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Abstract

We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves
simulated with realistic spot-evolution patterns. We convolved these simulated light curves with real TESS light
curves containing minimal intrinsic astrophysical variability to allow the network to learn TESS systematics and
estimate rotation periods despite them. In addition to periods, we predict uncertainties via heteroskedastic
regression to estimate the credibility of the period predictions. In the most credible half of the test data, we recover
10% accurate periods for 46% of the targets, and 20% accurate periods for 69% of the targets. Using our trained
network, we successfully recover periods of real stars with literature rotation measurements, even past the 13.7 day
limit generally encountered by TESS rotation searches using conventional period-finding techniques. Our method
also demonstrates resistance to half-period aliases. We present the neural network and simulated training data, and
introduce the software butterpy used to synthesize the light curves using realistic starspot evolution.

Unified Astronomy Thesaurus concepts: Starspots (1572); Stellar physics (1621); Stellar rotation (1629); Stellar
properties (1624); Convolutional neural networks (1938); Computational astronomy (293); Astronomical
simulations (1857); Light curves (918)

Supporting material: interactive figure, tar.gz file

1. Introduction

Stellar rotation is fundamentally linked to the structure and
evolution of stars. In the decade since the Kepler mission,
much has been learned about rotation, feeding into asteroseis-
mology, empowering gyrochronology, and changing the way
we think about stellar-evolution codes. Rotation period
estimates are made possible through a variety of methods.
Historically, spectroscopy enabled estimates of rotation
velocity due to Doppler red/blueshift from the receding/
approaching halves of a stellar disk. The projected rotation
velocity could then be used to compute an upper limit on the
period if the stellar radius was known. Missions like
Convection Rotation and planetary Transits (CoRoT; Baglin
et al. 2006) and Kepler (Borucki et al. 2010) have shifted the
paradigm: the majority of period estimates now employ
photometry instead of spectroscopy. This works particularly
for stars which, like the Sun, exhibit magnetic dark and bright
spots that induce periodic variations to the light curves as the
stars rotate. Several techniques have been developed in recent
years to extract rotation information from spot-modulated
stellar light curves. Namely, Lomb–Scargle periodograms
(LSPs; Marilli et al. 2007; Feiden et al. 2011), autocorrelation
analysis (McQuillan et al. 2013, 2014), wavelet transforms
(Mathur et al. 2010; García et al. 2014), Gaussian processes
(Angus et al. 2018), and combinations of these (Ceillier et al.
2017; Santos et al. 2019; Reinhold & Hekker 2020) have all
been used to infer rotation periods from light curves.

Period-finding methods have paved the way for large studies
of stellar rotation. Applied to CoRoT and Kepler, these

techniques have delivered tens of thousands of rotation period
estimates, which in turn have been used to advance our
understanding of stellar and Galactic evolution (e.g., McQuil-
lan et al. 2014; van Saders et al. 2016; Davenport 2017; van
Saders et al. 2019; Amard et al. 2020; Claytor et al. 2020). The
Transiting Exoplanet Survey Satellite (TESS; Ricker et al.
2015) stands to increase the number of inferred periods by an
order of magnitude in its ongoing all-sky survey.
Rotation studies have also brought to light the limitations of

period-detection methods. For example, conventional methods
are subject to aliases from multiple groups of starspots
(e.g.,“double-dipper” stars; Basri & Nguyen 2018), and they
still struggle to detect rotation in quiet, Sun-like stars
(McQuillan et al. 2014; van Saders et al. 2019; Reinhold &
Hekker 2020). Furthermore, the traditional methods do not
necessarily reveal a star’s true period. Rather, they reveal the
period(s) of latitudes at which starspots form, which may rotate
faster or slower than the star’s equator due to surface
differential rotation.
Finally, the systematics of TESS have made traditional

period searches difficult (Oelkers & Stassun 2018; Canto
Martins et al. 2020; Holcomb 2020; Avallone et al. 2021). The
lunar-synchronous orbit of TESS has a 13.7 day period, and the
telescope is subject to background variations from reflected
sunlight causing periodic contamination that is difficult to
remove. As a result, dedicated rotation studies struggle to
obtain reliable periods longer than about 13 days (e.g., Canto
Martins et al. 2020; Holcomb 2020; Avallone et al. 2021).
New, data-driven methods are needed to overcome these
systematics and recover periods.
Deep learning is relatively new to astronomy, but in a short

time deep-learning methods have proven to be valuable at
mining information from large data sets. Perhaps the most well-
known use of deep learning is image recognition (e.g., He et al.

The Astrophysical Journal, 927:219 (16pp), 2022 March 10 https://doi.org/10.3847/1538-4357/ac498f
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-9879-3904
https://orcid.org/0000-0002-9879-3904
https://orcid.org/0000-0002-9879-3904
https://orcid.org/0000-0002-4284-8638
https://orcid.org/0000-0002-4284-8638
https://orcid.org/0000-0002-4284-8638
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0003-4450-0368
https://orcid.org/0000-0002-7354-5461
https://orcid.org/0000-0002-7354-5461
https://orcid.org/0000-0002-7354-5461
https://orcid.org/0000-0001-9848-7483
https://orcid.org/0000-0001-9848-7483
https://orcid.org/0000-0001-9848-7483
https://orcid.org/0000-0003-1719-5046
https://orcid.org/0000-0003-1719-5046
https://orcid.org/0000-0003-1719-5046
mailto:zclaytor@hawaii.edu
http://astrothesaurus.org/uat/1572
http://astrothesaurus.org/uat/1621
http://astrothesaurus.org/uat/1629
http://astrothesaurus.org/uat/1624
http://astrothesaurus.org/uat/1624
http://astrothesaurus.org/uat/1938
http://astrothesaurus.org/uat/293
http://astrothesaurus.org/uat/1857
http://astrothesaurus.org/uat/1857
http://astrothesaurus.org/uat/918
https://doi.org/10.3847/1538-4357/ac498f
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac498f&domain=pdf&date_stamp=2022-03-17
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac498f&domain=pdf&date_stamp=2022-03-17
http://creativecommons.org/licenses/by/4.0/


2015). Deep neural networks are extremely effective and
efficient at processing and classifying two-dimensional (2D)
images, making them ideal tools to use on astronomical data.
Neural networks, and in particular convolutional neural
networks (CNNs), efficiently extract information from time
series, spectra, and image data. The strength of CNNs comes
from their local connectivity, which incorporates the knowl-
edge that neighboring input points are highly correlated.
Examples of success using CNNs in astronomy include
Hezaveh et al. (2017), who used CNNs to characterize
gravitational lenses from image data. Within the realm of
stellar astrophysics, Guiglion et al. (2020) used the same
techniques to obtain stellar parameters from spectra. Moreover,
Feinstein et al. (2020) and Blancato et al. (2020) used CNNs to
infer stellar parameters and flare statistics from light curves.

Using CNNs, we predict stellar rotation periods from
wavelet transforms of light curves. The use of supervised
machine learning requires the existence of a training data set
for which the target, in this case the rotation period, is known.
This is not yet possible with TESS due to the difficulties of
obtaining reliable periods using traditional techniques. Further-
more, while there is some overlap between TESS and Kepler,
the TESS observations of the Kepler field are short, spanning
only 27 days for most targets. This is enough to recover and
validate short rotation periods (Blancato et al. 2020), and
possibly some subset of longer periods (Lu et al. 2020), but not
enough to be useful for the broader population of stars in our
Galaxy. Moreover, even large rotation samples from Kepler are
likely contaminated with mismeasured periods (Aigrain et al.
2015). Using a training set of periods obtained with
conventional techniques risks imprinting this contamination
onto the neural network. To avoid this, we followed the
approach of Aigrain et al. (2015) and used a set of synthetic
light curves generated from physically motivated starspot-
emergence models. This is an example of simulation-based
inference (e.g., Cranmer et al. 2020), wherein we simulate a
physical process and use machine learning to address the
inverse problem of inferring the rotation.

We introduce butterpy,5 an open-source Python package
designed to simulate realistic starspot emergence and synthe-
size light curves, followed by a description of the input physics
of the simulations. After describing our training set, we outline
our CNN and the methods we use to train, validate, and test the
network. We evaluate our trained neural network on synthe-
sized data sets spanning different period ranges to identify for
what periods the network is most predictive. Next, we discuss
the network’s performance on a small set of real light curves
for which rotation periods are known. We also compare our
network predictions to periods recovered using conventional
methods before finally concluding with thoughts on the
feasibility of our methods to recover stellar rotation periods
from real TESS light curves.

2. Synthetic Light Curves: butterpy

Synthesized light curves have several advantages over
observed light curves: (1) the true, equatorial period of the
simulated star is known, rather than an estimate of the period
(which may be wrong), (2) data of any length and cadence can
be synthesized, and (3) other physical properties like spot

characteristics, differential rotation, and surface activity are
known and can be independently probed.
To simulate light curves, we developed butterpy, a

Python package designed to generate realistic, physically
motivated spot-emergence patterns faster than conventional
surface-flux-transport codes. We invite the community to
extend and modify the spot-emergence model in the open-
source GitHub repository. The name butterpy comes from
the butterfly-shaped pattern of spot emergence with time
exhibited by the Sun (e.g., Hathaway 2015). We built upon the
software developed by Aigrain et al. (2015), which relied on
the flux-transport models of Mackay et al. (2004) and Llama
et al. (2012) to generate dark-spot-emergence distributions
which were in turn used to compute light curves. Aigrain et al.
(2015) discuss in detail how well these model light curves
match those seen in nature; but, broadly, they reproduce the
solar irradiance and resemble light-curve ensembles observed
by CoRoT and Kepler. The original model of Mackay et al.
(2004) was designed to reproduce spot-emergence patterns of
the Sun as well as Zeeman Doppler images of the pre-main-
sequence star AB Doradus. Later, Llama et al. (2012) used this
model in tandem with exoplanet transit observations to trace
the migration of active latitude bands across the surfaces of
stars. Aigrain et al. (2015) used the light curves generated from
these spot distributions to test the recovery rates of various
period-detection techniques, which we seek to emulate. We
discuss the method and assumptions here for clarity.

2.1. Spot Emergence and Light-curve Computation

Like Aigrain et al. (2015), we model starspots as uniformly
dark circles on the surface of the star. For this exercise, we do
not include bright plage or faculae, nor do we allow for
nonuniformity of spot intensity or shape. However, we expect
our model to capture most of the variance contained in real
light curves. Beyond these basic assumptions, there are several
variables to consider regarding the emergence of starspots and
their effect on the star’s light curve, including the latitudes and
rates of emergence, the spot lifetimes, and the rotation speed at
the latitude of emergence if the star rotates differentially. While
observations of these characteristics on stars other than the Sun
are limited, they are very well characterized for the Sun
(Hathaway 2015, and references therein). For our model, we
therefore start with the properties that are known for the Sun
and allow them to vary.

2.1.1. Location and Rate of Spot Emergence

The latitudes of spot emergence on the Sun vary with the
Sun’s 11 year activity cycle. At the beginning of a cycle, spots
emerge within active regions at high latitudes (λ≈± 30°;
Hathaway 2015), and the latitude of emergence migrates
toward the equator throughout the rest of the cycle. Before the
cycle ends, new spot groups begin forming again at high
latitudes, indicating some amount of overlap between con-
secutive cycles. The repeating decay in spot latitude with time
gives rise to a butterfly-like pattern known as a “butterfly
diagram”. Butterfly patterns have been observed in other stars,
as well (Bazot et al. 2018; Nielsen et al. 2019; Netto &
Valio 2020), but some stars show a random distribution of
spot-emergence latitudes with time (e.g., Mackay et al. 2004).
The width of active latitude bands has also been shown to differ
even for Sun-like stars (Thomas et al. 2019). In our model, we5 https://github.com/zclaytor/butterpy (Claytor et al. 2021).
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allow for either a random or butterfly-like spot emergence
between a minimum and maximum latitude that are unique for
each star. For the butterfly pattern, spots begin the cycle
emerging at a latitude lmax, decaying exponentially with time
to latitude lmin at the end of the cycle (Hathaway 2011).

As for longitude, spots on the Sun tend to emerge in groups,
either next to existing spots, or in some cases antipolar to
existing spots (Hathaway 2015). Less often, spots will emerge
at random longitudes, not necessarily associated with any
existing spot groups. We respectively refer to these two cases
as correlated and uncorrelated active regions. In our simula-
tions, we follow the approach of Aigrain et al. (2015), dividing
the stellar surface into 16 latitude and 36 longitude bins; the
probability of spot emergence is distributed across these bins.
To account for the relative likelihood of correlated and
uncorrelated emergence, bins already containing active regions
are assigned a higher probability of emergence.

The rates of sunspot emergence change with spot area and
with time throughout the activity cycle. Schrijver & Harvey
(1994) expressed the number of spots emerging in area interval
(a, a+ da) and time interval (t, t+ dt) as r(t)a−2dadt, where r
(t) represents the time-varying emergence rate amplitude, the
active-region area a is in square degrees, and t is the time
elapsed in the activity cycle, ranging from 0 to 1. For the time
dependence, spots emerge very slowly at the beginning, more
rapidly in the middle, and slowly again at the end (Hathaway
et al. 1994). Mackay et al. (2004) modeled this using a squared
sine function: ( ) ( )p=r t A tsin2 . The activity level A is an
adjustable scale factor controlling both the average rate of spot
emergence and the amplitude of light-curve modulation of a
single spot. It is defined such that A= 1 for the Sun.

2.1.2. Latitudinal Differential Rotation

We define asterographic longitude such that f= 0 always
faces the Earth. As a consequence, spots move in longitude as
the star rotates. The Sun rotates more rapidly near the equator
than at the poles, a phenomenon known as “latitudinal
differential rotation” (henceforth just “differential rotation”).
While differential rotation is more difficult to observe on other
stars, some stars may exhibit “antisolar” differential rotation,
wherein the equator rotates more slowly than the poles. This
has been observed particularly in slowly rotating stars (e.g.,
Rüdiger et al. 2019). In our model, we allow for solar-like,
antisolar, and solid-body rotation. Following Aigrain et al.
(2015), we model the differential rotation profile as
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Here, λk and fk denote the asterographic latitude and longitude
of spot k. t kmax, is the time at which the spot achieves maximum
flux, Ω is the angular velocity at latitude λk, and α is the
differential rotation shear parameter. To include antisolar,
solid-body, and solar-like profiles, we allow α to range from –1
to 1.

2.1.3. Spot-induced Flux Modulation

Once spot emergence is determined, we simulate spot
evolution and flux modulation based on the simplified model of
Aigrain et al. (2012, 2015). They take the photometric

signature δFk(t) of a single spot k to be
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where βk(t) is the angle between the spot normal and the line of
sight, accounting for projection on the stellar surface. The
inclination i is the angle between the rotation axis and the line
of sight, and λk and fk(t) are again the latitude and longitude of
the spot. The factor fk is the amount of luminous flux removed
if spot k is observed at the center of the stellar disk. Aigrain
et al. (2015) used an exponential rise and decay to model the
rapid emergence and slow decay of single spots, but we employ
a two-sided Gaussian to avoid cusps in the curve of spot area
with time while preserving the same emergence and decay
behavior:
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where fk
max is the flux removed by spot k at the time of

maximum emergence t kmax, , τ is the relevant emergence or
decay timescale, and τspot is a dimensionless parameter used to
relate the emergence and decay timescales to the equatorial
rotation period Peq. We verified that our results were not
sensitive to the choice of exponential or Gaussian emergence
and decay, so the choice is purely philosophical. Like Aigrain
et al. (2015), we parametrized the emergence and decay
timescales as multiples of the equatorial rotation period. The
form of their emergence timescale was chosen so that, in
general, emergence is five times faster than decay, with a
minimum possible emergence timescale of 2 days. We adopt
the same behavior for our simulations. In the simple model of
Aigrain et al. (2012), fk

max takes into account the spot area and
contrast, but the model of Aigrain et al. (2015) relates this
factor to the strength of the magnetic field:

( )= ´ á ñ-f A B B3 10 , 4k r k r k k
max 4

, ,

where A is the activity level, and the constant is chosen such
that A= 1 reproduces approximately Sun-like behavior.
With this expression, the single-spot luminous flux modula-

tion is proportional to the radial (or vertical) magnetic field
component at that spot. The magnetic field strength or magnetic
flux is proportional to the area of the active region, which van
Ballegooijen et al. (1998) derive using the angular width of
magnetic bipoles emerging from the active region:
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where Br is the radial component of the magnetic field near
either the positive or negative bipole, Bmax is the initial peak
magnetic field strength in the active region, βinit is the angular
width of a single bipole, β0 is the angular width (in degrees) of
the bipole at the time the active region is inserted into the
model, accounting for diffusion, and β± is the asterocentric
angle between a field point and one of the bipoles.
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van Ballegooijen et al. (1998) assumed that the bipole width
βinit is proportional to the angular separation between the
positive and negative poles, which they call Δβ, with a
proportionality factor of 0.4. Assuming spots form within 10
degrees of the active-region bipoles, the value of the
exponential factor differs from unity by less than 1%. For this
reason, we approximate the exponential factor as unity. Thus,
at the location of a starspot, Equation (5) simplifies to

⎜ ⎟
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b

»
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B B
0.4

. 6r max
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2

Combining this with Equation (4),
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van Ballegooijen et al. (1998) and Mackay et al. (2004)
consider a range of bipole widths from about 3.5° to 10°, which
we adopt for our models. The distribution ofΔβ is the same for
every star, so 〈Δβk〉k is effectively constant. While some low-
mass stars have been suggested to have much larger spots
covering substantial fractions of the surface, these stars will
still be represented in our training set by models with many
small spots. Putting it all together, we have a final system of
equations to describe the change in luminous flux from a single
spot:
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This depends on Δβk, λk, fk(t), and t kmax, , which are unique to
each spot; and A, τspot, Peq, and i, which are unique to each star.

2.2. Training Set

Using the model in butterpy, we generated one million
light curves at 30 minute cadence and 1 yr duration to match
the TESS full-frame images (FFIs) in the continuous viewing
zones (CVZs). The simulation input parameters and their
chosen distributions are listed in Table 1. While these
parameters for real stars tend to correlate with one another
(e.g., faster-rotating stars tend to be more active), we
intentionally left the parameters mutually uncorrelated so as
not to imprint our choices on the neural network predictions.
The input distribution acts as a prior on the predictions of a
neural network. Uniform distributions serve as uninformative
(“flat”) priors. We therefore chose all our distributions to be
uniform or log-uniform (i.e., uniform under a log-transforma-
tion) to avoid applying a strong prior in the neural network
predictions. We sampled periods uniformly from the range
[0.1, 180] days, assuming no relationship between period and
activity. The period range was chosen to be as wide as possible
to simulate the fastest-rotating stars (Peq≈ 0.1 day) while also
capturing anything that would go through at least two rotations
under observation in the TESS CVZs (the total baseline is 350
days, so an object with Peq= 180 will go through almost two

rotations in that time). We chose the remaining distributions
and ranges to reflect those of Aigrain et al. (2015), which were
chosen to resemble and slightly exceed the distributions seen in
Kepler stars. We made minor adjustments to the ranges of
activity level and differential rotation shear to search a broader
parameter space. Figure 1 illustrates an example simulation,
showing the distribution of spots on the surface as well as their
impact on the observed light curve.

Table 1
Distribution of Simulation Input Parameters

Parameter Range Distribution

Equatorial rotation period, Peq 0.1–180 days Uniform
Activity level, A 0.1–10× solar Log-uniform
Activity cycle length, Tcycle 1–40 yr Log-uniform
Activity cycle overlap, Toverlap 0.1 yr–Tcycle Log-uniform
Minimum spot latitutde, lmin 0°–40° Uniform
Maximum spot latitude, lmax l + 5min –80 ° Uniform
Spot lifetime, τspot 1–10 Log-uniform
Inclination, i 0°–90° Uniform in isin2

Latitudinal rotation shear, ΔΩ/Ωeq 0.1–1 (50%) Log-uniform
0 (25%)

−1−0.1 (25%) Log-uniform

Note. We adopted the distributions used by Aigrain et al. (2015) with minor
modifications: (1) we sampled a broader range of periods and activity levels,
(2) we used a uniform distribution of periods so as not to impart an unwanted
prior on the neural network prediction, (3) we include antisolar differential
rotation by allowing the shear parameter to be negative.

Figure 1. An example of a butterpy simulation of spot evolution and light-
curve generation. This figure is available online as an interactive figure. The
online figure has an interactive slider and play/pause buttons that allow the
user to move the figure through time and see changes in the light curve as spots
rotate into and out of view.
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2.3. TESS Noise Model

To ensure the training light curves properly emulate real
TESS light curves, the training set must exhibit TESS-like
noise. Aigrain et al. (2015) used light curves from quiescent
Kepler stars to achieve this. In their study, a sample of stars
from McQuillan et al. (2014) with no significant period
detection served as the quiescent data set. Because there are no
existing bulk period measurements for stars in the CVZs, we
must find another means of simulating TESS noise.

While TESS is a planet-finding mission, the southern CVZ
contains thousands of galaxies which should have roughly
constant brightness with time. Any changes in the light curves
of these galaxies would be due solely to TESS instrument
systematics. Furthermore, while galaxies are extended on the
sky and not point sources, TESSʼs large (21″) pixel size means
that a typical aperture is larger than most galaxies in the TESS
Input Catalog. Indeed, 85% of SCVZ galaxies fit in the width
of two pixels, and 93% fit within three pixels. Thus, as long as
we choose sufficiently large apertures, the galaxies are
effectively point-like, and the galaxy light curves should
reasonably resemble light curves of quiescent stars in TESS.

We selected roughly 2000 galaxies in the southern CVZ with
Tmag� 15 as our quiescent sample, removing a handful of
galaxies known to be active and in the Half-Million Quasars
catalog (Flesch 2015). Figure 2 shows the brightness distribu-
tions of galaxies and stars in the TESS SCVZ, with vertical
lines indicating the 10th percentiles of each distribution. The
galaxies are distributed in apparent brightness similarly to the
stars in the TESS SCVZ, so the training light curves will have
distributions of apparent brightness and photometric precision
resembling the distributions of real stars. We queried FFI
cutouts from the Mikulski Archive for Space Telescopes
(MAST) using Lightkurve and TESScut (Lightkurve
Collaboration et al. 2018; Brasseur et al. 2019). Then, we
performed background subtraction and aperture photometry on
each source using Lightkurve regression correctors,
following Lightkurve Collaboration (2020). To summarize,
aperture masks were chosen using the

create_threshold_mask function in Lightkurve.
This method selects pixels with fluxes brighter than a specified
threshold number of standard deviations above the image’s
median flux value. We specified thresholds based on the
target’s brightness to exclude background pixels from the
aperture. Once the raw light curve was computed, the
regression correctors fit principal components of the time-
series images and subtracted the strongest components from the
raw light curve. All sector light curves for a source were then
median-normalized and stitched together to form the final “pure
noise” light curve.
The galaxy light curves were linearly interpolated to each

TESS cadence to fill gaps, whether for missing observations or
entire missing sectors. Cadences missing at the beginning or
end of the light curve were filled with the light curve’s mean
flux value. Finally, a galaxy light curve was chosen at random
to be convolved with each of the synthetic light curves,
yielding our final set of simulated TESS-like light curves. We
note that while the light curves were median-normalized, this
should not affect the intrinsic brightness or effective signal-to-
noise ratio (S/N) of the light curves. The S/N can be thought
of as the spot modulation amplitude divided by the photometric
precision, both of which are defined relatively and are therefore
preserved under median normalization. Thus, the ranges of
brightness and photometric precision of our light curves reflect
the underlying set of galaxy light curves, which are
representative of stars in the TESS SCVZ. We divided the
set of 2000 galaxies into two sets of 1000: one set to be
convolved with light curves from the training partition, and one
for the validation and test partitions (see Section 4 for more
about data partitioning).

3. Data Processing/Wavelet Transform

There are several options for input to a neural network to
predict rotation periods. One could use the light curve directly;
Blancato et al. (2020) suggest this as the best way to obtain
periods using neural networks without loss of information.
However, using the light curve as input means that the
information conveying periodicity is temporally spread out.
While neural networks can certainly learn to predict periods
this way, a frequency representation concentrates the period
information to one location in input space. LSPs (Lomb 1976;
Scargle 1982; Feiden et al. 2011) and autocorrelation functions
(ACFs; McQuillan et al. 2013, 2014) are two tried-and-true
methods of period estimation that have some promise as input
to neural networks. While these methods are effective at
concentrating periodicity information to one location, real
stars’ observed periodicities can change with time due to
differential rotation. Lomb–Scargle and autocorrelation meth-
ods average over these changes, potentially blurring out
interesting evolution.
The continuous wavelet transform (Torrence & Compo 1998)

has also been used to identify rotation periods from stellar light
curves (Mathur et al. 2010; García et al. 2014; Santos et al.
2019). When applied to time series, the wavelet transform
creates a 2D image of frequency versus time; thus, it has the
bonus of elucidating changes in periodicity with time.
Additionally, the wavelet transform’s 2D nature makes it an
ideal partner to deep-learning approaches. Deep learning has
been applied to wavelet transform representations in the fields
of physiology (Zhao & Zhang 2005), economics (Bao et al.
2017), and more. We chose the wavelet transform as the best

Figure 2. Brightness distributions of stars and galaxies in the TESS Southern
Continuous Viewing Zone (SCVZ). The galaxies follow a similar brightness
distribution to the stars in the SCVZ, especially toward the faint end where the
majority of objects lie. Because the distributions are similar, the training light
curves, which use the galaxy light curves to emulate noise, are representative of
real distributions of stars’ brightness and noise properties.
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representation to localize periodic information while allowing
the tracing of spot evolution, and as the most natural
representation to leverage the decades of advances in image
classification and analysis with deep learning.

We used the continuous wavelet transform implemented in
SciPy (Virtanen et al. 2020) with the power spectral density
correction of Liu et al. (2007). Using a Morlet wavelet, we
computed wavelet power spectra for both the noiseless and
noisy light curves in our training set. Examples of both
noiseless and noisy power spectra are shown for the same
simulated star in Figure 3. We then rebinned the power spectra
to 64× 64 pixels and saved them as arrays for fast access.
Higher-resolution arrays were tested (e.g., 128× 128) and
showed no significant change in performance.

We ran several tests with the period axis of the wavelet
power spectra, trying maximum periods of 128, 150, and 180
days, before settling on 180 days (i.e., half the observing
window) for the final data products. In the tests with 128 and
150 days, the neural network successfully predicted periods
longer than the maximum visible period in the periodogram,
albeit at lower success rates. This suggests that neural networks
can predict periods even when the period at maximum power is
beyond the range of the plot, consistent with the results of Lu
et al. (2020). This is encouraging for period predictions for
stars outside the TESS continuous viewing zones, where
observations are substantially less than a year in duration. In
the end, we chose 180 days as the maximum value on the
period axis to preserve the strongest rotation signals in as many
objects as possible.

In addition to butterpy, the training light curves and
wavelet power spectra are available on MAST as a High Level
Science Product via doi:10.17909/davg-m919.6

4. Convolutional Neural Network

We used a CNN to predict rotation periods from wavelet
transforms. Table 2 outlines the CNN architecture. We used a
sequence of 2D convolution layers with rectified linear
activation (“rectifier”, or “ReLU”) followed by 1D max-
pooling in the time dimension. The ReLU activation function
has the form ( ) ( )=f x xmax 0, . Its nonlinearity allows the
model to represent complex functions, and ReLU learns faster
than other nonlinear activation functions. Max-pooling is used
to down-sample input and impart a small amount of
translational invariance. The shapes of the convolution and
pooling kernels were chosen to impart equivariance in the
frequency dimension (no pooling, since frequency is what we
want to estimate) and translational invariance in the time
dimension. This means that the CNN will treat periodic signals
the same regardless of when they occur in the wavelet power
spectrum (see Ch. 9 of Goodfellow et al. 2016).

The output of the convolution layers is then flattened to one
dimension and fed into a series of three fully connected layers,
also with ReLU activation. The final layer uses softplus
activation, which has the form ( ) ( )= +f x eln 1 x . A smooth
approximation to the rectifier, softplus activation ensures
positive output while preserving differentiability. The final
layer outputs two numbers, which represent the rotation period
and the period uncertainty.

The 2D wavelet power spectra were used as input to our
neural network, while the corresponding model rotation periods served as the target output. Target periods were min-max scaled

over the entire data set to the range [0, 1]. Each power spectrum
array was min-max scaled to the range [0, 1] separately—using

Figure 3. Top: Morlet wavelet transform (a) of a noiseless light curve, shown
with the light curve (b) and global wavelet power spectrum (c). Center: plots
for the same light curve convolved with TESS noise and restitched. The dotted
curve marks the cone of influence, below which the power spectrum is
susceptible to edge effects. Bottom: example of a binned wavelet power
spectrum we used to train our neural network. The 64 × 64 pixel array, without
labels, is what is fed into the network. Neural networks can learn to ignore the
noise and pick out stellar signals.

6 https://archive.stsci.edu/hlsp/smarts/
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the min and max over the entire data set suppressed lower-
amplitude signals and substantially impaired performance.

Our full data set of one million examples was partitioned into
three sets for model training, validation, and testing. The
training set consisted of 80% and was used to fit the model
weights. The validation set (10%) was used for early stopping
(we stop training when the validation loss does not improve
over a window of 10 training epochs to avoid overfitting) and
for choosing the optimal hyperparameters. The test set (10%)
was used for final model evaluation.

We used the Adam optimizer (Kingma & Ba 2014), which
allows for a variable learning rate, with negative log-Laplacian
likelihood as the loss function. This loss function allows us to
predict both the rotation period and its error (a process known
as heteroskedastic regression), indicating which period predic-
tions are more reliable than others. It has the form

 ( )
∣ ∣

( )= +
-

b
P P

b
ln 2 , 9

true pred

where b is taken to represent the predicted uncertainty.
Maximizing the log-likelihood of the Laplace distribution is

equivalent to minimizing the mean absolute error instead of the
mean-squared error, or predicting the median period instead of
the mean. This also means that in cases where the neural
network cannot predict with high confidence, predictions will
be biased toward the median of the period range. Formally, the
Laplace distribution has variance 2b2 and standard deviation

b2 . Since we use the predicted uncertainty only to determine
the relative credence of predictions, the number should not be
considered statistically formal. With this in mind, we leave the
notation in terms of b to represent the uncertainty for simplicity
and to discourage a statistically formal interpretation of our
uncertainty.

With 800,000 input–output pairs in the training set, our
model takes roughly 3 hr until fully trained on a single
NVIDIA RTX2080. Once trained, evaluation on the test input
of 100,000 wavelet power spectrum plots takes less than a
minute.

5. Results

We trained and evaluated the neural network on year-long
simulations of both noiseless and noisy wavelet transform

images. We additionally used LSPs, ACFs, and wavelet
transforms to obtain independent period estimates from both
the noiseless and noisy data.
Aigrain et al. (2015) performed blind injection-recovery

exercises on synthesized Kepler-like light curves to assess the
reliability of conventional period-detection methods. On
average, the teams recovered periods with 10% accuracy in
∼70% of cases in which periods were obtained. We adopt this
10% accuracy threshold as our success metric, which we
designate “acc10”. In addition to acc10, we also quantify
results with “acc20”, mean absolute percentage error (MAPE),
and median absolute percentage error (MedAPE), defined as
follows. If we define the absolute percentage error of example i
to be òi= |Ppred,i− Ptrue,i|/Ptrue,i, then our recovery metrics are


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where H(x− òi) is the Heaviside or unit step function.
Before commenting on our period recovery, it is important to

note the differences in our light-curve sample from that of
Aigrain et al. (2015). The most important differences are in the
range of activity level and the light-curve preprocessing. Our
sample spans a wider range of activity levels, ranging from 0.1
to 10 times solar, as opposed to 0.3–3 times solar in Aigrain
et al. (2015). The logarithmic scale of the distribution ensures
that the increase in range evenly adds examples to the high- and
low-activity ends. Thus, despite having higher-amplitude
examples in our sample, there should be enough lower-
amplitude examples to compensate, preserving the compar-
ability of our summary statistics to those of Aigrain et al.
(2015). Light-curve preprocessing differs because of the
differences in the Kepler pipeline and our custom TESS FFI
pipeline. In principle, the Kepler pipeline more aggressively
removes systematics, so the Aigrain et al. (2015) simulated
light curves are cleaner than ours.

Table 2
Convolutional Neural Network Architecture

Layer Type Number of Filters Filter Size Stride Activation Output Size

Input image L L L L 64 × 64
Conv2D 8 3 × 3 1 × 1 ReLU 62 × 62 × 8
MaxPool2D 1 1 × 3 1 × 3 L 62 × 20 × 8
Conv2D 16 3 × 3 1 × 1 ReLU 60 × 18 × 16
MaxPool2D 1 1 × 3 1 × 3 L 60 × 6 × 16
Conv2D 32 3 × 3 1 × 1 ReLU 58 × 4 × 32
MaxPool2D 1 1 × 4 1 × 4 L 58 × 1 × 32
Flatten L L L L 1856
Dense L L L ReLU 256
Dense L L L ReLU 64
Dense L L L Softplus 2

Note. We use three 2D convolution layers, each with ReLU activation and max-pooling. Our implementation uses 2D max-pooling with a one-dimensional (1D)
kernel to achieve pooling in the time dimension but not the frequency dimension. This choice preserves frequency resolution but achieves a small amount of
translational invariance in the time dimension. The output of the convolution block is flattened to a 1D array and passed through three fully connected (dense) layers,
with ReLU and finally softplus output, to yield two numbers: the rotation period and its uncertainty.
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5.1. Period Recovery Using Conventional Methods

We recovered periods from our sample of noisy light curves
using LSPs, as implemented in Lightkurve (Lightkurve
Collaboration et al. 2018), ACFs (McQuillan et al. 2013; and,
as implemented in starspot, Angus et al. 2018), and global
wavelet power spectrum (GWPS, as implemented in SciPy;
Virtanen et al. 2020). The recovery results are summarized in
Figure 4. In each panel, objects falling within 10% of the line
y= x are successfully recovered according to our metric. In
addition to showing predictions for the entire test set (left
column), we also filtered predictions based on various period-
ogram peak significance metrics to demonstrate how recovery
rates improve with confidence in the measurement. We
removed the worst half of the data based on peak false-alarm
probability for LSP, and peak prominence (as implemented in
SciPy, Virtanen et al. 2020) for both GWPS and ACF. The
remaining half of the test set is shown in the right column of
Figure 4.

All three conventional methods struggle to recover periods
longer than about 50 days. Longer than this, LSP and GWPS
mistakenly recover signals approaching 30 days in period,
which we suspect represents the TESS sector length of 27 days.
LSP and GWPS are also susceptible to half-period aliases,
which fall along the line =y x1

2
. ACF is less susceptible to

half-period aliases and appears to be the most successful
method overall. However, the ACF and GWPS often
misidentify signals at 5, 13, and 27 days (all well-known
frequencies associated with TESS telescope systematics) as the
rotation period. Interestingly, the ACF has small pockets of
higher success at integer multiples of 27 days, beginning at 54
days. These occur when a star’s rotation period coincides with
an alias of the TESS sector length. Because the ACF is more
likely to be detecting the systematic alias than the period, these
coincidences should not be considered actual successes,
suggesting that at long periods the ACF’s true recovery
probability is lower than it appears to be.

In general, recovery was better for targets with higher light-
curve amplitude for all three methods, as one would expect.
Filtering the sample based on periodogram peak significance
marginally improved the recovery rates, but the predictions
were still dominated by aliases at true periods longer than 50
days. The recovery rates also improved when limited to shorter
periods (see Table 3). We have assumed no rotation–activity
relation, so the improved recovery at shorter periods occurs
when more rotations are observed in the given baseline,
resulting in higher power in the periodograms. Moreover, at
shorter periods rotation signals are less easily lost in the
telescope systematics. In the unfiltered case, for example, if we
limit to periods between 0 and 50 days, acc10 and acc20
improve to 45% and 61% for LSP, 43% and 56% for GWPS,
and 42% and 54% for ACF. Filtering on periodogram peak
significance and limiting to periods shorter than 50 days, acc10
and acc20 improve to roughly 60% and 80%, respectively, for
all three techniques. We note that these short-period recovery
rates are on par with those achieved by Aigrain et al. (2015)
despite the differences in underlying period and amplitude
distributions.

Even with filtering, conventional period-recovery techniques
are subject to aliases, leaving much to be desired for long-
period recovery in TESS. This is not surprising: LSP false-
alarm probability indicates how likely a power spectrum peak
is to arise stochastically. It does not account for the systematics

and aliases like those seen in TESS. Similarly, the peak
prominence used for GWPS and ACF is simply a measurement
of the peak height relative to neighboring troughs. It offers little
insight into whether a peak arises from astrophysical
periodicity, as peaks from strong aliases easily overpower
those from astrophysical signals. This motivates the use of a
CNN, which should be able to discern between aliases and
rotation signals.

5.2. CNN Performance on Noiseless Data

Our neural network’s predictions on noiseless test data are
shown in the left panel of Figure 5. The predicted periods have
a mean absolute percentage error of 14% and a median absolute
percentage error of 7%. 61% of periods were successfully
recovered to within 10%, setting the bar for comparison to
results for the noisy data.

5.3. CNN Performance on Noisy Data

We present the neural network predictions on the noisy test
data in the right panel of Figure 5. The predicted periods have a
mean absolute percentage error of 246% and a median absolute
percentage error of 24%. Only 28% of periods are successfully
recovered to within 10%. The horizontal band at the predicted
period of 90 days represents simulated stars for which the
network could not predict the period at all, instead assigning it
the median of the period range. We discuss the filtering and
removal of these spurious predictions later in this section.
The addition of TESS-like noise severely inhibits the

performance of the neural network. Like the conventional
methods, the neural network predictions are more accurate at
shorter periods. When limiting to periods of 50 days or less, the
median absolute percentage error is 12%, and 44% of targets
are recovered to within 10%. The introduction of noise to the
light curves also affects the amplitudes at which the network is
most reliably predictive. The left panel of Figure 6 shows CNN
recovery rate as a function of amplitude Rper (as defined by
Basri et al. 2011) and equatorial rotation period. Here,
“recovered” means the prediction is within 10% of the true
period. As expected, the network performs better with higher-
amplitude modulations, where the stellar signals are more
easily picked out of the noise. For lower-amplitude modula-
tions (Rper 104 ppm), the light-curve noise dominates the
stellar signal. At the lowest amplitudes, the recovery fraction
approaches zero except for the range near 90 days where
uncertain predictions are assigned the median of the period
distribution. These low-amplitude light curves are analogous to
light curves with no discernible spot modulation and provide an
interesting look at how the CNN would handle light curves
with no spots present. The predictions for these low-amplitude
signals generally have large uncertainty, as we expect.
There are a handful of bins in Figure 6 with seemingly high

amplitudes but unsuccessful period predictions and large
uncertainties. Most, if not all, of these high-amplitude failed
recoveries are due to the noise template used. In these few
cases (<1% of galaxy light curves), the light curves all have
one extremely noisy sector. This noisy sector dominates the
wavelet transform, drowning out any rotation signal; it also
dominates the amplitude measurement, masking the actual
amplitude of the light curve. These noise templates will be
removed from use in future work.
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Figure 4. Period recovery using a Lomb–Scargle periodogram (LSP, top), global wavelet power spectrum (GWPS, middle), and autocorrelation function (ACF,
bottom). The left column shows the unfiltered period recovery, while the right column shows recovery filtered or “precleaned” using periodogram peak significance
metrics: false-alarm probability for LSP and peak prominence for GWPS and ACF. “acc10” represents fraction of periods recovered to within 10% accuracy, while
“acc20” is the recovery to within 20%. ACF has the highest overall success, but the recovery worsens significantly at periods longer than about 30 days. Precleaning
the sample based on peak significance improves recovery, but only marginally in most cases; aliases still dominate the predictions for true periods longer than about
50 days.
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Also noteworthy is that the performance of the neural
network worsens at both extremes of the period range. Period
recovery worsens at periods longer than about 165 days, but
also at periods shorter than 13 days where conventional period-
measuring methods succeed. As we discuss further in
Section 6.1, this is due to the choice of loss function and its
impact on predictions with uncertainty.

In addition to the rotation period, our choice of loss function
allows us to predict the period uncertainty, which serves as a
metric for how well the network is predicting the period. The
right panel of Figure 6 shows the predicted uncertainty versus
period and amplitude. The predicted uncertainty, like the
recovery rate, is better at higher amplitudes. Since the predicted
uncertainty correlates with the recovery rate, the predicted
uncertainty is a reliable metric for successful period recovery
without already knowing the period. We can then use the
predicted uncertainty to select a part of the sample recovered to
a desired accuracy.

For our analysis, we selected the half of the test set with the
lowest predicted fractional uncertainty. The median predicted
uncertainty for the sample before the cut was
σpred/Ppred= 0.35. The period recovery for the best-predicted
half of the sample is shown in Figure 7. The cut removed 90%
of the spurious 90 day period detections, and all summary
statistics were improved. 46% of periods were correctly
predicted to within 10%, and 69% were accurate to within
20%. The predicted periods had a mean absolute percentage
error of 57% and a median absolute percentage error of 11%. A
few targets with incorrectly predicted periods between 100 and
150 days remained after the cut. These had low predicted
fractional uncertainty due to their large predicted periods, so
they made the cut despite being poorly predicted. They
accounted for about 4% of the sample after the cut.

As with all other methods, the CNN performed better on the
noisy data when limited to targets with periods less than 50
days. For this subset of the sample, the median predicted
fractional uncertainty was σpred/Ppred= 0.2. Making the same
cut as before (using the median fractional uncertainty of 0.2),

the recovery of short-period stars improved to acc10 of 58%
and median absolute percentage error of 8%. Table 3 shows the
complete summary of our recovery results.

6. Discussion

We have demonstrated that CNNs are capable of extracting
period information from noisy light curves or, more precisely,
transformations of noisy light curves. Our model also predicts
the uncertainty in the period estimate, enabling us to see where
the network is most successful and determine which period
predictions are most reliable. Here we discuss the strengths and
weaknesses of our approach and compare them to those of
conventional period detection methods. We then comment on
the prospects of estimating rotation periods from real TESS
light curves.

6.1. Strengths and Weaknesses of the Deep-learning Approach

We note that while butterpy includes the evolution of
uniformly dark spots, it does not include bright plage or
faculae, which are known to contribute significantly to the light
curves of some active stars (Gondoin 2008). At this time
butterpy also does not include nonuniformity of spot
intensity, which is observed in sunspots (Hathaway 2015).
While these are features we eventually wish to include in the
butterpy models, the spot models in their current form
should capture most of the variance seen in stellar rotational
light curves. We do not believe the lack of these additional
features significantly impacts our ability to recover rotation
periods with deep learning.
Approximating nonuniform spots as uniformly dark circles

may make subtle changes to the shape of the light curve, but
the period information contained in the wavelet decomposition
should be preserved. Similarly, we expect plage and faculae to
affect the light-curve shape, but not the overall period
information content of the wavelet transform, unless the bright
spots perfectly cancel all dark spots on the stellar surface. This

Table 3
Metrics of Period Recovery on Simulated Light Curves

=P 180max days =P 50max days

Method MAPE MedAPE acc10 acc20 MAPE MedAPE acc10 acc20
(%) (%) (%) (%) (%) (%) (%) (%)

LSP (noiseless) 160 11 48 66 150 7 64 83
GWPS (noiseless) 52 8 56 76 52 6 67 85
ACF (noiseless) 88 6 63 81 32 5 70 88
CNN (noiseless) 14 7 61 81 11 5 69 86

LSP (noisy, unfiltered) 93 64 18 25 146 12 45 61
GWPS (noisy, unfiltered) 69 73 15 21 59 14 43 56
ACF (noisy, unfiltered) 94 53 26 37 96 16 42 54
CNN (noisy, unfiltered) 246 24 28 45 149 12 44 64

LSP (noisy, filtered) 63 54 21 29 54 8 56 73
GWPS (noisy, filtered) 50 51 25 34 27 6 63 80
ACF (noisy, filtered) 47 15 41 55 21 6 66 83
CNN (noisy, filtered) 57 11 46 69 11 7 63 86

Note. Recovery metrics for both the full 0.1–180 day period set, and for the subset with Prot � 50 days. All methods perform better on shorter-period stars, and
filtering the period predictions by peak significance (or predicted uncertainty in the CNN case) improves recovery substantially for all methods. The CNN performs
just as well as the conventional methods for periods less than 50 days. While for longer periods it appears the ACF outperforms the CNN, the ACF statistics are
artificially inflated because nearly all the ACF’s long-period “successes” occur where the rotation period coincides with an alias from the TESS sector length (see
Figure 4). Thus, the CNN approach consistently outperforms the conventional techniques on simulated light curves with real TESS systematics.
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may actually occur in a small subset of stars (Reinhold et al.
2019), but for now we leave that investigation to future work.

Our CNN outperformed conventional techniques in the
recovery of rotation periods from synthetic light curves.
Whereas the conventional methods failed to recover periods
longer than ∼2 TESS sectors, our method successfully
recovered simulated star periods across the full simulation
range of 0.1–180 days. Simulated stars in the range of periods
yet unprobed by TESS—13.7 days up to 90 days and beyond—
were recovered with the highest success rate. The recovery rate
trails off at each end of the range (Prot< 10 days and Prot> 170
days) because of the choice of loss function: predicting the
period with uncertainty biases predictions toward the median of
the ensemble distribution and away from the ends of the range.

The challenge for classic period-recovery methods in TESS
light curves is mostly due to sector-to-sector stitching and the
presence of scattered Earth/Moon light (repeating every 27 and
13.7 days, respectively). Other effects such as temperature
changes and momentum dumps appear at periods of 1.5, 2, 2.5,
3, 5, and 13.7 days (Vanderspek et al. 2018), all of which are
clearly visible in Figure 4. All these effects combine to leave
periodic imprints in the data that dominate stellar rotation
signals and are difficult to remove. All three of our
conventional method tests significantly misidentified 27 days
as the rotation period. Different methods latch onto different
signals, as well. For example, ACF has significant misidenti-
fications at 2.5 and 13.7 days and a weak twice-period alias,
while WPS mistakes 1 and 5 day signals as the rotation period.
LSP mistakes these high-frequency signals less often, but often
falls prey to half-period aliases, as does WPS.

It is noteworthy that, unlike with LSP and WPS, our neural
network has no significant misidentification of half-period
aliases, double-dipper stars (Basri & Nguyen 2018), or high-
frequency systematic aliases. This is especially encouraging
since we use WPS as the basis for our training data. The fact
that these aliases certainly exist in the training set but are not
chosen as the period reveals the biggest strength of the CNN
approach: neural networks can learn and bypass systematic and
false-period signals to successfully regress rotation periods.

Another strength of deep learning is the ability to prefilter
results using predicted uncertainties. If the rotation period is
ambiguous, the network predicts a large uncertainty, allowing
us to disregard the prediction. With the ability to regress long
periods from TESS light curves in spite of systematics, we
make a significant step toward large-scale stellar rotation
studies with TESS.

6.2. Comparisons to Other Period Recovery Attempts

Our results are on par with or better than other recent
attempts to estimate >13 day rotation periods from TESS light
curves. Canto Martins et al. (2020) used a combination of fast
Fourier transform, Lomb–Scargle, and wavelet techniques to
estimate periods for 1000 TESS objects of interest. They
obtained unambiguous rotation periods for 131 stars, but all
were shorter than the 13.7 day TESS orbital period.
Lu et al. (2020) trained a random forest (RF) regressor to

predict rotation periods from 27 day sections of Kepler light
curves coupled with Gaia stellar parameters. They then
evaluated the trained model on single sectors of TESS data
for the same stars. Despite the stark differences in light-curve
systematics, they were able to recover rotation periods up to
∼50 days with 55% accuracy. Their accuracy is on par with the
57% overall mean error achieved by our deep-learning model.
However, when we limit our sample to simulated stars with
periods less than 50 days, our mean error is significantly better
at 11%. There are caveats to this comparison. First, the RF
regressor relied primarily on the light-curve variability
amplitude and secondarily on effective temperature; light-
curve periodicity was not used for their period regression.
Second, Lu et al. (2020) used 2 minute cadence, pre-search data
conditioned simple aperture photometry (PDCSAP) TESS light
curves, while our light curves were 30 minute cadence, and our
processing pipeline was more similar to simple aperture
photometry (SAP). PDCSAP light curves are subjected to
much heavier detrending than those produced by SAP methods.
Finally, Lu et al. (2020) used real TESS data, while we used
simulated light curves. Because the two sets comprise different
underlying distributions of rotation period and amplitude, they

Figure 5. Left: period predictions by our CNN trained on wavelet transforms of noiseless light curves. Predicted periods have a mean absolute percentage error of
14%, median absolute percentage error of 7%, acc10 of 61%, and acc20 of 81%. Right: period predictions from noisy data, where recovery is significantly worse.
Predicted periods have mean absolute percentage error of 246%, median absolute percentage error of 24%, acc10 of 28%, and acc20 of 45%. The horizontal band at 90
days represents targets where the model struggled to predict the period. In these cases, the prediction was biased toward the distribution median, or 90 days.
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likely have different recovery probabilities under the same
method.

6.3. Prospects for Measuring Periodicity in TESS

We have so far demonstrated the ability to recover
photometric rotation periods from simulated TESS-like stellar
light curves using deep learning. But the biggest question
remains: can we reliably measure long periods from real
TESS data?

This is a difficult question to answer definitively for several
reasons. First, validation of any method requires a set of real
stars for which rotation periods are already known. The ideal
data set for comparison is Kepler, where tens of thousands of
periods have been recorded (McQuillan et al. 2014; Santos
et al. 2019). Unfortunately, the overlap between TESS and
Kepler is small: most Kepler stars were observed for only a
single sector at a time in TESS. With only a 27 day baseline, it
is impossible to validate a method of obtaining long periods.
Stars in the TESS CVZs were monitored continuously for
almost a year, but only a handful of these stars have previously
known rotation periods.

Despite the limitations, we attempted to recover rotation
periods for a handful of stars observed by Kepler, the
Kilodegree Extremely Little Telescope survey (KELT; Pepper
et al. 2007), the MEarth Project (Berta et al. 2012), and the All-
Sky Automated Survey for Supernovae (ASAS-SN; Shappee
et al. 2014; Kochanek et al. 2017).

6.3.1. Kepler

We targeted about 1000 stars in the Kepler field that had
prior rotation period measurements from McQuillan et al.
(2014) as well as two consecutive sectors in TESS, offering a
baseline of roughly 50 days. We simulated an entirely new
training set with periods spanning 0.1–50 days, using a sample
of galaxies in the Kepler field as the noise model. With a 50

day baseline, only periods of up to 25 days might be
recoverable, as timescales longer than this may be dominated
by edge effects in the wavelet transform. Our CNN was unable
to recover Kepler periods reliably. Even when filtering based
on predicted uncertainty, the recovery was no better than a
random draw from the period distribution. This suggests the
CNN/wavelet approach is strongest when multiple (i.e., more
than two) contiguous sectors of data are available.

6.3.2. Kilodegree Extremely Little Telescope Survey

We similarly targeted 106 stars in the TESS SCVZ also
observed by the KELT survey. Oelkers et al. (2018) obtained
rotation periods for these stars using Lomb–Scargle period-
ograms of their KELT light curves. We specifically selected
stars with a measured period greater than 13.7 days to test
recovery of long periods. To maximize the chances of
recovering rotation periods, we used the TESS Science
Processing Operations Center (SPOC) FFI SAP light curves
(Caldwell et al. 2020). At the time of writing, only sectors 1–6
were available, but we trained our CNN using year-long (13
sector) light curves. However, the construction of our wavelet
power spectrum used the same vertical (frequency) axis
regardless of light-curve length, so any length of light curve
could be used without needing to retrain the neural network.
Upon visual inspection of the TESS-SPOC light curves, we

noticed that many did not show obvious rotational modulation.
Selecting only those light curves with unambiguous rotational
modulation, we were left with 26 light curves with KELT
rotation periods spanning 13.7–47 days. While visually
inspecting the light curves, we also ensured the apparent
rotational modulation was consistent with the periods obtained
by Oelkers et al. (2018). We generated wavelet power spectra
and evaluated our neural network on the light curves. Figure 8
shows our predictions for these 26 KELT stars.
It is interesting that the rotation periods tend to clump around

17, 27, 37, and 47 days. These periods are not associated with

Figure 6. Neural network performance across the full simulation space of periods and amplitudes. In both panels, the dotted lines represent the 10th and 90th
percentiles of the distributions from McQuillan et al. (2014), to gauge where stars from Kepler would fall. Left: period recovery rate as a function of period and
amplitude for the noisy data. The neural network performs better at higher amplitudes, where the rotation signal overpowers instrumental noise. The high-amplitude
failed recoveries (i.e., the darkest blue bins with Rper > 30,000 ppm) are from light curves whose galaxy noise templates had an extremely noisy sector. The noise
dominated the light curve and wavelet transform, resulting in mismeasured amplitude and period. These noise templates will be removed in future work. Right: the
same data, now colored by the neural-network-predicted fractional uncertainty in rotation period. The prediction is more certain for higher amplitudes. Furthermore,
the prediction is most certain in the region with the highest recovery rate, indicating the predicted uncertainty is a reliable metric for period recovery without already
knowing the true period.
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any of the known KELT aliases discussed by Oelkers et al.
(2018), and besides 27 days, they are not associated with any
TESS aliases. Furthermore, given that 17, 37, and 47 are prime,
they are unlikely to be associated with a single common alias.
These are more likely associated with the spacing of periods
searched by Oelkers et al. (2018). Their overall period

distribution seems to have more stars at these periods than at
other values, so the clumping likely arises either from
sensitivity of their method to those particular periods, or from
the spacing of periods used in their search for rotation.
After running these KELT stars through our CNN, we

subjected the predictions to the same cut in predicted fractional
uncertainty as in Figure 7. Stars that made the cut are displayed
in black, while stars whose predicted uncertainties were too
large are shown in red. The KELT stars for which we detected
periods range from 0.2% to 2% in variability amplitude. We
successfully recovered stars with rotation periods longer than
13.7 and 27 days, even when TESS systematics were the
dominant source of power in the wavelet power spectra.
Furthermore, using the predicted fractional uncertainty as a
quality cut successfully removed stars whose predictions were
unreliable or wrong while ensuring the most reliable predic-
tions remained in the sample.

6.3.3. MEarth and TOI-700

Only one long-period target was observed by MEarth in the
TESS SCVZ: TIC 149423103. Newton et al. (2018) measured
a rotation period of 111 days for this target from MEarth data.
Using our neural network on the FFI data from TESS, we
obtained Prot= 116± 48 days. While the predicted period was
within 5% of the “true” period, the relatively large uncertainty
(41%) means this target would fail our quality cut, and an
ensemble period recovery attempt would miss it.
TOI-700 is another well-characterized star in the SCVZ.

Using ASAS-SN data, Gilbert et al. (2020) estimated a precise
rotation period of 54.0± 0.8 days. Hedges et al. (2020) used a
systematics-insensitive periodogram of its TESS light curve to
obtain a period of 52.8 days. With our model we predicted a
period of 59± 53 days. Our period prediction was accurate to
within 10%, but the large uncertainty would cause this target to
be missed, as well.

Figure 7. Period recovery for the half of the test set with the lowest predicted fractional uncertainty. Predicted periods have a mean absolute percentage error of 57%,
median absolute percentage error of 11%, acc10 of 46%, and acc20 of 69%. The predicted error cut removes the cluster of predicted periods at 90 days, giving
credence to our cut to remove spurious period predictions. The cloud of objects with short true periods and predicted periods between 100 and 150 days have low
fractional error because their predicted periods are large, but they account for only 4% of the objects remaining after the cut.

Figure 8. Period recovery of stars in both TESS and KELT for which rotational
modulation is apparent in the light curve. We applied the same fractional
uncertainty cut applied to the simulation recovery results; the 21 stars that made
the cut are in black, while the five stars with unreliable period predictions are in
red. We successfully recovered periods longer than 13.7 and even 27 days from
real TESS light curves. Even when TESS aliases are the dominant sources of
power in the wavelet transform, our neural network was able to recover the
correct rotation period.
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6.3.4. General Period Recovery and Improvements

While we successfully recovered the rotation periods of
these few hand-picked stars, robust recovery on larger,
statistical scales will require more work and vetting. Our
method allows us to see beyond the 13.7 day barrier, but
mostly stars with large amplitudes were reliably recovered: the
detection fraction in the synthesized test set picks up around
1% amplitude, and the successfully recovered KELT stars
range from 0.2% to 2% in amplitude. We are still limited by the
TESS noise floor. TESS is less precise than Kepler at all
magnitudes (Vanderspek et al. 2018), so spot modulations
require higher amplitudes to rise above the noise. Both panels
of Figure 6 show the 10th and 90th percentile variability
amplitudes of the rotating stars from McQuillan et al. (2014).
The bulk of Keplerʼs rotating population fall between Rper of 1
and 20 parts per thousand and lie in a region where our
recovery was less successful. In addition, slowly rotating stars
are typically old and therefore less active than their young,
rapidly spinning counterparts. The difficulty of recovering
periods at smaller amplitudes will adversely affect our ability to
detect these slow rotators. These kinds of stars will be more
difficult to recover with TESS, whatever the method. However,
another view suggests recovery of real stars may not be so
farfetched. Figure 9 shows the period recovery rate for the
synthesized test set as a function of Rper, the light-curve
modulation amplitude. It is essentially the left panel of Figure 6
collapsed onto the vertical axis. The vertical dotted lines show
the range of amplitudes for the Kepler stars of McQuillan et al.
(2014). While the recovery is worse at lower amplitudes,
filtering by predicted uncertainty improves the recovery rate at
all amplitudes and somewhat lessens the disparity between high
and low amplitudes. Without improvements to our method,

given a log-uniform distribution of amplitudes in the range seen
in Kepler, we expect to recover low-amplitude stars about half
as frequently as high-amplitude stars.
Still, we believe improvements to our method will maximize

what is recoverable from TESS. There are several ways to
extend the predictability of our neural network to lower
amplitudes and enhance the predictability at high amplitudes.
The first and perhaps most useful improvement will come
through light-curve processing. Our processing pipeline
followed the regression-corrector documentation of the
Lightkurve Collaboration (2020) using a magnitude-
dependent aperture threshold. In practice, a more carefully
developed pipeline should be preferred. At the time of writing,
the FFIs of sectors 1–6 have been reduced by both the TESS
Asteroseismic Science Operations Center pipeline and the
TESS-SPOC pipeline. Once sectors 7–13 are processed, the
SCVZ will be complete, providing year-long light curves for
hundreds of thousands of targets. These light curves will
feature more careful systematics removal and should contain
cleaner examples to use as “pure noise” light curves in our
sample. We leave the use of these light curves to a future paper.
Another improvement may come with the inclusion of

observation metadata. In TESS data, certain systematic effects
are specific to particular cameras, CCDs, or even locations on a
CCD. We could include camera number, CCD number, and x
and y pixel coordinates in the training data set, perhaps as extra
input nodes to be included alongside the input wavelet
transforms. This will allow neural networks to learn where to
expect certain features and more easily ignore them in favor of
astrophysical signals.
In this work we have assumed no period–amplitude

relationship in our simulated training set. This was to avoid
imprinting strong priors on the predictions of the neural
network. In future efforts, we may see improvements from
incorporating period–activity relations in the underlying
training set. These might serve to enhance the reliability of
predictions, as amplitudes may help inform the network of
whether a star is rotating slowly or quickly. We might also see
improvements in training efficiency as the network learns more
rapidly what short-period and long-period wavelet transforms
look like.
Improvements can be made to the neural network, as well. In

its current form, our model assumes that all input signals have
rotation signatures, but not all real light curves display
rotational modulation. In the future we may include a
classification step like Lu et al. (2020) to determine which
signals contain rotational modulation. Adding this classification
step will allow the regressor to focus on signals with
recoverable rotation, making for more efficient training.
Based on recovery from the simulated test set, our approach

is currently most effective above periods of about 13 days due
to the loss function’s tendency to bias uncertain predictions
toward the ensemble mean. While experimenting with other
loss functions may result in improved short-period recovery,
preliminary tests using training sets with smaller period ranges
have shown promise, as well. One might consider using two
neural network regressors—one for short periods, and one for
long periods—and a preceding classification step to decide
which regressor to use. We leave this investigation to
future work.
It is important to note that our implementations of

conventional period-recovery techniques perform better on

Figure 9. Top: histogram of amplitudes of synthesized light curves in our test
set, both before filtering (black) and after (orange). Bottom: recovery rate as a
function of amplitude for both the unfiltered (black circles) and filtered (orange
squares) period predictions on the synthesized test set. The vertical dotted lines
show the approximate range of amplitudes seen by McQuillan et al. (2014),
where “real stars” might lie. According to the basic picture of period–amplitude
relationships, slowly rotating stars will be toward the left, and fast stars will be
toward the right. Applying our neural network to real stars, we expect to detect
fewer low-amplitude (slow rotating) stars than high-amplitude (fast rotating)
stars, but filtering on predicted uncertainty somewhat mitigates the disparity.
The large scatter in recovery fraction of the filtered data at Rper ∼ 103 ppm is
due to the very small number of objects in these bins. In this range, the
unfiltered data bins have an order of magnitude more objects than the filtered
data bins (hundreds in the unfiltered versus tens in the filtered).
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our simulated test set than the best efforts on real light curves
(e.g., Canto Martins et al. 2020 and Avallone et al. 2021, who
were unsuccessful in recovering anything past 13.7 days). This
indicates that, despite all our attempts to create as realistic a
training set as possible, our simulations are not perfectly
representative of real stars. It could be that our stitching routine
fails to suppress long-period signals as the real light curves do.
Another possibility is that our spot model, while tuned to the
Sun, may not be representative of real spots on other stars.
Whatever the reason, we have demonstrated the ability to
recover periods even when the systematics that are present in
our simulations make conventional techniques fail.

Even though our spot-evolution simulations include latitu-
dinal differential rotation, we were unable to recover differ-
ential rotation in this study. In some wavelet power spectra of
our simulated light curves, the differential rotation is apparent
as a slope in the frequency of maximum power versus time.
When binning the power spectra to 64× 64 pixels, the slope is
more difficult to resolve. While increasing the resolution of the
wavelet power spectrum images should enable the recovery of
differential rotation, it will come at the expense of longer
training time. We will investigate the recovery of differential
rotation, activity levels, and spot properties in future work.

If we can see beyond the complicated systematics, TESS will
deliver the largest set of rotation periods yet. McQuillan et al.
(2014) obtained rotation periods for 34,000 stars in the Kepler
field. The TESS continuous viewing zones combine to cover
900 square degrees around the ecliptic poles, representing
about eight times the sky coverage of Kepler during its primary
mission. We can therefore expect hundreds of thousands of
new stars with rotation period estimates from the TESS CVZs,
and perhaps more from lower ecliptic latitudes. Because of
TESSʼs lower precision compared to Kepler, the true number
will likely be somewhat smaller, but the prospect of hundreds
of thousands of new periods is worth continued refinements of
this technique. We leave the application of this tool to the full
CVZ samples to a future paper.

7. Summary and Conclusion

We used a CNN to recover rotation periods and uncertainties
from simulated light curves with real TESS systematics.
Despite the systematics, we successfully recovered periods
even for targets whose periods were longer than the 13.7 day
barrier encountered by conventional period-recovery methods.
In the half of the simulated test data with the smallest predicted
fractional uncertainty, we recovered 10% accurate periods for
46% of the sample, and 20% accurate periods for 69% of the
sample. We also found no significant misidentification of half-
period aliases, unlike the Lomb–Scargle and wavelet methods.
While periods were retrieved more successfully from higher-
amplitude signals, the ability to predict uncertainties allows us
to probe lower-amplitude rotation signals, as well.

We plan to use this method to produce a catalog of rotation
periods from TESS FFI light curves. We will also add output
options to our neural network to predict latitudinal differential
rotation and understand more of the properties used to produce
the training set. With deep learning, we hope to maximize the
output of TESS in spite of the frustrations that arise from its
systematics. The ability to recover rotation periods, especially
long periods, from TESS data will finally enable large studies
of rotation across diverse populations of stars in the Galaxy if
only the systematics can be learned.
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