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Ab initio molecular dynamics (AIMD) simulations are a direct way to visualize chemical reactions and help
elucidate non-statistical dynamics that does not follow the intrinsic reaction coordinate. However, due to the
enormous amount of ab initio energy gradient calculations needed, it has been largely restrained to limited
sampling and low level of theory (i.e., density functional theory with small basis sets). To overcome this issue, a
number of machine learning (ML) methods have been developed to predict the energy gradient of the system of
interest. In this manuscript, we outline the theoretical foundations of a novel ML method which trains from a
varying set of atomic positions and their energy gradients, called “Interpolating Moving Ridge Regression”
(IMRR), and directly predicts the energy gradient of a new set of atomic positions. Several key theoretical
findings are presented regarding the inputs used to train IMRR and its predicted energy gradient. A hyper-
parameter used to guide IMRR is rigorously examined as well. IMRR is then applied to three bimolecular re-
actions studied with AIMD, including HBr" 4+ CO», HoS + CH, and C4H, + CH, to demonstrate its performance
on different chemical systems of different sizes. This manuscript also compares the computational cost of the
energy gradient calculation with IMRR vs. ab initio, and the results highlight IMRR as a viable option to greatly
increase the efficiency of AIMD.

1. Introduction

Ab initio molecular dynamics (AIMD) simulations of chemical re-
actions have shown great success in revealing their complicated dy-
namics at an atomistic level, elucidating discoveries from experiments
that are nonintuitive, and predicting behaviors of chemical reactions
whose conditions are difficult to realize [1-8]. In AIMD, the interaction
between atoms (i.e., energy gradient, corresponding to forces acting on
atoms) is directly calculated on-the-fly with ab initio methods and their
positions (referred to as “configurations™) are propagated iteratively by
solving the classical equations of motion over a small time interval
[2,9,10]. In this way, the time-evolution of the coordinates of the system
(referred to as a “trajectory”) is collected. To ensure the conservation of
the physical properties of the system (e.g., total energy, momentum,
etc.), the time interval between updating the coordinates of the atoms of
a trajectory is usually on the order of one-tenth of a femtosecond. A
chemical reaction in the gas phase takes place on the scale of picosec-
onds, as a result, there are usually a few thousand to tens of thousands ab
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initio energy gradient calculations involved in simulating each
trajectory.

Further, to accurately model reactions in real life, AIMD simulations
need to sample a statistical ensemble corresponding to the conditions of
the experiments [11,12]. For example, AIMD simulations of crossed-
beam experiments (i.e., bimolecular collisions) should sample all
possible impact parameters (b) and orientations of the collision (6).
Practically, this is done by first detecting by, the largest b in which a
reactive trajectory can be observed, and then sampling trajectories with
random orientations within b,,,x. To account for the collision probabil-
ity, the number of trajectories sampled at each b value should be pro-
portional to 2zb. For a gas phase bimolecular collision of small
molecules, b,y is usually a few (4.0~6.0) A when the collision energy is
less than 1.0 eV [4,6-8]. Assuming b is sampled with 0.5 A intervals and
100 trajectories are simulated at b = 1.0 A, the smallest sampled impact
parameter, such a simulation study will contain a total of 3,600-7,800
trajectories. Multiplying the number of trajectories with the number of
ab initio energy gradient calculations per trajectory leads to an enormous
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computation cost for a simulation study of one chemical reaction under
just one condition (e.g., a certain collision energy, temperature, vibra-
tional excitation, etc.).

The millions of ab initio energy gradient calculations take up the
overwhelming majority of the computation involved in AIMD and pre-
sent an obvious dilemma: there is an inevitable tradeoff between the
accuracy of the ab initio method and the ergodicity of the sampling. On
one hand, for example, coupled cluster theories with triple-zeta basis
sets (e.g., CCSD(T) [13]/aug-cc-pVTZ [14]) can be expected to accu-
rately model the ground state potential energy of a gas phase system.
However, this level of theory is of no practical use in AIMD: even for
systems with less than 10 atoms, a single ab initio energy gradient
calculation of such method may take hours on one computer node with
twenty processors. Millions of such calculations demanded by one
simulation study would drain the capacity of a medium-size super-
computer for years. On the other hand, insufficient sampling inevitably
compromises the reliability of AIMD, as the chance of observing some
minor reaction pathways could be as low as 1% [4,6-8]. The balance
between accuracy and ergodicity usually limits AIMD to single reference
ab initio methods, such as density functional theory (DFT[15]) or Moller-
Plesset perturbation theory to the second order (MP2 [16]) with basis
sets of limited sizes (e.g., cc-pVDZ [17] or 6-31G* [18,19]). Selecting a
feasible yet accurate combination of ab initio method and basis set is
laborious: the potential energy of a chemical reaction calculated from
various combinations are compared against experimental heats of re-
action and/or results from a high-level ab inito method (e.g., CCSD(T)
extrapolated to the complete basis set limit [20]).

The large burden of computation has greatly limited the application
of AIMD, therefore, an on-the-fly and efficient algorithm that is able to
predict the energy gradient that replaces the expensive ab initio calcu-
lation is highly desirable. Over the last decade, various methods have
been developed for this purpose and one popular approach is to estimate
the energy gradient from a large database of ab initio calculations with
machine learning (ML). For a more in-depth overview, see Hansen et al.
[21,22] and Faber et al. [23], as well as a more general review by Noe
et al. [24]. One broad class of ML methods treats the atoms in the system
individually and predicts the energy gradient of each atom according to
its surroundings. Several research have successfully demonstrated this,
employing neural networks [25-29], kernel ridge regression [30-33], or
Gaussian process regression [34,35]. Another broad class of ML methods
instead looks at the configuration of the entire system and predicts the
energy gradients of all the atoms in the system at once. These types of
ML often use linear interpolation [36-40], reproducing kernel interpo-
lation [41-46], or kernel ridge regression [47,48].

In this manuscript, a novel ML algorithm, “Interpolating Moving
Ridge Regression” (IMRR), that is specifically designed for estimating
energy gradients for AIMD simulations, is introduced. The training set
for IMRR, which is referred to as the “input of IMRR”, is the energy
gradients (g(q;)) of configurations (g;) that are geometrically close to the
configuration of interest (qo) which is referred to as the “target of
IMRR”. The outcome of IMRR is Z(qo), the estimated energy gradient of
qo, which is necessary to propagate the trajectory. IMRR also assesses
the risk of Z(qo), which is defined as the likelihood of Z(qy) deviating
from the true ab initio energy gradient more than some user-defined
threshold. Targets with large risk may reject Z(qo) and instead fall
back to the ab initio energy gradient to propagate forward. It is important
to note that the risk-assessment of IMRR is done without computing the
ab initio gradient of the target. This type of risk or uncertainty prediction
has often been used in ML methods in conjunction with active learning
algorithms [24,49,50]. Actively learning through repeated sampling and
retraining has been found to model potential energy surfaces to the level
of chemical accuracy often by adding configurations to the training set
which have high uncertainty [51-54]. While many of these involve
having multiple neural networks that assess each others’ risks, [51-54]
others construct theoretical probabilistic uncertainties [55-58].

IMRR highlights a few characteristics that are attractive to AIMD
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simulations of chemical reactions: a) In theory, the training set of IMRR
could be cost-free, as they are made from traditional AIMD simulations,
e.g., the first 100 trajectories. In other words, all of the ab initio calcu-
lations involved in AIMD simulations directly contribute to the propa-
gation of the trajectories. b) IMRR s risk-assessing capability features the
flexibility of referring back to the ab initio energy gradient when
necessary. Combined with its nature of local regression, whenever an
IMRR gradient is deemed risky (e.g., trajectory traverses through a
poorly-learned regions in the phase space), the AIMD trajectory is not
forced to adapt a potentially high error (i.e., high risk) energy gradient
that would have negatively impacted its validity. And c), IMRR is highly
efficient -as shown later in this manuscript, its computational cost is only
a fraction of the ab initio energy gradient calculation. As a result, tra-
jectories propagated with a mix of IMRR (when deemed low risk)/ ab
initio (when deemed high risk) could be expected to be much more
efficient as compared to traditional AIMD trajectories. In this manu-
script, the theory and performance of IMRR will be laid out in great
detail, while its implementation with AIMD trajectory propagation will
be introduced in a separate manuscript.

The rest of the manuscript is organized as the following. The theory
of IMRR and the numerical protocol of minimizing the upper bound of
the deviation between energy gradient from IMRR and ab initio are
provided in the Methodology section. The dependance of this deviation
on the input of IMRR and the hyperparameter is provided in the Result
section. The computational cost of IMRR is also reported. The manu-
script concludes with discussions on practically minimizing the devia-
tion, IMRR's risk-assessing capability and how the chemistry and size of
the system impact IMRR’s performance.

2. Methods
2.1. The upper bound of the error

Consider a chemical system of N atoms with configuration g and
energy gradient g(q), which can be described by 3N coordinates (%, y, z
for each atom), i.e., ¢ € R®N and g(q) € R*N. Assume for the configura-
tion of interest at a certain step qo, referred to as the “target” of IMRR, to
propagate the system to the next time step, AIMD demands g(qo) € RV,
the forces acting on the atoms, which is calculated from an ab initio
method. The goal of IMRR is to estimate the energy gradient of qo,
named Z(qo) € RN, with a training set of ab initio energy gradients g(q;),
calculated from previous simulations. In IMRR, Z(qo) is computed as the
weighted average of the energy gradients of K configurations with w; as
the weight:

K
Z(‘Io) = Z wig (%‘) 1<igK (€D)]
P

IMRR optimizes w; in order to minimize the deviation (referred to as
the “error of IMRR™) between Z(q,) and g(qo), which is expressed as:

@) ~ Z(an)| = |y O (@) (@)’ 1N @

Intuitively, those g; that are geometrically close to qo should be
prioritized in making up the training set. With Cartesian coordinates, the
“geometrical closeness” between ¢; and q, is assessed by the root mean
square displacement (RMSD, t;) after g; has been properly translated and
rotated to maximize its overlap with gy [59]. It is important to note that
permutation should be allowed for chemically identical atoms if it in-
creases the overlap. The RMSD between g; and q, is computed as:

1 3N )
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in which t is a user-defined parameter that enforces the geometrical
closeness between qo and q;, the relation between which is:

4 = qo+ VNt ()]
in which I?l is the unit vector of h;, the displacement between g; and qo, i.
e., hi = qi—qo € R®N. An example geometric interpretation for these
vectors can be seen for the K = 2 case in Fig. 1. fi(t) is defined as the
energy gradient function, i.e., fi(t;) = g(qo + VNth) = g(qi) € RN
Assume the chemical system stays in the same electronic state (adiabatic
process); the f;(t;) is continuous and infinitely differentiable in each of its
3N components. Therefore, the j* component of function f; can be
expanded with Taylor’s theorem:

. / 1,., 15w . .
fii (z,-) =1 (0) +if (o) +§t,?f”. (0) +§t?fm (o) +... 1<K, 13N
)
As defined, the first term f;;(0) is the j* component of g(qo), i.e., f;;(0)
= gi(qo). The error of IMRR (Eq. 2) is bounded above by considering the
" component (1<I<3N) of Z(qo) where it deviates the most from g(qp), i.
e.,

I = argmax|g;(q0) — Z(q0)|

13N

l8(q0) — Z(q0)1<V3"Ig1(g0) — Zi(q0)]

The inequality can be further derived as

lg(do) — Z(qo)| </Co - Ro +
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The first term can be rewritten as:
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in which Cy depends only on the nature of the potential energy surface
(specifically, its derivative) and R, depends only on the weights of g;.
Similarly, the second term in Eq. 6 can be derived as an inequality with a
single C; term that depends only on the derivatives of g(qo) and a single
R; term that depends only on g; and their weights w;:

K K
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C
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in which |g'l(q0)| is the magnitude of the largest value among the 3N x

[N
A j h, hy
/)
e
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Fig. 1. An example IMRR interpolation for a target (red circle) given two inputs (blue circles) to produce an interpolated configuration (red cross) is given. R is the
difference between the sum of the weights and unity whereas R; is the distance in space between the interpolated configuration and the target. R, is the weighted
sum of the magnitudes of the inputs. Cyan, dark blue, and purple lines indicate possible interpolation configurations which have the same value of Ry, R;,and Ra,

respectively.
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3N elements of the matrix g (qo), the Hessian of qo. Finally, recall that t;
is bounded by t.,, which is chosen to be a small value in practice, thus
according to Taylor’s theorem, the summation of higher terms in the
Taylor expansion of an analytical function is bounded:

#(4a(0) dpsi(0) + )

in which C;; is a constant characterized by the higher order potential
energy derivatives. Thus, the third term in Eq. 6 can be expressed as the
product of two terms: a Cy term that depends only on the nature of the
potential energy surface and a R, term that depends only on g; and their
weights w;, e.g.,

2
<t Cy

K K
SERAA) )+ S
£ (2 ©
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Cy P

Substituting Eq. 7, 8 into Eq. 6 establishes that the error in energy
gradients between the interpolated configuration and the target
configuration is bounded above as:

18(q0) — Z(q0)|<CoRo + CiR: + CaR, 10)

The geometric representations of these R terms for a model system of
two inputs (K = 2) are demonstrated in Fig. 1.

2.2. Minimize the upper bound of the error

IMRR minimizes its error (Eq. 2) by minimizing the upper bound of
the error. Eq. 10 demonstrates that the error is determined by the C
terms that depend on the nature of the potential energy surface and the R
terms that do not. Clearly, the nature of the potential energy surface
varies from system to system, therefore, IMRR focuses on minimizing Eq.
10 through the R terms. Eq. 10 can be rewritten into the form of a linear
equation:

lg(q0) — Z(g0)|<CoRo + CiRi + CaR,
=|CU™w — Co1| + |C1Aw — C,0| + |C.Bw — C,0]

<\/§.\/|c(,UTw — ol + |C1AW — C,0f + |C.Bw — G0

an
C,B 0
=V3|| CA |w—|Ci0
Cc,u” Col

A € RESN is the matrix of the displacement between q, and q;, h; €
RN 1<igK:

| | | hl,l hz,l hK.l
A=lh o oohe|=| M2 hfz h’f-z
| | | hl.}N hZ.SN hK.3N

B ¢ R“! is the diagonal matrix of the magnitude of the displacement
between g, and g;:

(=]
S
]
=]

U € R¥ is a vector with elements of 1 and its transpose is:

U'=[1 1 .. 1]
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w € R¥ is the weights of the K input configurations:
T
w=[w w, ... wg]

Finally, 0=[0 O
can be further simplified as:

)4

in which He ROVKK g _ [c,BT AT CoUT]" and h' e
RNV R = [0 07 G 1T]T. IMRR solves for the optimal w €

RX that minimizes r(w) by setting the derivative of r*(w) to be zero. The
optimal w that minimizes the upper bound of the error is:

0]" € R¥ and 1 is just the scalar 1. Eq. 11

<

Hw—h"" = \/(wah")T.(Hw—h") = r<w) (12)

w=(H'H) 'H'h (13)

Eq. 13 can be proven to have a solution w, as shown in the Supporting
Information.

2.3. Solving for the optimal w with restrictions

It is important to note that the C terms used in constructing H and h”
(e.g., Cop,C1,C2 in Eq. 10) are not known a priori. To minimize the
number of unknowns in H and h”, one of the R terms could be eliminated
by setting it to zero as a constraint. The Ry term is only a single row in
the matrix H and would not dramatically shrink the number of solutions
as compared to the R; term. Therefore, Ry is set to be zero by imposing
the constraint that UTw —1 = 0. Following the same procedure as shown
in the previous section, the upper bound could be rewritten with the
linear equation:

o] —Z|q ||< w—
a4
aB a0
=C w—
A 0

=H,w—h,

To solve for this equation, a hyperparameter « is introduced as the
ratio between C, and Cy, i.e., @ = C5/C;. The true value of @ depends on
the potential energy surface of the system and is not known a priori. As is
customary in ML methods, this is left as a user-controlled hyper-
parameter. As seen in Fig. 2, generally, the IMRR has two limiting be-
haviours for very small and large a. In the small a case, minimizing R; is
preferred so the weights are chosen to minimize the distance between
the interpolated configuration and the target. In the large a case,
minimizing R, is preferred so the weights are chosen to minimize the
distance between the interpolated frame and the closest possible input.

Define H, = [aB A]" and h = [a0 0]". This constrained opti-
mization of w that minimizes the upper bound of the error could be
solved by constructing a Lagrangian, L(1,w):

L(2,w) = (Hw—h")"-(Hw—h") + 2(U"w 1)
and setting the gradient to zero.

3. Results

The first representative system employed to demonstrate the per-
formance of IMRR is the bimolecular collision of HBr™ + CO,, which
after collision, forms the proton-transfer product HOCO™ + Br, or goes
back to the reactant molecules (i.e., non-reactive trajectories). This
system has been studied extensively with the guided-beam experiments,
quantum calculations, and AIMD [60-63]. The IMRR employs ab initio
energy gradients computed with MP2/cc-pVDZ by NWChem that made
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Ry= |Ohy + 1hy|
Ro= 0t2 + 1t3

[
>

Ry

-> |&(a0) — Z(qo)]
Minimizés IMRR error

Fig. 2. By constraining Ry = 0, in the same example from Fig. 1 where there are two inputs (K = 2), all solutions lie on a one-dimensional line. Three possible
solutions are presented. In each, the interpolated configuration is denoted by a red cross and the corresponding values of R; and R, vary. The hyperparameter a"

would lead the algorithm to minimize the error function defined by R; + a'Ra.

up the previous AIMD trajectories [62,63] as its targets (qo,g(qo)) and
inputs (g;,g(qi)) when applicable. As noted in Methods, the error of IMRR
depends on various factors, such as the geometrical closeness of inputs
(tey in Eq. 3), the number of inputs (K in Eq. 1), the hyperparameter (a in
Eq. 14), etc. Thus, in this section, we treat these factors as independent
variables -studying the dependence of the error of IMRR with respect to
one factor while keeping the rest at fixed, reasonable values, with jus-
tifications provided in each respective section below. This setting is to
have 15 input frames (g; and its corresponding g(g;), K = 15), each of
which has an RMSD less than 0.15 A. (t., = 0.15 A) to the target go, and
the hyperparameter o is held at 1.0 x 10~ . Unless noted otherwise, these
values are adapted as the default for the rest of the manuscript.

3.1. Accuracy of IMRR vs. the geometrical closeness and the number of
inputs

As defined in Eq. 3, t; represents the geometrical closeness between
the input configuration, g;, 1<i<K (the number of inputs for the IMRR)
and the target, qo, after their overlap has been maximized through
center of mass translation and rotation. t, is the upper bound of t; and
the previous section has shown the error (i.e., Eq. 2) of IMRR decreases
as t; gets smaller (see R; term in Eq. 9 and R term in Eq. 10). Therefore,
controlling t,,, is the first trial in this section. Since IMRR aims to predict
the energy gradient that could be applied to simulate chemical reactions,
it is important to ensure the targets employed in the test represent all
relevant phase space of the reaction. An illustration of the phase space of

this reaction, characterized by two collective variables (CVs), the dis-
tance between H-C and the shorter distance between two Br-O, is pro-
vided in Fig. S1 of the Supporting Information. The configurations of
4,000 AIMD trajectories are binned into the CV-space, and 68 1 A x 1 A
cells are populated. These cells are determined to be relevant to the
reaction and one configuration from each cell is selected as the target to
assess the performance of IMRR.

The energy gradient of these targets is estimated by IMRR at various
t.r and compared with its ab initio counterpart, whose difference is
defined as the error of IMRR (Eq. 2) and plotted in the right panel of
Fig. 3. For each target (qo), up to 40 inputs (g;) are randomly generated
by displacing atom(s) from gqo, while enforcing its t; (geometrical
closeness to qg) to be between 90% and 100% of each t,. The energy
gradient of the inputs, g(q;), are computed at MP2/cc-pVDZ level of
theory. As Fig. 3 demonstrates, the error of IMRR decreases mono-
tonically as the input configurations, g;, get geometrically closer to the
target, qo. In other words, the energy gradient predicted by IMRR, Z(qo),
approaches g(qo), the energy gradient of the target from MP2/cc-pVDZ,
as q; approaches qq (i.e., smaller t,,). Fig. 3 also illustrates that the error
of IMRR demonstrates a strong logarithmic relation with respect to t.
Note the x-axis is linear and the y-axis is logarithmic -when the y-axis is
linearized, the black curve becomes a power relation with the general
form of ax®, where a and b are constants. The fitted line (black solid
curve) closely resembles a quadratic function (ax?), indicating that with
the optimized weights in Eq. 10, the error is largely bounded by C3Rj,
since Rj is proportional to the sum of the squared t; of the input. Overall,
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Fig. 3. Left panel: the error of IMRR with vs. the number of inputs at various t,,, values. Right panel: the error of IMRR vs. t.,, with K = 40 inputs. The targets of these
figures uniformly sample the phase space of the HBr™ 4 CO, reaction (see Fig. S1).

the right panel of Fig. 3 suggests that the accuracy of IMRR is improvable
as more inputs closer to the target become available -a scenario that is at
least achievable in theory with more sampling of AIMD trajectories.

Fig. 3 (left panel) also illustrates the correlation between the error of
IMRR and the number of inputs (K). For each target, their inputs are
sorted with respect to t; before being fed into the IMRR. For example,
K = 2 means the IMRR is carried out with the two inputs geometrically
closest to the target, and K = 3 includes the three inputs geometrically
closest to the target. Although the newly included inputs (as a result of
increasing K) are geometrically further away from the target, the IMRR,
across all values of t., is able to estimate an energy gradient closer to
the ab initio value (i.e., smaller error) with a larger number of inputs. The
gain in IMRR accuracy by including more inputs is significant when K is
less than 15 and becomes marginal after K > 15. The convergence of the
error of IMRR after 15 inputs has led to the usage K = 15 as a default
number of inputs for the HBr* 4 CO, system. It is interesting to note, the
error of IMRR demonstrates a local maximum around K = 10 for almost
all t.,, which is particularly obvious for larger t.,. The origin of this
counterintuitive maximum is debatable, while one explanation could be
that IMRR is more ’fragile’ when inputs are overall geometrically further
away from the target (i.e., larger t,). This behaviour will be elucidated
further in the Discussion.

It is important to confirm that the aforementioned behavior of IMRR
with respect to the geometrical closeness and number of inputs is not a
result of the artificial method of generating inputs, i.e., by displacing
atom(s) of the target. Herein, a more large-scale assessment of IMRR is
carried out, in which 1000 inputs uniformly sampling the feasible CV-
space are selected from 150 AIMD trajectories, [64,65] thus roughly
15 inputs are selected from each 1 A x 1 A cell shown in Fig. S1. The
energy gradients of these targets are estimated by IMRR with inputs
selected from another 4000 AIMD trajectories (a total of 28.1 million
energy gradients) with t; chosen such that 0.9t < t; < tsy, as in the
previous test. The results are summarized in the Supporting Information
(Fig. S2) and show very good agreement with Fig. 3, demonstrating the
potential of IMRR in producing low-error energy gradient given enough
inputs that are close to the target.

3.2. Accuracy of IMRR vs. the Hyperparameter o

As shown in the previous section, IMRR demands a hyperparameter a
in solving for the optimal weights (w) that minimize the upper bound of
the error.

a for each IMRR, since it would be more expensive than just
computing the ab initio energy gradient itself. Defined in Section 2.3, a is
expressed as the ratio between Cz, a term depending on the derivatives
of the energy gradient of the target, and C;, a term depending on the
energy gradient of the target, thus at least in theory computable with an
ab initio method. However, it would be highly unwise to evaluate
Therefore, like many other ML methods, the hyperparameter «a is tested
over a range of values and determined empirically to reliably produce
minimal IMRR error.

Intuitively, when a variety of inputs are available to IMRR (while
controlling the inputs’ geometrical closeness to the target by enforcing
t; < tay), the hyperparameter a balances the relative importance be-
tween the inputs that are relatively far from the target (i.e., larger ;) and
that are relatively close (i.e., smaller t;). As Eq. 14 suggests, a large a
(blue region in Fig. 4) will minimize the CoR, term of the upper bound of
the error; while in contrast, a small a (coral region in Fig. 4) will
minimize the C;R; term of the upper bound of the error. Herein, the
1000 targets (qo) that uniformly sample the CV-space of the reaction are
employed as the targets again to investigate the behavior of the error of
IMRR with respect to different @, whose value ranges between 10> and
10*5. Although the exact curve of the error of IMRR vs. a curve varies
from target to target (see Fig. 4), it can be divided into three regions:
large a (blue), small a (coral), and intermediate a (white). The first two
regions are detected when the error of IMRR becomes independent of a,
although each region could be associated with a different error. The
error of IMRR in the intermediate region heavily depends on a and
smoothly connects the other two regions.

To identify the optimal a that empirically minimizes the error of
IMRR, a histogram of the errors of IMRR from the aforementioned three
regions is depicted in the top panel of Fig. 5. The data show that when a
is small, the error of IMRR is overwhelmingly smaller than those in the
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Fig. 5. Top panel: the error of IMRR when the hyperparameter « is in different
regions in Fig. 4. Bottom panel: the histogram of the position of the edges of the
small a and large a regions.

large a region (93%, area under the blue curve). It is true that the
possible minimal error of IMRR could correspond to an « value within
the intermediate region, as the bottom panel of Fig. 4 shows, never-
theless, the intermediate region still statistically (61%, area under the
black curve in the top panel of Fig. 5) has a larger error than those in the
coral region. As a result, the optimal a is empirically set to be in the coral
region in Fig. 4, whose position is detected by consolidating its upper
bound (i.e., the right edge). A histogram of the position of these upper
bounds is depicted in the bottom panel of Fig. 5 value of 1.0 x 107! is
chosen as the default for the IMRR.

It is worth noting that the theory in the Methods section only deals
with the upper bound of the error. To demonstrate the behavior of the
upper bound, not only is an enormous amount of sampling required, it is
also of little use to the actual dynamics simulation. Nonetheless, the
empirical data provided so far demonstrate that by optimizing the
weight of the inputs, which are controlled over K, t,, and a, the error of
IMRR is well-behaved and the IMRR energy gradient approaches its ab
initio counterpart.

3.3. The computational cost of IMRR

The computational cost for one time step (i.e., update the configu-
ration of the system once) in molecular dynamics simulations can be
decomposed into two parts: the generation of the energy gradient (e.g.,
ab initio calculation, force field evaluation, etc.) and all other overhead
cost (e.g., propagate the system, evaluation trajectories, etc.). As dis-
cussed in the Introduction, the former makes up the overwhelming
majority of the computational cost in AIMD. With an ML method like
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IMRR that aims to replace a majority of the ab initio energy gradient
calculations, the overhead cost could possibly become rate-limiting in
the simulation. This would be the case if searching through previous
trajectories’ energy gradients for satisfactory IMRR inputs takes an
excessive amount of time. It is obvious that the speed of identifying
inputs of IMRR (configurations that are geometrically close to the target)
from an enormous number of configurations depends heavily on the data
structure, the searching algorithm, the hardware of the computer, etc. A
thorough discussion on that front is beyond the scope of this manuscript,
nonetheless, here we provide a computational cost of IMRR, including
its overhead cost, with a bare bone protocol that is subject to further
improvement.

Consider the set of all ab initio energy gradients that are computed in
the early phase of the AIMD study as the “library” of available inputs for
IMRR. Clearly, the overhead cost would be unmanageable should the
entire library be searched through for the aforenoted inputs for each
IMRR. To address this concern, the same pair of CVs described earlier are
employed to construct the library. Before an ab initio energy gradient (i.
e., g(q)) is put into the library, its corresponding CVs are calculated, and
g(q) would be written/appended into a file that is indexed by the CVs.
With this setting, the library contains numerous files and each file stores
only those g(q) that share similar CVs. When searching for inputs of
IMRR, only those files sharing CVs similar to the target are loaded in the
memory. The premise is that the g(q) stored in these files are likely to
share geometrically close configurations to the target, and thus likely to
be selected as IMRR inputs. As a result, only a small subset of the entire
library is relevant to the IMRR input search and the overhead cost is kept
at a manageable level. Further, to minimize the I/O of the computer
system, a buffer is designed and implemented to store the g(q) from the
aforementioned files in the memory.

This buffer is updated only when the target has moved significantly
away from the previous one. The computational cost of the IMRR is
tested with a library of 4,000 AIMD trajectories (about 25 million ab
initio energy gradients, 1836285 files, 17.5 GB size) of the HBr" + CO,
— HOCO™ + Br reaction.

Eight trajectories that are not part of the library are simulated, and
their energy gradients (about 50,000) are computed with an ab initio
calculation (these trajectories are still propagated with ab initio energy
gradient) followed by an IMRR. Their timings are compared in Fig. 6. As
shown, the wall time of IMRR (0.51 s per step on average) is less than a
quarter of the wall time of the AIMD (2.16 s per step on average) to
propagate the system by one step. The most populated bar of IMRR
corresponds to those IMRRs that do not require an update of the buffer,
and the larger the portion of the buffer needs to be updated, the longer
IMRR takes. Further, as the pie chart shows, IMRR spends a majority
(almost 90%) of the time on the overhead cost, while almost all of the
wall time of AIMD is spent on generating the energy gradients. It is also

Time per step with IMRR energy gradient

>
o

Scaled Probability

0.0 0.5 1.0 15 2.0 25
Wall Time per Step (Seconds)

Energy Gradient Energy Gradient

11.8%

88.2%

~Overhead Overhead

Fig. 6. A histogram of the wall time it takes for one MD step if the energy
gradient is generated from IMRR (coral) and ab initio (green). The heights of the
bars are scaled so that they integrate to 1. The average wall times are further
broken down in the pie-charts to gradient generation and overhead.
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important to note that, the timing is measured with IMRR occupying
only 1 CPU and ab initio occupying 20 CPUs. The preliminary timing
results of IMRR, even though carried out with a bare minimal data
structure, bespeaks its great potential efficiency as compared to ab initio
energy gradient calculations.

4. Discussion
4.1. The efficacy of IMRR

The previous section presented numerical results on the error of
IMRR, which describes how close the estimated energy gradient (Z(qo),
Eq. 1) is to the ab initio energy gradient (g(qo), Eq. 2). The error of IMRR
was demonstrated to be affected by (and can be tuned by) the number of
inputs (K, left panel of Fig. 3), the geometrical closeness of inputs (¢,
right panel of Fig. 3), and the hyperparameter (@, Fig. 4). Since the
difference in energy gradient between any given pair of configurations
generally decreases as the configurations get geometrically close,
without IMRR, one would expect the energy gradient of g, the input
that is geometrically the closest to the target, to be the closest to the
energy gradient of the target. Therefore the efficacy of IMRR (r) is
defined as how much the IMRR energy gradient has improved upon
g(gm) in accurately representing the ab initio energy gradient of the
target, i.e.,

polgla) —glal
g(q0) — Z(g0)| 1<i<k

qo — fh} (15)

As defined, r is non-negative and the larger its value, the more
effective IMRR is in predicting the energy gradient of the target as
compared to the input that is geometrically closest to the target. The
same sets of targets as Fig. 3 (68 targets randomly selected from AIMD
trajectories that distributed uniformly in the CV space) are employed to
probe into the efficacy of IMRR with inputs of various t, values.

Fig. 7 demonstrates several histograms of r from IMRR on these 68
targets, each with 15 inputs (K = 15). Compared to the energy gradient
of the input (gn) that is geometrically closest to the target, the IMRR
energy gradients are on average 50 times closer to the target energy
gradient from the ab initio calculation. The inserted panels of Fig. 7 show
that the efficacy of IMRR gradually increases when t., gets smaller,
indicating that even when the input(s) are geometrically very close to
the target, IMRR still takes advantages of these inputs and estimates a
much more accurate energy gradient for the target.

The efficacy of IMRR at small ., indicates that it can be closely
coupled with AIMD as a time interval (6t, time between updating con-
figurations of the system) multiplier in addition to the active learning
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Fig. 7. The average efficacy of IMRR (r) is plotted across the range of t., used
in the dataset for Fig. 3.
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discussed earlier. In AIMD, §t should be chosen as large as possible while
conserving the physical properties of the system (e.g., total energy,
momentum, etc.) and an ab initio energy gradient is calculated every &t
to propagate the trajectory. &t is usually sub-femtosecond and thus the
configurations of consecutive steps are geometrically very close [66].
Therefore, if IMRR could estimate an energy gradient better represent-
ing the target than the energy gradient from the previous step does, one
can propose an integer multiple n (e.g., n = 2,3,4,...) such that for n
steps, the trajectory is propagated with the ab initio energy gradient only
once and the rest of the (n —1) steps are propagated with IMRR energy
gradients. In such applications, the inputs of IMRR could fall into two
categories: the “history”, those (h) inputs that are the previous h steps of
the same trajectory, and the “library”, those (K—h) inputs that are
geometrically close to the target from previous trajectories. The moti-
vation is to have IMRR build upon the “history” with information from
the “library” to effectively reduce the number of ab initio calculations (i.
e., n = 2 will make the simulation almost twice as fast).

The error of IMRR with various values of h are provided in Fig. 8. The
targets of these IMRR are from an AIMD trajectory of the HBr" + CO,
reaction (~4000 targets), and (15—h) inputs of t, = 0.15 Avare
selected from the library of 4000 trajectories.

The results show that including just one or two ‘“history” can
dramatically decrease the error of IMRR -for example, the error of IMRR
with 2 “history” 4- 13 “library” (of a t,,; of 0.15 A) is on the same level as
the error of IMRR with 15 “library” that are geometrically much closer to
the target(i.e., t,y = 0.01 A, see Fig. 3). It is also important to note that
the error of IMRR does not further decrease monotonically with more
“history” which could be allotted to several factors. First, as more
“history” is included, inputs that are geometrically further and further
away from the target (i.e., larger t.,) are included at the cost of
excluding “library” of smaller t.,. Previous results (Fig. 3) have shown
that when the number of inputs is fixed, the error of IMRR increases with
respect to t.,. Second, “history” inputs may be nearly linearly dependent
over short periods of time where the momentum changes little. As the
IMRR linearly combines coordinates to determine the weights, having
more than two of these nearly linearly dependent inputs contributes
little. Nonetheless, it is important to point out that the inclusion of
“history” aligns well with the nature of the local interpolation of IMRR.

4.2. The risk of IMRR

The risk of IMRR is defined as the likelihood of the error of IMRR
being more than the level desired by the user or required to maintain a
stable trajectory vwhichever is smaller. Recall that the upper limit of the
error of IMRR is governed by the nature of the PES of the target (C; and
C, terms in Eq. 10) and the terms related to the relative position of the
inputs with respect to the target (R; and R, terms in Eq. 10) -IMRR does
not provide any information on C; or Cy, but once the weights of the
inputs are determined, the values of R; and Ry become available. The
theory of IMRR suggests that the upper bound of its error decreases
monotonically if the values of R; and R, decrease. Consider two
different qo: all else (the geometrical closeness of the inputs, number of
inputs, and hyperparameter) being equal, the one associated with
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Fig. 8. The error of IMRR vs the number of “history”, h.
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smaller R; and R, values is expected to have a smaller error of IMRR. To
verify, a series of IMRR with 23,000 targets uniformly sampling the
phase space and their corresponding R; +aR; values are summarized in
Fig. 9. The inputs of the IMRR are obtained from a library containing
4,000 AIMD trajectories and no “history” is included. This figure dem-
onstrates that R; +aR, is a reasonable measurement of the error of
IMRR, as its average value (bold green line) decrease as R; +aRz gets
smaller. Therefore, enforcing a small R; +aR, value on average de-
creases the risk of IMRR. It is important to note that since AIMD tra-
jectory envolves many steps of propagation of a chaotic system, it can be
thrown off by any single step with large energy gradient error [67].
Practically, this nature unfortunately means that the minimal IMRR
error, instead of its average, should be used to select a threshold value of
R1 +aR; for AIMD simulations. It is also of interest to note that given a
finite-size library and history, not every target can be guaranteed with
an IMRR that yields small enough R; + aRz. As a result, enforcing a
small R; +aR, could potentially result in many IMRRs being too risky to
use. Nonetheless, being able to assess the risk of the predicted energy
gradient of a ML method locally is valuable in precisely controling its
usage -only low-risk results from the ML method should be adapted for
the simulation. This feature is critical for the application of IMRR in
AIMD: With access to the risk on-the-fly, the trajectory is not obligated to
propagate with Z(qo) if it is deemed to be of high risk, but instead, calls
an ab initio calculation to evaluate its energy gradient and propagate the
trajectory. This feature also goes hand in hand with IMRR’s nature of
local interpolation -since the risk is local (i.e., related to the amount of
the information stored in the library that can be used for the target), the
decision of trusting IMRR or referring back to ab initio should only take
into account the local information.

4.3. The versatility of IMRR

By examining its performance on the HBr" + CO, system, IMRR has
been established so far to be a viable option to predict energy gradients
for AIMD simulations with small and tunable errors. The underlying
theory of IMRR does not directly speak to how different chemical sys-
tems of different size could impact its performance, thus we apply IMRR
to two different reaction systems, HoS + CH (same size, different
chemistry) and C4Hy + CH (different size and chemistry), to probe
IMRRvs versatility. Both of the reactions have been studied by our group
with AIMD and are of great importance to astrochemistry: the former
reaction is believed to form thioformaldehyde (H2CS) and its thiohy-
droxycarbene isomer (HCSH) in star-forming regions such as Sagittarius
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B2 [64], while the latter forms triplet pentadiynylidene (HCCCCCH) and
singlet ethynylcyclopropenylidene (c-CsHy) carbene and is a prototype
reaction to study the chemistry in extreme, hydrocarbon-rich outer
space [65].

To assess the performance of IMRR, the targets (qo) of the HoS + CH
and C4Hz + CH systems are selected unbiasedly in their respective phase
space, which are characterized by two CVs to distinguish key configu-
rations involved in the reaction (e.g., reactant, intermediates, transition
states, products). For the H,S + CH system, the two CVs are the S-C
distance and the root mean square of the three C-H distances. The
configurations of 1080 AIMD trajectories are binned into the CV space,
and 78 1 A x 1 A cells are populated (Fig. S3 in the Supporting Infor-
mation). These cells are determined to be relevant to the reaction and
one target is picked from each cell. Similar to the HBr" + CO, system,
configurations are generated by randomly displacing atom(s) of qo with
respect to different t,,, whose energy gradients are computed by
NWChem with B3LYP/aug-cc-pvdz level of theory. The configurations
and their energy gradients are the inputs of IMRR to estimate the energy
gradient of the targets. The procedure of the C4Hy + CH systems is
similar, except the two CVs are the largest C-C distance and the largest
H-H distance, rendering 73 1 A x 1 A cells (Fig. S4 in the Supporting
Information), and the energy gradients are computed with B3LYP/cc-
pvdz level of theory.

The performance of IMRR on the HyS + CH and C4H; + CH systems
is depicted in Fig. 10 and they closely resemble its performance on the
HBr' 4 CO, system: as more inputs becomes available and as those
inputs becomes geometrically closer to the target, the error of IMRR
decreases to a similar level. It is also of interest to note that the insta-
bility of IMRR displayed with a limited number of inputs that are
geometrically far from the target (i.e., large t.,,) is consistent in all three
tested systems. Surprisingly, the error of IMRR for both HBr* + CO5 and
H,S + CH system shows a local maximum with nine inputs (K = 9). This
value is exactly the number of degrees of freedom (DOF) of the system
(3 N-6 or 9). For the C4H; + CH systems, this local maximum appears at
19 inputs (K = 19), close to (or, if taking into the consideration that the
system is largely linear, exactly is) the number of DOF of the system. The
reason behind why the local maximum of the error of IMRR occurs at the
number of DOF of the system, and why it exists at all, remains unclear.
However, empirically, it provides a reliable guide for the minimal
number of inputs that IMRR should have access to when applied to
AIMD simulations. Overall, the consistent performance of IMRR on HBr™"
+ CO9, HoS + CH, and C4H> + CH systems demonstrate its ability as a
viable option to dramatically accelerate AIMD simulations of chemical
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Fig. 9. The sum R; +aR, may be used to estimate risk; the cumulative error of all IMRR predictions with R; +aR less than some threshold are reported above. Data
is gathered as described in the text with @ = 107!. The average error is shown as a bright green line with the standard deviation shown as a light green region.
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