
OPENNESS OF K-SEMISTABILITY FOR FANO VARIETIES

HAROLD BLUM, YUCHEN LIU, AND CHENYANG XU

Abstract. In this paper, we prove the openness of K-semistability in families of
log Fano pairs by showing that the stability threshold is a constructible function
on the fibers. We also prove that any special test configuration arises from a log
canonical place of a bounded complement and establish properties of any minimizer
of the stability threshold.
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1. Introduction

Throughout the paper, we work over an algebraically closed characteristic zero field.

K-stability was invented as an algebraic condition to characterize when a Fano
variety admits a Kähler-Einstein metric (see [Tia97, Don02]). In recent years, the
question of whether one can construct the moduli space parametrizing K-polystable
Q-Fano varieties with fixed numerical invariants, as well as establish nice properties
for it, has attracted significant interest. Previously, the construction of the moduli
space relied on the properties, especially the existence, of Kähler-Einstein metrics (see
e.g. [LWX19]). Nevertheless, using the valuative criterion developed in [Fuj19a,Li17],
a purely algebro-geometric approach has been dramatically advanced. See [BX19,
ABHLX20] for more background.
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This paper aims to settle one of the main steps of the construction. Namely, we
prove that in a Q-Gorenstein family (X,�) ! B of log Fano pairs over a normal
base, the locus B� ⇢ B parametrizing K-semistable fibers is a Zariski open set. This
is the last ingredient needed to conclude that the moduli space of K-polystable Q-Fano
varieties exists. See Theorem 1.3 for a more precise statement.

1.1. Main theorems. Before proving the openness result, we first establish the fol-
lowing property of the stability threshold as well as Tian’s ↵-invariant.

Theorem 1.1. If (X,�) ! B is a Q-Gorenstein family of log Fano pairs over a
normal base B, then the functions

B 3 b 7! min{↵(Xb,�b), 1} and B 3 b 7! min{�(Xb,�b), 1}
are constructible and lower semicontinuous.

Recall that the ↵-invariant of a log Fano pair (X,�) was introduced in [Tia87] and
the stability threshold (also known as the �-invariant) in [FO18]. It was shown in
[FO18, BJ20] that �(X,�) � 1 if and only if (X,�) is K-semistable, based on the
valuative criteria for K-semistability proved in [Fuj19a,Li17]. Therefore, we have the
following immediate corollary of Theorem 1.1.

Corollary 1.2. If (X,�) ! B is a Q-Gorenstein family of log Fano pairs over a
normal base B, then

B
� := {b 2 B | (Xb,�b) is K-semistable}

is a Zariski open subset of B.

Together with the main theorems in [Jia20,BX19,ABHLX20], we deduce

Theorem 1.3. The moduli functor XKss
V,n of K-semistable Q-Fano varieties of dimen-

sion n and volume V is an Artin stack of finite type over k and admits a separated
good moduli space XKss

V,n ! X
Kps
V,n , whose k-points parameterize K-polystable Q-Fano

varieties of dimension n and volume V .

In fact, the boundedness of XKss
V,n was settled in [Jia20], which heavily relied on

results in [Bir19]. Corollary 1.2 then implies that the moduli functor XKss
V,n is an Artin

stack of finite type over k. With the latter step completed, it follows from the main
theorems in [BX19, ABHLX20] that XKss

V,n admits the separated good moduli space

XKss
V,n ! X

Kps
V,n .

As a consequence of Corollary 1.2 and Theorem 1.3, we show that K-stability (resp.
K-polystability) is an open (resp. constructible) condition for Q-Gorenstein families
of log Fano pairs; see Theorem 4.5.

Remark 1.4. An analogue of Theorem 1.1 in a local setting was proved in [Xu20]
for the normalized volume function defined in [Li18]. Corollary 1.2 and Theorem 1.3
can also be obtained independently as a consequence of the local result via the cone
construction.
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1.2. Outline of the proof. Our strategy of proving Theorem 1.1 is approximating
the infimum

�(Xb,�b) = inf
E

AXb,�b
(E)

S(E)
for all divisors E over Xb

by the values on lc places E of bounded complements. We then deduce constructibility
by using a theorem on invariance of log plurigenera established in [HMX13, Theorem
1.8].

More precisely, the proof of Theorem 1.1 relies on combining two techniques. The
first one is the special degeneration theory initiated in [LX14] and later developed in
[LX20, Fuj19a, Fuj19b, BX19] etc. Roughly speaking, to compute �(X,�) for a log
Fano pair (X,�), instead of testing general divisorial valuations, we can focus on a
special class of valuations, which are those that arise from a special degeneration.
It was known previously that it su�ces to consider such degenerations for studying
K-stability. Our new strategy, which is the second ingredient in this paper, is to use
global complements to study them.

The concept of a complement was introduced in [Sho92]. Since then it has been a
particularly e↵ective tool in birational geometry for understanding Fano varieties. In
particular, a profound theorem on the existence of bounded global complements for
log Fano pairs was proved by [Bir19]. By using the techniques from [Fuj19b, LX20],
one can show that the valuation computing min{�, 1} can be approximated by special
divisors (see [BLZ19, ZZ19]). By applying Birkar’s result, we deduce that all these
special divisors are lc places of a bounded family of complements.

The above discussion can be easily extended to a Q-Gorenstein family of log Fano
pairs (X,�) ! B, and finally we can use [HMX13] to conclude that

b 7! AXb,�b
(Eb)

S(Eb)

is a constant function if the special divisor Eb over (Xb,�b) varies in a family giving
fiberwise log resolutions.

The arguments in Section 1-4 are of a global nature. In the appendix, we will
develop this strategy further using local techniques.

1.3. Appendix. In Appendix A, we will use complements to further study the K-
stability of a log Fano pair (X,�). The results proved in Appendix A are not needed
elsewhere in this paper. However, we expect it will be useful for future research.

We first prove the following theorem which gives a characterization of a valuation
v computing �(X,�) when �(X,�)  1.

Theorem 1.5 (=Theorem A.7). Let n be a positive integer and I ⇢ Q a finite set.
Then there exists a positive integer N = N(n, I) satisfying the following:

Let (X,�) be an n-dimensional log Fano pair such that coe�cients of � belong to
I. If �(X,�)  1, and v is a valuation computing �(X,�), then v is quasi-monomial
and an lc place of an N-complement.
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While part of Theorem 1.5 can be proved by a global method similar to our proof
of Theorem 1.1 (see Proposition 3.8 and Theorem 4.6), the statement in the full
generality has to be established in a somewhat di↵erent way. For this we have to
invoke the cone construction and use some arguments from [Xu20]. The technique of
using the cone construction to study the K-stability of a log Fano pair was initiated
in [Li17] and played a key role in proving results in [LX20,LWX21,BX19].

We also show the following theorem which gives a characterization of weakly special
test configurations. It is obtained by combining arguments in [LWX21] and [Xu20],
which uses the existence of bounded local complements.

Theorem 1.6 (=Theorem A.2). Let n be a positive integer and I ⇢ Q a finite set.
Then there exists a positive integer N = N(n, I) satisfying the following:

If (X,�) is an n-dimensional log Fano pair such that coe�cients of � belong to
I, then a finite set of Z-valued divisorial valuations {v1, · · · , vd} ⇢ ValX is a weakly
special collection (see Definition A.1) if and only if there exists an N-complement �+

of (X,�) such that each vi is an lc place of (X,�+).

By [LX14], to study K-(semi,poly)stability, we can concentrate on the class of
weakly special test configurations. Theorem 1.6 says that this class of test config-
urations comes from a somewhat ‘bounded’ amount of information.

Postscript remarks. Since the first version of this article appeared on the arXiv,
there has been works generalizing and strengthening our results. We list a few related
works below.

(1) In [LXZ21, Theorem 1.1], it is shown that any valuation computing �(X,�) <
n+1
n for an n-dimensional log Fano pair (X,�) has a finitely generated asso-

ciated graded ring. Theorem 1.5 is a crucial step in proving this result. This
result together with [BHLLX21, XZ20] implies that the the K-moduli space
X

Kps
V,n is a projective scheme.

(2) In [LXZ21, Corollary 3.7], it is shown in the setting of Theorem 1.1 that
B 3 b 7! min{�(Xb,�b),

n+1
n } is constructible and lower semicontinuous, where

n is the relative dimension of X/B.
(3) Zhuang found a characterization of special prime divisors over a log Fano

pair, that are, prime divisors induced by special test configurations in [Xu21,
Theorem 4.12] as a strengthening of Theorem 1.6.

Acknowledgement: We thank Davesh Maulik, Chuyu Zhou, and Ziquan Zhuang
for helpful discussions. We also would like to thank the anonymous referees for many
useful comments. Much of the work on this paper was completed while the authors
enjoyed the hospitality of the MSRI, which is gratefully acknowledged.

2. Preliminaries

2.1. Conventions. We will follow standard terminologies in [KM98,Kol13]. A (nor-
mal) pair (X,�) is composed of a normal variety X and an e↵ective Q-divisor � on
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X such that KX +� is Q-Cartier. See [KM98, 2.34] for the definitions of klt, plt, and
lc pairs.

A pair (X,�) is log Fano if X is projective, (X,�) is klt, and �KX�� is ample. A
variety X is Q-Fano if (X, 0) is log Fano. More generally, a variety X is of Fano type
if it is projective and there exists a Q-divisor � such that (X,�) is klt and �KX ��
is big and nef.

For a Q-divisor L, we write |L|Q for the set e↵ective Q-divisors which are Q-linearly
equivalent to L. For a subset I ✓ [0, 1], we set

I+ = {0}
[n

j 2 [0, 1]
��� j =

lX

p=1

ip for some i1, ..., il 2 I

o

and

D(I) =
n
m� 1 + a

m

��� a 2 I+ and m 2 N
 
.

2.2. Families of pairs.

Definition 2.1. A Q-Gorenstein family of (normal) pairs f : (X,�) ! B over a
normal base is the data of a flat surjective morphism of varieties f : X ! B and a
Q-divisor � on X satisfying

(1) B is normal and f has normal, connected fibers (hence, X is normal as well),
(2) Supp(�) does not contain a fiber, and
(3) KX/B +� is Q-Cartier.

We say (X,�) ! B is a Q-Gorenstein family of log Fano pairs if in addition (Xb,�b)
is log Fano for all b 2 B. Here, �b is the cycle pull-back of � to the fiber Xb. See
[Kol20, Section 4] for more background.

In birational geometry, we should usually allow the fibers to be slc pairs. However,
in this note, we are only interested in families whose fibers are of Fano type. Thus,
we can assume all fibers are normal.

Definition 2.2. Let f : (X,�) ! B be a Q-Gorenstein family of pairs with B

smooth. A morphism g : Y ! X is a fiberwise log resolution of (X,�) ! B if Y
is smooth over B, E :=

P
i2I Ei = Exc(g) + Supp(g�1

⇤
D) is an snc divisor, and each

stratum of E is smooth with irreducible fibers over B. (Here, the strata of E are the
irreducible components of EJ = \j2JEj, for some subset J ✓ I.)

If (X,�) ! B is aQ-Gorenstein family of pairs, then we can always find a nonempty
open set U ⇢ B and a finite étale map U

0 ! U such that (XU 0 ,�U 0) ! U
0 admits a

fiberwise log resolution.

2.3. Valuations. Let X be a variety. A valuation on X will mean a valuation v :
K(X)⇥ ! R that is trivial on k and has center on X. Recall, v has center on X if
there exists a point ⇠ 2 X such that v � 0 on OX,⇠ and > 0 on m⇠ ⇢ OX,⇠. Since X is
assumed to be separated, such a point ⇠ is unique, and we say v has center cX(v) := ⇠.
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If X is proper, then the valuative criterion for properness implies such a center always
exists uniquely. By convention, we set v(0) = +1.

Following [JM12, BdFFU15], we write ValX for the set of valuations on X and
Val⇤X for the set of non-trivial ones. We endow ValX with the topology of pointwise
convergence.

To any valuation v 2 ValX and p 2 N, there is an associated valuation ideal ap(v).
For an a�ne open subset U ✓ X, ap(v)(U) = {f 2 OX(U) | v(f) � p} if cX(v) 2 U

and ap(v)(U) = OX(U) otherwise.
For an ideal a ✓ OX and v 2 ValX , we set

v(a) := min{v(f) | f 2 a · OX,cX(v)} 2 [0,+1].

We can also make sense of v(s) when L is a line bundle and s 2 H
0(X,L). After triv-

ializing L at cX(v), we set v(s) equal to the value of the local function corresponding
to s under this trivialization; this is independent of the choice of trivialization.

Similarly, if D is a Cartier divisor, we set v(D) := v(f), where f is a local equation
for D at cX(v). If D is only Q-Cartier, we set v(D) := m

�1
v(mD), where m is a

positive integer so that mD is Cartier.

2.3.1. Divisorial valuations. Let µ : Y ! X be a proper birational morphism of
varieties with Y normal. A prime divisor E ⇢ Y (called a prime divisor over X)
induces a valuation ordE : K(X)⇥ ! Z given by order of vanishing along E. A
valuation of the form c · ordE, where c 2 Q>0, is called divisorial. We we write
DivValX ⇢ ValX for the set of such valuations.

2.3.2. Quasi-monomial valuations. Let µ : Y ! X be a proper birational morphism
with Y regular. Fix a not necessarily closed point ⌘ 2 Y and y1, . . . , yr a regular
system of parameters for OY,⌘. Given ↵ = (↵1, . . . , ↵r) 2 Rr

�0, we define a valuation

v↵ as follows: For f 2 OY,⌘, we can write f in dOY,⌘ ' k(⌘)[[y1, . . . , yr]] as
P

�2Nr c�y
�,

where c� 2 k(⌘) and set

v↵(f) := min{h↵, �i | c� 6= 0}. (2.1)

Note that v↵ is determined by the Newton polygon of
P

�2Nr c�y
�.

A valuation of the form v↵ is called quasi-monomial. If ↵ 2 Qr
�0, then v↵ is a

divisorial valuation. Indeed, after a sequence of smooth blowups Y
0 ! Y that are

toroidal with respect to the coordinates y1, . . . , yr, we may find a prime divisor F ⇢ Y
0

and c 2 Q>0 so that v↵ = c ordF .
Let E = E1 + · · ·+ Ed be a reduced snc divisor on Y . Fix a subset J ✓ {1, . . . , d}

and an irreducible component Z ✓ \i2JEi. Write ⌘ 2 Y for the generic point of Z
and choose a regular system of parameters (yi)i2J at ⌘ such that each yi locally defines
Ei at ⌘. We write QM⌘(Y,E) ✓ ValX for the set of quasi-monomial valuations that
can be described at ⌘ with respect to (yi)i2J and note that QM⌘(Y,E) ' Rr

�0. We
set QM(Y,E) := [⌘QM⌘(Y,E), which has the structure of a simplicial cone complex,
and QM(Y,E)⇤ for the non-trivial valuations in QM(Y,E).
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2.3.3. Log discrepancy. For a pair (X,�), we write

AX,� : Val⇤X ! R [ {+1}

for the log discrepancy function with respect to (X,�) as in [JM12,BdFFU15] (see
[Blu18] for the case when � 6= 0). The function AX,� is homogeneous of degree 1 and
lower semicontinous.

A pair (X,�) is klt (resp., lc) if and only if AX,�(v) > 0 (resp., � 0) for all
v 2 Val⇤X . If D is an e↵ective Q-Cartier divisor, then AX,�+D(v) = AX,�(v) � v(D)
for all v 2 ValX .

When µ : Y ! X is a proper birational morphism with Y normal and E ⇢ Y a
prime divisor,

AX,�(ordE) = 1 + coe↵E (KY � µ
⇤(KX +�))

and we will often write AX,�(E) for this value. If µ : Y ! X is a log resolution of
(X,�) and E := Exc(µ)+Supp(µ�1

⇤
�), then AX,� is linear on the cones in QM(Y,E).

Additionally, if we write �Y for the Q-divisor satisfying KY + �Y = µ
⇤(KX + �),

then AX,� = AY,�Y .
The following result is well known.

Lemma 2.3. Keep the above notation. If (X,�) is lc, then

QM(Y,�=1
Y ) = {v 2 ValX |AX,�(v) = 0},

where �=1
Y is the sum of the prime divisors in �Y with coe�cient one. In particular,

the set does not depend on Y .

Proof. Set E := Exc(µ) + Supp(µ�1
⇤
�) and observe that AX,� = AY,�Y is zero on an

extremal ray of a cone in QM(Y,E) if and only if the corresponding prime divisor on
Y has coe�cient 1 in �Y . Since AX,� is linear on the cones in QM(Y,E), this implies
QM(Y,�=1

Y ) is the locus of QM(Y,E) where AX,� is zero. By [Blu18, Prop 3.2.5], it
is also the locus of ValX where AX,� is zero. ⇤

2.4. Invariants associated to log Fano pairs. Let (X,�) be a log Fano pair and
r a positive integer such that L := �r(KX +�) is a Cartier divisor. The section ring
of L is given by

R(X,L) := R =
M

m2N

Rm =
M

m2N

H
0(X,OX(mL)).

2.4.1. Filtrations induced by valuations and associated invariants. For v 2 ValX and
� 2 R>0, we set

F�
v Rm := {s 2 Rm | v(s) � �}.

If v = ordE, where E is a divisor over X arising on a proper birational model µ : Y !
X, then

F�
v Rm ' H

0 (Y,OY (mµ
⇤
L� d�Ee)) .
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We consider the following invariants

T (v) := sup
m2Z>0

Tmr(v), where Tmr(v) :=
1

mr
sup{� | F�m

Rm 6= 0}

and

S(v) := lim
m!1

Smr(v), where Smr(v) :=

Z
1

0

dim(F�m
Rm)

mr dimRm
d�.

When the choice of the log Fano pair (X,�) is not clear from context, we write TX,�(v)
and SX,�(v) for these values.

Both invariants can be written in terms of the vanishing of v along classes of anti-
canonical divisors. Specifically, for m divisible by r,

Tm = max{v( 1
mD) |D 2 | �m(KX +�)|}.

and
Sm(v) = max{v(D) |D 2 | �KX ��|Q is m-basis type }.

Here, following [FO18, Def. 0.1], a Q-divisor D 2 | �KX ��|Q is called m-basis type
if there exists a basis {s1, . . . , sNm} of H0 (X,OX(�m(KX +�))) such that

D = 1
mNm

({s1 = 0}+ · · ·+ {sNm = 0}) .
The functions S and T are lower semicontinuous on ValX [BJ20, Prop 3.13] and

homogeneous of degree 1 [BJ20, §3.2]. When E is a divisor over X arising on a proper
birational model µ : Y ! X, then

T (ordE) = sup{t 2 R>0 | � µ
⇤(KX +�)� tE is pseudoe↵ective }

and

S(ordE) :=
1

(�KX ��)n

Z
1

0

vol(�µ
⇤(KX +�)� tE) dt

We will often write T (E) and S(E) for these values. See [BJ20, Sect. 3] for further
details.

2.4.2. Behaviour of S and T on a simplicial cone. Let µ : Y ! X be a proper
birational morphism with Y regular and E :=

Pd
i=1 Ei a reduced snc divisor.

Proposition 2.4. The functions S and T are continuous on QM(Y,E).

When X is smooth, the result is a special case of [BJ18, Prop 5.6]. We provide a
proof that works for all log Fano pairs.

Proof. We will only prove the continuity statement for S, since the proof for T is
similar. To proceed, we first show that for each positive integer m divisible by r, the
function Sm is continuous on QM(Y,E).

For a Q-Cartier divisor D on X, write 'D : QM(Y,E) ! R for the continuous
function sending v 7! v(D). With this notation, we have Sm = supD 'D, where the
sup runs through all m-basis type divisors. Since any m-basis type divisor D lies in

1
mNm

| �mNm(KX +�)|, Lemma 2.5 implies the set of functions {'D |D is m-basis type}
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is finite. Therefore, Sm : QM(Y,E) ! R is the maximum of finitely many continuous
functions and itself continuous.

We proceed to show S is continuous on QM(Y,E). Since S is lower semicontinuous
on ValX [BJ20, Prop. 3.13], it su�ces to show the upper semicontinuity. Pick any
t 2 R>0. We have to show U := {v 2 QM(Y,E) |S(v) < t} is open.

Pick any w 2 U . We may choose " > 0 so that S(w) + "AX,�(w) < t. By the fact
that Sm converges pointwise to S and [BL18, Thm. 5.13], which is a partial uniform
convergence result, we may choose m divisible by r so that Sm(w) + "AX,�(w) < t

and S  Sm + "AX,� on QM(Y,E). Since Sm and AX,� are continuous on QM(Y,E),
there exists an open neighborhood w 2 W ⇢ QM(Y,E) so that Sm + "AX,� < t on
W . Then W ✓ U , which completes the proof. ⇤

We must prove the following lemma used in the above proposition. For a Q-Cartier
divisor D on X, write 'D : QM(Y,E) ! R for the function sending v 7! v(D).

Lemma 2.5. If H is a Cartier divisor on X, then the set of functions {'D |D 2 |H|}
is finite.

Proof. It su�ces to prove the statement for the restriction of 'D to a fixed simplicial
cone in QM(Y,E). Choose any irreducible component Z ✓ \i2JEi. Write ⌘ 2 Y for
the generic point of Z, set r := |J |, and fix a regular system of parameters (yi)i2J at
⌘ 2 Y such that yi locally defines Ei.

Set B := P(H0(X,OX(H))⇤) and write H for the universal divisor on X ⇥ B

parameterizing elements of |H|. To prove the lemma, we will write B = [Bi as a
finite union of constructible subsets so that the restriction of 'Hb

to QM⌘(Y,E) is
independent of b 2 Bi.

Choose a nonempty a�ne subset U ✓ B and a function f 2 OY,⌘ ⌦k O(U) that
defines the Cartier divisor H|Y⇥B in a neighborhood of ⌘⇥U . We can write the image

of f in dOY,⌘ ⌦ O(U) as
P

�2Nr c�y
�, where each c� 2 k(⌘) ⌦ O(U) and consider the

associated Newton polygon N := conv{� +Rr
�0 | c� 6= 0}. Note that N is determined

by a finite collection of non-zero coe�cients c�(1) , . . . , c�(m) . Hence, if we let B1 ⇢ U

denote the open set where c
(i)
� 6= 0 for all i = 1, . . . ,m, then the Newton polygon of

the image of f in dOY,⌘ ⌦ k(b) agrees with N for all b 2 B1. Hence, 'Hb
is independent

of b 2 B1. Repeating this argument on the complement eventually yields such a
decomposition. ⇤

2.4.3. K-stability. The definition of K-stability was originally defined in terms of de-
generations [Tia97,Don02]. For this paper, we use the valuative characterization of
K-stability invented in [Fuj19a,Li17], which suits our techniques better.

Let E be a prime divisor over a log Fano pair (X,�) arising on a proper normal
model µ : Y ! X. Following [Fuj19a], we set

�X,�(E) := AX,�(E)(�KX ��)n �
Z

1

0

vol(�µ
⇤(KX ��)� tE) dt.
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Definition–Theorem 2.6. A log Fano pair (X,�) is K-semistable (resp., K-stable)
if and only if �X,�(E) � 0 (resp., > 0) for all divisors E over X.

The equivalence of this definition with the definition in [Tia97, Don02, LX14] is
addressed in [Fuj19a,Li17] (and [BX19] for part of the K-stable case).

2.4.4. Thresholds. Let (X,�) be a log Fano pair and r a positive integer so that
r(KX +�) is Cartier. We will consider two thresholds that measure the singularities
of anticanonical divisors.

First is an invariant defined in [FO18]. For a positive integer m divisible by r, we
set

�m(X,�) := min{lct(X,�;D) |D 2 | �KX ��|Q is m-basis type}.
The stability threshold of (X,�) is defined by �(X,�) := lim supm!1

�mr(X,�). As
shown in [BJ20], the limsup in the definition of the stability threshold is in fact a limit
and

�(X,�) = inf
E

AX,�(E)

S(E)
= inf

v

AX,�(v)

S(v)
, (2.2)

where the first infimum runs through all prime divisors E over X and the sec-
ond through v 2 Val⇤X with AX,�(v) < +1. Therefore, the valuative criterion in
Definition-Theorem 2.6 implies (X,�) is K-semistable if and only if �(X,�) � 1.

Next is Tian’s ↵-invariant (also known as the global log canonical threshold) defined
by

↵(X,�) := inf{lct(X,�;D) | D 2 | �KX ��|Q}.
Similar to the stability threshold, the invariant may be expressed in terms of valuations

↵(X,�) := inf
E

AX,�(E)

T (E)
= inf

v

AX,�(v)

T (v)
; (2.3)

see [Amb16,BJ20].
We say that a valuation computes the stability threshold (resp., global log canonical

threshold) if it achieves the infimum in (2.2) (resp., (2.3)).

2.5. Complements. The theory of complements was introduced by Shokurov in his
work on threefold log flips [Sho92]. The boundedness of complements proved in [Bir19]
(also see its generalization in [HLS19]) plays a key role in this paper.

Definition 2.7 (Global complements). Let (X,�) be a projective lc pair. A Q-
complement of (X,�) is a Q-divisor �+ on X such that �+ � �, (X,�+) is lc,
and KX + �+ ⇠Q 0. An N-complement of (X,�) is a Q-complement �+ satisfying
N(KX +�+) ⇠ 0.

The latter definition di↵ers from the terminology in [Bir19], which is weaker. An
N -complement �+ of (X,�) as defined above agrees with the definition in loc. cit.
of an N -complement �+ of (X,�) satisfying �+ � �, which is sometimes called a
monotonic N -complement in the literature.
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Clearly, if �+ is an N -complement, then �+�� 2 |�KX ��|Q. Additionally, if r
is a positive integer so that r(KX+�) is Cartier, then rN(�+��) 2 |�rN(KX+�)|.

One crucial input in Theorem 1.1 is the following statement, which follows from the
deep result of [Bir19, Theorem 1.7].

Theorem 2.8 ([Bir19, Theorem 1.7]). Let n be a natural number and I ⇢ Q \ [0, 1]
a finite set. There is a positive number N := N(n, I) depending only on n and I

satisfying the following:
Assume (X,�) is an n-dimensional lc pair such that X is of Fano type and the

coe�cients of � belong to D(I). If (X,�) admits a Q-complement, then it admits an
N-complement.

Proof. Since �KX � � is not nef, we cannot directly apply [Bir19, Thm 1.7]. But,
there is an an easy reduction step (see e.g. [Bir19, (6.1)]).

Since X is Fano type and �KX � � is linearly equivalent to the e↵ective divisor
�+��, we can run an MMP for �KX�� to get a birational model h : X 99K X

0 such
that �KX0 � h⇤� is nef. Since (X,�) has a Q-complement, so does (X 0

, h⇤�). Now,
(X 0

, h⇤�) has an N -complement by [Bir19, Theorem 1.7]. Therefore, [Bir19, (6.1)]
implies (X,�) admits an N -complement as well. ⇤

We note that one can find more general statements on the existence of bounded
complements in [HLS19, Thm 1.13].

3. Approximation and boundedness

The idea of approximating a valuation by a sequence of divisors coming from a
special type of birational morphisms was developed in [LX20,Fuj19b], modeled on the
arguments in [LX14]. One key observation in this paper is that we can combine the
boundedness of complements with the latter approximation process.

3.1. Approximation of thresholds and Q-complements. We will proceed to dis-
cuss an important class of valuations over a log Fano pair and then describe their
relation to the stability and global log canonical thresholds.

3.1.1. Lc places of Q-complements.

Definition 3.1. Let (X,�) be a log Fano pair. We say v 2 ValX is an lc place of
a Q-complement (resp., N -complement) if there exists a Q-complement (resp., N -
complement) �+ of (X,�) such that AX,�+(v) = 0. When v = ordE for some divisor
E over X, we simply say E is an lc place of a Q-complement (resp., N -complement).

In Appendix A, we will see that lc places of a Q-complements are closely related to
weakly special test configurations with irreducible central fiber.

We state the following elementary lemma concerning divisorial valuations that are
the lc place of a Q-complement.
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Lemma 3.2. Let (X,�) be a log Fano pair and E a prime divisor over X. If E is an
lc place of a Q-complement, then there exists a proper birational morphism of normal
varieties µ : Y ! X satisfying:

(1) E appears as a divisor on Y with Exc(µ) ✓ E,
(2) (Y, µ�1

⇤
�+ (1� a)E) is lc and admits a Q-complement, where a := coe↵E(�)

if E is a prime divisor on X and zero otherwise, and
(3) Y is Fano type.

Proof. Choose a Q-complement �+ of (X,�) such that AX,�+(E) = 0 and set

D := �+ �� ⇠Q �(KX +�).

Fix 0 < c < 1 so that 0 < AX,�+cD(E) < 1.
By [BCHM10], there exists a proper birational morphism of normal varieties µ :

Y ! X such that E appears as a divisor on Y with Exc(µ) ✓ E such that �E is
Q-Cartier and µ-ample. Write � for the Q-divisor on Y so that

KY + � = µ
⇤(KX +�+).

Since (Y,�) is lc and � � µ
�1
⇤
�+(1�a)E, (2) holds. Next, set �0 = �� (1�c)µ⇤(D).

Note that (Y,�0) is klt, since (X,�+ cD) is klt. Additionally,

�KY � �0 ⇠Q �(1� c)µ⇤(KX +�)

is big and nef. Therefore, Y is of Fano type. ⇤

3.1.2. Stability threshold. We state the following characterization of the stability thresh-
old.

Proposition 3.3. Let (X,�) be a log Fano pair. If �(X,�)  1, then

�(X,�) = inf
E

AX,�(E)

S(E)

where the infimum runs through prime divisors E over X such that E is an lc place
of a Q-complement.

The result is proved in [BLZ19] in the case when �(X,�) < 1. Using an argument
from [ZZ19], the �(X,�) = 1 case can be deduced from the < 1 case.

Proof. We first treat the case when �(X,�) < 1 which is embedded in the proof of
[BLZ19, Theorem 4.1]. For the convenience of the reader, we recall the argument in
loc. cit.

By Equation 2.2, the inequality �(X,�)  infE
AX,�(E)
S(E) holds. For the reverse

inequality, pick any " > 0. By the fact that � is a limit and [BJ20, Cor. 3.6], we may
choose m so that

�m(X,�) < min{1, (1 + ")�(X,�)}
and Sm(v)  (1 + ")S(v) for all v 2 Val⇤X with finite log discrepancy. Now, fix an
m-basis type divisor B such that �m(X,�) = lct(X,�;B) and a divisor E over X
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computing the lct (i.e. AX,�(E)
ordE(B) = lct(X,�;B)). Note that ordE(B)  Sm(E) 

(1 + ")S(E). Therefore,

AX,�(E)

S(E)
 (1 + ")

AX,�(E)

ordE(B)
= (1 + ")�m(X,�)  (1 + ")2�(X,�).

We will show E is the lc place of a Q-complement. To proceed, note that (X,�+
�mB) is lc and AX,�+�mB(E) = 0. By [KM98, Lem. 5.17.2], we can choose a di-
visor H 2 | � KX � �|Q so that (X,� + �mB + (1 � �m)H) remains lc. Hence,
�+ := � + �mB + (1� �m)H is a Q-complement of (X,�) and AX,�+(E) = 0. There-
fore, sending " ! 0 shows that the reverse inequality holds.

We now assume �(X,�) = 1.

Claim: For any " 2 (0, ↵(X,�)), there existsD 2 |�KX��|Q such that (X,�+"D)
is klt and �(X,�+ "D) < 1.

The claim follows immediately from [ZZ19, Theorem 1.2]. For the convenience of the
reader, we recall the argument in loc. cit. Pick any " 2 (0, ↵(X,�)), then (X,�+"D)
is klt for any D 2 | �KX ��|Q. Since �(X,�) = 1, we may choose a prime divisor

E over X such that AX,�(E)
SX,�(E) < 1 + "

3n , where n := dim(X). Using the inequality

TX,�(E) � (1 + 1
n)SX,�(E) [Fuj19a, Prop. 2.1] , we may choose D 2 | � KX � �|Q

such that ordE(D) � (1 + 1
2n)SX,�(E). Observe that

AX,�+"D(E) = AX,�(E)� " · ordE(D) and SX,�+"D(E) = (1� ")SX,�(E),

where the second equation is [BJ20, Lem. 3.7.i]. Therefore,

�(X,�+ "D)  AX,�+"D(E)

SX,�+"D(E)
=

1

1� "

✓
AX,�(E)

SX,�(E)
� " · ordE(D)

SX,�(E)

◆
.

Since AX,�(E)
SX,�(E) �"· ordE(D)

SX,�(E)  1+ "
3n�"

�
1 + 1

2n

�
< 1�", we can conclude �(X,�+"D) <

1.

We now return to the proof of the proposition. By Equation 2.2, the inequality
�(X,�)  infE

AX,�(E)
S(E) holds. For the reverse inequality, fix a rational number " 2

(0, ↵(X,�)). By the above claim, there exists D 2 | �KX ��|Q such that �(X,�+

"D) < 1. Using the � < 1 case, we may find a divisor E over X such that AX,�+"D(E)
SX,�+"D(E) <

1 and E is the lc place of a Q-complement �+ of (X,�+ "D). Note that �+ is also
a Q-complement of (X,�), since by definition �+ � �+ "D � �.

We now estimate AX,�(E)
SX,�(E) . Using that ↵(X,�)  AX,�(E)

TX,�(E) by (2.3), we see ordE(D) 
TX,�(E)  AX,�(E)

↵(X,�) . Therefore,

1 >
AX,�+"D(E)

SX,�+"D(E)
=

AX,�(E)� "ordE(D)

(1� ")(SX,�(E))
�
✓
1� "/↵(X,�)

1� "

◆
AX,�(E)

SX,�(E)
.

Sending " ! 0 completes the proof. ⇤
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3.1.3. Global log canonical threshold. We now prove an analog of Proposition 3.3 for
the global log canonical threshold. The statement follows almost immediately from
definitions.

Proposition 3.4. Let (X,�) be a log Fano pair. If ↵(X,�) < 1, then

↵(X,�) = inf
E

AX,�(E)

T (E)

where the infimum runs through divisors E over X such that E is an lc place of
Q-complement.

By applying a deeper result [Bir21, Thm. 1.5], it follows that the above infimum is
a minimum. Though, Proposition 3.4 will be su�cient for proving that min{1, ↵} is
constructible.

Proof. By Equation 2.3, ↵(X,�)  infE
AX,�(E)
T (E) where the infimum runs through lc

places of Q-complements. For the reverse inequality, pick any " 2 (0, 1 � ↵(X,�)).
We may choose D 2 | �KX ��|Q such that

c := lct(X,�;D)  ↵(X,�) + ",

and a divisor E over X computing lct(X,�;D). Note that c < 1 by our choices of ".
Observe that (X,�+cD) is lc and AX,�+cD(E) = AX,�(E)�c ·ordE(D) = 0. Since

�KX �� is ample, we may find H 2 | �KX ��|Q so that (X,�+ cD + (1� c)H)
remains lc [KM98, Lem. 5.17.2]. Hence, �+ := �+ cD+(1� c)H is a Q-complement
of (X,�) with AX,�+(E) = 0.

Now, observe that AX,�(E)
T (E)  lct(X,�;D)  ↵(X,�) + ", since ordE(D)  T (E).

Therefore, sending " ! 0 completes the proof. ⇤

3.2. Boundedness. Using the boundedness of complements, we will show that lc
places of Q-complements are in fact lc places of N -complements.

Theorem 3.5. Let n be a natural number and I ✓ Q a finite set. There is a positive
integer N := N(n, I) satisfying the following:

Assume (X,�) is an n-dimensional log Fano pair such that the coe�cients of �
belong to D(I). If E is a divisor over X that is the lc place of a Q-complement, then
E is an lc place of an N-complement.

The statement is a consequence of the boundedness of complements in [Bir19].

Proof. Let E be a divisor over a log Fano pair (X,�) such that E is an lc place of a
Q-complement. Applying Lemma 3.2 gives a proper birational morphism µ : Y ! X

satisfying conditions (1)-(3) of the lemma.
Since the latter conditions are satisfied, we may apply Theorem 2.8 to find an integer

N := N(n, I), depending only on n and I, so that (Y, µ�1
⇤
� + (1 � a)E) admits a

N -complement �Y .
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Hence, N(KY + �Y ) ⇠ 0, (Y,�Y ) is lc, and �Y has coe�cient 1 along E. If we set
� := µ⇤(�Y ), then

KY + �Y = µ
⇤(KX + �).

holds. This implies � is a N -complement of (X,�) and AX,�(E) = 0. ⇤
The next two statements follow immediately from combining Theorem 3.5 with

Propositions 3.3 and 3.4.

Corollary 3.6. Let n be a natural number and I ✓ Q a finite set. There is a positive
integer N := N(n, I) satisfying the following:

If (X,�) is an n-dimensional log Fano pair such that the coe�cients of � belong
to D(I) and �(X,�)  1, then

�(X,�) = inf
E

AX,�(E)

S(E)
,

where the infimum runs through divisors over X that are lc places of an N-complement.

Corollary 3.7. Let n be a natural number and I ✓ Q a finite set. There is a positive
integer N := N(n, I) satisfying the following:

If (X,�) is an n-dimensional log Fano pair such that the coe�cients of � belong
to D(I) and ↵(X,�) < 1, then

↵(X,�) = inf
E

AX,�(E)

T (E)
,

where the infimum runs through divisors over X that are lc places of an N-complement.

3.3. Approximating valuations computing the stability threshold. In this sec-
tion, we show that if a valuation computes � < 1, then it is a limit of divisorial valu-
ations that are lc places of bounded complements. The result will not be used in the
proof of Theorem 1.1.

We will obtain stronger results via passing to the cone to also cover the case when
�(X,�) = 1. Nevertheless, Proposition 3.8 is proved only using global arguments.

Proposition 3.8. Let n be a natural number and I ✓ Q a finite set. There is a
positive integer N := N(n, I) satisfying the following:

Assume (X,�) is an n-dimensional log Fano pair such that the coe�cients of �
belong to D(I) and �(X,�) < 1. If v⇤ 2 Val=1

X computes �(X,�), then there exists a
sequence of divisorial valuations (vk)k in Val=1

X converging to v
⇤ such that each vk is

the lc place of a N-complement and limk!1

AX,�(vk)
S(vk)

= �(X,�).

Here, Val=1
X denotes the set {v 2 ValX |AX,�(v) = 1}. Before proving the propo-

sition, we need the following lemma, which may be viewed as a global analogue of
[LX20, Lemma 3.8].

Lemma 3.9. Let (X,�) be a log Fano pair with �(X,�) < 1. Assume v
⇤ 2 Val=1

X

computes �(X,�). For any ideal b on X and " > 0, there exists a divisorial valuation
w 2 Val=1

X such that
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(1) w is the lc place of a Q-complement and
(2) w(b) � v

⇤(b)(1� ").

Proof. Let µ : Y ! X be a log resolution of (X,�, b). Write E for the Cartier divisor
on Y such that b · OY = OY (�E) and �Y for the Q-divisor on Y such that

KY +�Y = µ
⇤(KX +�).

Since �KX � � is ample and �E µ-semiample, there exists a rational number 0 <

t ⌧ 1 so that �µ
⇤(KX +�)� tE is semiample.

Claim: For any "
0
> 0, there exists D 2 | �KX ��|Q such that

tw(b)  w(D)  tw(b) + "
0
AX,�(w) (3.1)

for all w 2 ValX and lct(X,�;D) > lct(X,�; b)/2.

Fix m 2 Z>0 su�ciently divisible so that

|m (�µ
⇤(KX +�)� tE) |

is base point free. By Bertini’s Theorem, we may choose a divisor H in the above
linear system so that Supp(�Y ) + H is snc. Set D := µ⇤(m�1

H + tE), which is an
element of | �KX ��|Q. We will show D satisfies the claim if m � 0.

Note that µ⇤
D = m

�1
H + tE. Hence, for w 2 ValX ,

w(D) = m
�1
w(H) + tw(E) = m

�1
w(H) + tw(b).

Since H + Supp(�Y ) is snc, lct(Y,�Y ;H) = 1. Therefore, AX,�(w) = AY,�Y (w) �
w(H), which implies (3.1) holds if m � 1/"0.

To finish the claim, we compute

lct(X,�;D)�1 = lct
�
Y,�Y ;m

�1
H + tE

��1

 lct
�
Y,�Y ;m

�1
H
��1

+ lct (Y,�Y ; tE)�1

 1/m+ t · lct (X,�; b)�1
,

where the first inequality follows from the log concavity of the log canonical thresh-
old (e.g. see [JM12, Lemma 1.7.iv]). Since t < 1, we conclude lct(X,�;D) >

lct(X,�; b)/2 when m � 0.

Returning to the proof of the lemma, set � := �(X,�), c := lct(X,�; b), and � :=
min{1 � �, c/2}. Choose a divisor D satisfying the above claim with "

0 := "tv
⇤(b)/2.

If we set �0 := � + �D, then (X,�0) is log Fano. Indeed, the pair is klt, since
lct(X,�;D) > c/2 � �. Additionally, �KX ��0 ⇠Q �(1� �)(KX +�) is ample.

Observe that for w 2 ValX ,

AX,�0(w) = AX,�(w)� �w(D) and SX,�0(w) = (1� �)SX,�(w),

where the second equality is by [BJ20, Lem. 3.7.i]. Therefore, (3.1) gives

AX,�(w)(1� �"
0)� �tw(b)  AX,�0(w)  AX,�(w)� �tw(b). (3.2)
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If we set p := v
⇤(b), we see

�
0 := �(X,�0)  AX,�0(v⇤)

SX,�0(v⇤)
 AX,�(v⇤)� �tp

(1� �)SX,�(v⇤)
=

(1� �tp)�

1� �
.

Since 1� � � �, it follows that �0 < 1.
Applying Proposition 3.3 to (X,�0), we may find a divisorial valuation w 2 Val=1

X

that is an lc place of a Q-complement of (X,�0) so that

AX,�0(w)

SX,�0(w)
 (1� �tp+ �"

0)�

1� �
. (3.3)

Since �0 � �, w is also an lc place of a Q-complement of (X,�). By (3.2) and the

inequality �  AX,�(w)
SX,�(w) =

1
SX,�(w) , we know

(1� �"
0 � �tw(b)) �

1� �
 AX,�0(w)

SX,�0(w)
. (3.4)

Analyzing (3.3) and (3.4), we see p  w(b) + 2"0

t . Since 2"0

t = "v
⇤(b), the proof is

complete. ⇤
Proof of Proposition 3.8. By Lemma 3.9, there exists a sequence of divisorial valua-
tions (vk)k in Val=1

X that are lc places of Q-complements satisfying

vk(ak(v⇤))

k
� 1� 1

k
and AX,�(vk) = 1.

By Theorem 3.5, each vk is also the lc place of a N -complement. We will show that
a subsequence converges to v

⇤ in the valuation space.
Let ⇠ 2 X denote the center of v⇤. Write m⇠ ⇢ OX for the ideal of functions

vanishing along ⇠ and set r := v
⇤(m⇠), which is > 0. Since v

⇤(mdk/re
⇠ ) = dk/rer � k,

mdk/re
⇠ ✓ ak(v⇤). Therefore,

dk/revk(m⇠) � vk(ak(v
⇤)) � k � 1

for all k. This implies there exists " > 0 so that vk(m⇠) � " for all k > 1. Since

c := lct(X,�;m⇠) = inf
w2Val⇤X

AX,�(w)

w(m⇠)
,

we also have vk(m⇠)  AX,�(vk)/c = 1/c for all k.
Observe that

V := {v 2 ValX , | v(m⇠) 2 [", 1/c] and AX,�(v)  1} ✓ ValX

is a compact subset of the valuation space by [BdFFU15, Thm 3.1]. Since any compact
subset of the valuation space is also sequentially compact [Poi13] (see also the proof of
[LX20, Prop 3.9]), there exists a subsequence (vkj)j so that the limit w⇤ = limj!1 vkj

exists in ValX . We will proceed to show w
⇤ = v

⇤.
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By the lower semicontinuity of the log discrepancy function, AX,�(w⇤)  1. For
any positive integers k, there is an inclusion am(v⇤)dk/me ✓ ak(v⇤). This implies
dk/mevk(am(v⇤)) � vk(ak(v⇤)) � k � 1. Therefore,

w
⇤(am(v

⇤)) = lim
j!1

vkj(am(v
⇤)) � lim

j!1

kj � 1

dkj/me = m.

From the latter inequality, we see w
⇤(a•(v⇤)) � 1. Hence, w⇤ � v

⇤ holds by [JM12,
Lem. 2.4]. Therefore, S(w⇤) � S(v⇤) and equality holds if and only if w⇤ = v

⇤ by
[BJ20, Prop. 3.15].

Since v⇤ computes the stability threshold, AX,�(v⇤)
S(v⇤)  AX,�(w⇤)

S(w⇤) . Using thatAX,�(w⇤) 
1 = AX,�(v⇤), we conclude S(w⇤) = S(v⇤). Hence, w⇤ = v

⇤ and v
⇤ = limj!1 vkj .

Since S is lower semicontinuous on the valuation space lim infj!1 S(vkj) � S(v⇤).

Hence, lim supj!1

AX,�(vkj )

S(vkj )
 AX,�(v⇤)

S(v⇤) = �(X,�). By (2.2), the limit exists and

equals �(X,�). ⇤

4. Constructibility

4.1. Invariance of volumes. To prove Theorem 1.1, we will need a constructibility
result for the functions S and T when the valuation varies in a family.

Consider the following setup: Let (X,�) ! B be a Q-Gorenstein family of log Fano
pairs with B smooth. Let D be an e↵ective Q-divisor such that D ⇠B,Q �KX/B ��,
Supp(D) does not contain a fiber, and (Xb,�b +Db) is lc for all b 2 B.

Proposition 4.1. If (X,�+D) ! B admits a fiberwise log resolution g : Y ! X and
F is a toroidal divisor with respect to Exc(g)+Supp(g�1

⇤
�) satisfying AX,�+D(F ) < 1,

then
SXb,�b

(Fb) and TXb,�b
(Fb)

are independent of b 2 B.

The toroidal condition in the above theorem means F is an exceptional divisor of
a sequence of toroidal blowups of Y with respect to Exc(g) + Supp(g�1

⇤
�). This is

equivalent to the condition that ordF 2 QM(Y,Exc(g) + Supp(g�1
⇤
�)).

The result is a consequence of the deformation invariance of log plurigenera in
smooth families [HMX13, Thm. 1.8], whose proof is based on comparing the relative
MMP over B and the MMP for individual fibers.

Proof. By shrinking B, we may assume B is a�ne. By repeatedly blowing up the
center of F on Y , we may assume F is a prime divisor on Y . We fix t 2 Q>0 and aim
to show

vol(�g
⇤

b (KXb
+�b)� tFb) (4.1)

is independent of b 2 B.
Let �1 and �2 be the e↵ective Q-divisors without common components in their

support such that
KY + �1 = g

⇤(KX +�+D) + �2
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and g⇤�1 = � + D. Note that Supp(�1 + �2) is relative snc over B and d :=
coe↵F (�1) = 1�AX,�+D(F ) > 0. By inversion of adjunction we know that (X,�+D)
is log canonical. In particular, �1 has coe�cients in [0, 1].

Since �KX/B � � is f -ample, we may use Bertini’s Theorem to find an e↵ective
Q-divisor H ⇠B,Q �(d/t)(KX/B +�) such that �1 + g

⇤
H � dF has coe�cients in the

interval [0, 1] and Supp(�1+ g
⇤
H � dF ) is relative snc over B after possibly shrinking

B. Applying [HMX13, Thm. 1.8 (3)] gives that

vol (KYb
+ (�1)b + g

⇤

bHb � dFb) (4.2)

is independent of b 2 B. Observe that

KY + �1 + g
⇤
H � dF ⇠B,Q g

⇤(KX/B +�+D +H)� dF + �2

⇠B,Q �(d/t)g⇤(KX/B +�)� dF + �2

and, hence,

KYb
+ (�1)b + g

⇤

bHb � dFb ⇠Q (d/t) (�g
⇤

b (KXb
+�b)� tFb + (t/d)(�2)b) .

For any su�ciently divisiblem 2 Z>0, every e↵ective Cartier divisorG 2 |m(�g
⇤

b (KXb
+

�b) � tFb + (t/d)(�2)b)| satisfies that G +mtFb 2 |m(�g
⇤

b (KXb
+�b) + (t/d)(�2)b)|.

Since (�2)b is gb-exceptional, we know that

|m(�g
⇤

b (KXb
+�b) + (t/d)(�2)b)| = g

⇤

b |m(�KXb
��b)|+ (mt/d)(�2)b.

Hence G+mtFb � (mt/d)(�2)b. Since Fb 6⇢ Supp(�2), we know that G� (mt/d)(�2)b
is an e↵ective Cartier divisor in |m(�g

⇤

b (KXb
+�b)� tFb)|. Thus we have

vol (�g
⇤

b (KXb
+�b)� tFb) = vol (�g

⇤

b (KXb
+�b)� tFb + (t/d)(�2)b)

= (t/d)nvol (KYb
+ �b + g

⇤

bHb � dFb) .

Hence, (4.1) is independent of b 2 B. Since this holds for each t 2 Q>0, SXb,�b
(Fb)

and TXb,�b
(Fb) are also independent of b 2 B. ⇤

For each closed point b 2 B, we consider the infimum of A
S and A

T over the lc centers
of (Xb,�b +Db). Specifically, we set

ab := inf
v

AXb,�b
(v)

TXb,�b
(v)

and db := inf
v

AXb,�b
(v)

SXb,�b
(v)

, (4.3)

where the infima run through v 2 Val⇤Xb
with AXb,�b+Db

(v) = 0. Using Proposition
4.1, we can understand how these values vary in families.

Proposition 4.2. If (X,�+D) ! B admits a fiberwise log resolution, then ab and db

are independent of the closed point b 2 B. Furthermore, each infimum is a minimum
and achieved by a quasi-monomial valuation.

Proof. Let g : Y ! X be a fiberwise log resolution of (X,�+D) and define � by the
formula

KY + � = g
⇤(KX +�+D).
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Since g is a fiberwise log resolution, Supp(�) is snc and each stratum of Supp(�) is
smooth with irreducible fibers over B. Write �=1 for the sum of the prime divisors
with coe�cient 1 in �.

For b 2 B, KYb
+�b = g

⇤(KXb
+�b+Db) and the valuations on Xb that are lc places

of (Xb,�b+Db) are precisely the valuations in QM(Yb,�=1
b ) by Lemma 2.3. Note that

A, S, and T are continuous on QM(Yb,�=1
b ) (see Proposition 2.4 for S and T ) and

homogeneous of degree 1. Therefore, A
T and A

S are continuous and homogeneous of
degree zero on QM(Yb,�=1

b )⇤. This implies that the functions achieve minima on the
latter set.

Next, observe that there is a natural isomorphism of simplicial cone complexes

QM(Y,�=1) ' QM(Yb,�
=1
b ),

since the stratum of Supp(�=1) are smooth over B and have irreducible fibers. To
finish the proof, we will show that the map

QM(Y,�=1)⇤
⇠! QM(Yb,�

=1
b )⇤

A
S! R>0

is independent of b 2 B and the same holds for A
T .

It is clear that QM(Y,�=1)⇤
⇠! QM(Yb,�=1

b )⇤
A! R>0 is independent of b 2 B, since

(KY � g
⇤(KX +D))|Xb

= KYb
� g

⇤

b (KXb
+Db).

Additionally, Proposition 4.1 implies QM(Y,�=1)⇤
⇠! QM(Yb,�=1

b )⇤
S! R>0 is inde-

pendent of b 2 B along the rational points of QM(Y,�=1)⇤ and the same holds for T .
Since S and T are continuous on cones, the statement holds for all points in QM(�=1)
and the proof is complete. ⇤

4.2. Constructibility of thresholds. We are now ready to prove that the stability
threshold and global log canonical threshold are constructible in families.

Proposition 4.3. If (X,�) ! B is a Q-Gorenstein family of log Fano pairs over a
normal variety B, then the functions

B 3 b 7! min{↵(Xb,�b), 1} and B 3 b 7! min{�(Xb,�b), 1}

are constructible.

Proof. We only prove the statement for the stability threshold, since the statement for
the global log canonical threshold follows from the same argument, but with Corollary
3.6 replaced by Corollary 3.7.

Fix a positive integer r so that r(KX+�) is a Cartier divisor. Next, apply Corollary
3.6 to find a positive integer N so that the following holds: if b 2 B is a closed point
and �(Xb,�b)  1, then

�(Xb,�b) = inf
v

AXb,�b
(v)

SXb,�b
(v)
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where the infimum runs through all divisorial valuations v 2 Val⇤Xb
that are lc places of

anN -complement. Notice that for such a valuation v, there existsDb 2 1
rN | � rN(KXb

+�b)|
such that (Xb,�b +Db) is lc and AXb,�b+Db

(v) = 0.
To parameterize such boundaries, observe that f⇤OX(�rN(KX/B +�)) commutes

with base change, since Kawamata-Viehweg vanishing impliesH1(Xb,OXb
(�rN(KXb

+�b)))= 0
for all b 2 B. Set

W := P(f⇤OX(�rN(KX/B +�))⇤) ! B

and note that, for b 2 B, the k(b)-points of Wb are in bijection with divisors in
|�rN(KXb

+�b)|. LetH be the universal divisor onX⇥BW under this correspondence
and set D := 1

rNH. By the lower semicontinuity of the log canonical threshold, the
locus

Z := {w 2 W | lct(Xw,�w;Dw) = 1}
is locally closed inW . The scheme Z together with theQ-divisorDZ onXZ := X⇥BZ.
parameterizes boundaries of the desired form.

For a closed point z 2 Z, set

dz := inf

⇢
AXz ,�z(v)

SXz ,�z(v)

���v 2 Val⇤Xz
and AXz ,�z+Dz(v) = 0

�
,

By the above discussion, if b 2 B is closed, then min{1, �(Xb,�b)} equals the infimum
of {1} [ {dz | z 2 Zb}.

Now, choose a locally closed decomposition Z = [r
i=1Zi so that each Zi is smooth

and there is an étale map Z
0

i ! Zi such that (XZ0
i
,�Z0

i
+DZ0

i
) admits a fiberwise log

resolution. For a closed point z 2 Zi, dz is independent of z 2 Zi (by Proposition 4.2)
and we denote the value by d

(i). Hence, for a closed point b 2 B, min{1, �(Xb,�b)}
is the minimum of {1} [ {d(i) | b 2 ⇡(Zi)}. Therefore, we may write B = [jBj as a
finite union of constructible subsets such that Bj 3 b 7! min{1, �(Xb,�b)} is constant
on closed points. Since the latter function is lower semicontinuous [BL18], it must be
constant on all scheme theoretic points and the proof is complete. ⇤

Proof of Theorem 1.1. Proposition 4.3 implies that the functions are constructible.
The main result of [BL18] implies they are lower semicontinuous. ⇤
Remark 4.4. To deduce Theorem 1.1, we do not need the full strength of [BL18].
Indeed, we only need that the functions min{1, ↵} and min{1, �} are weakly lower
semicontinuous, which means that they do not increase under specialization.

Proof of Corollary 1.2. Since a log Fano pair is K-semistable if and only if � � 1,
B

� = {b 2 B | �(Xb,�b) � 1}. Theorem 1.1 implies that the latter set is a Zariski
open subset of B. ⇤

Proof of Theorem 1.3. The proof of [BX19, Cor. 1.4], but with the openness of uni-
form K-stability replaced by the openness of K-semistability (Corollary 1.2), implies
XKss

V,n is an Artin stack of finite type over k. With that step complete, we may apply
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[ABHLX20, Cor. 1.2] to see XKss
V,n admits a good moduli space. By [ABHLX20, Rem.

2.2], k-points of the good moduli space are in bijection with closed k-points of XKss
V,n.

It remains to show a k-point [X] 2 XKss
V,n is closed if and only if X is K-polystable.

By [LWX19] any K-semistable Q-Fano variety degenerates to a uniquely determined
K-polystable Q-Fano variety via a special test configuration. Hence, if [X] is closed,
X must be K-polystable. Next, assume X is K-polystable. Choose a closed k-point
[X0] in the closure of [X]. Since [X0] is closed, it is K-polystable. Therefore, [BX19]
implies X ' X0 and, hence, [X] is closed. This completes the proof. ⇤

As a consequence of Corollary 1.2 and Theorem 1.3, we deduce the openness of
K-stability and constructibility of K-polystability.

Theorem 4.5. Let (X,�) ! B be a Q-Gorenstein family of log Fano pairs over a
normal base B. Then the set

B
Ks := {b 2 B | (Xb,�b) is K-stable}

is a Zariski open subset of B. Moreover, the set

B
Kps := {b 2 B | (Xb,�b) is K-polystable}

is a constructible subset of B.

Proof. For simplicity, we assume � = 0 as the proof for the general case follows
similarly by replacing the K-moduli space of Q-Fano varities by log Fano pairs (see e.g.
[XZ20, Theorem 2.21]). We may also assume that B is irreducible. Let n := dimXb

and V := (�KXb
)n for a closed point b 2 B. By Corollary 1.2, there is an open subset

B
� of B parametrizing K-semistable fibers. Denote by X

� := X ⇥B B
�. We take the

Artin stack XKss
n,V and its separated good moduli space XKps

n,V from Theorem 1.3. Since
the Artin stack XKss

n,V represents the moduli functor of K-semistable Q-Fano varieties,
there is a morphism � : B� ! XKss

n,V whose pull-back of the universal family over XKss
n,V

gives X� ! B
�.

As shown in the proof of Theorem 1.3, K-polystable Q-Fano varieties of dimension
n and volume V corresponds to closed points of the stack XKss

n,V . Let x be such a
closed point with stabilizer group Gx which is reductive by [ABHLX20]. Since XKss

n,V

is a global quotient stack, by the Luna étale slice theorem [ABHLX20, Remark 2.11],
there exist an a�ne scheme Spec(A) with an action of Gx, a Gx-fixed closed point
w 2 Spec(A), and a Cartesian diagram

[Spec(A)/Gx] XKss
n,V

Spec(A) // Gx X
Kps
n,V

f

⇡

such that f([w]) = [x], Spec(A) // Gx is an étale neighborhood of ⇡(x), f sends
closed points to closed points, and f induces an isomorphism of stabilizer groups at
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closed points. In particular, we know that a geometric point y 2 Spec(A) is GIT
stable (resp. GIT polystable) if and only if f([y]) represents a K-stable (resp. K-
polystable) Q-Fano variety. Since GIT stable locus is open (see [MFK94, Chapter
1.4] or [Muk03, Proposition 5.15]), and openness is an étale-local property, we know
that B

Ks is an open subset of B�. Similarly, it is a well-known fact that the GIT
polystable locus is constructible. Here we give a brief proof of this fact. Denote by
Z := Spec(A) and � : Z ! Z // Gx the good quotient morphism. Let Zr := {z 2 Z |
dimStab(z) � r}. Then it is clear that Zr is a closed subset of Z. Let Zps be the GIT
polystable locus of Z. Then by similar argument to [Muk03, Proposition 5.13], we
know that Zps = [dimGx

r=0 (Zr \ ��1(�(Zr+1))). Hence Z
ps is constructible in Z. Since

constructibility is an étale-local property, we have that BKps is a constructible subset
of B�. The proof is finished. ⇤

4.3. Existence of valuations computing the stability threshold. A consequence
of the proof of Theorem 1.1 is the following result. In Theorem A.7, we will obtain
properties of valuations computing �  1.

Theorem 4.6. If (X,�) is a log Fano pair with �(X,�)  1, then there exists a
quasi-monomial valuation v 2 Val⇤X computing �(X,�).

The existence of valuations computing the stability threshold was previously proven
in [BJ20] using the generic limit construction. The proof below is entirely di↵erent.

Proof. Fix a positive integer r so that r(KX +�) is a Cartier divisor and apply Corol-

lary 3.6 to find a positive integer N so that �(X,�) = infv
AX,�(v)
S(v) , where the infimum

runs through all valuations v 2 DivValX that are lc places of an N -complement. For
such a valuation v, there exists D 2 1

rN | � rN(KX +�)| such that (X,� +D) is lc
and AX,�+D(v) = 0. We proceed to parameterize such Q-divisors.

Set W := P (H0(X,OX(�rN(KX +�)))⇤). Write H for the universal divisor on
X ⇥W parameterizing divisors in | � rN(KX +�)| and set D := 1

rNH. By the lower
semicontinuity of the log canonical threshold, the locus

Z := {w 2 W | lct(Xw,�w;Dw) = 1}
is locally closed in W . Hence, the Q-divisor DZ on X ⇥ Z parameterizes boundaries
of the desired form.

For each closed point z 2 Z, set dz := infv
AX,�(v)
S(v) , where the infimum runs through

all v 2 ValXz such that AX,�+Dz(v) = 0. This infimum is a minimum by Proposi-
tion 4.2 and is achieved by a quasi-monomial valuation v

⇤

z . By the above discussion,
�(X,�) equals inf{dz | z 2 Z}.

Now, choose a locally closed decomposition Z = [r
i=1Zi so that each Zi is smooth

and there is an étale map Z
0

i ! Zi such that (XZ0
i
,�Z0

i
+ DZ0

i
) admits a fiberwise

log resolution. For closed point z 2 Zi, dz is independent of z 2 Zi by Proposition
4.2. Therefore, dz takes finitely many values and we can find z0 2 Z such that
�(X,�) = dz0 and is computed by v

⇤

z0 . ⇤
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Remark 4.7. The proof of the existence of valuations computing the stability thresh-
old in [BJ20] requires that the base field be uncountable. The assumption is not needed
in the above proof.

Appendix A. K-stability and complements

In the appendix, we will combine the cone construction and results from [Xu20] to
further use complements to study the K-stability of a log Fano pair (X,�). During our
investigation, we will relate degenerations of the log Fano pair (X,�) to valuations
centered on the vertex of the cone. This idea was first introduced in [Li17] and
then extended in [LX20, LWX21] in the study of relations between K-stability and
normalized volume. It is a powerful technique and works particularly well for studying
the valuations v which computes �(X,�) = 1 (see e.g. [BX19]). Following the spirit
of [Li17,LX20,LWX21], we obtain results on the log Fano pair (X,�) by applying the
local results from [Xu20] to cone singularities. We note that [Xu20] and the current
paper have a similar strategy via the local-to-global principle. Both papers use the
existence of bounded complements proved in [Bir19].

A.1. Test configuration and lc places. In [Tia97,Don02], the K-(semi,poly)stability
of a log Fano pair is defined by looking at the sign of the generalized Futaki invariant
of every test configuration. For definitions and more background, see e.g. [LX14],
[BHJ17].

Definition A.1. Let (X,�) be a log Fano pair. A test configuration (resp. semiample
test configuration) (X ,�tc;L) of (X,�) is said to be weakly special if (X ,�tc + X0)
is log canonical and L ⇠Q �KX � �tc is ample (resp. semiample) over A1. A finite
set of (possibly trivial) Z-valued divisorial valuations {v1, · · · , vd} ⇢ ValX is called a
weakly special collection if there exists a weakly special semiample test configuration
(X ,�tc;L) of (X,�) such that vi = v

X
(i)
0

(see [BHJ17, Def. 4.4]) where {X (i)
0 }di=1 are

all irreducible components of X0. A prime divisor E over (X,�) is said to be weakly
special if there exists a weakly special test configuration (X ,�tc;L) of (X,�) with
X0 irreducible such that vX0 = c · ordE for some c 2 Z>0.

Theorem A.2. Let n be a positive integer and I ⇢ Q\ [0, 1] a finite set. Then there
exists a positive integer N = N(n, I) satisfying the following:

If (X,�) is an n-dimensional log Fano pair such that coe�cients of � belong to
I, then a finite set of Z-valued divisorial valuations {v1, · · · , vd} ⇢ ValX is a weakly
special collection if and only if there exists an N-complement �+ of (X,�) such that
each vi is an lc place of (X,�+).

Note that a special case of Theorem A.2 on weakly special divisors with small
�-invariants is proved in [ZZ19, Theorem 3.10] independently.

Our argument is a refinement of [LWX21, Proof of Lemma 3.4]. In particular, we
track the integral structure of test configurations and complements.
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We first show that any weakly special collection of Z-valued divisorial valuations
{v1, · · · , vd} are lc places of a common Q-complement. We will use the following cone
construction: Fix a positive integer m such that L := �m(KX + �) is Cartier. Let
Z := C(X,L) be the a�ne cone over X with polarization L. Denote by o 2 Z the
cone vertex. Let � be the Zariski closure of the pull-back of � under the projection
Z \ {o} ! X. Denote by w0 := ordX0 the canonical valuation in ValZ where X0 is
the exceptional divisor of blowing up the cone vertex o in Z. Assume vi = ci · ordEi

with ci 2 Z�0. Denote by k0 := m · max1id{AX,�(vi)}. For each divisor Ei over
X and each integer k > k0, we consider the divisorial valuation wi,k on Z as a quasi-

monomial combination of ordX0 and ordEi,1 with weights (1 � mAX,�(vi)
k ,

ci
k ) where

Ei,1 is the pull-back of Ei under the projection Z \ {o} ! X. Since mAX,�(Ei) is
a positive integer, we know that the value group of wi,k is generated by 1 and ci

k .
Thus for any k > k0 there is a prime divisor Ei,k over Z centered at o such that

k
gcd(k,ci)

· wi,k = ordEi,k
.

Proposition A.3. Suppose {v1, · · · , vd} is a weakly special collection of Z-valued
divisorial valuations over (X,�). Then for any k su�ciently large, there exists a
proper birational morphism µk : Wk ! Z from a normal variety Wk such that

(1) µk is an isomorphism over Z \ {o} and µ
�1
k (o) = [d

i=1Ei,k;
(2) (Wk, (µk)�1

⇤
� +

Pd
i=1 Ei,k) is log canonical;

(3) �(KWk
+ (µk)�1

⇤
� +

Pd
i=1 Ei,k) is semiample over Z.

Proof. Let (X ,�tc) be the weakly special semiample test configuration corresponding
to {vi}di=1. For L = �m(KX +�), we denote by

R = �1

j=0Rj := �1

j=0H
0(X, jL).

It is clear that Z = Spec(R). Let us take an ample model ⇢ : X ! X 0 of �KX ��tc

over A1. Denote by �0

tc := ⇢⇤�tc, then it is clear that (X 0
,�0

tc) is a weakly special test
configuration of (X,�). After reindexing we can assume that ⇢ precisely contracts

X (i)
0 for d0 < i  d where d

0 is the number of irreducible components of X 0

0.
Before constructing µk : Wk ! Z, we first construct µ0

k : W
0

k ! Z such that (1),(2),
and (3) hold as well after replacing (µk,Wk, d) and “semiample” by (µ0

k,W
0

k, d
0) and

“ample”, respectively. We denote these new statements by (1’), (2’), and (3’).
For part (1’), consider the following Z-filtration of R

Fp
Rj := {s 2 Rj | vi(s) � p+mAX,�(vi)j for any 1  i  d

0}. (A.1)

By [BHJ17, Propositions 2.15, 4.11, and Lemma 5.17], we know that the filtration
F•

R is finitely generated,

X 0 ⇠= Proj
1M

j=0

1M

p=�1

t
�pFp

Rj, (A.2)

and �m(KX 0/A1 +�0

tc) corresponds to O(1) under the grading of j. Consider the ideal
sequence Ip := �1

j=0Fp�jk
Rj ⇢ R for p 2 Z. By (A.1) we see that Fp�jk

Rj = Rj,
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whenever j � p/(k � mAX,�(vi)) for all 1  i  d
0. So Ip is cosupported at o if

p > 0, and Ip = R if p  0. Since F•
R is finitely generated and multiplicative, we

see that �1

p=0Ip is also a finitely generated R-algebra. Let W 0

k := ProjR �1

p=0 Ip with
µ
0

k : W
0

k ! Z the projection morphism.
Next we show that Ip = \d0

i=1ap/k(wi,k). Since wi,k is Gm-invariant, its valuation
ideals are graded. Hence it su�ces to verify the above equality for all homogeneous
elements. Let s 2 Rj be a homogeneous element. From the definition of wi,k we know

wi,k(s) =

✓
1� mAX,�(vi)

k

◆
j +

ci

k
ordEi(s) =

1

k

�
jk �mAX,�(vi)j + vi(s)

�
.

Thus wi,k(s) � p/k if and only if vi(s) � p � jk + mAX,�(vi)j, which implies
Ip = \d0

i=1ap/k(wi,k). Since for each p � 0 the ideal Ip is integrally closed as a finite in-
tersection of valuation ideals, we know thatW 0

k is normal. Besides, by [BHJ17, Lemma
5.17] if any i is dropped from the intersection on the right-hand side of (A.1) we would
not get Fp

Rj. Hence [BHJ17, Theorem 1.10] implies that for p su�ciently divisible,
the set of Rees valuations of Ip is given by {k

pwi,k}d
0

i=1. Thus µ
0

k : W 0

k ! Z precisely

extracts [d0
i=1E

0

i,k where E
0

i,k is the birational transform of Ei,k and we confirm part
(1’).

For part (3’), we know that

AZ,�(wi,k) =

✓
1� mAX,�(vi)

k

◆
AZ,�(X0) +

ci

k
AZ,�(Ei,1)

=

✓
1� mAX,�(vi)

k

◆
1

m
+

1

k
AX,�(vi) =

1

m
.

Hence AZ,�(Ei,k) =
k

m gcd(k,ci)
. Straight computation shows

KW 0
k
+ (µ0

k)
�1
⇤
� +

d0X

i=1

E
0

i,k = µ
0⇤

k (KZ + �) +
d0X

i=1

AZ,�(Ei,k)E
0

i,k ⇠µ0
k,Q

d0X

i=1

kE
0

i,k

m gcd(k, ci)
.

(A.3)

From the above discussion on Rees valuations, we know that OW 0
k
(�1) =

Pd0

i=1

E0
i,k

gcd(k,ci)

is anti-ample over Z. Thus �(KW 0
k
+ (µ0

k)
�1
⇤
� +

Pd0

i=1 E
0

i,k) ⇠µ0
k,Q

k
mOW 0

k
(1) is ample

over Z which confirms part (3’).
For part (2’), notice that the ideal sequence I• induces a Gm-equivariant degenera-

tion Z ! A1 of o 2 Z, where Z := Spec �p2Z t
�p
Ip. Then we have the central fiber

Z0 = Spec(grI•R) where

grI•R :=
1M

p=0

Ip/Ip+1 =
1M

p=�1

1M

j=0

Fp�jk
Rj/Fp�jk+1

Rj. (A.4)
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Here we are using the fact that Fp�jk
Rj = Rj whenever p  0. From (A.2) we know

that

X 0

0
⇠= Proj

1M

j=0

1M

p=�1

Fp
Rj/Fp+1

Rj (A.5)

and �m(KX
0
0
+ �0

tc,0) corresponds to O(1) under the grading of j. It is clear that
grI•R is isomorphic to �1

j=0 �1

p=�1
Fp

Rj/Fp+1
Rj up to a grading shift. Let �Z

be the e↵ective Q-divisor on Z as the Zariski closure of � ⇥ (A1 \ {0}). Denote by
�0 := �Z |Z0 the degeneration of � to Z0. Then (Z0,�0) is semi-log canonical (slc) since
it is isomorphic to the a�ne cone over the slc pair (X 0

0,�
0

tc,0) with the polarization
�m(KX

0
0
+�0

tc,0). Thus we know that (Z,�Z , ⇠; ⌘) is a weakly special test configuration
of (Z,�, ⇠) in the sense of [LWX21, Definition 2.14] where ⇠ (resp. ⌘) is the vector
field on Z (resp. Z) induced by the grading of j (resp. of p). We will follow the idea of

[LWX21, Proof of Lemma 2.21(2)] to show log canonicity of (W 0

k, (µ
0

k)
�1
⇤
�+

Pd0

i=1 E
0

i,k).

Denote by E
0 :=

Pd0

i=1

E0
i,k

gcd(k,ci)
and E

0

red :=
Pd0

i=1 E
0

i,k. From the proof of part (3’)

we know that E
0 = OW 0

k
(�1) is anti-ample over Z. Let l be a su�ciently divisible

positive integer such that lE
0 is Cartier on W

0

k. The test configuration (Z,�Z , ⇠; ⌘)
has the natural Gm-action generated by ⌘. Consider the µl-action on (Z,�Z) where
µl < Gm is the multiplicative group of l-th roots of unity. Let (Z 0

,�Z0) := (Z,�Z)/µl.
By construction, we have that Z 0 := Spec �p2Z t

�p
Ilp ! A1

t , such that the quotient
map � : Z ! Z 0 is a lifting of the map A1

t ! A1
t , t 7! t

l. Clearly � is étale away
from the central fibers. Since Z0 = Spec �p2Z�0

Ip/Ip+1, we know that Z0/µl =
Spec�p2Z�0

Ilp/Ilp+1, and Supp(Z0/µl) = Supp(Z 0

0).
Next, we show that Z0/µl

⇠= Ca(E 0

red,OE0
red
(�lE

0|E0
red
)) where Ca(X,L) represents

the a�ne cone over X with polarization L (see [Kol13, Section 3.1]). Indeed, from the
equality Ip = \d0

i=1ap/k(wi,k) we see that Ip = (µ0

k)⇤OW 0
k
(b�pE

0c). Since lE
0 is Cartier

and dE 0e = E
0

red, we know that b�(lp+ 1)E 0c = �lpE
0 � E

0

red. Then we have a short
exact sequence

0 ! OW 0
k
(�lpE

0 � E
0

red) ! OW 0
k
(�lpE

0) ! OE0
red
(�lpE

0|E0
red
) ! 0. (A.6)

Since l is su�ciently divisible and �E
0 is ample over Z, we have R1(µ0

k)⇤OW 0
k
(�lpE

0�
E

0

red) = 0 for p � 1 by Serre vanishing. Thus taking (µ0

k)⇤ of (A.6) yields a short exact
sequence

0 ! Ilp+1 ! Ilp ! H
0(E 0

red,OE0
red
(�lpE

0|E0
red
)) ! 0,

i.e. Ilp/Ilp+1
⇠= H

0(E 0

red,OE0
red
(�lpE

0|E0
red
)) when p � 1. If p = 0, then the above

arguments give an injection I0/I1 ,! H
0(E 0

red,OE0
red
) which implies that they are

isomorphic as h0(E 0

red,OE0
red
) = 1 by reducedness of E 0

red.
Since (Z,�Z , ⇠; ⌘) is weakly special, we know that (Z,�Z +Z0) is log canonical. In

particular, we know that Z0 is reduced and so is Z0/µl = (Z 0

0)red. Since the quotient
map � : Z ! Z 0 is étale away from central fibers, we have that KZ + �Z + Z0 =
�
⇤(KZ0+�Z0+(Z 0

0)red). Therefore, the quotient (Z 0
,�Z0+(Z 0

0)red) is also log canonical
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by [KM98, Proposition 5.20]. By adjunction we know that (Z0,�0)/µl is slc. This
implies that the base (E 0

red,�E0
red
) is slc where KE0

red
+ �E0

red
= (KW 0

k
+ (µ0

k)
�1
⇤
� +

E
0

red)|E0
red
. By inversion of adjunction, the pair (W 0

k, (µ
0

k)
�1
⇤
� + E

0

red) is log canonical.
This proves part (2’).

So far we have proven (1’), (2’), and (3’) for µ0

k : W 0

k ! Z. In order to construct

µk : Wk ! Z, we will show that Ei0,k is an lc place of (W 0

k, (µ
0

k)
�1
⇤
� +

Pd0

i=1 E
0

i,k) for
any d

0
< i

0  d. By (A.3), we know

A
W 0

k,(µ
0
k)

�1
⇤ �+

Pd0
i=1 E

0
i,k
(wi0,k) = AZ,�(wi0,k)� wi0,k

� d0X

i=1

kE
0

i,k

m gcd(k, ci)

�

=
1

m

�
1� kwi0,k(OW 0

k
(�1))

�
. (A.7)

Indeed, since (X ,�tc;L) is the pull-back test configuration of (X 0
,�0

tc;L0), by [BHJ17,
Lemma 2.13] they define the same filtration, i.e.

Fp
Rj = {s 2 Rj | vi(s) � p+mAX,�(vi)j for any 1  i  d}.

Similar to the arguments above, we have Ip = \d
i=1ap/k(wi,k). Hence wi,k(OW 0

k
(�1)) =

1
k for any 1  i  d. This together with (A.7) implies wi0,k is an lc place of

(W 0

k, (µ
0

k)
�1
⇤
� +

Pd0

i=1 E
0

i,k) for any d
0
< i

0  d. It is clear that all non-klt centers

of (W 0

k, (µ
0

k)
�1
⇤
� +

Pd0

i=1 E
0

i,k) are contained in [d0
i=1E

0

i,k, thus W
0

k is of Fano type over
Z. Then [BCHM10] implies that there exists a projective birational morphism ⇢k :
Wk ! W

0

k from a normal variety Wk such that Exc(⇢k) = [d0<i0dEi0,k. Moreover, we

know that KWk
+(µk)�1

⇤
�+

Pd
i=1 Ei,k is the log pull-back of KW 0

k
+(µ0

k)
�1
⇤
�+

Pd0

i=1 E
0

i,k

since ⇢k only extracts lc places of the latter. By taking µk := µ
0

k � ⇢k, it is easy to see
that (1), (2), and (3) are all satisfied. Thus the proof is finished. ⇤
Proposition A.4. There exists a positive integer N1 = N1(n, I) such that the follow-
ing holds: for any weakly special collection of Z-valued divisorial valuations {v1, · · · , vd}
over (X,�) where dim(X) = n and coe�cients of � belongs to I, and any k � 1,
there exists a local N1-complement �+

k of o 2 (Z,�) such that Ei,k is an lc place of
(Z,�+

k ) for any 1  i  d.

Proof. By applying the boundedness of relative complements [Bir19, Theorem 1.8]
to the morphism µk : Wk ! Z constructed in Proposition A.3, there exists an N1-
complement ⇥k of (Wk, (µk)�1

⇤
�+

Pd
i=1 Ei,k) over o 2 Z where N1 only depends on the

dimension n and the coe�cient set I. Then �+
k := (µk)⇤(⇥k) is a local N1-complement

of o 2 (Z,�) such that Ei,k is an lc place for any 1  i  d. ⇤

Proof of Theorem A.2. Let �+
k be the N1-complement as in Proposition A.4. Then we

know that

AZ,�+
k
(wi,k) =

gcd(k, ci)

k
AZ,�+

k
(ordEi,k

) = 0.
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Let r be the Gorenstein index of o 2 (Z,�). Then

rN1(�
+
k � �) ⇠ rN1(KZ + �+

k )� rN1(KZ + �) ⇠ 0.

Thus we have �+
k = � + 1

rN1
div(fk) where fk 2 Oo,Z . It is then clear that

AZ,�(wi,k) =
wi,k(fk)

rN1
.

By definition we know that wi,k � (1 � mAX,�(vi)
k )w0. On the other hand, for any

f 2 Rj it is clear that

wi,k(f) =

✓
1� mAX,�(vi)

k

◆
j +

ci

k
vi(f)  j +

cimT (vi)

k
j =

✓
1 +

cimT (vi)

k

◆
w0(f).

Hence there exists a sequence of positive numbers ✏k ! 0 as k ! 1 such that
(1� ✏k)w0  wi,k  (1 + ✏k)w0 for any 1  i  d. This implies

AZ,�(w0) = lim
k!1

AZ,�(wi,k)  lim inf
k!1

(1 + ✏k)w0(fk)

rN1
= lim inf

k!1

w0(fk)

rN1
.

However, since (Z,�+
k ) is lc, we always have AZ,�(w0) � w0(fk)

rN1
for k � 1. Then w0(fk)

being an integer implies that

AZ,�(w0) =
w0(fk)

rN1
for k � 1.

Therefore, w0 is also an lc place of (Z,�+
k ) for k � 1. Denote by �0

k := � +
1

rN1
div(in(fk)) where in(fk) is the initial degeneration of fk. Then by [dFEM10, The-

orem 3.1] we know that (Z,�0

k) is also lc. Furthermore, by lower semicontinuity of the
log discrepancy function, we know that both w0 and wi,k are still lc places of (Z,�0

k)
for k � 1. Hence by taking a Gm-equivariant resolution, we see that

AZ,�0
k
(wi,k) =

✓
1� mAX,�(vi)

k

◆
AZ,�0

k
(w0) +

ci

k
AZ,�0

k
(ordEi,1)

which implies that Ei,1 is an lc place of (Z,�0

k) as well. Since �0

k is Gm-invariant, it
is the cone of some Q-divisor �0

k on X. Hence, we know that Ei is an lc place of �0

k

which is a Q-complement of (X,�). Then by an easy generalization of Theorem 3.5
to the case with multiple divisors over X, we may replace �0

k by an N -complement
�+

k whose lc places still contain Ei for any k � 1 and any 1  i  d. This finishes
proving the “only if” part. The “if” part follows from Proposition A.5. ⇤
Proposition A.5. Let (X,�) be a log Fano pair. Let {v1, · · · , vd} be a set of Z-valued
divisorial valuations in ValX . If {vi}di=1 is contained in the set of lc places of some
Q-complement �+, then it is a weakly special collection.

Proof. Let vi = ci ·ordEi . Then similar as before, we have the the a�ne cone o 2 (Z,�)
over (X,�). For any k � 1 we have divisorial valuation wi,k and prime divisor Ei,k

over Z such that wi,k = gcd(k,ci)
k · ordEi,k

. Denote by �+ the Zariski closure of the
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pull-back of �+ under the projection Z \ {o} ! X. Then it is clear that wi,k is an
lc place of (Z,�+) for any 1  i  d and any k � 1. Hence by [BCHM10], there

exists a Gm-equivariant projective birational morphism µ̃k : fWk ! Z from a normal
Q-factorial variety fWk such that the following properties hold.

• The exceptional divisors of µ̃k is [d
i=1

eEi,k where eEi,k is the birational transform
of Ei,k;

• fWk is of Fano type over Z;
• (fWk, (µ̃k)�1

⇤
�+ +

Pd
i=1

eEi,k) is a log canonical crepant model of (Z,�+).

By [BCHM10], we could run the Gm-equivariant �(KfWk
+ (µ̃k)�1

⇤
� +

Pd
i=1

eEi,k)-

MMP over Z and this MMP yields a birational contraction ⇢k : fWk 99K W
0

k where W 0

k

is the log canonical model. For simplicity let us assume that ⇢k : fWk 99K W
0

k precisely
contracts eEi0,k for d0 < i

0  d. Denote by E
0

i,k := (⇢k)⇤ eEi,k for 1  i  d
0.

Next we will show that µ
0

k : W 0

k ! Z satisfies (1’), (2’), and (3’) in the proof of
Proposition A.3. Since µ̃k is isomorphic in codimension 1 over Z \{o} as cZ( eEi,k) = o,
so is µ

0

k. Since W
0

k is the log canonical model, we have that �(KW 0
k
+ (µ0

k)
�1
⇤
� +

Pd0

i=1 E
0

i,k) is ample over Z, which implies that µ0

k is an isomorphism over Z \ {o} as

�(KW 0
k
+(µ0

k)
�1
⇤
�+

Pd0

i=1 E
0

i,k)|W 0
k\µ

0�1
k (o) = µ

0⇤

k (�(KZ +�)|Z\{o}). And (W 0

k, (µ
0

k)
�1
⇤
�+

Pd0

i=1 E
0

i,k) is log canonical since there is a Q-complement. Thus (1’), (2’), and (3’) in
the proof of Proposition A.3 hold for µ0

k from the above arguments.
Next we construct the weakly special test configuration (X 0

,�0

tc;L0) by essentially
reversing the argument in the proof of Proposition A.3. By the proof of Proposition
A.3, we know that

� (KW 0
k
+ (µ0

k)
�1
⇤
� +

d0X

i=1

E
0

i,k) ⇠µ0
k,Q �

d0X

i=1

k

m gcd(k, ci)
E

0

i,k (A.8)

is ample over Z. Hence by taking valuation ideals of the Rees valuations of µ0

k, we
know that W

0

k
⇠= ProjZ �1

p=0 Ip where Ip := \d0
i=1ap/k(wi,k) is an ideal sequence on

Z cosupported at o. Since W
0

k is the log canonical model of �(KfWk
+ (µ̃k)�1

⇤
� +

Pd
i=1

eEi,k) ⇠µ̃k,Q �
Pd

i=1
k

m gcd(k,ci)
eEi,k, we also have that Ip = \d

i=1ap/k(wi,k). Hence

the proof of Proposition A.3 implies that Ei0,k is an lc place of (W 0

k, (µ
0

k)
�1
⇤
�+

Pd0

i=1 E
0

i,k)
for any d

0
< i

0  d. Consider the Z-filtration F•
R of R defined as Fp

Rj := Ip+jk\Rj.
Then by the proof of Proposition A.3 we have

Fp
Rj = {s 2 Rj | vi(s) � p+mAX,�(vi)j for any 1  i  d}

= {s 2 Rj | vi(s) � p+mAX,�(vi)j for any 1  i  d
0}. (A.9)

Similar to the proof of Proposition A.3, denote by Z := Spec �p2Z t
�p
Ip as the Gm-

equivariant degeneration of Z over A1. Let �Z be the e↵ective Q-divisor on Z as the
Zariski closure of �⇥ (A1 \ {0}). Then Z is normal by integral closedness of Ip.
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Let E
0 :=

Pd0

i=1

E0
i,k

gcd(k,ci)
and E

0

red :=
Pd0

i=1 E
0

i,k. Let l be a su�ciently divisible

positive integer such that lE
0 is Cartier on W

0

k. Let (Z 0
,�Z0) := (Z,�Z)/µl. From

the proof of Proposition A.3, we know that Z0/µl is isomorphic to the a�ne cone
Ca(E 0

red,OE0
red
(�lE

0|E0
red
)). Since (W 0

k, (µ
0

k)
�1
⇤
� +E

0

red) is log canonical, by adjunction
we know that (E 0

red,�E0
red
) is slc where �E0

red
is the corresponding di↵erent divisor.

Moreover, by (A.8) we have

�(KE0
red

+ �E0
red
) ⇠Q �(KW 0

k
+ (µ0

k)
�1
⇤
� + E

0

red)|E0
red

⇠Q � k

m
E

0|E0
red

which is ample. Thus (E 0

red,�E0
red
) is a slc log Fano pair which implies that the a�ne

cone (Z0,�0)/µl is also slc. In particular, we know Z0/µl = (Z 0

0)red as it is reduced.
Since Z0/µl is reduced, we know that Z0 is generically reduced, which implies that Z0 is
reduced as it is S1 by [BHJ17, Proposition 2.6(ii)]. Since the quotient map � : Z ! Z 0

is étale away from central fibers, we have that KZ+�Z+Z0 = �
⇤(KZ0+�Z0+(Z 0

0)red).
Since ((Z 0

0)red,�Z0 |(Z0
0)red

) ⇠= (Z0,�0)/µl is slc, inversion of adjunction implies that
(Z 0

,�Z0 + (Z 0

0)red) is log canonical, which implies that (Z,�Z + Z0) is log canonical
by [KM98, Proposition 5.20]. Thus (Z,�Z , ⇠; ⌘) is a weakly special test configuration
of (Z,�, ⇠) where ⇠ (resp. ⌘) is the vector field on Z (resp. Z) induced by the grading
of j (resp. of p). By adjunction we know that (Z0,�0) is slc.

Next, we consider the test configuration (X 0
,�0

tc;L0) of (X,�) by setting X 0 :=
Proj

L
1

j=0

L
1

p=�1
t
�pFp

Rj and L0 = �m(KX 0 + �0

tc). Then by (A.4) and (A.5) we
know that (Z0,�0) is isomorphic to the a�ne cone over (X 0

0,�
0

tc,0;L0

0). Since (Z0,�0)
is slc, we know that (X 0

0,�
0

tc,0;L0

0) is also slc, and hence (X 0
,�0

tc;L0) is weakly special

by inversion of adjunction. Moreover, vi = v
X

0(i)
0

for any 1  i  d
0 where (X 0(i)

0 )1id0

are all the irreducible components of X 0

0.
Finally we construct the desired semiample test configuration (X ,�tc;L) by ex-

tracting certain divisors over X 0. Let Fi be the prime divisor over X ⇥ A1 as the
quasi-monomial combination of X ⇥ {0} and Ei ⇥ A1 with weights (1, ci). Then it is
clear that ordFi |K(X) = vi. We claim that Fi0 is an lc place of (X 0

,X 0

0 + �0

tc) for any
d
0
< i

0  d. Let Y be the total space of a test configuration of (X;L) dominating X 0

and X⇥A1 such that Fi0 is a divisor on Y for any d
0
< i

0  d. Denote by ⇡1 : Y ! X 0

and ⇡2 : Y ! X ⇥ A1 the projection morphisms. Set D := ⇡
⇤

1L0 � ⇡
⇤

2LA1 where
LA1 := �m(KX⇥A1 +�⇥A1). By [BHJ17, Lemmas 2.13 and 5.17] and (A.9), we have
that ordFi0 (D) = �mAX,�(vi0). On the other hand, from the definition of D we see
that

ordFi0 (D) = m
�
AX 0,X 0

0+�0
tc
(Fi0)� AX⇥A1,X⇥{0}+�⇥A1(Fi0)

�
.

Since AX⇥A1,X⇥{0}+�⇥A1(Fi0) = AX,�(vi0), we know that AX 0,X 0
0+�0

tc
(Fi0) = 0. Thus

the claim is proved. By [BCHM10], we can extract the divisors {Fi0}d0<i0d over X 0

to obtain the desired weakly special semiample test configuration (X ,�tc;L). This
finishes the proof. ⇤
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Remark A.6. Applying to the case with a prime divisor, we see that a prime divisor
E over (X,�) is weakly special if and only if {ordE} is a weakly special collection,
which is the same as E being an lc place of some N -complement.

A.2. Valuations computing the stability threshold. In this section, we show
any valuation computing �  1 is the lc place of a bounded complement. The result
may be viewed as a stronger version of Proposition 3.8.

Theorem A.7. Let n be a natural number and I ✓ Q a finite set. There exists a
positive integer N := N(n, I) depending only on n and I satisfying the following:

Assume (X,�) is an n-dimensional log Fano pair such that coe�cients of � belong
to I and �(X,�)  1. If v 2 Val⇤X computes �(X,�), then v is quasi-monomial and
is an lc place an N-complement.

Proof. Let (X,�) be an n-dimensional log Fano pair such that coe�cients of � belong
to I. Assume �(X,�)  1 and v 2 Val⇤X computes the stability threshold. By
[BJ20, Prop. 4.8], v is the unique valuation (up to scaling) computing lct(X,�; a•(v))
[BJ20, Prop. 4.8]. Hence, v is quasi-monomial by [Xu20].

To prove the second part of Theorem A.7, we will again use the cone construction.
Fix a positive integer r so that L := �r(KX + �) is a Cartier divisor and set R :=
R(X,L). Let Z = Spec(R) denote the cone over X with respect to the polarization
L, o 2 Z the vertex of the cone, and � the Q-divisor on Z defined by pulling back �.

For each t 2 R�0, we consider the valuation vt 2 ValZ defined by

vt(f) = min{tv(fm) +m | fm 6= 0},
where f =

P
fm and each fm 2 Rm. The valuation vt is quasi-monomial, since v is

quasi-monomial, and satisfies AZ,�(vt) =
1
r + tAX,�(v) (see the proof of [Li17, Lemma

6.14]).

Lemma A.8. For any t 2 R>0, lct(Z,�; a•(vt)) = AZ,�(vt).

Proof. Since the inequality lct(Z,�; a•(vt))  AZ,�(vt) always holds, it su�ces to show
the reverse inequality. Pick any " > 0. We will proceed to show lct(Z,�; a•(vt)) �
AZ,�(vt)� ".

Claim: For any "0 > 0, there exists aQ-complement �+ of (X,�) such thatAX,�+(v) <
"
0.
To prove the claim, for each m divisible by r choose an m-basis type divisor Bm

such that Sm(v) = v(Bm). If we set cm = min{1, �m(X,�)}, then (X,� + cmBm) is
lc by the definition of �m and

AX,�+cmBm(v) = AX,�(v)� cmv(Bm) = AX,�(v)� cmSm(v).

Since Sm(v) ! S(v) and cm ! �(X,�) as m ! 1, we see

lim
m!1

AX,�+cmBm(v) = AX,�(v)� �(X,�)S(v),

which is zero since v computes �(X,�).
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Therefore, we may find m so that AX,�+cmBm(v) < "
0. Since �KX � � is ample,

we may choose H 2 | � KX � �|Q so that (X,� + cmBm + (1 � cm)H)) remains lc
[KM98, Lem. 5.17.2]. Hence, �+ := � + cmBm + (1 � cm)H is a Q-complement of
(X,�) and satisfies AX,�+(v)  AX,�+cmBm(v) < "

0.

By the above claim, we may choose a Q-complement �+ of (X,�) such that
AX,�+(v) < "/t. Since �+ � � ⇠Q �KX � �, there exists a positive integer m

and f 2 H
0(X,OX(mL)) such that �+ = �+ 1

mr{f = 0}.
Since (X,�+) is lc andKX+�+ ⇠Q 0, the pair (Z,�+ 1

mr{f = 0}) is lc [Kol13, Lem.
3.1]. Using that AZ,�(vt) =

1
r + tAX,�(v) and vt(f) = m+ tv(f), we see

AZ,�+ 1
mr {f=0}(vt) = t

�
AX,�(v)� 1

mrv(f)
�
= tAX,�+(v) < ".

Hence, if we set s := vt(f), then

s = mr
�
AZ,�(vt)� AZ,�+ 1

mr {f=0}(vt)
�
� mr(AZ,�(vt)� "). (A.10)

To estimate the asymptotic lct, observe that f dp/se 2 ap(vt) for each positive integer
p. Hence,

lct(Z,�; ap(vt)) � lct(Z,�; (f dp/se)) � 1

dp/semr

where the last inequality uses that (Z,� + 1
mr{f = 0}) is lc. Therefore,

lct(Z,�; a•(vt)) = lim
p!1

p · lct(Z,�; ap(vt)) � lim
p!1

p

dp/semr
=

s

mr
.

After referring back to (A.10), we see lct(Z,�; a•(vt)) � AZ,�(vt)� ". ⇤
Lemma A.9. There exists a positive integer M such that the following holds: for
each positive integer k, there exists f

(k) 2 R such that the pair

(Z,� + 1
rM {f (k) = 0})

is lc in a neighborhood of o 2 Z and v1/k is an lc place of the pair.

Proof. Fix a positive integer k. Choose a log resolution W ! Z of (Z,�) and local
coordinates y1, . . . , yq at a point ⌘ 2 W such that v1/k may be written as v↵ for some
↵ = (↵1, · · · , ↵q) 2 Rq

>0 (see (2.1) for the definition). After replacing W with a higher
model and choosing new local coordinates, we may assume ↵1, . . . , ↵q are linearly
independent over Q.

Note that v1/k computes lct(Z,�; a•(v1/k)), since AZ,�(v1/k) = lct(Z,�; a•(v1/k)) by
Lemma A.8 and the equality v1/k(a•(v1/k)) = 1. Hence, [LX18, Rem. 2.52] implies
v1/k admits a weak lc model in the sense of [LX18, Def. 2.49]. In particular, the
argument in loc. cit. implies there exists a proper birational morphism ⇢ : Wwlc ! Z,
prime divisors S1, . . . , Sq on W

wlc with ordSj = v�(j) for some �
(j) 2 Zq

�0 such that

(i) (Wwlc
, ⇢

�1
⇤
� +

P
Si) is lc,

(ii) �KWwlc � ⇢
�1
⇤
��

P
Si is ⇢-nef, and

(iii) ↵ lies in the convex cone generated by �
(1)
, . . . , �

(q).
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Applying [Bir19, Thm. 1.8], we may find a positive integer M , dependent only on
dim(Z) and the coe�cients on �, and an e↵ective Q-divisor �+

Wwlc � ⇢
�1
⇤
(�) +

P
Sj

such that, in a neighborhood of ⇢�1(o), (Wwlc
,�+

Wwlc) is lc andM(KWwlc+�+
Wwlc) ⇠Z 0.

Set �+ := ⇢⇤(�
+
Wwlc). Observe that

�+ � � and KWwlc + �+
Wwlc = ⇢

⇤(KZ + �+).

Hence, in a neighborhood of o 2 Z, (Z,�+) is lc and M(KZ + �+) ⇠ 0. Additionally,
each Sj is an lc place of �+.

To see v1/k is an lc place of (Z,�+), note that

AZ,�+(w) = AZ,�(w)� w(�+ � �) for any w 2 ValZ .

Since Y ! Z is a log resolution of (Z,�), AZ,� is linear on our simplicial cone.
Additionally, w 7! �w(�+ � �) is convex on the cone by [BFJ08, Lem. 1.10]. Using
that ↵ lies in the convex cone generated by �

(1)
, . . . , �

(q) and AZ,�+(v�(j)) = 0 for each
j = 1, . . . , q, we see AZ,�+(v1/k)  0. Since (Z,�+) is lc, we conclude AZ,�+(v1/k) = 0.

Finally, note that

rM(�+ � �) = rM(KZ + �+)� rM(KZ + �) ⇠ 0

at o 2 Z. Hence, we may find f
(k) 2 R such that �+ � � agrees with 1

Mr{f
(k) = 0} in

a neighborhood of o 2 Z, which completes the proof of the lemma. ⇤

For each positive integer k, consider the lc pair (Z,� + 1
Mr{f

(k) = 0}) constructed
above. Repeating the proof of Theorem A.2, we see that if k � 0, then �+ :=
� + 1

Mr{in(f
(k)) = 0}) is a Q-complement of (X,�) with v an lc place.

To show v is the lc place of an N := N(n, I) complement, let ⇡ : Y ! X be a log
resolution of (X,�+) and write �+

Y for the Q-divisor satisfying

KY +�+
Y = ⇡

⇤(KX +�+).

By Lemma 2.3, the lc places of (X,�+) coincide with the simplicial cone complex
QM(Y, (�+

Y )
=1).

Choose a sequence of divisorial valuations (vj)j in QM(Y, (�+
Y )

=1) converging to v.
Since each vj is divisorial and an lc place of (X,�+), Theorem 3.5 implies there exists
a positive integer N := N(n, I), depending only on n and I, such that each vj is the
lc place of an N complement. Hence, for each j, we may choose an N -complement
�+

j with AX,�+
j
(vj) = 0.

Set Dj := �+
j � � and write 'Dj : QM(Y, (�+

Y )
=1) ! R for the function defined

by v 7! v(Dj). Since each Dj is an element of 1
rN | � rN(KX + �)|, the set of

functions {'Dj | j 2 N} is finite by Lemma 2.5. Therefore, after replacing (vj)j with a
subsequence, we may find an individual N -complement �+

⇤
such that AX,�+

⇤
(vj) = 0

for all j. Using that v = limj vj, we conclude AX,�+
⇤
(v) = 0. ⇤
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