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Abstract—Wearable cameras provide an informative view of
wearer activities, context, and interactions. Video obtained from
wearable cameras is useful for life-logging, human activity
recognition, visual confirmation, and other tasks widely utilized
in mobile computing today. Extracting foreground information
related to the wearer and separating irrelevant background pixels
is the fundamental operation underlying these tasks. However,
current wearer foreground extraction methods that depend on
image data alone are slow, energy-inefficient, and even inaccurate
in some cases, making many tasks–like activity recognition–
challenging to implement in the absence of significant compu-
tational resources. To fill this gap, we built ActiSight, a wearable
RGB-Thermal video camera that uses thermal information to
make wearer segmentation practical for body-worn video. Using
ActiSight, we collected a total of 59 hours of video from 6
participants, capturing a wide variety of activities in a natural
setting. We show that wearer foreground extracted with ActiSight
achieves a high dice similarity score while significantly lowering
execution time and energy cost when compared with an RGB-
only approach.

Index Terms—Wearable cameras, in wild, thermal

I. INTRODUCTION

Wearable cameras are emerging as an invaluable tool for

general understanding and recording of fine-grained human

activity, interactions, context, and behavior. While initially

put to use in the 1990s as a tool for augmenting human

perception, body-worn cameras have since been used in a

variety of applications and on a host of different users–for

example, individual consumers who want to remember social

interactions, recall life events, track physical activity, and do

other forms of life-logging [1], [2]; blind individuals who use

cameras to augment perception as tools for navigation [3], [4];

or behavioral researchers who want to understand complex

behaviors of people in natural settings [5]. It is also a tool

that aids researchers in assigning activity or interaction labels

to data obtained from other wearable sensor data. These

labels, in turn, aid in training and validating activity detection

models for automated eating detection, which use non-visual

signals and machine learning to detect eating episodes [6]–

[8]. Many other categories of users and applications exist.

It is anticipated that wearable cameras will become more

widespread owing to convenience, usefulness, lowered costs,

and increased processing power due to the rapid advances in

CMOS imagers and CPUs. This could lead to reams of video

data in need of automated processing.

This vision of the future is fraught with practical issues due

to the significant computational and energy resources required

for performing typical image capturing and processing tasks.

The passive nature of wearable cameras results in collecting

relevant information (i.e., foreground related to the wearer)

and irrelevant information (i.e., background containing other

people and objects). Separating wearer pixels related to the

wearer’s head and active hand, from background pixels allows

us to solve critical challenges facing wearable cameras, such

as enhancing privacy by obfuscating the background [9] and

reducing the cost of both manual [10]–[12] and automated

processing [13]–[15] by focusing on processing of wearer

information. The active hand is critical for enabling further

interaction research. Therefore, extracting wearer pixels from

the frame while discarding the rest of the background is a

most critical and fundamental step in the processing pipeline

of wearable cameras.

Deep learning RGB-based segmentation models have shown

great potential in extracting wearer pixels from wearable

camera data. However, such models are resource and time-

intensive, especially when deployed real-time on-device, mak-

ing applying them at the start of the pipeline impractical. To

speed up data processing, other sensing modalities can be

added to the camera and a lighter processing pipeline can

initially process the data and use intensive approaches only

when needed. Our key observation is that the wearer activity,

like hand and head movements, can be extracted simply

and speedily by augmenting a wearable camera with a low-

resolution thermal imager directed at the wearer, significantly

reducing the energy, time, and human effort needed to extract

wearer pixels in wearable camera data.

In this paper, we present ActiSight (shown in Fig. 1), a

practical, all-day battery-lifetime wearable camera platform

(hardware and software) that uses thermal imaging as a com-

plementary data stream to extract pixels related to the wearer

in a frame, reducing the captured information and simplifying

processing tasks. This hardware platform is coupled with

an energy-efficient pipeline for speeding up wearer pixel

extraction tasks, a fundamental task of modern and future
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wearer’s hands and head movements. This allows us to capture

a wide range of hand-head activities that are of interest to

the research community. Activities such as eating, drinking,

smoking, and coughing are examples of such hand and head

related activities, which we also collected along with their

confounding gestures.

B. Configurable Components, Attachment and Encapsulation

Since ActiSight contains a MicroSD card slot on board, it

allows for flexible and expandable data storage. To enhance

privacy, ActiSight encrypts all data on the fly using a stream

cipher (salsa20 [21]). Although in our prototype we use a

180° fish-eye lens, ActiSight allows usage of any lens that

is compatible with an M12 mount. We experimented different

mounting approaches including a lanyard to secure the device

around the neck, and a magnetic back-plate that detaches

and is placed between the wearer’s shirt and the body, and

magnets mounted on the back of the camera to secure the

device on the shirt itself. We found that using both a lanyard

and magnetic plate allows the camera to be stably placed on

the body without adding discomfort to the wearer. It is also

important to note that since we are attaching the camera on the

clothing and around the neck, the camera will be affected by

large movements such as the wearer bending down. However,

this displacement is momentary and the camera will go back to

the desired position after the wearer returns to a regular upright

body posture. The PCB is enclosed in a different compartment

than the battery which distributes the weight across the device

and hinges allow for camera angle adjustment, depending on

location and wearer body type.

C. Device Battery Lifetime

To show that our ActiSight prototype has all-day bat-

tery lifetime, we performed a measurement campaign of the

energy-efficiency of the prototype when using a 1200mAh

LiPo battery. We estimate the battery life based on the capacity

of the battery measured in milliampere-hour (mAh). The

battery life or capacity can be calculated from the input

current rating of the battery and the load current of our

prototype device. We verified the data captured by examining

the frame rate of the collected video, the size of the images,

and comparing the timestamps of the video captured on the

SD card. One person wore it continuously until the battery

fully discharged. The total number of frames collected in the

single use was 224,225 with an effective frame rate of 5.19

frames-per-second, and a total memory footprint of 1.675 GB.

These results confirm that our prototype device provides all-

day (12 hours being sufficient for most applications) battery

lifetime in-wild when using a 1200mAh LiPo battery.

D. Calibration

Similar to any multi-modal or dual-imaging device, the

sensing streams have to be calibrated once. In ActiSight the

two sensing streams (RGB and thermal) have different FoV

and resolutions, making the calibration process challenging.

We used the traditional method for automated camera cali-

bration using a checkerboard in our first calibration attempt.

We built a custom checkerboard that can be detected by both

thermal and RGB [16]. However, given the low-resolution

(8× 8) of the thermal camera, the checkerboard pattern is not

captured by the thermal sensor (it appears as one big blob due

to thermal crossover), making automatic calibration challeng-

ing. Therefore, we opted for a manual calibration approach

to move and scale the thermal image until it lines up with

the RGB frame. We created an interface that will help scale

and move the thermal image over the RGB frame with 1-pixel

resolution to obtain the transformation parameters (scale and

registration position). We performed this manual calibration

process on randomly sub-sampled pairs of thermal and RGB

images obtained from ActiSight, and then we confirmed the

calibration by visualizing the output on different frames. This

calibration process is only performed once per device.

IV. ACTISIGHT WEARER EXTRACTION PIPELINE

In view of that thermal and RGB images provide comple-

mentary information, we designed and implemented a pro-

cessing pipeline that can extract foreground pixels from both

RGB and thermal images. However, to ensure practicality and

efficiency, we use the thermal-based segmentation approach as

our default approach, and only use the RGB-based approach

when the thermal approach fails. As illustrated in Fig. 3,

the pipeline checks if the thermal frame provides utility

for foreground extraction (see Section IV-A for details of

performing the utility test). If the thermal frame passes the

utility test, i.e., the thermal frame is deemed useful (Example 1

in Fig. 3), we perform thermal-based foreground segmentation

using the approach described in Section IV-B. If, however,

the thermal fails the utility test (Example 2 in Fig. 3), then

we perform the RGB-based segmentation–details provided in

Section IV-C.

A. Thermal Utility Test

In some cases, thermal sensors fail to capture the human in

the foreground (e.g., when the sensor is under direct sunlight or

when there is minimal temperature contrast between objects

and the environment). These failure cases can be identified

by checking the pixel value distribution (i.e., whether the

temperature value distribution is uniform) and the range of the

pixel values (i.e., whether the range of value lies between 0

to 80 for the thermal sensor that we are using). Therefore,

a thermal utility test is helpful in instructing ActiSight on

the possibility of determining the presence of a human in

the foreground, based on the captured thermal image. We

test thermal utility by checking the variability of the pixels

(i.e., std > 1) and the range of the pixels (i.e., min ≥ 0

and max ≤ 80) in the frame. In Fig. 3, the thermal frame

in Example 1 provides utility as it passes the thermal utility

test (std=4.5, min=17.5, max=34.25) and visually it can be

seen that the frame captures the wearer’s head, hand, and the

object in hand. However, the thermal frame in Example 2 does

not pass the utility test (std=109.5, min=-511.25, max=19.75)
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on our large dataset took 3 days using a machine with four

GeForce RTX 2080 Ti GPUs. Finally, by manually labeling

the 59 hours of data, we extracted the 120K frames, which

contained accurate groundtruth (i.e., we confirmed the correct-

ness of the soft groundtruth by manually reviewing each frame,

turning it to an actual groundtruth). Two people performed this

labeling process over three weeks, requiring approximately

144 hours of labor. One person acted as the main reviewer

and the second person confirmed the review of the first person.

No one had access to the thermal data while labeling to avoid

bias.

B. Evaluation metrics

We used two separate quantitative metrics to evaluate the

foreground extracted by ActiSight: (1) a pixel-level compar-

ison against the groundtruth foreground using a Dice simi-

larity coefficient score [34], (2) resource consumption (i.e.,

processing time in frames per second and power consumption

in Watts), and (3) qualitative results on the whole dataset

to identify cases where our thermal performed better than

our RGB approach and vice versa. To show the effectiveness

of ActiSight in utilizing both the thermal- and RGB-based

foreground extraction approaches, we present the foreground

extraction results independently (i.e., RGB-only and thermal-

only) and the results after using the thermal utility function

and our thermal-RGB approach.

1) Pixel-level comparison: We calculated the Dice simi-

larity score for each extracted foreground for every frame in

our dataset. The Dice similarity score, also known as the F1-

score, is used to evaluate similarities between our detected

foreground using (RGB-only, thermal-only and thermal-RGB)

and the groundtruth foreground. The Dice similarity score

value ranges from 0 (low similarity) to 1 (high similarity).

Fig. 4 shows a sample of extracted foregrounds and their

corresponding similarity score.

2) Resource consumption: Efficiency is essential when it

comes to the real-time processing of data collected contin-

uously and passively (such as that from wearable cameras)

because these data capturing methods often result in large

quantities of data that needed to be processed. Thus, low

processing time means we can process more number of

frames per second and extract meaningful information such as

foreground with low latency (time delays). In order to compare

the efficiency of our approach, we first randomly selected a

subset of images from our dataset (1095 images). We then

calculated the average frame rate per second (fps) when we

ran the ActiSight thermal-RGB foreground extraction pipeline

and when we ran the RGB-only and thermal-only extraction

method. For control purposes, we performed this test on the

same computer with an Intel Core i9 processor (available on

most laptops). All code is written using Python 3.7.

3) Qualitative Performance Analysis: Although pixel com-

parison metrics using Dice similarity provide us with an

understanding of how our segmentation compared against

groundtruth, the understanding is limited as we obtained

groundtruth for a subset of the images. Moreover, the

TABLE III
FOREGROUND EXTRACTION RESULTS USING ACTISIGHT THERMAL-RGB

APPROACH

Thermal-RGB

F1 Pos Neg

P R P R

P1 0.93 0.77 0.91 0.98 0.94
P2 0.86 0.81 0.81 0.90 0.89
P3 0.81 0.78 0.91 0.86 0.70
P4 0.80 0.75 0.88 0.88 0.75
P5 0.88 0.83 0.93 0.93 0.82
P6 0.94 0.93 0.86 0.95 0.97

Average 0.87 0.81 0.88 0.92 0.84

groundtruth was extracted from RGB, which makes the

evaluation biased to RGB (for example, it is hard to ob-

tain groundtruth segments from RGB images captured in

low illumination). Therefore, we analyzed the output of the

thermal- and RGB-based foreground extraction by first running

each foreground extraction method on the whole dataset (all

frames). We then qualitatively investigated the cases in which

thermal-based segmentation performed better than RGB-based

segmentation. Since we do not have groundtruth for all of the

frames, we instead overlapped the foreground produced from

the thermal-only and the RGB-only approach and identified

the cases where the overlap was low (IoU<0.3). We then went

over the frames that have a low IoU to assess the reason

for this discrepancy in the foreground extraction (i.e., lack of

illumination for RGB, direct sunlight for thermal, etc.). This

analysis will highlight cases from the real world, showcasing

the importance of both RGB and thermal sensing in extracting

foreground without biasing the groundtruth to any sensing

modality.

VII. RESULTS

We next describe ActiSight’s performance in extracting

foreground. We also present ActiSight’s performance evalu-

ation, and a qualitative performance analysis.

A. Foreground Extraction Results

Evaluating ActiSight pipeline using in-wild data allows us

to understand its performance in uncontrolled natural settings.

(a) (b) (c) (d) (e)

Fig. 5. Sample of foregrounds obtained from in-wild data. (a) searching for
food in the fridge, (b) drinking cold beverage, (c) smoking, (d) brushing teeth,
(e) eating in front of a computer.
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the contrast between the face and background during such

conditions is low, making it hard to differentiate and extract

the foreground in these images.

Thermal modality has several other advantages. For exam-

ple, it is not affected by motion blur, as seen in Fig. 7b. This is

because thermal is not dependant on the visible light spectrum.

Motion blur can affect the appearance of the image, making

it hard to detect the wearer using RGB frames since some of

the features are not apparent.

Fig. 7c shows that the thermal data is robust to occlusion

caused by objects (e.g., cups, clothing) or body parts (i.e.,

hand covering the face). On the other hand, the RGB-based

approach sometimes confuses objects to be part of the face or

misses detecting the face when it is occluded. Although this

can be improved by training the model with more data, since

thermal relies on the temperature, it provides a more efficient

object detection approach.

2) Failure cases: Fig. 8 shows cases when the thermal-

based or thermal-RGB approach identifies the wrong object

as the foreground. Fig. 8a shows a cat and a spoon with

warm food detected as humans, and Fig. 8b shows TV and

heat emitting lamps confounding the foreground extraction

method. This confusion is due to the low resolution of the

thermal sensor and the observations that these objects emit

temperatures close to the human body’s range. This confusion

can be mitigated by using a small classification network to

classify the RGB regions of the foreground to detect if it

belongs to humans.

Fig. 8c presents a scenario where the participant moved

from one location to another with a different temperature.

The ActiSight approach takes the median temperature to

identify the background pixels by referencing historical values

(previous ten frames). This may introduce latency when the

environment changes, causing an error in determining the

background segment for a few frames. In the future, we

can shorten this historical window length or use an external

ambient temperature sensor and calibrate it with the thermal

sensor to determine the temperature value of the background.

VIII. RELATED WORK

When using wearable cameras to passively collect data in

the wild, extracting relevant wearer foreground information is

vital. Foreground extraction methods for data captured from

wearable cameras aims to extract parts of the image relevant to

the task at hand (i.e., the active hand interacting with objects).

These extracted segments then undergo some computationally

intensive processing, and therefore, more accurate foreground

extraction can limit unnecessary and costly processing. The

most common foreground extraction methods used in wearable

camera research are based on one or more of frame selection,

region selection, or pixel selection.

Instead of extracting a rectangular region around the ob-

ject of interest, pixel-level segmentation methods, the most

fine-grained techniques, aim to extract pixels related to the

foreground. Foreground pixel extraction is considered the

most challenging among the previously mentioned tasks, as

the classification occurs at a per-pixel level. However, it is

one of the most informative ones as it gives more details

that can be used to infer human activity [14], the object in

hand [35], and gesture recognition [36], [37]. CNN based

semantic segmentation models (e.g., DeepLabv3+ [17], U-

Net [28] and several others [38]) can extract human foreground

using RGB images. While such approaches work well in

certain cases, they fail when faced with images that are not

present in the training set distributions, requiring the need for

further training and fine-tuning. Researchers are investigating a

multi-modal or dual-sensing modality segmentation approach

to overcome the limitations of RGB-only (i.e., single modality)

image segmentation techniques. For example, researchers have

utilized depth information obtained from RGB-D cameras

to extract hand segments [37], [39]. ActiSight foreground

extraction is based on pixels, however, unlike previous RGB or

RGB-D work, we utilize an efficient thermal-RGB approach

to extract foreground. In particular, we primarily rely on the

thermal modality to obtain foreground pixels and use the RGB

modality for foreground extraction only when the certainty of

the thermal imager is low in providing detection of the wearer

pixels.

IX. CONCLUSION

This paper introduces ActiSight, a practical wearable cam-

era that enables energy-efficient and fast extraction of fore-

ground pixels related to the wearer. In our approach, we aug-

ment the wearable camera’s data with a thermal sensing stream

that aids in foreground extraction. Since there is no practical

thermal-RGB wearable camera available, we built one that

allowed for further validation of the capability of a low-

resolution thermal camera for wearer extraction. Moreover,

we developed a foreground extraction pipeline that utilizes

thermal information to extract the foreground related to the

wearer. Using ActiSight, we collected in-wild data and com-

pared the foreground segmentation obtained from ActiSight

with groundtruth achieving an acceptable Dice similarity score

of 0.82 for the in-wild data. This result is promising, especially

when we consider the low energy required to extract the

foreground. By providing ActiSight to the community, we

hope to enable efficient processing of wearer foreground

extraction, an important step in applications such as human

activity, gesture recognition, and hand pose estimation.
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