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ABSTRACT Sideroxydans species are important chemolithoautotrophic Fe(ll)-oxidizing
bacteria in freshwater environments and play a role in biogeochemical cycling of multiple
elements. Due to difficulties in laboratory cultivation and genetic intractability, the electron
transport proteins required for the growth and survival of this organism remain under-
studied. In Sideroxydans lithotrophicus ES-1, it is proposed that the Mto pathway trans-
fers electrons from extracellular Fe(ll) oxidation across the periplasm to an inner membrane
NapC/NirT family protein encoded by Slit_2495 to reduce the quinone pool. Based on
sequence similarity, Slit_2495 has been putatively called CymA, a NapC/NirT family protein
which in Shewanella oneidensis MR-1 oxidizes the quinol pool during anaerobic respiration
of a wide range of substrates. However, our phylogenetic analysis using the alignment of
different NapC/NirT family proteins shows that Slit_2495 clusters closer to NirT sequences
than to CymA. We propose the name ImoA (inner membrane oxidoreductase) for Slit_2495.
Our data demonstrate that ImoA can oxidize quinol pools in the inner membrane and
is able to functionally replace CymA in S. oneidensis. The ability of ImoA to oxidize quinol
in vivo as opposed to its proposed function of reducing quinone raises questions about
the directionality and/or reversibility of electron flow through the Mto pathway in S.
lithotrophicus.

IMPORTANCE Fe(ll)-oxidizing bacteria play an important role in biogeochemical cycles.
At circumneutral pH, these organisms perform extracellular electron transfer, taking up
electrons from Fe(ll) outside the cell, potentially through a porin-cytochrome complex
in the outer membrane encoded by the Mto pathway. Electrons from Fe(ll) oxidation
would then be transported to the quinone pool in the inner membrane via periplasmic
and inner membrane electron transfer proteins. Directly demonstrating the functionality
of genes in neutrophilic iron oxidizers is challenging due to the absence of robust genetic
methods. Here, we heterologously expressed a NapC/NirT family tetraheme cytochrome
ImoA, encoded by Slit_2495, an inner membrane protein from the Gram-negative Fe(ll)-
oxidizing bacterium Sideroxydans lithotrophicus ES-1, proposed to be involved in extracel- Editor Dianne K. Newman, California Institute
lular electron transfer to reduce the quinone pool. ImoA functionally replaced the inner of Technology
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the environment has been widely recognized in recent years (1). These bacteria rely on Accepted 30 August 2022
Fe(ll) as the electron donor while reducing oxygen to fix carbon dioxide (1-4). Despite the
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relevance of these bacteria, the understanding of electron transfer proteins required
for their growth and survival in the environment is primarily based on genomic anal-
ysis, heterologous expression, and biochemical analysis (5-9) due to their genetic
intractability. Although a genetic system has been reported for the obligate Fe(ll)-
oxidizing bacterium Mariprofundus ferrooxydans (10), methods to generate gene
deletions in this strain are still lacking, which is a critical tool for validating predic-
tions of functionality.

In Gram-negative bacteria, Fe(ll) oxidation would likely require either an outer
membrane protein or a periplasmic protein with access to extracellular environ-
ment, e.g., through an outer membrane porin, to oxidize Fe(ll) extracellularly (5).
The electrons released from Fe(ll) oxidation would then be transferred to quinone
pools in the inner membrane via periplasmic and inner membrane electron trans-
ferring proteins (5). Based on genomic analysis, the bc, complex (Complex lll) has
been proposed to be the inner membrane quinone reductase in most chemoli-
thoautotrophic Fe(ll)-oxidizing bacteria used to generate a proton gradient to drive
NADH production (5). A similar function has also been proposed for a NapC/NirT
family tetraheme containing protein encoded by Slit_2495 during Fe(ll) oxidation in
Sideroxydans lithotrophicus ES-1 (9), a freshwater chemolithoautotroph (5-7). The
proposed function of Slit_2495 is based on its sequence similarity with CymA,
another NapC/NirT protein known to oxidize quinol during reduction of multiple
electron acceptors in Shewanella oneidensis MR-1 (11). The S. lithotrophicus ES-1 ge-
nome also encodes a putative bc, complex (7), making the possible quinone reduc-
tase role of Slit_2495 functionally redundant (8). Since S. lithotrophicus ES-1 is not
yet genetically tractable, we heterologously expressed Slit_2495 and performed in
vivo assays in a S. oneidensis mutant where CymA was replaced by Slit_2495. Our
results revealed that Slit_2495 can functionally replace CymA in several modes of
anaerobic respiration. Slit_2495 has been putatively called CymA in the literature
(6, 8). However, phylogenetic analysis shows that Slit_2495 is more closely related
to NirT from Pseudomonas than to CymA from Shewanella. Based on our analysis,
we propose that Slit_2495 be named imoA for inner membrane oxidoreductase.

Phylogenetic analysis of ImoA was performed with respect to related NapC/NirT
family proteins. We included sequences of CymA from Shewanella species, NirT
from Pseudomonas species, NrfH from Desulfovibrio species, the membrane-bound
cytochrome c;5, sequences from Nitrosomonas species along with NapC/NirT family
protein sequences from 2 Sideroxydans species. Sequences from TorC or DorC were
not included in the analysis since both proteins contain 5 heme binding sites com-
pared to 4 heme binding sites in ImoA. Our phylogenetic analysis showed that
ImoA clustered close to NapC sequences from Escherichia coli and NirT sequences
from Pseudomonas (Fig. 1). Furthermore, the protein sequence of ImoA is 64% iden-
tical to NirT from Pseudomonas stutzeri and 54% identical to NapC from E. coli,
whereas it is only 33% identical to CymA from S. oneidensis MR-1.

We tested the ability of ImoA to oxidize quinol pools in the inner membrane by
expressing it in a S. oneidensis mutant lacking cymA. Expression of imoA comple-
mented the Fe(lll) citrate and anode reduction activities in S. oneidensis mutant lack-
ing cymA (Fig. 2A and B), consistent with ImoA oxidizing quinols in vivo. Furthermore,
expression of imoA partially complemented the growth defects of the cymA mutant strain
with dimethyl sulfoxide (DMSO) (Fig. 2C), fumarate (Fig. 2D), and nitrate (Fig. 2E) as elec-
tron acceptors, consistent with the ability of ImoA to transfer electrons to multiple periplas-
mic redox proteins in S. oneidensis.

IMPLICATIONS In S. lithotrophicus ES-1 ImoA is a c-type tetraheme cytochrome of
the NapC/NirT family proposed to act as a quinone reductase, receiving electrons
from iron oxidizing extracellular electron uptake pathway to reduce the quinone
pool (5-7). While ImoA may indeed mediate inward electron flow in S. lithotrophi-
cus, another quinone reductase (a putative bc, complex) is also encoded in the ge-
nome, and it is unclear what, if any, advantages would be gained by having 2
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FIG 1 Phylogenetic analysis of ImoA with respect to other NapC/NirT proteins. Maximum likelihood tree was built using 2,000 bootstrap replications.
Clusters of different NapC/NirT protein families used in the analysis are identified by the brackets labeled with specific proteins and black arrow

points to ImoA sequence. The tree is drawn to scale, and the scale bar represents substitutions per site.

different quinone reductase systems. While ImoA was previously proposed to
function as a quinone reductase during Fe(ll) oxidation (5), the results presented
in this work (Fig. 2) suggest the possibility that ImoA may oxidize quinol pools.
However, S. lithotrophicus has been reported to be metabolically limited, and
known to grow only using either Fe(ll) or thiosulfate oxidation (7). The potential
function of ImoA to oxidize quinol in S. lithotrophicus is intriguing from both phys-
iological and ecological perspectives. Fe(ll) oxidation pathways are dependent on
electron transport chains that require quinone reduction rather than a quinol oxi-
dation (5). If ImoA oxidizes quinol, as indicated by our data, what role could it be
playing in S. lithotrophicus? By analyzing the S. lithotrophicus ES-1 genome, we
identified genes that encode putative periplasmic redox proteins that are known
to either directly or indirectly accept electrons from NapC/NirT family quinol oxi-
dizing proteins, including nirS (Slit_1129) and several homologs of nirM. The pro-
tein sequence encoded by Slit_1129 is 68% identical to NirS from P. aeruginosa,
while NirM is known to transfer electrons from NirT to NirS during nitrite reduction
(12). Interestingly, MtoD is homologous to NirM (28% identity and 43% similarity),
suggesting that S. lithotrophicus may be able to reduce nitrite, though this capabil-
ity has not been demonstrated (7). Our work suggests that S. lithotrophicus, and
other ImoA-containing Fe(ll)-oxidizing bacteria may be more metabolically versa-
tile than initially observed. Importantly, heterologous protein expression can pro-
vide insight into the function of novel electron transfer pathways from challenging
environmental microbes, complementing biochemical approaches and motivating
development of native genetic methods.
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FIG 2 Functionality of ImoA to oxidize quinols in CymA-dependent respiratory pathways. (A) Resting cell Fe(lll) citrate reduction: S. oneidensis containing
PBBRTMCS-2 (A), AcymA containing pBBRTMCS-2 (¢), AcymA containing pBBRTMCS-2::cymA (M) and AcymA containing pBBRTMCS-2:imoA (@). Error bars represent
standard deviation of the mean from experiments performed in triplicate. (B) Current density produced by the different AcymA strains containing pBBR1TMCS-2::
imoA (black line), pBBRTMCS-2::cymA (gray line), or empty pBBR1TMCS-2 (gray dotted line) in a bioelectrochemical reactor. Error bars shown in gray
represent standard deviation of the mean from experiments performed in two triplicates. ImoA can functionally replace CymA on growth with
different electron acceptors including fumarate (C), DMSO (D) and nitrate (E) while using lactate as the electron donor. S. oneidensis containing
PBBRTMCS-2 (A), AcymA containing the empty pBBRTMCS-2 vector (¢), AcymA containing pBBRTMCS-2::imoA (@) and AcymA containing pBBRTMCS-
2::cymA (B). Error bars represent standard deviation of the mean from experiments performed in triplicate.

All methods are described in the supplementary information (TEXT S1).
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