
g,n,β,δ

have additional automorphisms from permuting the components via an automorphism of Λ,
and scaling the fibers of L1|Ce by dth roots of unity.4 In particular, ιΓ decomposes into a
finite (étale) map of degree

(30)
|Aut(Λ)|∏
h∈H̃(Λ) dm(h)

4The scalings of L1 on adjacent components do not yield independent automorphisms, however, when the
components meet at a node with nontrivial isotropy; see [36, Proposition 1.18].
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and a closed embedding. Here, H̃(Λ) is a set of half-edges containing one half-edge for each

node of a generic curve in FXΛ. This means that H̃(Λ) contains all non-leg half-edges at
stable vertices and exactly one half-edge at each non-legged valence-two vertex with genus
zero and β-degree zero. Furthermore, we define dm(h) = d/ gcd(d ·m(h), d), which does not
depend on which half-edge at an unstable vertex is chosen.

The C∗-action preserves the locus PXε,ct
g,n,β,δ ⊂ PXε

g,n,β,δ, and we can similarly define FXct
Λ ⊂

FXΛ by the requirement that x1(qk) = · · · = xM(qk) = 0 whenever qk corresponds to a leg of
Λ. The perfect obstruction theory on PXε,ct

g,n,β,δ and the cosection σ̃ are both C∗-equivariant, so
by [2], each fixed locus admits a cosection-localized virtual class, and the virtual localization
formula expresses [PZε

g,n,β,δ]
vir in terms of these contributions. We set

(31) FZΛ :=
∏

v stable
j(v)=0

Zε
g(v), ~m(v),β(v) ×IXct

∏
edges e

IXct, 1
δ(e) ×IXct

∏
v stable
j(v)=∞

Z∞g(v), ~m(v),β(v),

where, again, the fiber product is taken over evaluation on the vertex side and evaluation
followed by inversion on the edge side. We denote by [FZΛ]vir the pullback of the cosection-
localized virtual class on the fixed locus associated to Λ under the étale map.

More generally, one can do all of this on each of the stacks PXε
Γ̃

associated to a decorated

dual graph (Γ̃, v•, n
′). That is, let Γ̃ be a stable decorated dual graph as in Section 4.1, and

let Λ be any graph obtained from Γ̃ by replacing each vertex v by a localization graph for
PXε

g(v), ~m′(v),β(v),D(v). For each such Λ, there is a fixed locus in PXε,ct

Γ̃
, and for the same fiber

product FXct
Λ defined above, we have a morphism

ιΓ̃,Λ : FXct
Λ → PXε,ct

Γ̃
,

whose image is the fixed locus associated to Λ.

Remark 4.3. The fixed loci have an analogous structure in the geometric phase; see [21,
Section 3.2].

4.3. Localization contributions. The virtual localization formula, first proved by Graber–
Pandharipande [30] and adapted to the setting of cosection-localized virtual classes by
Chang–Kiem–Li [2], expresses [PZε

g,n,β,δ]
vir in terms of contributions from each localization

graph:

(32) [PZε
g,n,β,δ]

vir =
∑

Λ

∏
h∈H̃(Λ) dm(h)

|Aut(Λ)|
ιΛ,∗

(
[FZΛ]vir

e(Nvir
Λ )

)
.

Here, [FZΛ]vir and Nvir
Λ are the virtual cycle of the fixed locus, and virtual normal bundle

defined via restricting the obstruction theory to the fixed locus. By abuse of notation, we
have pulled them back under the étale map from FZΛ. There is also a technical assumption
necessary in order to be able to apply this formula: the restriction of the perfect obstruction
theory to each fixed locus has to admit a global resolution by a perfect complex. In our case,
this is clear from the analysis of the perfect obstruction theory in the following sections.

More generally, all of this can be done for each dual graph Γ̃. Note that if Λ is a localization
graph contributing to [PZε

Γ̃
]vir, then the space FZΛ appears in the localization both for

[PZε
g,n,β,δ]

vir and for [PZε
Γ̃
]vir. However, its contribution is a priori different: in the localization

for [PZε
g,n,β,δ]

vir, we have a virtual cycle [FZΛ]vir as defined above via the obstruction theory
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on PXε,ct
g,n,β,δ, whereas in the localization for [PZε

Γ̃
]vir, we have a virtual cycle that we denote

[FZΛ]vir
Γ̃

, defined via the obstruction theory on PXε,ct

Γ̃
. Similarly, we have virtual normal

bundles Nvir
Λ for the fixed locus associated to Λ inside PXε,ct

g,n,β,δ, and Nvir
Λ,Γ̃

for the fixed locus

inside PXε,ct

Γ̃
.

In fact, however, these two contributions are closely related:

Lemma 4.4. With notation as in (32), we have

[FZΛ]vir = [FZΛ]vir
Γ̃

and
e(Nvir

Λ ) = e(Nvir
Λ,Γ̃

)
∏

e∈E(Γ̃)

c1(Te,1 ⊗ Te,2),

where, for each edge e ∈ E(Γ̃), Te,1 and Te,2 denote the relative tangent line bundles at the
corresponding node of the orbifold curve.

Proof. We have the following commutative diagram, whose right square is cartesian:

FXct
Λ PXε,ct

Γ̃
PXε,ct

g,n,β,δ

DΓ̃ Dg,n,β.

ιΓ̃,Λ

π

ιΓ̃

jΓ̃

π

Here, we define DΓ̃ = DΓ, and jΓ̃ = jΓ as appearing in (21). By definition, the perfect

obstruction theory on PXε,ct

Γ̃
relative to DΓ̃ is j∗

Γ̃
Ẽ•. By [4, Lemma 4.4], the map jΓ̃ is a finite

and local complete intersection morphism, so its cotangent complex L•j
Γ̃

is concentrated in

degree −1, and it is quasi-isomorphic to the complex ⊕
e∈E(Γ̃)

Te,1 ⊗ Te,2

∨ → 0

of vector bundles. Since the corresponding π-relative obstruction theories agree, thus, the

absolute perfect obstruction theories E•
Γ̃,abs

and Ẽ•abs fit into a distinguished triangle

π∗(L•j
Γ̃
)[−1]

+1−→ Ẽ•abs → E•
Γ̃,abs
→ π∗(L•j

Γ̃
).

The virtual classes [FZΛ]vir and [FZΛ]vir
Γ̃

are defined by the C∗-fixed part of ι∗
Γ̃,Λ

(
Ẽ•abs

)
and

ι∗
Γ̃,Λ

(
E•

Γ̃,abs

)
, respectively, and the virtual normal bundles are defined by the corresponding

moving parts. The lemma therefore follows from the fact that, as in the calculation in
Section 4.3.3 below, the line bundles Te,1 ⊗ Te,2 are moving. �

The goal of the remainder of this subsection is to compute the contributions to (32) of
each graph Λ explicitly. (All of this can also be done for each [PZε

Γ̃
]vir, but by Lemma 4.4, the

contributions of each localization graph Λ in that case are straightforward to deduce from
the corresponding contributions to [PZε

g,n,β,δ]
vir.) We first concentrate on the virtual normal

bundle, identifying its equivariant Euler class with an explicit cohomology class pulled back
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from FZΛ. To do so, we apply the normalization exact sequence to express the moving
part of the perfect obstruction theory in terms of vertex, edge, and node factors. Then,
in Section 4.3.4, we study the fixed part of the perfect obstruction theory, decomposing
the cosection-localized virtual class along certain nodes. Finally, in Section 4.3.5, we push
forward [PZε

g,n,β,δ]
vir to Zε

g,n,β by forgetting L2 and ~z, and we use the above calculations to
express the contribution of each graph Λ to the resulting pushforward in terms of a genus-
g contribution and contributions from certain trees of rational components. Crucially, we
observe that the genus-0 contributions depend in only a very controlled way on the particular
GIT quotient X at hand, which sets the stage for a more explicit study of those contributions
in the following subsection.

4.3.1. Vertex contributions. For a vertex v of Λ, the sections ~x and ~p are C∗-fixed, so the
deformations of these sections, together with the deformations of the curve Cv and the line
bundle L1|Cv , are part of the C∗-fixed part of the perfect obstruction theory. The map f is
moving, and its contribution to the inverse Euler class of the virtual normal bundle is

1

eC∗(Rπ∗f ∗TPv/Cv)
=

1

eC∗(Rπ∗Nj(v))
,

where

N0 = P∨1 ⊗ C(λ), N∞ = P1 ⊗ C(−λ)

are the normal bundles to the zero and infinity sections, respectively, in the projectivized
bundle Pv := P((P∨1 ⊗ C(λ))⊕OCv) on the universal curve Cv.

4.3.2. Edge contributions. For an edge e, the corresponding factor of FZΛ is isomorphic to

the δ(e)th root stack X̃ct
e := IXct, 1

δ(e) of a component Xct
e of the rigidified inertia stack IXct

with respect to the line bundle OPN−1(−1)|Xct
e
⊗C(λ). By virtue of its universal property, on

X̃ct
e , there is a universal δ(e)th root R of OPN−1(−1)|X̃ct

e
⊗C(λ). With this root, the universal

family over Xct
e takes the form

Ce := P(R⊕OX̃ct
e

)
f //

π
��

P((P∨1 ⊗ C(λ))⊕OX̃ct
e

) =: Pe

X̃ct
e ,

at least in the case that the multiplicity of the edge is zero. In general, the projective bundle

defining Ce is defined over the universal cyclic gerbe over X̃ct
e , hence Ce → X̃ct

e is a family of
twisted curves with orbifold structure at the zero and infinity section.

Let us make the universal sections and universal map explicit. By the universal property

of the projectivized bundle Ce over X̃ct
e , there is a line bundle OCe(1) together with universal

sections

(x, y) ∈ H0((OCe(1)⊗ π∗R)⊕OCe(1))

such that x (respectively, y) vanishes precisely at the zero section (respectively, at the infinity
section) of Ce with order one. The universal line bundle P1 is given by

P1 = π∗OPN−1(1)|Xct
e
⊗OCe(β(e)[0]) = π∗R−δ(e) ⊗ C(λ) ⊗OCe(β(e)[0]),
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where [0] is the zero section in the projectivized bundle.

β(e) :=

{
β(v) if there is a genus zero, valence one vertex v at e,

0 otherwise.

Note that the universal section x gives an isomorphism

OCe([0]) ∼= OCe(1)⊗ π∗R.

The universal map f is given by the sections

(ζ1, ζ2) = (xδ(e)−β(e), yδ(e)) ∈ H0((L2 ⊗ P∨1 ⊗ C(λ))⊕ L2),

where

L2 = OCe(δ(e)).
Note that

f ∗TPe/Ce = OCe((δ(e)− β(e))[0] + δ(e)[∞]),

where [∞] denotes the infinity section of Ce.
It is useful for what follows to introduce the notation

λj =

{
λ−H if j = 0

−λ+H if j =∞

for the relative tangent line classes at the zero and infinity section of Pe. We interpret λj as

an equivariant cohomology class on X̃ct
e , where H denotes the hyperplane class pulled back

from PN−1.
Equipped with this notation, we turn to the contributions of the edge. First of all, there

are contributions from the sections ~x and ~p. For these, it is useful to consider both the moving
and fixed parts of the obstruction theory, since the total contribution to the localization from
these sections is essentially identical to the corresponding contribution to the graph-space
localization used to define the J-function. There are two differences between this setting
and the J-function, however. First, we must divide the J-function by a factor of z to cancel
the contribution −z−1 in the localization on the ordinary graph space and the prefactor of
−z2; see Remark 2.18. Second, the tangent space at the zero section of the universal curve
of the ordinary graph space has first Chern class z, while in our situation the corresponding
Chern class is λ0/δ(e). Thus, one sees that z must be replaced in the J-function by λ0/δ(e).
In all, then, we thus far have a contribution of

(33)
1

dm(h)

[
z−1J ε(q, z)

∣∣
z=λ0/δ(e)

]
qβ(e)

.

Furthermore, there are contributions from deformations of the map f . The vector bundle

R0π∗
(
f ∗TPe/Ce

)
= R0π∗

(
OCe
(
(δ(e)− β(e))[0] + δ(e)[∞]

))
has a trivial, C∗-fixed factor R0π∗O. The complement of this factor is moving, and the
inverse of its Euler class can be written as

1∏δ(e)−β(e)
b=1

bλ0

δ(e)

∏δ(e)
b=1

bλ∞
δ(e)

=

∏δ(e)
b=δ(e)−β(e)+1

bλ0

δ(e)∏δ(e)
b=1

bλ0

δ(e)

∏δ(e)
b=1

bλ∞
δ(e)

.
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In the case where there is no basepoint, so β(e) = 0, only the denominator of the above
appears. The numerator, on the other hand, can be rewritten as

δ(e)∏
b=δ(e)−β(e)+1

bλ0

δ(e)
=

β(e)−1∏
b=0

(
λ0 −

bλ0

δ(e)

)
.

Using

eC
∗
(−Rπ∗(P∨1 ⊗ C(λ))) = eC

∗
((R0π∗(ωπ ⊗ P1))∨ ⊗ C(λ))

= eC
∗
((

R0π∗O
(
(β(e)− 1)[0]− [∞]

))∨
⊗OPN−1(−1)⊗ C(λ)

)
= λ−1

0

β(e)−1∏
b=0

(
λ0 −

bλ0

δ(e)

)
,

we can write

(34)
1

eC∗(R0π∗(f ∗TPe/Ce))
=
λ0e

C∗(−Rπ∗(P∨1 ⊗ C(λ)))∏δ(e)
b=1

bλ0

δ(e)

∏δ(e)
b=1

bλ∞
δ(e)

,

which is the contribution to the inverse Euler class of the virtual normal bundle coming from
the sections ~z.

Together, (33) and (34) yield a contribution of

δ(e)

λ0dm(h)

[
J ε,tw(q, z)

∣∣
z=λ0/δ(e)

]
qβ(e)

· 1∏δ(e)
b=1

bλ0

δ(e)

∏δ(e)
b=1

bλ∞
δ(e)

to the localization.
Finally, there are additional contributions from automorphisms of Ce. These have non-

trivial torus weight only if there is an unmarked ramification point, so the edge e must be
incident to an unstable vertex v of valence 1. The contribution from such automorphisms
to the inverse Euler class of the virtual normal bundle is the tangent line class at the point
corresponding to v, which is

λj(v)

δ(e)
.

4.3.3. Node contributions. In the normalization exact sequence for Rπ∗f
∗TP((P∨1 ⊗C(λ))⊕O)/C,

a node corresponding to a vertex v contributes

eC
∗
(Nj(v)) = λj(v)

to the inverse Euler class of the virtual normal bundle. The deformations in Dg,n,β smoothing
the node also give a contribution of

1

eC∗(T1) + eC∗(T2)
=

dm(h)

eC∗(T 1) + eC∗(T 2)
,

where T1 and T2 denote the tangent lines of the orbifold curve at the two branches of the
node, T 1 and T 2 denote the corresponding tangent lines pulled back from the underlying
coarse curve, and where h is any of the half-edges of e. This inverse makes sense since at
least one of the Ti (say T1) corresponds to an edge e, so we have

eC
∗
(T1) =

λj(v)

δ(e)
.
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4.3.4. Virtual cycle. We now look at the fixed part of the perfect obstruction theory in more
detail, decomposing it along certain nodes.

We first introduce some notation and terminology. Let Λ be a localization graph, and let

Γ̃ be the prestable dual graph of a generic element of the associated fixed locus in PXε
g,n,β,δ.

There is a forgetful map

p : PXε
g,n,β,δ → Xε

g,n,β

that forgets L2, z1, and z2 (and stabilizes as necessary), and a vertex v of Γ̃ whose corre-
sponding irreducible component is not contracted by this stabilization is called very stable.

Let Γ be the dual graph obtained from Γ̃ according to p, with an extra leg recording where

any tree of rational components in Γ̃ was attached. See Figure 1.
The virtual cycle [FZΛ]vir is not pulled back under this forgetful map, but the source

of the discrepancy lies only in the vertex components of Λ that are contracted, since edge
components to not contribute to the virtual cycle. Furthermore, components corresponding
to vertices v with β(v) = 0 also do not contribute to the virtual cycle, since the corresponding
factor of (31) is a smooth moduli space (and as a result the map p̃ defined below is smooth).
Thus, the vertices relevant for expressing the discrepancy between [FZΛ]vir and a cycle pulled
back under p are

T := {v ∈ V (Γ) | v not very stable, v /∈ VE(Λ)(Γ̃), β(v) > 0}.

For each v ∈ T , define Xε,ct−1
0,n(v),β(v) as the locus inside Xε

0,n(v),β(v) where x1(qk) = · · · =

xM(qk) = 0 for all k ∈ {1, . . . , n(v)} except for the unique leg that is closest to one of the
very stable vertices.5 Define FZ ′Λ analogously to FZΛ, but replacing the factor of Zε

0,n(v),β(v)

by Xε,ct−1
0,n(v),β(v) for each v ∈ T . Let

ι : FZΛ ↪→ FZ ′Λ

be the proper inclusion map.
If the smooth map

(35) p̃ : FZ ′Λ → Xε,ct
Γ ×(IXct)|T |

∏
v∈T

Xε,ct−1
0,n(v),β(v)

is defined by contracting vertices that are neither very stable nor in T (see Figure 1), and

∆̃ : (IXct)|T | → (IXct)|T | × (IXct)|T |

is the diagonal map, then the aim of this section is to prove the following formula:

Lemma 4.5.

ι∗[FZΛ]vir = p̃∗∆̃!

(
[Zε

Γ′ ]
vir ×

∏
v∈T

[Xε,ct−1
0,n(v),β(v)]

vir

)
The first step toward proving Lemma 4.5 is to re-write [FZΛ]vir via a more convenient

perfect obstruction theory. Thus far, [FZΛ]vir has been defined using the fixed part of (the

5In fact, Xε,ct−1
0,n(v),β(v) = Zε0,n(v),β(v) in the Landau–Ginzburg phase, but we use different notation to clarify

the parallel argument in the geometric phase.



34 E. CLADER, F. JANDA, AND Y. RUAN

Γ̃ UTSRHIPQ UTSRHIPQ
��
��
�

==
==

=
UTSRHIPQ UTSRHIPQ

β = 0 UTSRHIPQ98762345 UTSRHIPQ qpihdefgcba`VWXY1

>>
>>

>
qpihdefgcba`VWXY1

��
��
�

UTSRHIPQ UTSRHIPQ98762345 UTSRHIPQ UTSRHIPQ98762345 UTSRHIPQ
UTSRHIPQ UTSRHIPQ β > 0 β > 0

Γ qpihdefgcba`VWXY1 qpihdefgcba`VWXY1 qpihdefgcba`VWXY1 qpihdefgcba`VWXY1 UTSRHIPQ98762345 UTSRHIPQ98762345 Λ′

Figure 1. On the first line, the dual graph Γ̃ associated to a localization
graph Λ, where the number within a vertex indicates its genus and empty
vertices are understood as genus zero. Vertices with a double circle correspond
to vertex components of Λ, vertices with a single circle correspond to edge
components of Λ, and the genus-zero vertex components are labeled according
to whether their β-degree equals zero. The second line shows the graph Γ and
the graph Λ′ represented by the fiber product (35). Note that the two vertices
of Λ′ that are not in Γ are precisely the elements of T .

absolute perfect obstruction theory induced by) Ẽ•, which is a perfect obstruction theory for
FXct

Λ relative to Dg,n,β; we denote this fixed part by E•old. On the other hand, if

E :=
M⊕
i=1

(L⊗wi ⊗O(−
∑n

k=1∆k))⊕
N⊕
j=1

(L⊗−d ⊗ ωπ,log),

in which C is the universal curve on FXct
Λ and L the universal line bundle, then the complex

(Rπ∗E)∨ is a perfect obstruction theory for FXct
Λ relative to the smooth Artin stack DΛ

defined from DΓ̃ by taking the substack where the gerbes at the opposite sides of each edge
component are identified (with inverted band), and by rigidifying along the automorphisms
of each edge component that move the map f of Section 4.3.2. Let E•new be the fixed part of
the corresponding absolute perfect obstruction theory.6

Lemma 4.6. E•old and E•new are quasi-isomorphic.

Proof. This follows from the analysis of the virtual normal bundle in the previous sections.
As we have seen, the curve deformation factors corresponding to smoothing the nodes are
moving. Therefore, for E•old, we can work relative to the Artin stack DΓ̃ instead of Dg,n,β.

We have also seen that, if P := P(P∨1 ⊕O), then the factor Rπ∗f
∗LP/C in Ẽ• is moving except

for one trivial factor for each edge in Λ. This factor is identified with the corresponding
edge automorphism factor in the cotangent complex of DΛ. Finally, the remaining edge
automorphisms are moving. Therefore, working relative to DΛ and removing the factor

Rπ∗f
∗LP/C from Ẽ• gives E•old, which is the same as the description of E•new. �

6Rπ∗E has moving factors corresponding to edges with basepoints.
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To continue, we separate the dual graph Γ̃ corresponding to Λ into two parts Γ̃g and Γ̃0,

where Γ̃g is formed by all very stable vertices together with all chains of rational components

connecting them, and Γ̃0 consists of the remaining vertices of Γ̃, which form a disjoint union
of trees of rational components. Correspondingly, we can decompose the universal curve

C = Cg ∪ C0.

Let ∆ = Cg ∩ C0, and define the following subsheaf:

E ′ :=
M⊕
i=1

(L⊗wi ⊗O(−∆−
∑n

k=1∆k))|Cg ⊕
N⊕
j=1

(L⊗−d ⊗ ωπ,log) ⊂ E .

The cokernel of the inclusion E ′ ↪→ E is given by

E ′′ :=
M⊕
i=1

(L⊗wi ⊗O(−
∑n

k=1∆k))|C0 .

Note that by Remark 2.10, we have π∗E ′′ = 0, so that π∗E ′ ∼= π∗E . Therefore, (Rπ∗E ′)∨
provides an alternative perfect obstruction theory for FXct

Λ relative to DΛ; moreover, the
cosection σ restricts to a cosection σ′ on this alternative perfect obstruction theory. The
degeneracy locus of σ′ is precisely the locus FZ ′Λ defined above, so we denote by [FZ ′Λ]vir

the induced cosection-localized virtual class. Cosection-localized pullback then implies the
following:

Lemma 4.7.
ι∗[FZΛ]vir = e(R1π∗E ′′)fix ∩ [FZ ′Λ]vir

The vector bundle R1π∗E ′′ can be easily decomposed. First, R1π∗E ′′ has a summand for
each connected component of C0. Then, using short exact sequences similar to 0→ E ′ → E →
E ′′ → 0, we can inductively split e(R1π∗E ′′)fix into a factor for each irreducible component of
C0. Each time we split at a node, we make the choice to twist down by ∆ on the side closest
to the trunk of the tree. Now, we can check that the only fixed factors of e(R1π∗E ′′) are on

the vertices of Γ̃ in the set T . Therefore, we can write

e(R1π∗E ′′)fix =
∏
v∈T

e(R1π∗E ′′v ),

where E ′′v denotes the restriction of E ′′ to the component of C0 corresponding to v and twisted
down at all but the node closest to Cg.

The factor of [FZ ′Λ]vir, on the other hand, is pulled back under p̃. More specifically, let
Λ′ denote the lower-right graph in Figure 1, and let FXct

Λ′ be the fiber product defined in
(35) as the target of p̃. The virtual cycle [FZ ′Λ]vir is defined via cosection localization from
the larger space FXct

Λ , to which p̃ extends. Denoting this extension also by p̃, we have a
cartesian diagram

FXct
Λ

p̃ //

��

FXct
Λ′

��
DΛ

// DΛ′ ,

,

where DΛ′ denotes the Artin stack of curves with a line bundle corresponding to the dual
graph associated with Λ′. Note that the lower horizontal map is smooth.
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Since the map p : Cg → C ′g contracting chains of rational components of Cg is log étale
(in the sense that p∗ωC′g ,log = ωCg ,log and therefore also p∗L = L), the perfect obstruction

theory (Rπ∗E ′)∨ of FXct
Λ relative to DΛ is pulled back from the analogously-defined perfect

obstruction theory of FXct
Λ′ relative to the stack DΛ′ . The cosection σ′ is also pulled back

from the analogously-defined cosection σ′ of FXct
Λ′ . Therefore,

(36) ι∗[FZΛ]vir =
∏
v∈T

e(R1π∗E ′′v ) ∩ p̃∗[FXct
Λ′ ]

vir
σ′ .

Finally, we split [FXct
Λ′ ]

vir
σ′ along nodes joining the T -components to the rest of the curve.

For this, first note that the universal curve C ′ over FXct
Λ′ is of the form

C ′ = C ′g ∪
⋃
v∈T

Cv,

where Cv is the rational component corresponding to v. The curves intersect in a set ∆′ of
nodes, with |∆′| = |T |. In particular, given that Λ′ consists precisely of Γ together with the
vertices of T , we can form a cartesian diagram

FXct
Λ′

//

��

FXct′

Λ′

��

(IXct)|T |
∆̃ // (IXct)|T | × (IXct)|T |,

where
FXct′

Λ′ := Xε,ct
Γ ×

∏
v∈T

Xε,ct−1
0,n(v),β(v).

Note that the perfect obstruction theory of FXct
Λ′ relative to DΛ′ is defined by (Rπ∗E ′)∨, for

E ′ := E ′x ⊕ E ′p :=
M⊕
i=1

(L⊗wi ⊗O(−∆−
∑n

k=1∆k))|C′g ⊕
N⊕
j=1

(L⊗−d ⊗ ωπ,log),

where ∆ ⊂ ∆′ are the nodes at C ′g. By the normalization exact sequence, we may write
Rπ∗E ′ as the cone of

Rπ∗E ′x|C′g ⊕Rπ∗E
′
p|C′g ⊕

⊕
v∈T

Rπ∗E ′p|C′v → E
′
p|∆′ .

Define DΛ′′ in the same way as DΛ′ , but instead of one line bundle L on all of C, take one
line bundle Lg on C ′g and one line bundle Lv on each Cv for v ∈ T . We can then use the cone
of

Rπ∗E ′x|C′g ⊕Rπ∗E
′
p|C′g ⊕

⊕
v∈T

Rπ∗E ′p|C′v →
⊕
v∈T

TIXct ,

which is induced by the map E ′p|q → TIXct coming from the Euler sequence at each node
q ∈ ∆′, to define a perfect obstruction theory of FXct

Λ′ relative to DΛ′′ . Note that the two
relative perfect obstruction theories of FXct

Λ′ yield the same absolute perfect obstruction
theory.

For FXct′

Λ′ , we can define a perfect obstruction theory relative to DΛ′′ via

M⊕
i=1

(L⊗wig ⊗O(−∆−
∑n

k=1∆k))⊕
N⊕
j=1

(
(L⊗−dg ⊗ ωπ,log)⊕

⊕
v∈T

(L⊗−dv ⊗ ωπ,log)

)
,
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where Lg and Lv are the universal line bundles on C ′g and Cv. Then, the relative perfect

obstruction theories of FXct
Λ′ and FXct′

Λ′ relative to DΛ′′ are compatible with respect to the

morphism ∆̃. On the direct product FXct′

Λ′ , we may define a cosection σ′′ as in Section 2.5,
but working only on the component Cg. This cosection pulls back to the cosection σ′ of
FXct

Λ′ . Therefore, by cosection-localized pullback, we have

(37) [FXct
Λ′ ]

vir
σ′ = ∆̃!

(
[FXct′

Λ′ ]
vir
σ′′

)
.

Combining (36) and (37), we have shown that

ι∗[FZΛ]vir = p̃∗∆̃!
(
[FXct

Λ′ ]
vir
σ′′

)
∩
∏
v∈T

e(R1π∗E ′′v ).

Since FXct
Λ′ is defined as a product, [FXct′

Λ′ ]
vir
σ′′ clearly splits as a product of virtual cycles for

each factor. The factor of Xε,ct
Γ yields a virtual cycle [Zε

Γ]vir, while the factor corresponding

to each v ∈ T , after combining with e(R1π∗E ′′v ), yields [Xε,ct−1
0,n(v),β(v)]

vir. Thus, we recover the

statement of Lemma 4.5.

4.3.5. Comparison. We are finally ready to express the total contribution of each localization
graph Λ in the form needed for what follows. Let the dual graph Γ′ associated to Λ be defined
as in Subsection 4.3.4, and let

p : FXct
Λ → Xε,ct

Γ′

be the map that forgets L2 and ~z and contracts unstable components (while preserving
markings at the stable vertices to keep track of where trees of rational components were
attached). Then, by Lemma 4.5 and the virtual normal bundle computations of the previous
subsections, we can write

p∗

(
[FZΛ]vir

e(Nvir
Λ )

)
= deg(p) · [Zε

Γ′ ]
vir
tw ·

∏
h∈H(Γ′)

ev∗h(Fh(ψh)),

where H(Γ′) is the set of half-edges of Γ′. The factors Fh(z) are valued in H(λ)[z] and, in the
case that h is a leg, are obtained by collecting localization factors and performing integrals
over moduli spaces Zε

0,n(v),β(v) corresponding to h. If h belongs to an edge e = {h, h′},
we choose any way of distributing localization factors corresponding to e among Fh and
Fh′ . In the case where β(v) > 0, the integrals over Zε

0,n(v),β(v) are against the virtual cycle

[Xε,ct−1
0,n(v),β(v)]

vir
σ , where Xε,ct−1

0,n(v),β(v) is defined as in the previous subsection. The degree deg(p)

consists of root stack automorphism factors (δ(e))−1 for each edge of Λ, as well as up to
two factors of d−1

m(h) for each edge of Λ due to the fact that the edge moduli space uses the

ordinary inertia stack while the fiber products are relative to the rigidified inertia stack.
More precisely, all edges in Λ that have a basepoint give only one factor of d−1

m(h) while any

other edge gives d−2
m(h).

Note that only a few factors appearing in the localization formula depend on multiplicities:

• the prefactors of (32), which give a factor of dm(h) for each edge in the dual graph Γ
• the factors dm(h) from Section 4.3.3 for each edge of Γ
• the factors d−1

m(h) from Section 4.3.2 for each edge of Λ with a base point
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The second and third factors are included in the Fh. Let us define a modified series F ′h(ψh) is
obtained from Fh(ψh) by removing the second and third factors, while adding in the factors
(δ(e))−1 from deg(p). Then, we can write∏

h∈H̃(Λ)

dm(h) · p∗
(

[FZΛ]vir

e(Nvir
Λ )

)
= [Zε

Γ′ ]
vir
tw

∏
e∈E(Γ′)

d2
m(e)

∏
h∈H(Γ′)

ev∗h(F
′
h(ψh)).

The key point in what follows is that the insertion F ′h corresponding to a tree of unstable
rational components with β-degree zero does not depend on the GIT quotient X if one
regards the hyperplane class H as a formal variable. Therefore, F ′h equals the corresponding
factor in the case where the GIT quotient X is a single point, under the substitution λ→ λ0.
We consider this setting further in the next subsection.

Remark 4.8. Our calculations of the vertex, edge, and node contributions to the virtual
normal bundle carry over directly to the geometric chamber and can be found in [21]. The
decomposition of the virtual cycle carried out in Lemma 4.5 also holds in the geometric
chamber; this can be obtained by the same proof as above, or, if one assumes the equivalence
of the cosection-localized virtual cycle with Ciocan-Fontanine–Kim–Maulik’s virtual cycle on
Mε

g,n(Y, β), it follows from the known decomposition along nodes. Thus, as we saw in [21],
it is also the case that the insertion corresponding to a tree of rational components with
β-degree zero in the geometric chamber equals the corresponding insertion for X = {point}
under the substitution λ→ λ0, which is the crucial fact needed for what follows.

4.4. Equivariant orbifold projective line. If the GIT quotient X is replaced by a single
point (so that there are no sections ~x, ~p), then the twisted graph space reduces to the usual
moduli space of stable maps to P1. In this section, we summarize explicit computations
from [21, Section 4] of related generating series that play a role in the twisted graph space
localization to follow.

As in Section 4.2, the C∗-fixed loci in Mg,n(P1, δ) can be indexed by n-legged graphs Γ,
where each vertex v is decorated by an index j(v) ∈ {0,∞} and a genus g(v), and each edge
e is decorated by a degree δ(e) ∈ Z≥1. Each vertex v corresponds to a maximal sub-curve
of genus g(v) contracted to the single point j(v) ∈ P1, or, in the unstable case where the
vertex has genus zero and valence one or two, to a single point in the source curve. Each
edge e corresponds to a noncontracted component, which is necessarily of genus zero, and
on which the map to P1 is of the form [x : y] 7→ [xδ(e) : yδ(e)] in coordinates.

Fix insertions α1, . . . , αn ∈ H∗C∗(P1), and let p : Mg,n(P1, δ)→Mg,n be the forgetful map.
Then the localization formula expresses the class

p∗

(
n∏
i=1

ev∗i (αi) ∩ [Mg,n(P1, δ)]vir

)
as a sum over contributions from each fixed-point graph Λ. These expressions can be stated
more efficiently by considering the generating series

(38)
∞∑
δ=0

yδp∗

(
n∏
i=1

ev∗i (αi) ∩ [Mg,n(P1, δ)]vir

)
for a Novikov variable y.

Let Φ denote the sum of all contributions to (38) from graphs Λ on which there is a vertex
v with g(v) = g and j(v) = 0, and such that, after stabilization, the generic curve in the
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moduli space corresponding to Λ is smooth; the second condition means that there is no
tree emanating from v that contains more than one marking. Therefore, emanating from the
vertex v on such a graph, there are n (possibly empty) trees on which at least one marking
lies and l trees with no marking, for some integer l. It follows that

(39) Φ =
∞∑
l=0

1

l!
πl∗

(
g∑
i=0

ci(E)λg−1−i
n∏
k=1

S(αk, ψk)
n+l∏

k=n+1

ε(ψk)

)
,

in which πl : Mg,n+l → Mg,n denotes the forgetful map, and E is the Hodge bundle. The
series S(α, z) in (39) is the universal generating series of localization contributions of a tree
emanating from a vertex v with j(v) = 0 that contains exactly one of the markings and has
an insertion of α ∈ H∗C∗(P1). The series ε(z), similarly, is the generating series of localization
contributions of a tree containing none of the markings. Clearly, such a tree needs to have
degree at least one, so ε(z) is a multiple of y.

Let ψk be the pullback under πl of the class ψk on Mg,n. It is well-known that ψk differs
from ψk exactly on the boundary divisors of Mg,n where the kth marking and some of
the last l markings lie on a rational tail. By rewriting the classes ψ1, . . . , ψn in terms of
ψ1, . . . , ψn and boundary divisors, and for each summand integrating along the fibers of the
map forgetting all markings of the involved boundary divisors, we can rewrite Φ in the form

Φ =
∞∑
l=0

1

l!
πl∗

(
g∑
i=0

ci(E)λg−1−i
n∏
k=1

S̃(αk, ψk)
n+l∏

k=n+1

ε(ψk)

)

for modified universal series S̃(α, z). Surprisingly, the series S̃(α, z) is easier to compute
than S(α, z). In fact, it is closely related to the R-matrix for the equivariant Gromov–
Witten theory of P1.

For the proof of Theorem 3.1, what is relevant from this formula is S̃(α, 0), and we use

the following result from [21]. (Note that S̃ is called S̃0 in [21].)

Lemma 4.9. We have the identities

S̃(1P1 , 0) = φ−1/4,

S̃(H, 0) = φ−1/4

(
λ

2
+
λ

2

√
φ

)
,

in which

φ := 1 +
4y

λ2
.

5. Proof of Theorem 3.1

We now turn to the proof of Theorem 3.7, which, as explained above, implies Theorem 3.1.
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First, we introduce a bracket notation in order to write Theorem 3.7 in a more economical
way:(∏

h∈H

ev∗h(φhψ
ah)

)WC

Γ

:=
∏
h∈H

ev∗h(φhψ
ah) ∩ [Zε

Γ]vir
tw

−
∑

K={kv}v∈V (Γ)

1∏
v kv!

∑
~β={βvi }v∈V (Γ),0≤i≤kv
βv0 +βv1 +···+βvkv=β(v)

b~β∗c∗

∏
h∈H

ev∗h(φhψ
ah)

∏
v∈V (Γ)

kv∏
j=1

ev∗v,j(µ
ε,tw
βvj

(−ψ)) ∩ [Z∞Γ
K,~β

]vir
tw

 .

Here, H is any subset of the half-edges of Γn′ , and otherwise the notation is as in Theorem 3.7.
One can extend the definition of (· · · )WC

Γ by linearity to allow any insertions in H[[ψ]].
With this notation, the statement of Theorem 3.7 can be written as

(40)
∞∑
l=0

1

l!
πl∗

∏
h′∈L′

ev∗h′(ε
λ0(ψ))

∏
h∈L(Γ)

ev∗h(αh)

WC

Γ+l

= 0,

where L(Γ) is the leg set of Γ and L′ stands for the set of the l additional legs. It suffices
to prove the theorem without any insertions αh, with the understanding that the only state-
space elements that can be pulled back under our evaluation maps and paired with the
virtual class are those of compact type.

Remark 5.1. The proof is essentially formal once one assumes wall-crossing results in genus
zero and the localization calculations of Sections 4.3 and 4.4. In particular, by [15] and
Remark 4.8, the following proof applies without modification to the geometric chamber,
yielding the other half of Theorem 1.2.

Proof of Theorem 3.7. First, apply induction on the degree β. When β = 0, the result is
trivially true, since ε-stable and ∞-stable quasimaps agree in degree zero.

Assume, then, that β > 0 and that the theorem holds for all β′ < β, and apply induction
on the decorated graph (Γ, v•, n

′). The partial order on the set of such data used to organize
the induction is given by setting

(Γ′, v′•, n
′′) ≤ (Γ, v•, n

′)

if Γ is obtained from Γ′ by replacing a subgraph Γ′′ ⊂ Γ′ containing v′• by the single vertex
v•, and n′′(v) = n′(v) for all v ∈ Γ \ {v•}. This partial order is illustrated in Figure 2. In
order to be able to apply induction, it is important to note that there is no infinite chain
with respect to this partial order.

Now, suppose that the theorem holds for all (Γ′, v′•, n
′′) < (Γ, v•, n

′). In order to prove that
it holds for (Γ, v•, n

′), the strategy is to lift to the twisted graph space and apply localization.
There are many dual graphs for the twisted graph space that correspond (under the map p
that forgets L2, z1, and z2) to Γ, but we describe a very special set of such graphs that are
constructed to control the localization graphs that appear. The idea is that, for each vertex
v of Γ other than v•, we replace v with a vertex of δ-degree zero in the twisted graph space,
so that it is forced to be a vertex component in any contributing localization graph. We
replace each edge e of Γ with a vertex of δ-degree 1, so that it becomes an edge component
in the localization graphs. All the remaining δ-degree is concentrated at v•, which means
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qpihdefg1 qpihdefgcba`VWXY2 (Γ, v•, n
′)

qpihdefg1 qpihdefgcba`VWXY1 qpihdefg1 qpihdefg1 qpihdefg1 qpihdefgcba`VWXY1 qpihdefg1 qpihdefgcba`VWXY1 qpihdefg1 qpihdefgcba`VWXY0 qpihdefg1

Figure 2. An example of a graph (Γ, v•, n
′) and some of the graphs below it

in the partial order. The vertex v• (or, in the second line, v′•) is marked with
a double circle, and the numbers in each circle indicate the genus. The data
of n′ (or, in the second line, n′′) is not shown, but can be added arbitrarily as
long as the left-most vertex agrees between the first and second lines.

that v• may decompose into an entire subgraph in the contributing localization graphs—but,
away from v•, these graphs are identical to Γ.

To carry this out precisely, first choose a decomposition of the half-edges of Γ at v• into

H(v•) = N•0 ∪N•∞.
Let N ′0 be the set of all half-edges of Γ at vertices in V0 \ {v•}, and similarly, let N ′∞ be the
set of all half-edges of Γ at vertices in V∞. Let

N0 = N•0 ∪N ′0, N∞ = N•∞ ∪N ′∞.

Finally, choose an integer δ ≥ 0. Define a dual graph Γ̃δ for the twisted graph space by taking
any edge e of Γ consisting of a half-edge in N0 and a half-edge in N∞, and subdividing e by
adding a single new vertex v with g(v) = β(v) = 0. (This creates new half-edges, but the
multiplicities on these new half-edges are determined.) Extend the coloring on vertices of Γ

to vertices of Γ̃δ by setting

V (Γ̃δ) = V0 ∪ V∞ ∪ Vnew,

where Vnew denotes the vertices of Γ̃δ not coming from vertices of Γ. If we define

D : V (Γ̃δ)→ Z≥0

by

D(v) =


δ if v = v•
1 if v ∈ Vnew

0 otherwise

and define δ′ = δ+|Vnew|, then Γ̃δ defines a moduli space PZε
Γ̃δ

with a finite map to a substack

of PZε
g,n+n′,β,δ′ . Note that we have precisely constructed Γ̃δ so that we have

p : PZε
Γ̃δ
→ Zε

Γ,

where p is the morphism that forgets L2, z1, and z2 (and stabilizes as necessary).
The proof of the theorem now proceeds by computing, via localization, the difference

between the expressions

(41)
∞∑
δ=0

yδp∗

(∏
n∈N0

ev∗n(1⊗ ϕ0)
∏
n∈N∞

ev∗n(1⊗ ϕ∞) ∩ [PZε
Γ̃δ

]vir

)
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and

(42)
∞∑
δ=0

∑
K={kv}v∈V

1∏
v kv!

∑
~βv={βvj }j∈[kv ]

βv1 +···+βvkv=β(v)

∑
~δv={δvj }j∈[kv ]

δvj≤βvj
δvj=0 if v 6=v•

y
δ+δv•1 +···+δv•kv•

p∗b̃~βv∗c̃v∗

(∏
n∈N0

ev∗n(1⊗ ϕ0)
∏
n∈N∞

ev∗n(1⊗ ϕ∞)
∏
v∈V

kv∏
j=1

ev∗v,j(µ̃
ε
βvj ,δ

v
j
(−ψ)) ∩ [PZ∞

Γ̃δ,K
]vir

)
,

which, crucially, are both rational functions (in fact, Laurent polynomials) in λ. Here,

(43) ϕ0 =
[0]

λ
=
H

λ
, ϕ∞ = − [∞]

λ
= 1− H

λ
.

The morphisms b̃~βv and c̃v are lifts of b~βv and cv to the twisted graph space, and Γ̃δ,K is

obtained from Γ̃δ by setting the β-degree of all vertices to zero and adding kv additional legs
of multiplicity 1

d
to each vertex v. The mirror transformation µ̃ε of the twisted graph space

is defined by

∞∑
δ=0

yδµ̃εβ,δ(z) = µε,twβ (z)⊗ ϕ0 −
β∑
δ=1

yδ

[
J εtw
(
q, λ0

δ

)]
qβ
λ∞(

λ∞
δ

+ z
)∏δ

i=1

∏
j∈{0,∞}

iλj
δ

⊗ ϕ∞.

Finally, we note that in (41) and (42), insertions at n ∈ N0 and n ∈ N∞ can occur at
both marked points and half-nodes; the latter is well-defined by pushforward from the fiber
product defining PZε

Γ̃δ
or PZ∞

Γ̃δ,K
.

The definition of Γ̃δ is specifically chosen so that the only localization graphs contributing

to (41) are those obtained from Γ̃δ by

• replacing each v ∈ Vnew by an edge e with δ(e) = 1;
• keeping each vertex v ∈ (V0 ∪ V∞) \ {v•} the same;
• replacing v• by a localization graph Λ•δ of genus g(v•), total β-degree β(v•), and total

edge degree δ.

The description of the possible localization graphs for (42) is similar, except that in that
case Λ•δ has β-degree zero and additional markings depending on the choice of K.

We can view both (41) and (42) as sums over the same set of graphs in the following way.
For each tuple K and each choice of a contributing localization graph ΛK to (42), and each

choice of ~βv• and ~δv• , we define Λ by applying the following operations to ΛK :

• Remove all extra legs at vertices v with j(v) = 0 and add their β-degree to the
incident vertex.
• Replace each extra leg at a vertex v by j(v) = ∞ with a new edge connected to a

new genus-zero, valence-one vertex. The degree of the new edge is prescribed by ~δv• ,
and the β-degree of the former extra leg is put onto the new vertex.

The resulting Λ is a localization graph contributing to (41), so long as it satisfies δ(e) > β(v)
for each genus-zero, valence-one vertex v with unique incident edge e (see Remark 4.2). If
Λ does not satisfy this degree condition, but it satisfies all other conditions of a dual graph
contributing to (41), then we refer to it as a “fake localization graph.” Conversely, given a



HIGHER-GENUS WALL-CROSSING IN THE GLSM 43

fake localization graph Λ, we refer to the sum of all contributions of localization graphs ΛK

corresponding to Λ as the “contribution of Λ to (42).”
There are several summands in the contribution of Λ to (42). For each vertex v of genus

zero and valence one with unique incident edge e such that δ(e) > β(v), the local contribution
to the localization formula is given by

δβ(v),0
λ0

δ(e)
+ µε,twβ(v)

(
λ0

δ(e))

)

+
∑

k≥1,β0+···+βk=β(v)
k+β0>1

ev1,∗


k∏
i=1

ev∗i+1

(
µε,twβi

(−ψi+1)
)

(
λ0

δ(e)
− ψ1

)
k!

∩ [Z∞0,1+k,β0
]vir
tw


=

[
J∞,tw

(
q,
∑
β

qβµε,twβ

(
− λ0

δ(e)

)
,
λ0

δ(e)

)]
qβ(v)

,

where the first two summands correspond to the cases where v is unstable and the last
summand corresponds to the case where v is stable. By the J-function wall-crossing (15),
this contribution is equal to [

J ε,tw
(
q,

λ0

δ(e)

)]
qβ(v)

.

The definition of µ̃ε is exactly chosen such that the local contribution to the localization
formula of a vertex v of genus zero and valence one with unique incident edge vanishes if
δ(e) ≤ β(v). This means that the contribution to (42) of any fake localization graph Λ that
is not an actual localization graph contributing to (41) vanishes. Because of that, from now
on we only consider the contribution of actual localization graphs to the difference of (41)
and (42).

Fix a localization graph Λ contributing to (41), and let ΓΛ be the prestable dual graph of
the image under p of a generic element of the fixed locus associated to Λ (in other words,
ΓΛ is the graph Γ of Section 4.3.4). If Λ has a genus-zero component of positive β-degree
that is contracted under the forgetful map, then the degree of the vertex of ΓΛ to which
this component is contracted is strictly less than β. It follows that the contribution of this
vertex to (41) equals its contribution to (42), by the inductive hypothesis together with an
application of the genus-zero wall-crossing theorem [23] and the above application of the
J-function wall-crossing. Thus, for the study of the difference of (41) and (42), we can from
now on assume that the localization graphs have no genus-zero, valence-one vertex of positive
β-degree.

Notice that ΓΛ is obtained from the original dual graph Γ by (possibly) degenerating the
vertex v• but leaving all other vertices the same, and Λ is obtained from ΓΛ by attaching trees
of the following types, which we refer to as type-1, type-2, and type-3 trees, respectively:

(1) those that connect two vertices of ΓΛ that come from the degeneration of v•;
(2) those that are attached to a single vertex of ΓΛ and contain exactly one leg of v•;
(3) those that are attached to a single vertex of ΓΛ and contain no leg of v•.

The local contribution of any such tree to the localization formulas for (41) or (42) are
evidently identical.
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Notice, furthermore, that many localization graphs Λ yield the same dual graph ΓΛ; in
light of this, we rearrange the localization graphs according to the dual graph they produce.
Specifically, let Γ′ be any dual graph arising as ΓΛ for some Λ. We define the decorations on
Γ′ by first choosing an arbitrary new vertex v′• of Γ′ such that j(v′•) = 0 for all Λ such that
ΓΛ = Γ′. Then, for each such Λ, define n′′Λ : V (Λ)→ Z≥0 by

n′′Λ(v) =


n′(v), if v /∈ Λ•δ ,

0, if v = v′•,

#{type-3 trees at v} otherwise,

Finally, define the coloring V (Γ′) = V ′0 ∪ V ′∞ of the vertices of Γ′ via the labels j(v) on the
stable vertices of any Λ such that ΓΛ = Λ.

Fix a decorated dual graph (Γ′, v′•, n
′′), and consider the set of localization graphs

Loc(Γ′) = {Λ | ΓΛ = Γ′, n′Λ = n′′}.

Furthermore, within Loc(Γ′), fix a set of Λ that agree with each other except for type-3
trees at v′•. Let Sλ0(ϕj, z) be the generating series keeping track of the contribution to the
localization formula for (41) (or (42)) of all type-2 trees attached to v′• and with insertion
ϕj at the leg, and let ελ0(z) be the similar generating series corresponding to type-3 trees
attached to v′•. We note that Sλ0(ϕj, z) agrees with S(ϕj, z) from Section 4.4 except for the
substitution λ→ λ0, and the relation between ε and ελ0 is the same.

The contribution of our fixed set of localization graphs to the difference of (41) and (42)
is essentially

∞∑
l=0

1

l!
πl∗

(∏
h∈H

ev∗h(Uh(ψ))
∏
h∈L′

ev∗h(ε
λ0(ψ))

)WC

Γ′+l

,

where H and L′ denote the set of half-edges at v′• or the l additional half-edges, respectively,
and Uh(ψ) stands for the localization contribution of the (possibly empty) tree at h. The
above formula differs from the correct formula by an invertible factor from the localization
contribution of trees that are not attached to v′•.

We claim that Theorem 3.7 would imply that this contribution is zero. Indeed, rewriting
the insertions in terms of the ψ-classes ψ pulled back under πl and using a slightly generalized
bracket notation, it becomes

(44)
∞∑
l=0

1

l!
πl∗

(∏
h∈H

ev∗h(Ũh(ψ))
∏
h∈L′

ev∗h(ε
λ0(ψ))

)WC

Γ′+l

,

where the relation between Uh and Ũh is the same as the one between S and S̃ discussed in
Section 4.4. Adding insertions has the effect of multiplying (40) by a cycle, so if Theorem 3.7
holds for (Γ′, v′•, n

′′), then the contribution of (Γ′, v′•, n
′′) to the localization must vanish. In

particular, if v• degenerates at all in the passage from Γ to Γ′, then the contribution of
(Γ′, v′•, n

′′) to the difference of (41) and (42) vanishes by the induction hypothesis.
Thus, all that remains is the contribution to the localization formula from Λ for which

the decorated stabilized graph is the same as (Γ, v•, n
′) except for possible additional legs at

v•. The contribution from these remaining graphs to the difference of (41) and (42) can be
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written as

∞∑
l=0

1

l!
πl∗

∏
h∈N•0

ev∗h(S̃
λ0(ϕ0, ψ))

∏
h∈N•∞

ev∗h(S̃
λ0(ϕ∞, ψ))

∏
h∈L′

ev∗h(ε
λ0(ψ))

WC

Γ+l

.

We filter these remaining localization contributions (as well as the statement of Theorem 3.7)
according to cohomological degree. This can be made explicit by separating the “insertion”
exp(ελ0) into its components of degree i:

∞∑
l=0

1

l!
ελ0(z1)⊗ · · · ⊗ ελ0(zl) =

∞∑
i=−∞

εi,

where the degree of a homogeneous element

φ1 ⊗ · · · ⊗ φl λiyjza1
1 · · · z

al
l ∈ H̃

⊗l(λ)[[y, z1, . . . , zl]]

is defined by

codim(φ1) + · · ·+ codim(φl) + 0 · (i+ j) + (a1 + · · ·+ al)− l.
We can further decompose

εi =
∞∑
l=0

εli,

such that εli ∈ H⊗l(λ)[[y, z1, . . . , zl]].
We now apply a further induction on i to prove that the εi-part of the localization contri-

bution, namely

(45)
∞∑
l=0

1

l!
πl∗

∏
h∈N•0

ev∗h(S̃
λ0(ϕ0, ψ))

∏
h∈N•∞

ev∗h(S̃
λ0(ϕ∞, ψ)) · ev∗Hl(ε

l
i(ψHl))

WC

Γ+l

,

and the εi-part of Theorem 3.7, that is

(46)
∞∑
l=0

1

l!
πl∗
(
ev∗Hl(ε

l
i(ψHl))

)WC

Γ+l
,

both vanish. Here, abusing notation somewhat, we denote by evHl the evaluation map at all
of the l additional markings and by ψHl the corresponding collection of ψ-classes.

To start the induction, notice that for i� 0, the εi-part of the localization contribution of
Γ has dimension greater than the dimension of each component of Zε

Γ, so this contribution
vanishes. Suppose, then, that (45) vanishes whenever i < i0. Consider the part of the
contribution of Γ in dimension

(47) vdim(Zε
Γ)− i0.

The part in this dimension only involves εi for i ≤ i0. Moreover, all of its terms εi for i < i0
are obtained from (46) by multiplication by a cohomology class, and hence they vanish by
the inductive hypothesis. Thus, the part of the localization contribution of dimension (47)
equals

(S̃(ϕ0, 0))|N
•
0 |(S̃(ϕ∞, 0))|N

•
∞|

∞∑
l=0

1

l!
πl∗
(
ev∗Hl(ε

l
i(ψHl))

)WC

Γ+l
.
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The key observation, then, is that by Lemma 4.9 and (43), this contribution changes by a
factor of

(48)
1−
√
φ

1 +
√
φ

if we change our choice of N•∞ such that it contains one additional element, and so that N•0
contains one element less. This is possible because either Γ is the trivial graph and v• has all
of the legs (of which there are at least one), or Γ is a non-trivial graph and there is therefore
at least one edge at v•.

The change (48) in the contribution, though, is not a rational function in λ, despite the
fact that, before and after the change, the contribution is a Laurent polynomial in λ. This
is only possible if the contributions at hand are identically zero, which completes the proof
that the εi0-part of the contribution of Γ to the difference between (41) and (42) vanishes.
Dividing by

(S̃(ϕ0, 0))|N
•
0 |(S̃(ϕ∞, 0))|N

•
∞|

proves the εi0-part of Theorem 3.7. �

Appendix A. Wall-crossing when n = 0 (by Yang Zhou)

In this appendix, we extend the wall-crossing in the Landau–Ginzburg phase to the case
n = 0, thus completing the proof of Theorem 1.2. Thanks to Theorem 3.1, in order to express
[Zε

g,0,β]vir in terms of∞-theory virtual cycles, it suffices to express it in terms of [Zε
g,(1/d),β]vir.

This can be done via an analogue of the dilaton equation when g > 1, and via an analogue
of the divisor equation when N > 1.

The direct generalizations of the dilaton and divisor equations fail in this setting, due to
the incompatibility of the virtual cycles under the forgetful map

Zε
g,(1/d),β → Zε

g,0,β.

However, this incompatibility can be remedied by replacing the marking with a “light”
marking, which can indeed be forgotten without affecting the virtual cycle. Applying the
techniques developed in the previous work [46], the virtual cycle with a light marking can
then be related to [Zε

g,(1/d),β]vir via another wall-crossing formula.

A.1. The light marking. The first task is to define ε-stable Landau–Ginzburg quasimaps
with a light marking of multiplicity 1/d. We assume that ε is not on a wall—i.e., kε 6= 1 for
any integer k—and that 2g − 2 + n + εβ > 0. We then pick a positive rational number δ
small enough so that

(*) kε− 1 and kε− 1 + δ have the same sign for any integer k.

Definition A.1. An ε-stable Landau–Ginzburg quasimap to Z with a light marking of multi-
plicity 1/d and n heavy markings consists of an (n+ 1)-pointed prestable Landau–Ginzburg
quasimap of genus g to Z

(C; q1, . . . , qn+1;L; ~p)

satisfying the following conditions:

• Light marking: The isotropy group at q1 is cyclic of order d, and the line bundle L
has multiplicity 1/d at q1.
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• Nondegeneracy: The zero set of ~p is disjoint from the markings q2, . . . , qn+1 and the
nodes of C, and for each zero q of ~p, the order of the zero satisfies

(49) ordq(~p) ≤
1

ε
.

Here, when q = q1, we define the vanishing order of pi to be the multiplicity of the
divisor (pi) on the coarse curve, or in other words, the integer k such that

(pi) = kd[q1] + [other points].

In particular, by (*), condition (49) for q = q1 is equivalent to δ + εordq1(~p) < 1.
• Stability: The Q-line bundle

(L⊗−d ⊗ ωlog)⊗ε ⊗ ωlog(d(δ − 1) · [q1])

is ample. (Note, here, that the line bundle ωlog(d(δ − 1) · [q1]) is the pullback of
ω|C|(δq1 + q2 + · · ·+ qn+1), where qi is the image of qi in the coarse curve |C|.)

The stability condition above is equivalent to q1 being a weight-δ (“light”) marking and
q2, . . . , qn+1 being weight-1 (“heavy”) markings, in the sense of [16]. It is clear that the
definition is independent of the choice of δ.

The theory of quasimaps with a light marking is parallel to the case with only heavy
markings. In particular, there is a proper Deligne–Mumford stack Zε,δ

g,(1/d)+n,β parameterizing

genus-g, ε-stable Landau–Ginzburg quasimaps of degree β to Z, with a light marking of
multiplicity 1/d and n heavy markings, up to isomorphism. The compact-type virtual cycle

[Zε,δ
g,(1/d)+n,β]vir and evaluation map ev1 are defined in the same way as before, with the only

difference being that ev1 maps to the rigidified inertia stack I[CN/C∗] for the action of C∗
on CN with weights (d, . . . , d). Indeed, it lands in the component indexed by 1̄ ∈ Zd, which
is isomorphic to the quotient [CN/C∗] by the weight-1 action.

There is a forgetful morphism

τ : Zε,δ
g,(1/d)+n,β → Zε

g,n,β

forgetting the light marking, which only contracts components on which the degree of L is
zero. Thus, Zε,δ

g,(1/d)+n,β is identified with the universal curve of Zε
g,n,β, and in particular, τ is

flat. Moreover, the universal line bundles of the two moduli spaces are compatible under τ ,
and hence, so are the relative perfect obstruction theories. Thus, we obtain:

Lemma A.2. τ ∗[Zε
g,n,β]vir = [Zε,δ

g,(1/d)+n,β]vir.

A.2. The master space. Our next goal is to compare the virtual cycle for the moduli space
Zε,δ
g,(1/d),β with one light marking (and no heavy markings) to the virtual cycle for the moduli

space Zε
g,(1/d),β with one heavy marking (and no light markings). The technique for doing so

is localization on a larger moduli space that we refer to as the “master space”.
Assume that 2g− 2 +n+ 1 + εβ > 0 and 2g− 2 +n ≥ −1, and let S be any scheme. Then

the S-points of the master space are as follows:

Definition A.3. An S-family of ε-stable Landau–Ginzburg quasimaps to Z with a mixed
marking consists of

(π : C → S; q1, q2, . . . , qn+1;L,N ; ~p, v1, v2),

where
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(1) (π : C → S; ~q;L; ~p) is an S-family of (n + 1)-pointed prestable Landau–Ginzburg
quasimaps of genus g to Z;

(2) N is a line bundle on S;
(3) v1 ∈ H0(S, Tq1 ⊗ N) and v2 ∈ H0(S,N) are sections without common zeros, where

Tq1 is the line bundle on S formed by the relative tangent spaces to the coarse curves
at q1.

We require that this data satisfy the following conditions on each geometric fiber:

• Mixed marking: The isotropy group at q1 is cyclic of order d, and the line bundle L
has multiplicity 1/d at q1.
• Nondegeneracy: The zero set of ~p is disjoint from markings q2, . . . , qn+1 and the nodes

of C, and for each zero q of ~p, the order of the zero satisfies

ordq(~p) ≤
1

ε
.

• Generic Stability: The Q-line bundle

(L⊗−d ⊗ ωlog)⊗ε ⊗ ωlog

is ample.
• When v1 = 0, ~p does not vanish at q1.
• When v2 = 0, the Q-line bundle

(L⊗−d ⊗ ωlog)⊗ε ⊗ ωlog(d(δ − 1) · [q1])

is ample.

Thus, a family over a point consists of a prestable Landau–Ginzburg quasimap to Z
together with v1/v2 ∈ Tq1C ∪ {∞}, where q1 behaves as a heavy marking when v1 = 0
and as a light marking when v2 = 0. We call q1 a mixed marking in what follows, whereas
q2, . . . , qn+1 are heavy markings.

Theorem A.4. There is a proper Deligne–Mumford stack Z̃ε,δ
g,(1/d)+n,β (the “master space”)

parameterizing genus-g, ε-stable Landau–Ginzburg quasimaps of degree β to Z, with a mixed
marking of multiplicity 1/d and n heavy markings, up to isomorphism.

Proof. The same argument as in the proof of [46, Theorem 4] shows that the moduli problem
is represented by a Deligne–Mumford stack of finite type over C. We now use the valuative
criterion to prove its properness. The proof is similar to that of [46, Theorem 5].

Let R be a Henselian discrete valuation ring with residue field C. Let B = SpecR, with
closed point b ∈ B and generic point B◦ = B\{b}. For a stable family

ξ◦ = (π◦ : C◦ → B◦; ~q◦;L◦, N◦; ~p◦, v◦1, v
◦
2)

over B◦, we must show that (possibly after a finite base change) we can extend ξ◦ to a
B-family

ξ = (π : C → B; ~q;L,N ; ~p, v1, v2),

and the extension is unique up to unique isomorphism.
Let |C◦| be the coarse moduli of C◦. The line bundle

(L◦)⊗−d ⊗ ωπ◦,log
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descends to a line bundle M◦ on |C◦|, and the section ~p◦ descend to a section ~f ◦ of (M◦)⊕N .
Let q◦i be the image of q◦i on |C◦|, and we set

η◦ := (|π◦| : |C◦| → B◦; q◦1, . . . , q
◦
n+1;M◦; ~f ◦),

which is a family of prestable quasimaps to PN−1.
We claim that, for any B-family of prestable quasimaps

(50) η = (|π| : |C| → B; q1, . . . , qn+1;M ; ~f)

extending η◦, there is unique prestable extension ξ of ξ◦ whose underlying family of quasimaps
is η. Indeed, given η, by a standard argument (see, for example, [35, Theorem 1.5.1] or [20,
Thoerem 4.1.7]), there is a unique way (possibly after a finite base change) to add stack
structure at nodes and markings and extend L◦ to a representable d-th root L with

L⊗d ∼= ωπ,log ⊗M∨.

Then, as in [46, Theorem 5], there is a unique extension of (N◦, v◦1, v
◦
2) to (N, v1, v2) such

that v1 and v2 have no common zeros.
The stability condition for ξ can be reformulated in terms of η, v1, and v2 as follows: ξ

is stable if and only if (|π| : |C| → B; q1, . . . , qn+1) is a family of prestable (n + 1)-pointed
curves and for each geometric fiber,

• ~f does not vanish at the nodes;

• for each zero q of ~f , we have

ordq(~f) <
1

ε
;

• the Q-line bundle

M⊗ε ⊗ ω|C|/B([q1] + · · · [qn+1])

is ample;

• when v1 = 0, ~f does not vanish at q1;
• when v2 = 0, the Q-line bundle

M⊗ε ⊗ ω|C|/B(δ[q1] + [q2] + · · · [qn+1])

is ample.

We will show that, up isomorphism, there is a unique η satisfying the above conditions.
As in the proof of [46], we may assume that π◦ is smooth and both v◦1 and v◦2 are non-zero.

We first consider the case

(51) 2g − 2 + n+ ε degM + δ > 0.

When viewing q1 as a light marking, the generic fiber is ε-stable. Possibly after finite base
change, we extend the quasimap η◦ to an ε-stable B-family with light marking q1, and we get
a unique extension (N, v1, v2) such that v1 and v2 have no common zeros. The only situation
that violates the master-space stability condition is if

(52) v1(b) = 0 and q1 is a zero of ~f in the special fiber.

If this happens, we blow up the total space of the family at the marking q1 of the special

fiber. It is easy to see that ~f ◦ uniquely extends to a B-family of prestable quasimaps from
the new family of curves to PN−1.
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We repeat this procedure until (52) does not hold. As in [46] , the vanishing order of v1 at
b drops by one after each step, so the procedure eventually terminates. Finally, we contract
the exceptional divisors on which M is trivial. Note that M has nontrivial degree on the
exceptional divisor of the last blowup, which contains q1 and is not contracted. Thus, it is
easy to see that after contractions, (52) still does not hold, so we do get a stable family in
the case of (51).

Suppose, now, that

(53) 2g − 2 + n+ ε degM + δ ≤ 0.

Since we have assumed that 2g−2+n ≥ −1 and δ is sufficiently small, (53) only holds when
g = 0, n = 1, and ε degM < 1. In this case, we can find a B◦-isomorphism between |C◦|
and P1 ×B◦, identifying q◦1 with {0} ×B◦, q◦2 with {∞}×B◦, and v◦1/v

◦
2 with the standard

tangent vector ∂/∂z, where z is the coordinate on P1. We first take the constant family as
the extension of the curves, and the markings and the prestable quasimaps extend uniquely.
The only situation that violates the master-space stability condition is when

(54) q2 is a zero of ~f in the special fiber.

If this happens, we modify the underlying curves by repeated blowups at q2 of the special fiber
until (54) no longer holds. Finally, we blow down the unstable components. This produces
a stable reduction. Note that the irreducible component of the special fiber containing q1

needs to be blown down precisely when its M -degree is zero, which takes v1 to 0 and q1 to

some point where ~f does not vanish. This completes the construction in the case of (53).
The uniqueness part is standard, so we omit the details. The key is that, if C ′ is a

smooth rational subcurve containing q1 and only one other special point, then C ′ cannot be
contracted unless degM |C′ = 0, since contracting C ′ takes v1 to 0. �

A.3. Virtual cycle for the master space. Let X̃ε,δ
g,(1/d),β be the master-space analogue of

Xε
g,(1/d),β. More precisely, an S-point of X̃ε,δ

g,(1/d),β is

(π : C → S; q1;L,N ; ~p, v1, v2) ∈ Z̃ε,δ
g,(1/d),β(S)

together with a section

~x = (x1, · · · , xM) ∈ Γ(C,
⊕M

i=1L
⊗wi).

As before, X̃ε,δ
g,(1/d),β admits a perfect obstruction theory relative to the smooth Artin stack

D̃g,(1/d),β parametrizing only (C; q1;L,N ; v1, v2). The relative perfect obstruction theory is
defined by the same formula as (11), and the marking is narrow. The same formula as before

defines a cosection whose degeneracy locus is Z̃ε,δ
g,(1/d),β, and we get a cosection-localized

virtual class

[Z̃ε,δ
g,(1/d),β]vir ∈ A∗(Z̃ε,δ

g,(1/d),β).

A.4. Localization on the master space. From now on, we assume that g ≥ 1.

Define a C∗-action on X̃ε,δ
g,(1/d),β by7

t · (π : C → S; q1;L,N ; ~p, ~x, v1, v2) = (π : C → S; q1;L,N ; ~p, ~x, t−1v1, v2), t ∈ C∗.

7We note that this action is opposite to the one in [46].
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The perfect obstruction theory is equivariant and the cosection is invariant, and the re-
striction of the perfect obstruction theory to each fixed locus has a global resolution. The

degeneracy locus Z̃ε,δ
g,(1/d),β of the cosection has three types of fixed loci:

(1) F0Z̃ is the vanishing locus of v1.

(2) F∞Z̃ is the vanishing locus of v2.

(3) For each 0 < β′ < 1/ε, Fβ′Z̃ is the locus where
• C = Cg∪C0, where C0 is a smooth rational subcurve and deg((L⊗−d⊗ωlog)|C0) =
β′;
• q1 ∈ C0 and Cg ∩ C0 are the only two special points of C0;
• neither v1 nor v2 is zero;
• ~p has vanishing order β′ at q1.

Set-theoretically, these are the only fixed loci. Indeed, if v1, v2 6= 0, then the only way that
an automorphism can re-scale t−1v1 back to v1 is by acting nontrivially on the component
C0 of C on which q1 lies. This changes the moduli point unless C0 has just one other special
point and all of deg(L⊗−d⊗ωC,log|C0) is concentrated in a single basepoint at q1, which forces
C0 to have genus zero, as claimed.

We now describe the stack structure of the fixed loci and compute their contributions to
the localization formula. The first two cases are the same as in [46, Lemma 7.15], so we only

state the results. The key to the proof is that F0Z̃ and F∞Z̃ are effective Cartier divisors
defined by the vanishing of v1 and v2, respectively.

Lemma A.5. The substack F0Z̃ is isomorphic to Zε
g,(1/d),β, where q1 is viewed as a heavy

marking. Its localization contribution is

[F0Z̃]vir

eC∗(Nvir
F0Z̃

)
=

[Zε
g,(1/d),β]vir

−z − ψ1

.

The substack F∞Z̃ is isomorphic to Zε,δ
g,(1/d),β, where q1 is viewed as a light marking. Its

localization contribution is

[F∞Z̃]vir

eC∗(Nvir
F∞Z̃

)
=

[Zε,δ
g,(1/d),β]vir

z + ψ1

.

Here, ψ1 is the ψ-class of the coarse curves at q1.

We now come to Fβ′Z̃. Recall that the multiplicity of L at q1 is 1/d, so the compatibility
condition (8) applied to Cg implies that the multiplicity of L|Cg at Cg ∩ C0 is

mβ′ :=

〈
β′ + 1

d

〉
.

Thus, the automorphism group of the node Cg∩C0 is cyclic or order dm := d/ gcd(d ·mβ′ , d).
Since the node is balanced, the multiplicity of L|C0 at Cg ∩ C0 is m• := 〈−mβ′〉.

We claim, in fact, that Fβ′Z̃ is isomorphic to a fiber product of the moduli space Zε
g,(mβ′ ),β−β′

with the locus F ε
β′ in the graph space GZε

0,1,β′ . Recall from the definition of the J-function
that F ε

β′ ⊂ GZε
0,1,β′ is defined as the fixed locus of the graph space where the only marking

lies at ∞ and all of the degree lies over 0. The multiplicity at the marking must be m•. In
the definition of the J-function, the virtual normal bundle Nvir

F ε
β′/GZ

ε
0,1,β′

has two parts:
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(1) a rank-1 part coming from deforming the marking away from ∞ ∈ P1, whose Euler
class is (−z);

(2) the moving part of the relative obstruction theory (10), which we denote byNvir,rel
F ε
β′/GZ

ε
0,1,β′

.

We now form a morphism

(55) ιβ′ : Zε
g,(mβ′ ),β−β′ ×IZ F

ε
β′ → Fβ′Z̃.

Here, let us denote the marking, ψ-class, and evaluation map of Zε
g,(mβ′ ),β−β′

by

q′1, ψ
′
1, and ev′1,

and denote by
êv• : F ε

β′ → IZ
the evaluation map of F ε

β′ at the unique marking ∞ with the inverted banding. The fiber
product in (55) is defined via ev′1 and êv•.

To define ιβ′ , take any S-point of Zε
g,(mβ′ ),β−β′

×IZ F ε
β′ , which consists of

(56)

ηg = (πg : Cg → S, q′1;Lg, ~pg) ∈ Zε
g,(mβ′ ),β−β′(S),

η0 = (π0 : C0 → S, q•;L0; ~p0) ∈ F ε
β′(S), and

a 2-morphism θ : ev′1
'→ êv•.

By the definition of F ε
β′ , C0 is P1 × S with additional stack structure along the marking

q• = {∞} × S. The idea is to glue q′1 with q• and place the light marking q1 at 0 ∈ P1. Let

(57) ρ : C ′0 → C0

be the d-th root stack of the divisor {0} × S with universal root q1 ⊂ C ′0. We also view q•
as a marking on C ′0. Note that, as relative Cartier divisors, d[q1] = ρ∗({0} × S).

Let L′0 = ρ∗L0 ⊗OE([q1]). Then

(58) ρ∗ (L′0) = L0 and ρ∗

(
L′0
⊗−d ⊗ ωC′0/S,log

)
= L0

⊗−d ⊗ ωC0/S,log.

Via the second isomorphism, ~p0 induces a section ~p′0 ∈ Γ((L′0
⊗−d ⊗ ωC′0/S,log)⊕N). Thus, we

get a family of genus-0 Landau–Ginzburg quasimaps

η′0 = (π0 ◦ ρ : C ′0 → S; q1, q•;L
′
0; ~p′0).

Note that the evaluation map of η′0 at q• is also ev•. The map ιβ′ is defined by gluing the
Landau–Ginzburg quasimaps ηg and η′0 along the markings q′1 and q• and setting N = OS,

v2 ≡ 1, and v1 ≡ ∂/∂z, where z is the coordinate on P1. This defines a morphism to Z̃ε,δ
g,(1/d),β

that maps each closed point to Fβ′Z̃. Moreover, the resulting family is C∗-invariant, so it

factors through Fβ′Z̃.

Lemma A.6. The morphism ιβ′ is an isomorphism onto Fβ′Z̃.

Proof. We construct a quasi-inverse. Given any family

(59) (π : C → S; q1;L,N ; ~p, v1, v2) ∈ Z̃ε,δ
g,(1/d),β(S)

in Fβ′Z̃, we must recover the gluing data (56). By the definition of Fβ′Z̃, over any closed
point s ∈ S, (59) comes from gluing the data (56), and the key is to show that we can split
the node in families over any (possibly non-reduced) base S.
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Since the family is C∗-fixed, C∗ acts on C and the morphism π : C → S is invariant. On
the fiber Cs = Cg,s∪C0,s over each closed point s ∈ S, C∗ acts on C0,s fixing q1 and the node
qn := Cg,s∩C0,s, and t ∈ C∗ maps the tangent vector t−1v1/v2 back to v1/v2. Hence, C∗ acts
nontrivially on the tangent space to C0,s at qn. It is obvious that C∗ acts trivially on Cg,s.
Hence it acts nontrivially on the first order deformation smoothing the node qn. Since the
family is fixed by C∗, the S-family of curves C can be decomposed as Cg and C0 glued at a
pair of markings.

Now it is clear how to recover (56): restricting the Landau–Ginzburg quasimaps to Cg
and C0 separately, we recover η′0 and ηg. It is easy to see that η′0 is equivalent to η0, and this
defines a quasi-inverse to ιβ′ . �

Let pr1 : Fβ′Z̃ → Zε
g,(mβ′ ),β−β′

and pr2 : Fβ′Z̃ → F ε
β′ be the projections.

Lemma A.7. We have

[Fβ′Z̃]vir = pr∗1[Zε
g,(mβ′ ),β−β′ ]

vir,

and the inverse of the equivariant Euler class of the virtual normal bundle restricted to Fβ′Z̃
is

1

eC∗(Nvir
Fβ′ Z̃

)
= pr∗1

( dm
−ψ′1 − z

)
· pr∗2

( 1

eC∗(N
vir,rel
F ε
β′/GZ

ε
0,1,β′

)

)
.

Proof. The proof is similar to that of Lemma 4.5.

Let Z ⊂ D̃g,(1/d),β be the reduced, locally-closed substack where q1 is on a rational tail of
degree β′ and v1 and v2 are both nonzero. The normal bundle of Z is moving. As in the

proof of Lemma 4.5, [Fβ′Z̃]vir can be defined by the fixed part of the absolute obstruction
theory induced by

(60)
(
Rπ∗

(⊕M
i=1

(
L⊗wi (−

∑n
k=1 ∆k)

)
⊕
⊕N

j=1P
))∨

,

which is a relative perfect obstruction theory relative to Z.
The universal curve decomposes as Cg ∪ C0, where C0 is the rational tail containing q1.

Let ∆0 ⊂ C0 and ∆g ⊂ Cg be the node Cg ∩ C0. The contributions from the subsheaf⊕N
j=1P|C0(−∆0) and the quotient sheaf

⊕M
i=1 (L⊗wi (−

∑n
k=1 ∆k)) |C0 to (60) are both mov-

ing, and this moving part is identified with pr∗2(Nvir,rel
F ε
β′/GZ

ε
0,1,β′

) thanks to the relation (58). The

remaining part is the fixed part, given by(
Rπ∗

(⊕M
i=1

(
L⊗wi (−∆g −

∑n
k=1∆k) |Cg

)
⊕
⊕N

j=1P|Cg
))∨

.

This is exactly the pullback of the compact-type perfect obstruction theory of Zε
g,(mβ′ ),β−β′

relative to Dg,(mβ′ ),β−β′ . Moreover, the cosections are compatible and the forgetful morphism
Z→ Dg,(mβ′ ),β−β′ is étale. Thus, the identity of virtual cycles follows from cosection-localized

pullback. The moving part of the tangent complex of D̃g,(1/d),β along Z is the normal bundle
of Z, whose Euler class is 1

dm
(−ψ′1 − z). �

Having established the contributions from each fixed locus, we can collect all of them to
get the localization formula on the master space. In particular, there is a morphism

ρ : Z̃ε,δ
g,(1/d),β → Zε,δ

g,(1/d),β



54 E. CLADER, F. JANDA, AND Y. RUAN

that forgets N, v1, and v2 and stabilizes as necessary, and we calculate the coefficient of z−2

in the class ρ∗(ψ1∩ [Z̃ε,δ
g,(1/d),β]vir) by C∗-localization. This coefficient is zero, but expressing it

in terms of contributions from each fixed locus yields a nontrivial relation. To calculate these

contributions, we first note that, under the isomorphism F0Z̃ ∼= Zε
g,(1/d),β from Lemma A.5,

the restriction of ρ to F0Z̃ is the morphism

c : Zε
g,(1/d),β → Zε,δ

g,(1/d),β

that replaces the heavy marking with a light marking and then stabilizes. Under the iso-

morphism F∞Z̃ ∼= Zε,δ
g,(1/d),β, the restriction of ρ to F∞Z̃ is the identity. Finally, under the

isomorphism Fβ′Z̃ from Lemma A.6, the restriction of ρ to Fβ′Z̃ is the composition of pr1

with the morphism

b : Zε
g,(mβ′ ),β−β′ → Zε,δ

g,(1/d),β

that replaces the last marking with a light marking that is also a basepoint of order β′.
Using Lemma A.5, Lemma A.6, and Lemma A.7 together with the projection formula, the

relation that results from localization is as follows:
(61)

ψ1 ∩ [Zε,δ
g,(1/d),β]vir = c∗

(
ψ1 ∩ [Zε

g,(1/d),β]vir
)
−
∑
β′

b∗

(
(ev′1)∗

(
µεβ′(−ψ′1)

)
∩ [Zε

g,(mβ′ ),β−β′ ]
vir
)
.

Another relation is obtained by calculating ρ∗(ev∗1(H) ∩ [Z̃ε,δ
g,(1/d),β]vir), where H is the

“hyperplane class” on [CN/C∗] ⊂ IZ. Concretely, ev∗1(H) is the Euler class of the line

bundle L⊗−d ⊗ ωC,log|q1 , and the restriction of ev∗1(H) to Fβ′Z̃ is equal to (ev′1)∗(H) + β′z.
The coefficient of z−1 in this pushforward is zero, but expressing it in terms of contributions
from each fixed locus and applying the same reasoning as above yields:

(62)

ev∗1(H) ∩ [Zε,δ
g,(1/d),β]vir =c∗

(
ev∗1(H) ∩ [Zε

g,(1/d),β]vir
)

+β′
∑
β′

b∗

(
(ev′1)∗

(
µεβ′(−ψ′1)

)
∩ [Zε

g,(mβ′ ),β−β′ ]
vir
)

−
∑
β′

b∗

(
(ev′1)∗

(
H

ψ′1
µεβ′(−ψ′1)

)
∩ [Zε

g,(mβ′ ),β−β′ ]
vir

)
.

Here, in the expression H
ψ′1
µεβ′(−ψ′1), we simply discard the term of µεβ′(−ψ′1) that does not

involve ψ′1.

A.5. Wall-crossing without a heavy marking. Equations (61) and (62) can be viewed
as wall-crossing formulas for converting a light marking to a heavy marking. Equipped with
them, we are prepared to prove the n = 0 case of the main wall-crossing theorem.

From now on, we compute on Zε
g,0,β and suppress all the pushforward notations. In

particular, the class that was denoted ψ′1 in the previous subsection will now be denoted
simply ψ1, and similarly for q′1 and ev′1. The meaning of ev∗i (H) and ψi are determined by
the virtual cycle that they are capped with.
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First, suppose N > 1. We then have β[Zε
g,0,β]vir = ev∗1(H) ∩ [Zε,δ

g,(1/d),β]vir by Lemma A.2.

Combining this with Theorem 3.1 and (62), we get

(63)

β[Zε
g,0,β]vir =

∑
β0+···+βk=β

1

k!
ev∗1(H)

k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i)) ∩ [Z∞g,(1/d)+k,β0
]vir

+
∑

β0+···+βk+β′=β

β′

k!
ev∗1
(
µεβ′(−ψ1)

) k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i)) ∩ [Z∞g,(mβ′ )+k,β0
]vir

−
∑

β0+···+βk+β′=β

1

k!
ev∗1

(
H

ψ1

µεβ′(−ψ1)

) k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i)) ∩ [Z∞g,(mβ′ )+k,β0
]vir.

Applying the divisor equation

(64)

ev∗1(H) ·
k∏
i=1

ψai1+i ∩ [Z∞g,(1/d)+k,β0
]vir =β0

k∏
i=1

ψaii ∩ [Z∞g,k,β0
]vir

+
k∑
j=1

(
ψ
aj−1
j

∏
i 6=j

ψaii

)
∩ [Z∞g,k,β0

]vir

for ∞-theory, we then obtain

(65)

ev∗1(H) ·
k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i)) ∩ [Z∞g,(1/d)+k,β0
]vir = β0

k∏
i=1

ev∗i (µ
ε
βi

(−ψi)) ∩ [Z∞g,k,β0
]vir

+
k∑
j=1

(
ev∗j(

H

ψj
µεβi(−ψj))

∏
i 6=j

ev∗i (µ
ε
βi

(−ψi))

)
∩ [Z∞g,k,β0

]vir.

Substituting (65) into (63) and rearranging the summation using the symmetry of the marked
points, we get

(66) β[Zε
g,0,β]vir = β

∑
β0+···+βk=β

1

k!

k∏
i=1

ev∗i (µ
ε
βi

(−ψi)) ∩ [Z∞g,k,β0
]vir,

which is exactly the statement of the wall-crossing theorem in this case.
Now, suppose that g > 1. In this case, we have (2g − 2)[Zε

g,0,β]vir = ψ1 ∩ [Zε,δ
g,(1/d),β]vir.

Combining this with Theorem 3.1 and (61), we get

(67)

(2g − 2)[Zε
g,0,β]vir =

∑
β0+···+βk=β

ψ1

k!

k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i)) ∩ [Z∞g,(1/d)+k,β0
]vir

−
∑

β0+···+βk+β′=β

1

k!
ev∗1
(
µεβ′(−ψ1)

) k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i))[Z
∞
g,(1/d)+k,β0

]vir.

Using the dilaton equation for ∞-theory, we get

(68)
ψ1

k!

k∏
i=1

ev∗1+i(µ
ε
βi

(−ψ1+i))∩ [Z∞g,(1/d)+k,β0
]vir =

2g − 2 + k

k!

k∏
i=1

ev∗i (µ
ε
βi

(−ψi))∩ [Z∞g,k,β0
]vir.
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Substituting this into (67), we again obtain the desired wall-crossing formula.
The only remaining case is when g = N = 1, but this can be handled exactly analogously

to the work of Guo–Ross [31] for the quintic threefold.
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