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Abstract. Given a collection of boundary divisors in the moduli space M0,n of stable
genus-zero n-pointed curves, Giansiracusa proved that their intersection is nonempty if and
only if all pairwise intersections are nonempty. We give a complete classification of the pairs
(g, n) for which the analogous statement holds in Mg,n.

1. Introduction

The Deligne–Mumford moduli space Mg,n of stable curves is an object of intense study
in a surprisingly broad array of contexts, from the enumerative geometry of curve-counting
[4] to the combinatorics of hyperplane arrangements [2] to the birational geometry of the
moduli space as a variety in its own right [1]. Toward many of these ends, one would hope
to understand the intersection theory of Mg,n, and in particular to compute its Chow ring.
In genus zero, such a computation is possible: Keel [5] gave an explicit presentation

of A∗(M0,n) as generated by the boundary divisors, which are the closures of the loci of
curves with a single node across which the distribution of the marked points is specified.
The analogous statement fails in higher genus, and indeed, a full understanding of the
Chow ring of Mg,n seems out of reach; the top-codimension component of A∗(M1,11), for
example, is known to be uncountably generated. As a more manageable substitute, one
can instead study the tautological ring, a subring of A∗(Mg,n) that has a concrete and
well-understood generating set and yet has been proven to contain nearly every Chow class
of geometric interest. An analysis of the boundary divisors, while no longer capturing the
entire intersection theory of the moduli space, still plays a key role in understanding the
tautological ring of Mg,n.

One striking property of the boundary divisors in genus zero is that a collection of bound-
ary divisors D1, . . . , Dk in M0,n has nonempty intersection if and only if each pairwise
intersection Di ∩ Dj is nonempty. This “folklore” result was given a succinct proof by Gi-
ansiracusa [3] by relating it to a theorem in phylogenetics. The key observation behind this
connection is that the dual graphs encoding boundary strata of M0,n can be viewed, from
another angle, as the phylogenetic trees encoding the evolutionary history of organisms.
The goal of the current paper is to study when the corresponding property holds in higher

genus, where the dual graphs are no longer necessarily trees and thus the connection to
phylogenetics is no longer available. Our aim, in other words, is to classify the pairs (g, n)
for which, given any collection of boundary divisors in Mg,n, nonempty pairwise intersection
implies nonempty total intersection. This is equivalent to the condition that the boundary
complex of Mg,n—a simplicial complex defined below—is a flag complex, meaning that it is
the maximal simplicial complex on its 1-skeleton. Our main theorem is the following:

Theorem 1.1. The boundary complex of Mg,n is a flag complex if and only if either g ∈
{0, 1}, n ∈ {0, 1}, or g = n = 2.
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2. Background on boundary strata

2.1. Preliminary definitions. A point of the moduli space Mg,n parameterizes a tuple
(C; x1, . . . , xn), where C is an algebraic curve of arithmetic genus g with at worst nodal
singularities, the xi are distinct smooth points of C (the marked points), and the tuple is
stable in the sense that it has finitely many automorphisms. Explicitly, stability is equivalent
to the requirement that each irreducible component of C of geometric genus zero have at
least three special points (marked points or half-nodes) and each irreducible component of
geometric genus one have at least one special point.

Any element (C; x1, . . . , xn) of Mg,n has an associated dual graph, which consists of

• a vertex vi for each irreducible component Ci of C, decorated with the geometric
genus g(vi) of Ci;

• an edge between vertices vi and vj for each node joining Ci to Cj (where the case of
a self-edge i = j is allowed);

• a half-edge (or “leg”) at vertex vi for each of the marked points xk on Ci, decorated
with the number k ∈ {1, . . . , n} of the marked point.

Conversely, given a dual graph G, there is an associated boundary stratum SG ⊆ Mg,n, which
is the closure of the set of curves with dual graph G. The codimension of SG is equal to the
number of edges of G, so a boundary divisor of Mg,n is specified by a dual graph with a single
edge. The boundary divisors have normal crossings [6], which implies in particular that an
intersection of k distinct boundary divisors has codimension k whenever it is nonempty.
Inclusions among boundary strata are described in terms of degenerations of their asso-

ciated dual graphs. Specifically, let G be a dual graph and let e be an edge of G between
distinct vertices v and w. Then the smoothing of G along e is the graph obtained from G

by removing e and replacing v and w by a single vertex of genus g(v) + g(w). Similarly,
the smoothing of a dual graph along a self-edge e at vertex v is given by removing e and
increasing g(v) to g(v)+ 1. We say that G is a degeneration of H if H can be obtained from
G by smoothing some subset of the edges, and we have

(1) SG ⊆ SH ⇔ G is a degeneration of H.

In particular, for any dual graph G and any edge e of G, let ∂e(G) denote the graph obtained
by smoothing all of the edges of G except for e. Then ∂e(G) is a single-edge graph and
therefore corresponds to a boundary divisor, which by (1) contains SG.

It is convenient to encode the intersections of boundary divisors in the boundary complex
of Mg,n. This is a simplicial complex with a vertex for each boundary divisor and a simplex
spanned by a set of vertices whenever their corresponding boundary divisors have nonempty
intersection. To illustrate the idea (and because we will need this example below), we
compute the boundary complex of M2,2.
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Example 2.2. There are four boundary divisors in M2,2, and the boundary complex de-
picting their intersections is as follows:

1

2
1 0 2

1

2
1 11 2

1 1
1

2

For example, the vertical edge indicates a nonempty intersection of the boundary divisors
labeling its two endpoints, which is reflected in the fact that these two graphs have

1 0

1

2

as a common degeneration. Similarly, the two 2-simplices of the boundary complex indicate
nonempty triple intersections of boundary divisors, corresponding to the existence of common
degenerations of triples of one-edged dual graphs.

An abstract simplicial complex K is called a flag complex if, for any set of vertices v1, . . . , vk
of K in which each pair {vi, vj} spans a simplex of K, the entire set {v1, . . . , vk} spans a
simplex of K. For example, the simplicial complex of Example 2.2 is a flag complex.

We are interested, more generally, in whether the boundary complex of Mg,n is a flag
complex for any given g and n. Stated more geometrically, the question is whether, given a
collection of boundary divisors D1, . . . , Dk in Mg,n such that Di ∩Dj 6= ∅ for all i and j, it
necessarily follows that D1 ∩ · · · ∩Dk 6= ∅. Giansiracusa proved [3] that this property holds
when g = 0, so our task is to study the corresponding statement in higher genus. Before
doing so, we need some preliminary results on boundary divisors.

2.3. Results on intersections of boundary divisors. If D1, . . . , Dk are distinct bound-
ary divisors in Mg,n, then the intersection D1∩· · ·∩Dk is a union of codimension-k boundary
strata, assuming it is nonempty. To see this, note that if ξ ∈ Di is a moduli point corre-
sponding to a curve (C; x1, . . . , xn), then any other moduli point corresponding to a curve
with the same dual graph as (C; x1, . . . , xn) also lies in Di. Thus, if Sξ denotes the set of all
curves with the same dual graph as (C; x1, . . . , xn), we have

ξ ∈ Di ⇒ Sξ ⊆ Di,

and hence Sξ ⊆ Di whenever ξ ∈ Di, since Di is closed. This means that

(2)
⋃

ξ∈D1∩···∩Dk

Sξ ⊆ D1 ∩ · · · ∩Dk.
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The reverse inclusion is also clearly true, so (2) expresses D1 ∩ · · · ∩ Dk as a union of
boundary strata. We have already remarked that the codimension of this intersection is k,
so D1∩· · ·∩Dk is indeed a union of codimension-k boundary strata; any higher-codimension
boundary strata appearing in (2) are contained in codimension-k strata in the union. Note,
furthermore, that while (2) appears to be an infinite union, it is in fact finite, since there are
only finitely many boundary strata in any given Mg,n.
It can happen that this union has multiple components; for example, in M2,3, the inter-

section of the boundary divisors with dual graphs

1

2

3

1 and 1 1

1

2

3

is the union of the two codimension-2 boundary strata with dual graphs

1 03

1

2

and 1 0

1

2

3

.

In genus zero, however, a nonempty intersection of boundary divisors is necessarily a single
boundary stratum. This fact is well-known to experts (see, for example, [7, page 4]), but we
prove it here for completeness, and to allow us to state a slight generalization. Here, we refer
to a boundary stratum as tree-type if its associated dual graph is a tree, or equivalently, if the
dual graph has no nonseparating edges (edges whose removal leaves the graph connected).

Lemma 2.4. Let D1, . . . , Dk be distinct boundary divisors in M0,n. If D1 ∩ · · · ∩ Dk 6= ∅,
then D1 ∩ · · · ∩Dk consists of a single boundary stratum. Furthermore, the same is true in
M1,n if D1, . . . , Dk are all tree-type.

Proof. Let D1, . . . , Dk be distinct tree-type boundary divisors in M0,n or M1,n, with cor-
responding dual graphs G1, . . . , Gk, for which D1 ∩ · · · ∩ Dk 6= ∅. Then D1 ∩ · · · ∩ Dk is
a union of codimension-k boundary strata, and we begin by choosing one such stratum S

with corresponding dual graph G. This means that G1, . . . , Gk are precisely the dual graphs
obtained by smoothing all but one edge of G:

(3) {∂e(G) | e ∈ E(G)} = {G1, . . . , Gk},

where E(G) denotes the set of edges of G. To prove that S is the only codimension-k
boundary stratum contained in D1 ∩ · · · ∩Dk, we must prove that G is the only dual graph
for which (3) holds.

The proof of this claim is by induction on k. It is clearly true when k = 1, since then both
sides of (3) consist of the single graph G. Suppose, then, that any dual graph H with k − 1
edges is uniquely determined by the graphs ∂e(H) for e ∈ E(H), and let G be a dual graph
with k edges.

Since D1, . . . , Dk are tree-type and the genus is 0 or 1, the graph G must have a genus-
zero leaf v; that is, v is a genus-zero vertex with a unique incident edge. Let A ⊆ [n] index
the legs on v, and note that these legs are on the same vertex in any of the graphs ∂e(G).
Furthermore, if e1 denotes the unique edge of G incident to v, then ∂e1(G) consists of a
genus-zero vertex containing the legs labeled A and another vertex containing the remaining
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legs. Using (3) and relabeling if necessary so that ∂e1(G) = G1, we thus have the following
two observations about the graphs G1, . . . , Gk:

(O1) The legs labeled A lie on the same vertex in any of G1, . . . , Gk.
(O2) The graphG1 consists of a genus-zero vertex containing the legs labeled A and another

vertex containing the remaining legs.

Now, let G′ be any other k-edged dual graph satisfying (3); that is,

(4) {∂e(G
′) | e ∈ E(G′)} = {G1, . . . , Gk}.

Then the legs labeled A must lie on the same vertex of G′, since if there were an edge e′i
separating some of the elements of A from the others, then ∂e′

i
(G′) = Gi would be a graph

in which not all of the marked points of A lie on the same vertex, contradicting (O1).
Furthermore, the vertex v′ containing the legs labeled A must be a genus-zero leaf of G′ and
have no other legs. To see this, let e′1 ∈ E(G′) be such that ∂e′

1
(G′) = G1. Then removing

e′1 from G′ leaves a graph G′ − e′1 with two connected components, and there must be some
leaf of G′ in the same connected component of G′ − e′1 as v′. The legs and genus of this leaf
are added to those of v′ in the graph ∂e′

1
(G′) = G1, so by (O2), the leaf must be genus zero

and be v′ itself.
In summary, we have shown that (4) implies

(O1′) The marked points of A lie on the same vertex v′ of G′.
(O2′) The vertex v′ is a genus-zero leaf of G′ containing no other marked points but those

of A.

The same two facts hold for G, by the definition of A. Let H denote the graph obtained
from G by deleting the leaf v and replacing its unique incident edge by a leg labeled ?. Let
H ′ denote the analogous graph obtained from G′ by deleting v′. Then the graphs ∂e(H)
are essentially identical to the graphs G2, . . . , Gk, except that the legs labeled by A in the
graphs ∂e(G) are replaced by the single leg labeled ? in ∂e(H). The same is true of the
graphs ∂e′(H

′). Thus,

{∂e(H) | e ∈ E(H)} = {∂e(H
′) | e ∈ E(H ′)},

and since H and H ′ are both graphs with k − 1 edges, the inductive hypothesis implies
that H = H ′. Since G and G′ are obtained from H and H ′, respectively, by attaching a
single genus-zero vertex containing the legs labeled A via an edge at leg ?, we conclude that
G = G′. This completes the proof. �

Lemma 2.4 implies that each collection of genus-zero (or genus-one tree-type) boundary
divisors D1, . . . , Dk with nonempty intersection uniquely determines a boundary stratum
S = D1 ∩ · · · ∩ Dk. The next lemma provides something of a converse: each boundary
stratum S of M0,n (or each tree-type boundary stratum of M1,n) uniquely determines a
collection of boundary divisors D1, . . . , Dk whose intersection is S. Once again, this fact is
know to the experts, but we include a proof since one does not seem to be readily available
in the literature.

Lemma 2.5. For any codimension-k boundary stratum S in M0,n, there exists a unique
collection of boundary divisors D1, . . . , Dk such that S = D1 ∩ · · · ∩ Dk. Furthermore, the
same is true in M1,n if we assume that S is tree-type.

Proof. Let S be a codimension-k tree-type boundary stratum in M0,n or M1,n, and let G

be the corresponding dual graph. If E(G) = {e1, . . . , ek}, then the dual graphs Gi := ∂ei(G)



6 E. CLADER, D. LUBER, AND K. QUILLIN

each determine a boundary divisor Di containing S. Thus, we have

S ⊆ D1 ∩ · · · ∩Dk.

Assuming that D1, . . . , Dk are all distinct, their intersection has codimension k, and by
Lemma 2.4, this intersection consists of a single codimension-k boundary stratum, which
must therefore be S. Thus, we are done if we can prove that G1, . . . , Gk (and hence
D1, . . . , Dk) are distinct.

The proof of this claim is another induction on k. The base case, when k = 1, is immediate.
Suppose, then, that for any n and any tree-type dual graph for M0,n or M1,n with k − 1
edges, the k − 1 graphs obtained by smoothing all but one edge are distinct. Let G be a
tree-type dual graph for M0,n or M1,n with k edges.
Choose a genus-zero leaf v of G, and let A ⊆ [n] be the marked points on v. Let e1 be the

unique edge incident to v, and let e2, . . . , ek be the remaining edges of G. As in the proof
of Lemma 2.4, let H be the graph obtained from G by deleting v and replacing e1 by a leg
that we label ?. Then H has k − 1 edges, identified with the edges e2, . . . , ek of G, so by
induction, the graphs

∂e2(H), . . . , ∂ek(H)

are all distinct. By replacing the leg labeled ? with the legs labeled A, we obtain the graphs

∂e2(G), . . . , ∂ek(G),

and hence these are also distinct. Furthermore, they are distinct from ∂e1(G), because ∂e1(G)
has a genus-zero vertex containing only the marked points of A. If this were true of ∂ei(G)
for some i 6= 1, then ∂ei(H) would have a genus-zero vertex containing only the marked point
?, contradicting stability. Thus, ∂e1(G), . . . , ∂ek(G) are all distinct, as claimed. �

We remark that the tree-type assumption in Lemma 2.5 is indeed necessary. For example,
in M1,2, the two graphs obtained by smoothing one edge of

0 01 2

are identical.

3. The boundary complex in higher genus

Equipped with this background, we are ready to begin the proof of Theorem 1.1. The
genus-zero statement is Giansiracusa’s work [3], so we begin with the case g = 1, in which
case the existence of the moduli space requires that n ≥ 1.

Proposition 3.1. The boundary complex of M1,n is a flag complex for any n ≥ 1.

The idea of the proof of Proposition 3.1 is to relate boundary strata in genus one to
boundary strata in genus zero. Namely, let Sg,n be the set of boundary strata in Mg,n, and
let

S̃1,n := {tree-type boundary strata} ⊆ S1,n.

Equivalently, the dual graphs of strata in S̃1,n are those that have a genus-one vertex. There

is a map that takes S̃1,n to S0,n+2 by replacing the genus-one vertex with a genus-zero vertex
to which we add marked points n+ 1 and n+ 2, and the image of this map is the set

S̃0,n+2 ⊆ S0,n+2
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consisting of all boundary strata whose corresponding dual graph has marked points n + 1
and n+ 2 on the same vertex. The process is clearly reversible, so the result is a bijection

σ : S̃1,n → S̃0,n+2.

This bijection is inclusion-preserving in both directions, since a degeneration of dual graphs

in S̃1,n induces a corresponding degeneration of dual graphs in S̃0,n+2 and vise versa. We
collect two key properties of σ in the following lemma.

Lemma 3.2. The function σ : S̃1,n → S̃0,n+2 satisfies the following properties:

(i) The domain and codomain of σ are each closed under intersection of boundary strata.

(ii) For any collection of k distinct boundary divisors D1, . . . , Dk ∈ S̃1,n, we have

σ(D1 ∩ · · · ∩Dk) = σ(D1) ∩ · · · ∩ σ(Dk).

Proof. For item (i), first suppose that D1 . . . , Dk ∈ S̃1,n and D1 ∩ · · · ∩ Dk 6= ∅. Then by
Lemma 2.4, the intersection D1 ∩ · · · ∩ Dk is a single boundary stratum S. If the dual
graph G corresponding to S had a nonseparating edge, then smoothing all but this edge
would yield a boundary divisor containing S that is not among D1, . . . , Dk, contradicting
the uniqueness of the expression S = D1 ∩ · · · ∩Dk as an intersection of boundary divisors
given by Lemma 2.5.

This proves that the domain of σ is closed under intersection of boundary strata, and the

argument is similar for the codomain: if D′

1, . . . , D
′

k ∈ S̃0,n+2 and D′

1 ∩ · · · ∩ D′

k 6= ∅, then
D′

1 ∩ · · · ∩ D′

k is again a single boundary stratum S ′ with corresponding dual graph G′. If
marked points n+ 1 and n+ 2 were on different vertices of G′, then there would be an edge
separating them, and smoothing all but this edge would yield a boundary divisor containing
S ′ that is not among D′

1, . . . , D
′

k, a contradiction.
For item (ii), suppose first that D1 ∩ · · · ∩ Dk 6= ∅. Then by Lemma 2.4 and item (i),

the intersection D1 ∩ · · · ∩Dk is a single codimension-k boundary stratum S ∈ S̃1,n. Since
S ⊆ Di for all i, and σ is inclusion-preserving, we have σ(S) ⊆ σ(Di) for all i and hence

σ(S) ⊆ σ(D1) ∩ · · · ∩ σ(Dk).

But both σ(S) and σ(D1) ∩ · · · ∩ σ(Dk) are codimension-k boundary strata, so the above
containment must be an equality and hence item (ii) holds.

If, on the other hand, D1 ∩ · · · ∩ Dk = ∅, then proving item (ii) is equivalent to proving
that

σ(D1) ∩ · · · ∩ σ(Dk) = ∅.

Suppose, toward a contradiction, that σ(D1) ∩ · · · ∩ σ(Dk) 6= ∅, in which case Lemma 2.4
implies that σ(D1) ∩ · · · ∩ σ(Dk) = S ′ for some codimension-k boundary stratum S ′. Since
the codomain of σ is closed under intersection, this means that

σ(D1) ∩ · · · ∩ σ(Dk) = σ(S)

for some stratum S, meaning that σ(S) ⊆ σ(Di) for all i. The fact that σ−1 is inclusion-
preserving implies S ⊆ Di for all i, which contradicts the assumption that D1∩· · ·∩Dk = ∅.
This completes the proof of item (ii). �

Equipped with Lemma 3.2, the proof of Proposition 3.1 is not far behind.
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Proof of Proposition 3.1. Let D1, . . . , Dk be boundary divisors in M1,n with Di∩Dj 6= ∅ for
all i and j; our goal is to prove that D1 ∩ · · · ∩Dk 6= ∅.

Assume, for now, that D1, . . . , Dk all come from S̃1,n. In this case, we can apply σ to
obtain a collection of boundary divisors

σ(D1), . . . , σ(Dk) ∈ S̃0,n+2

for which, by item (ii) of Lemma 3.2, we have

σ(Di) ∩ σ(Dj) = σ(Di ∩Dj) 6= ∅

for all i and j. The fact that the boundary complex of M0,n+2 is a flag complex then implies

σ(D1) ∩ · · · ∩ σ(Dk) 6= ∅,

so by Lemma 3.2 again, we have

σ(D1 ∩ · · · ∩Dk) 6= ∅

and hence D1 ∩ · · · ∩Dk 6= ∅.
On the other hand, suppose that one of D1, . . . , Dk (without loss of generality, say Dk) is

the divisor D0 whose dual graph G0 consists of a single genus-zero vertex with a self-edge.
Note that this divisor intersects nontrivially with every boundary stratum of M1,n. Indeed,
if S is a boundary stratum with associated dual graph G, then either G has a nonseparating
edge or G has a genus-one vertex. In the first case, G is a degeneration of G0 (as one sees
by smoothing all but the nonseparating edge of G), so S ⊆ D0. In the second case, if we
replace the genus-one vertex of G by a genus-zero vertex with a self-edge, then the resulting
graph is a degeneration of both G0 and G, so D0 ∩ S 6= ∅.

In particular, then, since our previous argument shows that D1∩ · · ·∩Dk−1 6= ∅, it follows
from Lemma 2.4 that D1 ∩ · · · ∩Dk−1 is a single stratum S. We then have

D1 ∩ · · · ∩Dk = S ∩Dk = S ∩D0 6= ∅

by the above, so the proof is complete. �

We now turn to the cases of Theorem 1.1 where n = 0 or n = 1, in which the claim is that
the boundary complex of Mg,n is always a flag complex.

Proposition 3.3. The boundary complex of Mg,0 and of Mg,1 is a flag complex for any g

for which the moduli space exists.

Proof. Consider the moduli space Mg,0, where g ≥ 2 so that the moduli space exists. Then
the dual graph

(5)
G = 1 1 · · · 1 0

is a degeneration of the dual graph of any boundary divisor of Mg,0. Indeed, it is straight-
forward to a give a full list of the dual graphs of the boundary divisors of Mg,0: there is the
single-vertex graph G0 with a self-edge, and for any partition a + b = g in which a, b > 0,
there is a graph Ga,b consisting of a vertex of genus a joined by an edge to a vertex of genus
b. One sees that G is a degeneration of G0 by smoothing all but the self-edge of G, while one
sees that G is a degeneration of Ga,b by smoothing the leftmost a edges and the rightmost b
edges (including the self-edge) of G.
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It follows that, for any collection D1, . . . , Dk of boundary divisors of Mg,0, we have

D1 ∩ · · · ∩Dk 6= ∅,

because the boundary stratum corresponding to G is contained in Di for each i. Thus, the
boundary complex of Mg,0 is a flag complex.

A similar argument applies to Mg,1 (where now we need only assume that g ≥ 1). In this
case, the same argument shows that the dual graph

1 1 · · · 1 0

1

is a degeneration of the dual graph of any boundary divisor. �

It is worth remarking that the proof of Proposition 3.3 does not extend to n ≥ 2, since
in this case, there are dual graphs Ga,b with a vertex of genus zero, and no graph of the
shape in (5) is a degeneration of such Ga,b. Indeed, we will see below that when g ≥ 3, the
boundary complex of Mg,n is not a flag complex for any n ≥ 2. Before that, however, we
address the slightly special case of genus two.

Proposition 3.4. The boundary complex of M2,n is a flag complex if and only if n ∈
{0, 1, 2}.

Proof. The cases n = 0 and n = 1 are both covered by Proposition 3.3. If n = 2, we
computed the boundary complex in Example 2.2, and we can see at a glance that it is a flag
complex.

Suppose, then, that n ≥ 3. For each i ∈ {1, . . . , n}, let Di be the boundary divisor
associated to the dual graph

1 1 i

with the left-hand component containing all marked points except i. Then Di ∩Dj has dual
graph

(6)
1 0 1i j

so it is in particular nonempty.
We claim, however, that

D1 ∩ · · · ∩Dn = ∅.

To see this, note that if D1 ∩ · · · ∩ Dn were nonempty, then it would have codimension n,
and hence there would exist a dual graph G with n edges that is a degeneration of the dual
graphs of Di for each i. This, in particular, means that G is a degeneration of the graph in
(6) for any i 6= j, which means that marked points i and j cannot lie on the same vertex or
on adjacent vertices of G.

Given that G has n vertices, it follows from Euler’s formula that

|V (G)|+ |F (G)| = n+ 1,

where V (G) and F (G) denote the sets of vertices and faces of G, respectively. If |F (G)| ≥ 1,
this implies that |V (G)| ≤ n, in which case it is impossible to distribute the n marked
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points without some pair of marked points lying on the same or adjacent vertices. The only
possibility, then, is that |F (G)| = 0, in which case |V (G)| = n + 1. There is now exactly
one way to distribute the n marked points so that no two lie on adjacent vertices: the graph
G must have a “pinwheel” shape, with one central unmarked vertex and n other vertices
each connected to it by an edge and each containing one marked point. But since g = 2
and n ≥ 3, at least one of these exterior vertices must have genus zero, and it is therefore
unstable.

We conclude that there is no graph that is a degeneration of the dual graphs of Di for all
i, and hence the boundary complex of M2,n is not a flag complex. �

The remaining cases of Theorem 1.1, in which g ≥ 3, can be handled all together. In these
cases, aside from the small values of n covered by Proposition 3.3, the boundary complex is
never a flag complex.

Proposition 3.5. Let g ≥ 3. Then the boundary complex of Mg,n is a flag complex if and
only if n ∈ {0, 1}.

Proof. In light of Proposition 3.3, it suffices to prove that the boundary complex of Mg,n is
never a flag complex when g ≥ 3 and n ≥ 2. To do so, let D1, D2, and D3 be the boundary
divisors specified by the following three dual graphs:

g − 1 1

1

...
n

D1

g − 1 11

2
...

n

D2

g − 1 1

2
...

n

1

D3

One can check that the pairwise intersections have dual graphs

g − 1 0 1

1
2
...

n

D1 ∩D2

g − 1 0 1

2 · · · n

1

D1 ∩D3

1 g − 2 1

2
...

n

1

D2 ∩D3

which confirms that all three pairwise intersections are nonempty. However, we claim that

D1 ∩D2 ∩D3 = ∅,

which implies that the boundary complex of Mg,n is not a flag complex.
To check this, note that since the middle vertex of the dual graph for D1 ∩D2 has genus

zero and three special points, it cannot degenerate. Therefore, in any degeneration of that
graph, removing the vertex containing marked point 1 yields a disjoint union of two graphs,
one of genus g−1 containing no marked points and one of genus 1 containing marked points
2, . . . , n. This is never true of a degeneration of the dual graph for D1 ∩ D3: in that case,
removing the vertex with marked point 1 either produces a connected graph, or it produces
a disjoint union in which one subgraph has genus g− 1 and contains marked points 2, . . . , n.
Thus, no dual graph can be simultaneously a degeneration of the dual graph of D1 ∩D2

and of D1 ∩D3, so the triple intersection is empty. �

Combining Propositions 3.1, 3.3, 3.4, and 3.5, the proof of Theorem 1.1 is complete.
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