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A B S T R A C T   

Ab initio molecular dynamics (AIMD) simulations are a direct way to visualize chemical reactions and help 
elucidate non-statistical dynamics that does not follow the intrinsic reaction coordinate. However, due to the 
enormous amount of ab initio energy gradient calculations needed, it has been largely restrained to limited 
sampling and low level of theory (i.e., density functional theory with small basis sets). To overcome this issue, a 
number of machine learning (ML) methods have been developed to predict the energy gradient of the system of 
interest. In this manuscript, we outline the theoretical foundations of a novel ML method which trains from a 
varying set of atomic positions and their energy gradients, called “Interpolating Moving Ridge Regression” 
(IMRR), and directly predicts the energy gradient of a new set of atomic positions. Several key theoretical 
findings are presented regarding the inputs used to train IMRR and its predicted energy gradient. A hyper
parameter used to guide IMRR is rigorously examined as well. IMRR is then applied to three bimolecular re
actions studied with AIMD, including HBr+ + CO2, H2S  + CH, and C4H2 + CH, to demonstrate its performance 
on different chemical systems of different sizes. This manuscript also compares the computational cost of the 
energy gradient calculation with IMRR vs. ab initio, and the results highlight IMRR as a viable option to greatly 
increase the efficiency of AIMD.   

1. Introduction 

Ab initio molecular dynamics (AIMD) simulations of chemical re
actions have shown great success in revealing their complicated dy
namics at an atomistic level, elucidating discoveries from experiments 
that are nonintuitive, and predicting behaviors of chemical reactions 
whose conditions are difficult to realize [1–8]. In AIMD, the interaction 
between atoms (i.e., energy gradient, corresponding to forces acting on 
atoms) is directly calculated on-the-fly with ab initio methods and their 
positions (referred to as “configurations”) are propagated iteratively by 
solving the classical equations of motion over a small time interval 
[2,9,10]. In this way, the time-evolution of the coordinates of the system 
(referred to as a “trajectory”) is collected. To ensure the conservation of 
the physical properties of the system (e.g., total energy, momentum, 
etc.), the time interval between updating the coordinates of the atoms of 
a trajectory is usually on the order of one-tenth of a femtosecond. A 
chemical reaction in the gas phase takes place on the scale of picosec
onds, as a result, there are usually a few thousand to tens of thousands ab 

initio energy gradient calculations involved in simulating each 
trajectory. 

Further, to accurately model reactions in real life, AIMD simulations 
need to sample a statistical ensemble corresponding to the conditions of 
the experiments [11,12]. For example, AIMD simulations of crossed- 
beam experiments (i.e., bimolecular collisions) should sample all 
possible impact parameters (b) and orientations of the collision (θ). 
Practically, this is done by first detecting bmax, the largest b in which a 
reactive trajectory can be observed, and then sampling trajectories with 
random orientations within bmax. To account for the collision probabil
ity, the number of trajectories sampled at each b value should be pro
portional to 2πb. For a gas phase bimolecular collision of small 
molecules, bmax is usually a few (4.0∼6.0) Å when the collision energy is 
less than 1.0 eV [4,6–8]. Assuming b is sampled with 0.5 Å intervals and 
100 trajectories are simulated at b = 1.0 Å, the smallest sampled impact 
parameter, such a simulation study will contain a total of 3,600–7,800 
trajectories. Multiplying the number of trajectories with the number of 
ab initio energy gradient calculations per trajectory leads to an enormous 
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computation cost for a simulation study of one chemical reaction under 
just one condition (e.g., a certain collision energy, temperature, vibra
tional excitation, etc.). 

The millions of ab initio energy gradient calculations take up the 
overwhelming majority of the computation involved in AIMD and pre
sent an obvious dilemma: there is an inevitable tradeoff between the 
accuracy of the ab initio method and the ergodicity of the sampling. On 
one hand, for example, coupled cluster theories with triple-zeta basis 
sets (e.g., CCSD(T) [13]/aug-cc-pVTZ [14]) can be expected to accu
rately model the ground state potential energy of a gas phase system. 
However, this level of theory is of no practical use in AIMD: even for 
systems with less than 10 atoms, a single ab initio energy gradient 
calculation of such method may take hours on one computer node with 
twenty processors. Millions of such calculations demanded by one 
simulation study would drain the capacity of a medium-size super
computer for years. On the other hand, insufficient sampling inevitably 
compromises the reliability of AIMD, as the chance of observing some 
minor reaction pathways could be as low as 1% [4,6–8]. The balance 
between accuracy and ergodicity usually limits AIMD to single reference 
ab initio methods, such as density functional theory (DFT[15]) or Moller- 
Plesset perturbation theory to the second order (MP2 [16]) with basis 
sets of limited sizes (e.g., cc-pVDZ [17] or 6-31G* [18,19]). Selecting a 
feasible yet accurate combination of ab initio method and basis set is 
laborious: the potential energy of a chemical reaction calculated from 
various combinations are compared against experimental heats of re
action and/or results from a high-level ab inito method (e.g., CCSD(T) 
extrapolated to the complete basis set limit [20]). 

The large burden of computation has greatly limited the application 
of AIMD, therefore, an on-the-fly and efficient algorithm that is able to 
predict the energy gradient that replaces the expensive ab initio calcu
lation is highly desirable. Over the last decade, various methods have 
been developed for this purpose and one popular approach is to estimate 
the energy gradient from a large database of ab initio calculations with 
machine learning (ML). For a more in-depth overview, see Hansen et al. 
[21,22] and Faber et al. [23], as well as a more general review by Noe 
et al. [24]. One broad class of ML methods treats the atoms in the system 
individually and predicts the energy gradient of each atom according to 
its surroundings. Several research have successfully demonstrated this, 
employing neural networks [25–29], kernel ridge regression [30–33], or 
Gaussian process regression [34,35]. Another broad class of ML methods 
instead looks at the configuration of the entire system and predicts the 
energy gradients of all the atoms in the system at once. These types of 
ML often use linear interpolation [36–40], reproducing kernel interpo
lation [41–46], or kernel ridge regression [47,48]. 

In this manuscript, a novel ML algorithm, “Interpolating Moving 
Ridge Regression” (IMRR), that is specifically designed for estimating 
energy gradients for AIMD simulations, is introduced. The training set 
for IMRR, which is referred to as the “input of IMRR”, is the energy 
gradients (g(qi)) of configurations (qi) that are geometrically close to the 
configuration of interest (q0) which is referred to as the “target of 
IMRR”. The outcome of IMRR is Z(q0), the estimated energy gradient of 
q0, which is necessary to propagate the trajectory. IMRR also assesses 
the risk of Z(q0), which is defined as the likelihood of Z(q0) deviating 
from the true ab initio energy gradient more than some user-defined 
threshold. Targets with large risk may reject Z(q0) and instead fall 
back to the ab initio energy gradient to propagate forward. It is important 
to note that the risk-assessment of IMRR is done without computing the 
ab initio gradient of the target. This type of risk or uncertainty prediction 
has often been used in ML methods in conjunction with active learning 
algorithms [24,49,50]. Actively learning through repeated sampling and 
retraining has been found to model potential energy surfaces to the level 
of chemical accuracy often by adding configurations to the training set 
which have high uncertainty [51–54]. While many of these involve 
having multiple neural networks that assess each others’ risks, [51–54] 
others construct theoretical probabilistic uncertainties [55–58]. 

IMRR highlights a few characteristics that are attractive to AIMD 

simulations of chemical reactions: a) In theory, the training set of IMRR 
could be cost-free, as they are made from traditional AIMD simulations, 
e.g., the first 100 trajectories. In other words, all of the ab initio calcu
lations involved in AIMD simulations directly contribute to the propa
gation of the trajectories. b) IMRR’s risk-assessing capability features the 
flexibility of referring back to the ab initio energy gradient when 
necessary. Combined with its nature of local regression, whenever an 
IMRR gradient is deemed risky (e.g., trajectory traverses through a 
poorly-learned regions in the phase space), the AIMD trajectory is not 
forced to adapt a potentially high error (i.e., high risk) energy gradient 
that would have negatively impacted its validity. And c), IMRR is highly 
efficient -as shown later in this manuscript, its computational cost is only 
a fraction of the ab initio energy gradient calculation. As a result, tra
jectories propagated with a mix of IMRR (when deemed low risk)/ ab 
initio (when deemed high risk) could be expected to be much more 
efficient as compared to traditional AIMD trajectories. In this manu
script, the theory and performance of IMRR will be laid out in great 
detail, while its implementation with AIMD trajectory propagation will 
be introduced in a separate manuscript. 

The rest of the manuscript is organized as the following. The theory 
of IMRR and the numerical protocol of minimizing the upper bound of 
the deviation between energy gradient from IMRR and ab initio are 
provided in the Methodology section. The dependance of this deviation 
on the input of IMRR and the hyperparameter is provided in the Result 
section. The computational cost of IMRR is also reported. The manu
script concludes with discussions on practically minimizing the devia
tion, IMRR’s risk-assessing capability and how the chemistry and size of 
the system impact IMRR’s performance. 

2. Methods 

2.1. The upper bound of the error 

Consider a chemical system of N atoms with configuration q and 
energy gradient g(q), which can be described by 3N coordinates (x, y, z 
for each atom), i.e., q ∈ R3N and g(q) ∈ R3N. Assume for the configura
tion of interest at a certain step q0, referred to as the “target” of IMRR, to 
propagate the system to the next time step, AIMD demands g(q0) ∈ R3N, 
the forces acting on the atoms, which is calculated from an ab initio 
method. The goal of IMRR is to estimate the energy gradient of q0, 
named Z(q0) ∈ R3N, with a training set of ab initio energy gradients g(qi), 
calculated from previous simulations. In IMRR, Z(q0) is computed as the 
weighted average of the energy gradients of K configurations with wi as 
the weight: 

Z

(

q0

)

=
∑K

i=1
wig

(

qi

)

1⩽i⩽K (1) 

IMRR optimizes wi in order to minimize the deviation (referred to as 
the “error of IMRR”) between Z(q0) and g(q0), which is expressed as: 

|g(q0) − Z(q0)| =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑3N

j=1

(
gj

(
q0

)
− Zj

(
q0

))2

√
√
√
√ 1⩽j⩽3N (2) 

Intuitively, those qi that are geometrically close to q0 should be 
prioritized in making up the training set. With Cartesian coordinates, the 
”geometrical closeness” between qi and q0 is assessed by the root mean 
square displacement (RMSD, ti) after qi has been properly translated and 
rotated to maximize its overlap with q0 [59]. It is important to note that 
permutation should be allowed for chemically identical atoms if it in
creases the overlap. The RMSD between qi and q0 is computed as: 

ti = RMSD

⎛

⎝q0, qi

⎞

⎠ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑3N

j=1

(
q0,j − qi,j

)2

√
√
√
√ ⩽tcut 1⩽j⩽3N (3)  
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in which tcut is a user-defined parameter that enforces the geometrical 
closeness between q0 and qi, the relation between which is: 

qi = q0 +
̅̅̅̅
N

√
ti ĥi (4)  

in which ĥi is the unit vector of hi, the displacement between qi and q0, i. 
e., hi = qi −q0 ∈ R3N. An example geometric interpretation for these 
vectors can be seen for the K = 2 case in Fig. 1. fi(t) is defined as the 
energy gradient function, i.e., fi(ti) = g(q0 +

̅̅̅̅
N

√
ti ĥi) = g(qi) ∈ R3N. 

Assume the chemical system stays in the same electronic state (adiabatic 
process); the fi(ti) is continuous and infinitely differentiable in each of its 
3N components. Therefore, the jth component of function fi can be 
expanded with Taylor’s theorem: 

fi,j

(

ti

)

= fi,j

(

0
)

+ tif
′

i,j

(

0
)

+
1
2
t2
i f ′′

i,j

(

0
)

+
1
3!

t3
i f

′′′

i,j

(

0
)

+ … 1⩽i⩽K, 1⩽j⩽3N

(5) 

As defined, the first term fi,j(0) is the jth component of g(q0), i.e., fi,j(0)

= gj(q0). The error of IMRR (Eq. 2) is bounded above by considering the 
lth component (1⩽l⩽3N) of Z(q0) where it deviates the most from g(q0), i. 
e., 

|g(q0) − Z(q0)|⩽
̅̅̅
3

√
⋅|gl(q0) − Zl(q0)| l = argmax

1⩽j⩽3N

⃒
⃒gj

(
q0

)
− Zj

(
q0

)⃒
⃒

The inequality can be further derived as 

|g(q0) − Z(q0)|⩽
̅̅̅
3

√
⋅
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⃒
⃒
⃒
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3
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⃒
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(6) 

The first term can be rewritten as: 

̅̅̅
3

√
⋅
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⃒
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=
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3
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⃒
⃒
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3

√
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C0

⋅
⃒
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⃒
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R0

(7)  

in which C0 depends only on the nature of the potential energy surface 
(specifically, its derivative) and R0 depends only on the weights of qi. 
Similarly, the second term in Eq. 6 can be derived as an inequality with a 
single C1 term that depends only on the derivatives of g(q0) and a single 
R1 term that depends only on qi and their weights wi: 

̅̅̅
3

√
⋅
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⃒
⃒
⃒
⃒
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3
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⩽
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3
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⋅
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⃒g′

l
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⃒
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C1

⋅
⃒
⃒
⃒
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wihi − 0

⃒
⃒
⃒

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
R1

(8)  

in which 
⃒
⃒g′

l(q0)
⃒
⃒ is the magnitude of the largest value among the 3N ×

Fig. 1. An example IMRR interpolation for a target (red circle) given two inputs (blue circles) to produce an interpolated configuration (red cross) is given. R0 is the 
difference between the sum of the weights and unity whereas R1 is the distance in space between the interpolated configuration and the target. R2 is the weighted 
sum of the magnitudes of the inputs. Cyan, dark blue, and purple lines indicate possible interpolation configurations which have the same value of R0, R1,and R2, 
respectively. 
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3N elements of the matrix g′

(q0), the Hessian of q0. Finally, recall that ti 
is bounded by tcut , which is chosen to be a small value in practice, thus 
according to Taylor’s theorem, the summation of higher terms in the 
Taylor expansion of an analytical function is bounded: 
⃒
⃒
⃒
⃒t

2
i

(
1
2
f

′ ′
i,l

(

0
)

+
1
3!

tif
′ ′′

i,l

(

0
)

+ …
) ⃒

⃒
⃒
⃒⩽t2

i Ci,l  

in which Ci,l is a constant characterized by the higher order potential 
energy derivatives. Thus, the third term in Eq. 6 can be expressed as the 
product of two terms: a C2 term that depends only on the nature of the 
potential energy surface and a R2 term that depends only on qi and their 
weights wi, e.g., 
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′ ′
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⃒
⃒
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̅̅̅
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√
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⃒
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⃒
⃒

=
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3

√
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⋅
⃒
⃒
⃒
∑K

i=1

⃒
⃒
⃒wi

⃒
⃒
⃒t2
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⃒
⃒
⃒
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R2

(9) 

Substituting Eq. 7, 8 into Eq. 6 establishes that the error in energy 
gradients between the interpolated configuration and the target 
configuration is bounded above as: 

|g(q0) − Z(q0)|⩽C0R0 + C1R1 + C2R2 (10) 

The geometric representations of these R terms for a model system of 
two inputs (K = 2) are demonstrated in Fig. 1. 

2.2. Minimize the upper bound of the error 

IMRR minimizes its error (Eq. 2) by minimizing the upper bound of 
the error. Eq. 10 demonstrates that the error is determined by the C 
terms that depend on the nature of the potential energy surface and the R 
terms that do not. Clearly, the nature of the potential energy surface 
varies from system to system, therefore, IMRR focuses on minimizing Eq. 
10 through the R terms. Eq. 10 can be rewritten into the form of a linear 
equation: 

|g(q0) − Z(q0)|⩽C0R0 + C1R1 + C2R2

=
⃒
⃒C0UT w − C01

⃒
⃒ + |C1Aw − C10| + |C2Bw − C20|

⩽
̅̅̅
3

√
⋅

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒C0UT w − C01

⃒
⃒2

+ |C1Aw − C10|
2

+ |C2Bw − C20|
2

√

=
̅̅̅
3

√

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎡

⎢
⎢
⎣

C2B

C1A

C0UT

⎤

⎥
⎥
⎦w −

⎡

⎢
⎢
⎣

C20

C10

C01

⎤

⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(11) 

A ∈ RK×3N is the matrix of the displacement between q0 and qi, hi ∈

R3N,1⩽i⩽K: 

A =

⎡

⎣
| | |

h1 h2 … hK
| | |

⎤

⎦ =

⎡

⎢
⎢
⎣

h1,1 h2,1 hK,1
h1,2 h2,2 hK,2
⋮ ⋮ … ⋮

h1,3N h2,3N hK,3N

⎤

⎥
⎥
⎦

B ∈ RK×K is the diagonal matrix of the magnitude of the displacement 
between q0 and qi: 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t2
1 0 0 … 0
0 t2

2 0 … 0
0 0 t2

3 ⋮
⋮ ⋮ ⋱
0 0 … t2

K

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U ∈ RK is a vector with elements of 1 and its transpose is: 

UT = [ 1 1 … 1 ]

w ∈ RK is the weights of the K input configurations: 

w = [ w1 w2 … wK ]
T 

Finally, 0 = [ 0 0 … 0 ]
T

∈ RK and 1 is just the scalar 1. Eq. 11 
can be further simplified as: 
⃒
⃒
⃒
⃒g

(

q0

)

− Z
(

q0

)⃒
⃒
⃒
⃒⩽

⃒
⃒
⃒
⃒Hw − h*

⃒
⃒
⃒
⃒ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Hw − h*)
T ⋅

(
Hw − h*)√

= r
(

w
)

(12)  

in which H ∈ R(3N+K+1)×K , H =
[
C2BT C1AT C0UT ]T and h* ∈

R3N+K+1 , h* =
[
C20T C10T C01T ]T. IMRR solves for the optimal w ∈

RK that minimizes r(w) by setting the derivative of r2(w) to be zero. The 
optimal w that minimizes the upper bound of the error is: 

w =
(
HT H

)−1HT h* (13)  

Eq. 13 can be proven to have a solution w, as shown in the Supporting 
Information. 

2.3. Solving for the optimal w with restrictions 

It is important to note that the C terms used in constructing H and h* 

(e.g., C0, C1, C2 in Eq. 10) are not known a priori. To minimize the 
number of unknowns in H and h*, one of the R terms could be eliminated 
by setting it to zero as a constraint. The R0 term is only a single row in 
the matrix H and would not dramatically shrink the number of solutions 
as compared to the R1 term. Therefore, R0 is set to be zero by imposing 
the constraint that UTw −1 = 0. Following the same procedure as shown 
in the previous section, the upper bound could be rewritten with the 
linear equation: 
⃒
⃒
⃒
⃒
⃒
g

(

q0

)

− Z

(

q0

)⃒
⃒
⃒
⃒
⃒
⩽

⃒
⃒
⃒
⃒
⃒

[
C2B

C1A

]

w −

[
C20

C10

] ⃒
⃒
⃒
⃒
⃒

= C1

⃒
⃒
⃒
⃒
⃒

[
αB

A

]

w −

[
α0

0

] ⃒
⃒
⃒
⃒
⃒

(14)  

= Hrw − h*
r 

To solve for this equation, a hyperparameter α is introduced as the 
ratio between C2 and C1, i.e., α = C2/C1. The true value of α depends on 
the potential energy surface of the system and is not known a priori. As is 
customary in ML methods, this is left as a user-controlled hyper
parameter. As seen in Fig. 2, generally, the IMRR has two limiting be
haviours for very small and large α. In the small α case, minimizing R1 is 
preferred so the weights are chosen to minimize the distance between 
the interpolated configuration and the target. In the large α case, 
minimizing R2 is preferred so the weights are chosen to minimize the 
distance between the interpolated frame and the closest possible input. 

Define Hr = [ αB A ]
T and h*

r = [ α0 0 ]
T. This constrained opti

mization of w that minimizes the upper bound of the error could be 
solved by constructing a Lagrangian, L(λ, w): 

L
(
λ, w

)
= (Hw − h*)

T ⋅
(
Hw − h*)

+ λ
(
UT w − 1

)

and setting the gradient to zero. 

3. Results 

The first representative system employed to demonstrate the per
formance of IMRR is the bimolecular collision of HBr+ + CO2, which 
after collision, forms the proton-transfer product HOCO+ + Br, or goes 
back to the reactant molecules (i.e., non-reactive trajectories). This 
system has been studied extensively with the guided-beam experiments, 
quantum calculations, and AIMD [60–63]. The IMRR employs ab initio 
energy gradients computed with MP2/cc-pVDZ by NWChem that made 
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up the previous AIMD trajectories [62,63] as its targets (q0, g(q0)) and 
inputs (qi,g(qi)) when applicable. As noted in Methods, the error of IMRR 
depends on various factors, such as the geometrical closeness of inputs 
(tcut in Eq. 3), the number of inputs (K in Eq. 1), the hyperparameter (α in 
Eq. 14), etc. Thus, in this section, we treat these factors as independent 
variables -studying the dependence of the error of IMRR with respect to 
one factor while keeping the rest at fixed, reasonable values, with jus
tifications provided in each respective section below. This setting is to 
have 15 input frames (qi and its corresponding g(qi), K = 15), each of 
which has an RMSD less than 0.15 Å. (tcut = 0.15 Å) to the target q0, and 
the hyperparameter α is held at 1.0 x 10−1. Unless noted otherwise, these 
values are adapted as the default for the rest of the manuscript. 

3.1. Accuracy of IMRR vs. the geometrical closeness and the number of 
inputs 

As defined in Eq. 3, ti represents the geometrical closeness between 
the input configuration, qi, 1⩽i⩽K (the number of inputs for the IMRR) 
and the target, q0, after their overlap has been maximized through 
center of mass translation and rotation. tcut is the upper bound of ti and 
the previous section has shown the error (i.e., Eq. 2) of IMRR decreases 
as ti gets smaller (see R1 term in Eq. 9 and R2 term in Eq. 10). Therefore, 
controlling tcut is the first trial in this section. Since IMRR aims to predict 
the energy gradient that could be applied to simulate chemical reactions, 
it is important to ensure the targets employed in the test represent all 
relevant phase space of the reaction. An illustration of the phase space of 

this reaction, characterized by two collective variables (CVs), the dis
tance between H-C and the shorter distance between two Br-O, is pro
vided in Fig. S1 of the Supporting Information. The configurations of 
4,000 AIMD trajectories are binned into the CV-space, and 68 1 Å × 1 Å 
cells are populated. These cells are determined to be relevant to the 
reaction and one configuration from each cell is selected as the target to 
assess the performance of IMRR. 

The energy gradient of these targets is estimated by IMRR at various 
tcut and compared with its ab initio counterpart, whose difference is 
defined as the error of IMRR (Eq. 2) and plotted in the right panel of 
Fig. 3. For each target (q0), up to 40 inputs (qi) are randomly generated 
by displacing atom(s) from q0, while enforcing its ti (geometrical 
closeness to q0) to be between 90% and 100% of each tcut . The energy 
gradient of the inputs, g(qi), are computed at MP2/cc-pVDZ level of 
theory. As Fig. 3 demonstrates, the error of IMRR decreases mono
tonically as the input configurations, qi, get geometrically closer to the 
target, q0. In other words, the energy gradient predicted by IMRR, Z(q0), 
approaches g(q0), the energy gradient of the target from MP2/cc-pVDZ, 
as qi approaches q0 (i.e., smaller tcut). Fig. 3 also illustrates that the error 
of IMRR demonstrates a strong logarithmic relation with respect to tcut . 
Note the x-axis is linear and the y-axis is logarithmic -when the y-axis is 
linearized, the black curve becomes a power relation with the general 
form of axb, where a and b are constants. The fitted line (black solid 
curve) closely resembles a quadratic function (ax2), indicating that with 
the optimized weights in Eq. 10, the error is largely bounded by C2R2, 
since R2 is proportional to the sum of the squared ti of the input. Overall, 

Fig. 2. By constraining R0 = 0, in the same example from Fig. 1 where there are two inputs (K = 2), all solutions lie on a one-dimensional line. Three possible 
solutions are presented. In each, the interpolated configuration is denoted by a red cross and the corresponding values of R1 and R2 vary. The hyperparameter α* 

would lead the algorithm to minimize the error function defined by R1 + α*R2. 
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the right panel of Fig. 3 suggests that the accuracy of IMRR is improvable 
as more inputs closer to the target become available -a scenario that is at 
least achievable in theory with more sampling of AIMD trajectories. 

Fig. 3 (left panel) also illustrates the correlation between the error of 
IMRR and the number of inputs (K). For each target, their inputs are 
sorted with respect to ti before being fed into the IMRR. For example, 
K = 2 means the IMRR is carried out with the two inputs geometrically 
closest to the target, and K = 3 includes the three inputs geometrically 
closest to the target. Although the newly included inputs (as a result of 
increasing K) are geometrically further away from the target, the IMRR, 
across all values of tcut , is able to estimate an energy gradient closer to 
the ab initio value (i.e., smaller error) with a larger number of inputs. The 
gain in IMRR accuracy by including more inputs is significant when K is 
less than 15 and becomes marginal after K > 15. The convergence of the 
error of IMRR after 15 inputs has led to the usage K = 15 as a default 
number of inputs for the HBr+ + CO2 system. It is interesting to note, the 
error of IMRR demonstrates a local maximum around K = 10 for almost 
all tcut , which is particularly obvious for larger tcut . The origin of this 
counterintuitive maximum is debatable, while one explanation could be 
that IMRR is more ’fragile’ when inputs are overall geometrically further 
away from the target (i.e., larger tcut). This behaviour will be elucidated 
further in the Discussion. 

It is important to confirm that the aforementioned behavior of IMRR 
with respect to the geometrical closeness and number of inputs is not a 
result of the artificial method of generating inputs, i.e., by displacing 
atom(s) of the target. Herein, a more large-scale assessment of IMRR is 
carried out, in which 1000 inputs uniformly sampling the feasible CV- 
space are selected from 150 AIMD trajectories, [64,65] thus roughly 
15 inputs are selected from each 1 Å × 1 Å cell shown in Fig. S1. The 
energy gradients of these targets are estimated by IMRR with inputs 
selected from another 4000 AIMD trajectories (a total of 28.1 million 
energy gradients) with ti chosen such that 0.9tcut < ti < tcut , as in the 
previous test. The results are summarized in the Supporting Information 
(Fig. S2) and show very good agreement with Fig. 3, demonstrating the 
potential of IMRR in producing low-error energy gradient given enough 
inputs that are close to the target. 

3.2. Accuracy of IMRR vs. the Hyperparameter α 

As shown in the previous section, IMRR demands a hyperparameter α 
in solving for the optimal weights (w) that minimize the upper bound of 
the error. 

α for each IMRR, since it would be more expensive than just 
computing the ab initio energy gradient itself. Defined in Section 2.3, α is 
expressed as the ratio between C2, a term depending on the derivatives 
of the energy gradient of the target, and C1, a term depending on the 
energy gradient of the target, thus at least in theory computable with an 
ab initio method. However, it would be highly unwise to evaluate 
Therefore, like many other ML methods, the hyperparameter α is tested 
over a range of values and determined empirically to reliably produce 
minimal IMRR error. 

Intuitively, when a variety of inputs are available to IMRR (while 
controlling the inputs’ geometrical closeness to the target by enforcing 
ti < tcut), the hyperparameter α balances the relative importance be
tween the inputs that are relatively far from the target (i.e., larger ti) and 
that are relatively close (i.e., smaller ti). As Eq. 14 suggests, a large α 
(blue region in Fig. 4) will minimize the C2R2 term of the upper bound of 
the error; while in contrast, a small α (coral region in Fig. 4) will 
minimize the C1R1 term of the upper bound of the error. Herein, the 
1000 targets (q0) that uniformly sample the CV-space of the reaction are 
employed as the targets again to investigate the behavior of the error of 
IMRR with respect to different α, whose value ranges between 10−5 and 
10+5. Although the exact curve of the error of IMRR vs. α curve varies 
from target to target (see Fig. 4), it can be divided into three regions: 
large α (blue), small α (coral), and intermediate α (white). The first two 
regions are detected when the error of IMRR becomes independent of α, 
although each region could be associated with a different error. The 
error of IMRR in the intermediate region heavily depends on α and 
smoothly connects the other two regions. 

To identify the optimal α that empirically minimizes the error of 
IMRR, a histogram of the errors of IMRR from the aforementioned three 
regions is depicted in the top panel of Fig. 5. The data show that when α 
is small, the error of IMRR is overwhelmingly smaller than those in the 

Fig. 3. Left panel: the error of IMRR with vs. the number of inputs at various tcut values. Right panel: the error of IMRR vs. tcut with K = 40 inputs. The targets of these 
figures uniformly sample the phase space of the HBr+ + CO2 reaction (see Fig. S1). 
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large α region (93%, area under the blue curve). It is true that the 
possible minimal error of IMRR could correspond to an α value within 
the intermediate region, as the bottom panel of Fig. 4 shows, never
theless, the intermediate region still statistically (61%, area under the 
black curve in the top panel of Fig. 5) has a larger error than those in the 
coral region. As a result, the optimal α is empirically set to be in the coral 
region in Fig. 4, whose position is detected by consolidating its upper 
bound (i.e., the right edge). A histogram of the position of these upper 
bounds is depicted in the bottom panel of Fig. 5 value of 1.0 x 10−1 is 
chosen as the default for the IMRR. 

It is worth noting that the theory in the Methods section only deals 
with the upper bound of the error. To demonstrate the behavior of the 
upper bound, not only is an enormous amount of sampling required, it is 
also of little use to the actual dynamics simulation. Nonetheless, the 
empirical data provided so far demonstrate that by optimizing the 
weight of the inputs, which are controlled over K,tcut , and α, the error of 
IMRR is well-behaved and the IMRR energy gradient approaches its ab 
initio counterpart. 

3.3. The computational cost of IMRR 

The computational cost for one time step (i.e., update the configu
ration of the system once) in molecular dynamics simulations can be 
decomposed into two parts: the generation of the energy gradient (e.g., 
ab initio calculation, force field evaluation, etc.) and all other overhead 
cost (e.g., propagate the system, evaluation trajectories, etc.). As dis
cussed in the Introduction, the former makes up the overwhelming 
majority of the computational cost in AIMD. With an ML method like 

IMRR that aims to replace a majority of the ab initio energy gradient 
calculations, the overhead cost could possibly become rate-limiting in 
the simulation. This would be the case if searching through previous 
trajectories’ energy gradients for satisfactory IMRR inputs takes an 
excessive amount of time. It is obvious that the speed of identifying 
inputs of IMRR (configurations that are geometrically close to the target) 
from an enormous number of configurations depends heavily on the data 
structure, the searching algorithm, the hardware of the computer, etc. A 
thorough discussion on that front is beyond the scope of this manuscript, 
nonetheless, here we provide a computational cost of IMRR, including 
its overhead cost, with a bare bone protocol that is subject to further 
improvement. 

Consider the set of all ab initio energy gradients that are computed in 
the early phase of the AIMD study as the “library” of available inputs for 
IMRR. Clearly, the overhead cost would be unmanageable should the 
entire library be searched through for the aforenoted inputs for each 
IMRR. To address this concern, the same pair of CVs described earlier are 
employed to construct the library. Before an ab initio energy gradient (i. 
e., g(q)) is put into the library, its corresponding CVs are calculated, and 
g(q) would be written/appended into a file that is indexed by the CVs. 
With this setting, the library contains numerous files and each file stores 
only those g(q) that share similar CVs. When searching for inputs of 
IMRR, only those files sharing CVs similar to the target are loaded in the 
memory. The premise is that the g(q) stored in these files are likely to 
share geometrically close configurations to the target, and thus likely to 
be selected as IMRR inputs. As a result, only a small subset of the entire 
library is relevant to the IMRR input search and the overhead cost is kept 
at a manageable level. Further, to minimize the I/O of the computer 
system, a buffer is designed and implemented to store the g(q) from the 
aforementioned files in the memory. 

This buffer is updated only when the target has moved significantly 
away from the previous one. The computational cost of the IMRR is 
tested with a library of 4,000 AIMD trajectories (about 25 million ab 
initio energy gradients, 1836285 files, 17.5 GB size) of the HBr+ + CO2 
⟶ HOCO+ + Br reaction. 

Eight trajectories that are not part of the library are simulated, and 
their energy gradients (about 50,000) are computed with an ab initio 
calculation (these trajectories are still propagated with ab initio energy 
gradient) followed by an IMRR. Their timings are compared in Fig. 6. As 
shown, the wall time of IMRR (0.51 s per step on average) is less than a 
quarter of the wall time of the AIMD (2.16 s per step on average) to 
propagate the system by one step. The most populated bar of IMRR 
corresponds to those IMRRs that do not require an update of the buffer, 
and the larger the portion of the buffer needs to be updated, the longer 
IMRR takes. Further, as the pie chart shows, IMRR spends a majority 
(almost 90%) of the time on the overhead cost, while almost all of the 
wall time of AIMD is spent on generating the energy gradients. It is also 

Fig. 4. Three representative behaviors of the error of IMRR vs. the value of the 
hyperparameter. The small α, large α, and intermediate α regions are colored 
with coral, blue, and white, respectively. 

Fig. 5. Top panel: the error of IMRR when the hyperparameter α is in different 
regions in Fig. 4. Bottom panel: the histogram of the position of the edges of the 
small α and large α regions. 

Fig. 6. A histogram of the wall time it takes for one MD step if the energy 
gradient is generated from IMRR (coral) and ab initio (green). The heights of the 
bars are scaled so that they integrate to 1. The average wall times are further 
broken down in the pie-charts to gradient generation and overhead. 
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important to note that, the timing is measured with IMRR occupying 
only 1 CPU and ab initio occupying 20 CPUs. The preliminary timing 
results of IMRR, even though carried out with a bare minimal data 
structure, bespeaks its great potential efficiency as compared to ab initio 
energy gradient calculations. 

4. Discussion 

4.1. The efficacy of IMRR 

The previous section presented numerical results on the error of 
IMRR, which describes how close the estimated energy gradient (Z(q0), 
Eq. 1) is to the ab initio energy gradient (g(q0), Eq. 2). The error of IMRR 
was demonstrated to be affected by (and can be tuned by) the number of 
inputs (K, left panel of Fig. 3), the geometrical closeness of inputs (tcut , 
right panel of Fig. 3), and the hyperparameter (α, Fig. 4). Since the 
difference in energy gradient between any given pair of configurations 
generally decreases as the configurations get geometrically close, 
without IMRR, one would expect the energy gradient of qm, the input 
that is geometrically the closest to the target, to be the closest to the 
energy gradient of the target. Therefore the efficacy of IMRR (r) is 
defined as how much the IMRR energy gradient has improved upon 
g(qm) in accurately representing the ab initio energy gradient of the 
target, i.e., 

r =
|g(q0) − g(qm)|

|g(q0) − Z(q0)|
, m = argmin

1⩽i⩽K

⃒
⃒
⃒
⃒q0 − qi

⃒
⃒
⃒
⃒ (15) 

As defined, r is non-negative and the larger its value, the more 
effective IMRR is in predicting the energy gradient of the target as 
compared to the input that is geometrically closest to the target. The 
same sets of targets as Fig. 3 (68 targets randomly selected from AIMD 
trajectories that distributed uniformly in the CV space) are employed to 
probe into the efficacy of IMRR with inputs of various tcut values. 

Fig. 7 demonstrates several histograms of r from IMRR on these 68 
targets, each with 15 inputs (K = 15). Compared to the energy gradient 
of the input (qm) that is geometrically closest to the target, the IMRR 
energy gradients are on average 50 times closer to the target energy 
gradient from the ab initio calculation. The inserted panels of Fig. 7 show 
that the efficacy of IMRR gradually increases when tcut gets smaller, 
indicating that even when the input(s) are geometrically very close to 
the target, IMRR still takes advantages of these inputs and estimates a 
much more accurate energy gradient for the target. 

The efficacy of IMRR at small tcut indicates that it can be closely 
coupled with AIMD as a time interval (δt, time between updating con
figurations of the system) multiplier in addition to the active learning 

discussed earlier. In AIMD, δt should be chosen as large as possible while 
conserving the physical properties of the system (e.g., total energy, 
momentum, etc.) and an ab initio energy gradient is calculated every δt 
to propagate the trajectory. δt is usually sub-femtosecond and thus the 
configurations of consecutive steps are geometrically very close [66]. 
Therefore, if IMRR could estimate an energy gradient better represent
ing the target than the energy gradient from the previous step does, one 
can propose an integer multiple n (e.g., n = 2, 3, 4, …) such that for n 
steps, the trajectory is propagated with the ab initio energy gradient only 
once and the rest of the (n −1) steps are propagated with IMRR energy 
gradients. In such applications, the inputs of IMRR could fall into two 
categories: the “history”, those (h) inputs that are the previous h steps of 
the same trajectory, and the “library”, those (K −h) inputs that are 
geometrically close to the target from previous trajectories. The moti
vation is to have IMRR build upon the “history” with information from 
the “library” to effectively reduce the number of ab initio calculations (i. 
e., n = 2 will make the simulation almost twice as fast). 

The error of IMRR with various values of h are provided in Fig. 8. The 
targets of these IMRR are from an AIMD trajectory of the HBr+ + CO2 
reaction (∼4000 targets), and (15 −h) inputs of tcut = 0.15 Åvare 
selected from the library of 4000 trajectories. 

The results show that including just one or two “history” can 
dramatically decrease the error of IMRR -for example, the error of IMRR 
with 2 “history” + 13 “library” (of a tcut of 0.15 Å) is on the same level as 
the error of IMRR with 15 “library” that are geometrically much closer to 
the target(i.e., tcut = 0.01 Å, see Fig. 3). It is also important to note that 
the error of IMRR does not further decrease monotonically with more 
“history” which could be allotted to several factors. First, as more 
“history” is included, inputs that are geometrically further and further 
away from the target (i.e., larger tcut) are included at the cost of 
excluding “library” of smaller tcut . Previous results (Fig. 3) have shown 
that when the number of inputs is fixed, the error of IMRR increases with 
respect to tcut . Second, “history” inputs may be nearly linearly dependent 
over short periods of time where the momentum changes little. As the 
IMRR linearly combines coordinates to determine the weights, having 
more than two of these nearly linearly dependent inputs contributes 
little. Nonetheless, it is important to point out that the inclusion of 
“history” aligns well with the nature of the local interpolation of IMRR. 

4.2. The risk of IMRR 

The risk of IMRR is defined as the likelihood of the error of IMRR 
being more than the level desired by the user or required to maintain a 
stable trajectory vwhichever is smaller. Recall that the upper limit of the 
error of IMRR is governed by the nature of the PES of the target (C1 and 
C2 terms in Eq. 10) and the terms related to the relative position of the 
inputs with respect to the target (R1 and R2 terms in Eq. 10) -IMRR does 
not provide any information on C1 or C2, but once the weights of the 
inputs are determined, the values of R1 and R2 become available. The 
theory of IMRR suggests that the upper bound of its error decreases 
monotonically if the values of R1 and R2 decrease. Consider two 
different q0: all else (the geometrical closeness of the inputs, number of 
inputs, and hyperparameter) being equal, the one associated with 

Fig. 7. The average efficacy of IMRR (r) is plotted across the range of tcut used 
in the dataset for Fig. 3. Fig. 8. The error of IMRR vs the number of “history”, h.  
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smaller R1 and R2 values is expected to have a smaller error of IMRR. To 
verify, a series of IMRR with 23,000 targets uniformly sampling the 
phase space and their corresponding R1 +αR2 values are summarized in 
Fig. 9. The inputs of the IMRR are obtained from a library containing 
4,000 AIMD trajectories and no “history” is included. This figure dem
onstrates that R1 +αR2 is a reasonable measurement of the error of 
IMRR, as its average value (bold green line) decrease as R1 +αR2 gets 
smaller. Therefore, enforcing a small R1 +αR2 value on average de
creases the risk of IMRR. It is important to note that since AIMD tra
jectory envolves many steps of propagation of a chaotic system, it can be 
thrown off by any single step with large energy gradient error [67]. 
Practically, this nature unfortunately means that the minimal IMRR 
error, instead of its average, should be used to select a threshold value of 
R1 +αR2 for AIMD simulations. It is also of interest to note that given a 
finite-size library and history, not every target can be guaranteed with 
an IMRR that yields small enough R1 + αR2. As a result, enforcing a 
small R1 +αR2 could potentially result in many IMRRs being too risky to 
use. Nonetheless, being able to assess the risk of the predicted energy 
gradient of a ML method locally is valuable in precisely controling its 
usage -only low-risk results from the ML method should be adapted for 
the simulation. This feature is critical for the application of IMRR in 
AIMD: With access to the risk on-the-fly, the trajectory is not obligated to 
propagate with Z(q0) if it is deemed to be of high risk, but instead, calls 
an ab initio calculation to evaluate its energy gradient and propagate the 
trajectory. This feature also goes hand in hand with IMRR’s nature of 
local interpolation -since the risk is local (i.e., related to the amount of 
the information stored in the library that can be used for the target), the 
decision of trusting IMRR or referring back to ab initio should only take 
into account the local information. 

4.3. The versatility of IMRR 

By examining its performance on the HBr+ + CO2 system, IMRR has 
been established so far to be a viable option to predict energy gradients 
for AIMD simulations with small and tunable errors. The underlying 
theory of IMRR does not directly speak to how different chemical sys
tems of different size could impact its performance, thus we apply IMRR 
to two different reaction systems, H2S  + CH (same size, different 
chemistry) and C4H2 + CH (different size and chemistry), to probe 
IMRRvs versatility. Both of the reactions have been studied by our group 
with AIMD and are of great importance to astrochemistry: the former 
reaction is believed to form thioformaldehyde (H2CS) and its thiohy
droxycarbene isomer (HCSH) in star-forming regions such as Sagittarius 

B2 [64], while the latter forms triplet pentadiynylidene (HCCCCCH) and 
singlet ethynylcyclopropenylidene (c-C5H2) carbene and is a prototype 
reaction to study the chemistry in extreme, hydrocarbon-rich outer 
space [65]. 

To assess the performance of IMRR, the targets (q0) of the H2S  + CH 
and C4H2 + CH systems are selected unbiasedly in their respective phase 
space, which are characterized by two CVs to distinguish key configu
rations involved in the reaction (e.g., reactant, intermediates, transition 
states, products). For the H2S  + CH system, the two CVs are the S-C 
distance and the root mean square of the three C-H distances. The 
configurations of 1080 AIMD trajectories are binned into the CV space, 
and 78 1 Å × 1 Å cells are populated (Fig. S3 in the Supporting Infor
mation). These cells are determined to be relevant to the reaction and 
one target is picked from each cell. Similar to the HBr+ + CO2 system, 
configurations are generated by randomly displacing atom(s) of q0 with 
respect to different tcut , whose energy gradients are computed by 
NWChem with B3LYP/aug-cc-pvdz level of theory. The configurations 
and their energy gradients are the inputs of IMRR to estimate the energy 
gradient of the targets. The procedure of the C4H2 + CH systems is 
similar, except the two CVs are the largest C-C distance and the largest 
H-H distance, rendering 73 1 Å × 1 Å cells (Fig. S4 in the Supporting 
Information), and the energy gradients are computed with B3LYP/cc- 
pvdz level of theory. 

The performance of IMRR on the H2S  + CH and C4H2 + CH systems 
is depicted in Fig. 10 and they closely resemble its performance on the 
HBr+ + CO2 system: as more inputs becomes available and as those 
inputs becomes geometrically closer to the target, the error of IMRR 
decreases to a similar level. It is also of interest to note that the insta
bility of IMRR displayed with a limited number of inputs that are 
geometrically far from the target (i.e., large tcut) is consistent in all three 
tested systems. Surprisingly, the error of IMRR for both HBr+ + CO2 and 
H2S  + CH system shows a local maximum with nine inputs (K = 9). This 
value is exactly the number of degrees of freedom (DOF) of the system 
(3 N-6 or 9). For the C4H2 + CH systems, this local maximum appears at 
19 inputs (K = 19), close to (or, if taking into the consideration that the 
system is largely linear, exactly is) the number of DOF of the system. The 
reason behind why the local maximum of the error of IMRR occurs at the 
number of DOF of the system, and why it exists at all, remains unclear. 
However, empirically, it provides a reliable guide for the minimal 
number of inputs that IMRR should have access to when applied to 
AIMD simulations. Overall, the consistent performance of IMRR on HBr+

+ CO2, H2S  + CH, and C4H2 + CH systems demonstrate its ability as a 
viable option to dramatically accelerate AIMD simulations of chemical 

Fig. 9. The sum R1 +αR2 may be used to estimate risk; the cumulative error of all IMRR predictions with R1 +αR2 less than some threshold are reported above. Data 
is gathered as described in the text with α = 10−1. The average error is shown as a bright green line with the standard deviation shown as a light green region. 
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