OPENNESS OF K-SEMISTABILITY FOR FANO VARIETIES
HAROLD BLUM, YUCHEN LIU, AND CHENYANG XU

ABSTRACT. In this paper, we prove the openness of K-semistability in families of
log Fano pairs by showing that the stability threshold is a constructible function
on the fibers. We also prove that any special test configuration arises from a log
canonical place of a bounded complement and establish properties of any minimizer
of the stability threshold.
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Throughout the paper, we work over an algebraically closed characteristic zero field.

K-stability was invented as an algebraic condition to characterize when a Fano
variety admits a Ké&hler-Einstein metric (see ) In recent years, the
question of whether one can construct the moduli space parametrizing K-polystable
Q-Fano varieties with fixed numerical invariants, as well as establish nice properties
for it, has attracted significant interest. Previously, the construction of the moduli
space relied on the properties, especially the existence, of Kdhler-Einstein metrics (see
e.g. ILWX19|). Nevertheless, using the valuative criterion developed in |Fuj19a,Lil7 [,
a purely algebro-geometric approach has been dramatically advanced. See |BX19,

ABHLX20| for more background.
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This paper aims to settle one of the main steps of the construction. Namely, we
prove that in a Q-Gorenstein family (X, A) — B of log Fano pairs over a normal
base, the locus B° C B parametrizing K-semistable fibers is a Zariski open set. This
is the last ingredient needed to conclude that the moduli space of K-polystable Q-Fano
varieties exists. See Theorem for a more precise statement.

1.1. Main theorems. Before proving the openness result, we first establish the fol-
lowing property of the stability threshold as well as Tian’s a-invariant.

Theorem 1.1. If (X,A) — B is a Q-Gorenstein family of log Fano pairs over a
normal base B, then the functions

B 3 b— min{a(X3, A;),1}  and B> b min{d(X3, Ap), 1}
are constructible and lower semicontinuous.

Recall that the a-invariant of a log Fano pair (X, A) was introduced in |Tia87| and
the stability threshold (also known as the d-invariant) in [FO18|. It was shown in
|[FO18|BJ20| that §(X,A) > 1 if and only if (X, A) is K-semistable, based on the
valuative criteria for K-semistability proved in [Fuj19a}Lil7|. Therefore, we have the
following immediate corollary of Theorem

Corollary 1.2. If (X,A) — B is a Q-Gorenstein family of log Fano pairs over a
normal base B, then

B°:={be B| (X5, 4y;) is K-semistable}
s a Zariski open subset of B.
Together with the main theorems in |Jia20,BX19ABHLX20|, we deduce

Theorem 1.3. The moduli functor XKSS of K-semistable Q-Fano varieties of dimen-
sion n and volume V is an Artin stack of finite type over k and admits a separated
good moduli space %Ks;‘ — X‘I/(fls, whose k-points parameterize K-polystable Q-Fano
varieties of dimension n and volume V..

In fact, the boundedness of X{%* was settled in |Jia20], which heavily relied on
results in [Birl9|. Corollary|1.2|then implies that the moduli functor Xy5 is an Artin
stack of finite type over k. With the latter step completed, it follows from the main
theorems in [BX19ABHLX20| that X% admits the separated good moduli space
i s XK

Asa consequence of Corollary- 1.2 and Theorem |1.3| we show that K-stability (resp.
K-polystability) is an open (resp. constructible) condltlon for Q-Gorenstein families
of log Fano pairs; see Theorem

Remark 1.4. An analogue of Theorem in a local setting was proved in [Xu20)
for the normalized volume function defined in [Li18]. Corollary[1.2] and Theorem
can also be obtained independently as a consequence of the local result via the cone
construction.
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1.2. Outline of the proof. Our strategy of proving Theorem [1.1]is approximating
the infimum

Axn(E)
S(E)
by the values on lc places E of bounded complements. We then deduce constructibility

by using a theorem on invariance of log plurigenera established in [HMX13| Theorem
1.8].

More precisely, the proof of Theorem [1.1] relies on combining two techniques. The
first one is the special degeneration theory initiated in [LX14] and later developed in
|LX20,|Fuj19al Fuj19b,|BX19| etc. Roughly speaking, to compute §(X,A) for a log
Fano pair (X, A), instead of testing general divisorial valuations, we can focus on a
special class of valuations, which are those that arise from a special degeneration.
It was known previously that it suffices to consider such degenerations for studying
K-stability. Our new strategy, which is the second ingredient in this paper, is to use
global complements to study them.

The concept of a complement was introduced in [Sho92|. Since then it has been a
particularly effective tool in birational geometry for understanding Fano varieties. In
particular, a profound theorem on the existence of bounded global complements for
log Fano pairs was proved by |Birl9|. By using the techniques from [Fuj19b}/LX20|,
one can show that the valuation computing min{d, 1} can be approximated by special
divisors (see |BLZ19,[ZZ19]). By applying Birkar’s result, we deduce that all these
special divisors are lc places of a bounded family of complements.

The above discussion can be easily extended to a Q-Gorenstein family of log Fano
pairs (X, A) — B, and finally we can use [HMX13] to conclude that

AXbaAb (Eb)
S(Ey)

is a constant function if the special divisor Ej over (Xj, A,) varies in a family giving
fiberwise log resolutions.

The arguments in Section 1-4 are of a global nature. In the appendix, we will
develop this strategy further using local techniques.

(X5, ) = i%f for all divisors E over Xj

b—

1.3. Appendix. In Appendix we will use complements to further study the K-
stability of a log Fano pair (X, A). The results proved in Appendix are not needed
elsewhere in this paper. However, we expect it will be useful for future research.

We first prove the following theorem which gives a characterization of a valuation
v computing §(X, A) when §(X,A) < 1.

Theorem 1.5 (=Theorem . Let n be a positive integer and I C Q a finite set.
Then there ezists a positive integer N = N(n, I) satisfying the following:

Let (X, A) be an n-dimensional log Fano pair such that coefficients of A belong to
I. If6(X,A) <1, and v is a valuation computing 6(X,A), then v is quasi-monomial
and an lc place of an N-complement.



4 HAROLD BLUM, YUCHEN LIU, AND CHENYANG XU

While part of Theorem can be proved by a global method similar to our proof
of Theorem (see Proposition and Theorem , the statement in the full
generality has to be established in a somewhat different way. For this we have to
invoke the cone construction and use some arguments from [Xu20|. The technique of
using the cone construction to study the K-stability of a log Fano pair was initiated
in [Li17] and played a key role in proving results in |[LX20|LWX21|BX19].

We also show the following theorem which gives a characterization of weakly special
test configurations. It is obtained by combining arguments in [LWX21| and [Xu20],
which uses the existence of bounded local complements.

Theorem 1.6 (=Theorem . Let n be a positive integer and I C Q a finite set.
Then there ezists a positive integer N = N(n, I) satisfying the following:

If (X, A) is an n-dimensional log Fano pair such that coefficients of A belong to
I, then a finite set of Z-valued divisorial valuations {vy,--- ,vq} C Valyx is a weakly
special collection (see Deﬁmtéon if and only if there exists an N-complement A™
of (X,A) such that each v; is an lc place of (X, AT).

By |LX14|, to study K-(semi,poly)stability, we can concentrate on the class of
weakly special test configurations. Theorem says that this class of test config-
urations comes from a somewhat ‘bounded’ amount of information.

Postscript remarks. Since the first version of this article appeared on the arXiv,
there has been works generalizing and strengthening our results. We list a few related
works below.

(1) In |LXZ21}, Theorem 1.1], it is shown that any valuation computing §(X, A) <
2l for an n-dimensional log Fano pair (X, A) has a finitely generated asso-
ciated graded ring. TheoremlTS_‘ is a crucial step in proving this result. This
result together with [BHLLX21,XZ20| implies that the the K-moduli space
X‘I/fﬁs is a projective scheme.

(2) In |LXZ21| Corollary 3.7], it is shown in the setting of Theorem that
B 5 b min{0(Xp, Az), =4} is constructible and lower semicontinuous, where
n is the relative dimension of X/B.

(3) Zhuang found a characterization of special prime divisors over a log Fano

pair, that are, prime divisors induced by special test configurations in [Xu21|
Theorem 4.12] as a strengthening of Theorem

Acknowledgement: We thank Davesh Maulik, Chuyu Zhou, and Ziquan Zhuang
for helpful discussions. We also would like to thank the anonymous referees for many
useful comments. Much of the work on this paper was completed while the authors
enjoyed the hospitality of the MSRI, which is gratefully acknowledged.

2. PRELIMINARIES

2.1. Conventions. We will follow standard terminologies in |[KM98|Kol13|. A (nor-
mal) pair (X,A) is composed of a normal variety X and an effective Q-divisor A on
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X such that Kx + A is Q-Cartier. See |[KM98| 2.34] for the definitions of klt, plt, and
lc pairs.

A pair (X, A) is log Fano if X is projective, (X, A) is klt, and —Kx — A is ample. A
variety X is Q-Fano if (X, 0) is log Fano. More generally, a variety X is of Fano type
if it is projective and there exists a Q-divisor A such that (X, A) is klt and —Kx — A
is big and nef.

For a Q-divisor L, we write | L|g for the set effective Q-divisors which are Q-linearly
equivalent to L. For a subset I C [0, 1], we set

l
1=y J{ieo ( j =iy for some i, ....7 € 1}

p=1

and -
m — a
o ={=——

2.2. Families of pairs.

Definition 2.1. A Q-Gorenstein family of (normal) pairs f : (X,A) — B over a
normal base is the data of a flat surjective morphism of varieties f : X — B and a
Q-divisor A on X satisfying

a € I and m € N}.

(1) B is normal and f has normal, connected fibers (hence, X is normal as well),

(2) Supp(A) does not contain a fiber, and

(3) Kx/p + A is Q-Cartier.
We say (X, A) — B is a Q-Gorenstein family of log Fano pairs if in addition (X, Ap)
is log Fano for all b € B. Here, A, is the cycle pull-back of A to the fiber X,. See
|Kol20, Section 4] for more background.

In birational geometry, we should usually allow the fibers to be slc pairs. However,
in this note, we are only interested in families whose fibers are of Fano type. Thus,
we can assume all fibers are normal.

Definition 2.2. Let f : (X,A) — B be a Q-Gorenstein family of pairs with B
smooth. A morphism g : Y — X is a fiberwise log resolution of (X,A) — B if Y
is smooth over B, E :=>"._; E; = Exc(g) + Supp(g; ' D) is an snc divisor, and each
stratum of F is smooth with irreducible fibers over B. (Here, the strata of E are the
irreducible components of E; = N, E}, for some subset J C I.)

If (X, A) — Bis aQ-Gorenstein family of pairs, then we can always find a nonempty
open set U C B and a finite étale map U’ — U such that (Xy/, Ay) — U’ admits a
fiberwise log resolution.

2.3. Valuations. Let X be a variety. A valuation on X will mean a valuation v :
K(X)* — R that is trivial on k& and has center on X. Recall, v has center on X if
there exists a point £ € X such that v > 0 on Ox¢ and > 0 on m¢ C Ox. Since X is
assumed to be separated, such a point £ is unique, and we say v has center cx(v) :=¢&.
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If X is proper, then the valuative criterion for properness implies such a center always
exists uniquely. By convention, we set v(0) = +o0.

Following |JM12, BAFFU15|, we write Valx for the set of valuations on X and
Valy for the set of non-trivial ones. We endow Valx with the topology of pointwise
convergence.

To any valuation v € Valy and p € N, there is an associated valuation ideal a,(v).
For an affine open subset U C X, a,(v)(U) = {f € Ox(U)|v(f) > p} if cx(v) € U
and a,(v)(U) = Ox(U) otherwise.

For an ideal a C Ox and v € Valy, we set

v(a) :==min{v(f) | f € a- Ox @} € [0,400].

We can also make sense of v(s) when £ is a line bundle and s € H°(X, £). After triv-
ializing £ at cx(v), we set v(s) equal to the value of the local function corresponding
to s under this trivialization; this is independent of the choice of trivialization.

Similarly, if D is a Cartier divisor, we set v(D) := v(f), where f is a local equation
for D at cx(v). If D is only Q-Cartier, we set v(D) := m~'v(mD), where m is a
positive integer so that mD is Cartier.

2.3.1. Divisorial valuations. Let p 'Y — X be a proper birational morphism of
varieties with Y normal. A prime divisor £ C Y (called a prime divisor over X)
induces a valuation ordg : K(X)* — Z given by order of vanishing along F. A
valuation of the form c¢ - ordg, where ¢ € Q-g, is called divisorial. We we write
DivValy C Valy for the set of such valuations.

2.3.2. Quasi-monomial valuations. Let p Y — X be a proper birational morphism
with Y regular. Fix a not necessarily closed point n € Y and y,...,y,. a regular
system of parameters for Oy,,. Given a = (a1,...,a,;) € RL;, we define a valuation

v, as follows: For f € Oy, we can write f in 63/\77 ~ k(lly, -yl a8 D gene 87,
where ¢ € k(n) and set

va(f) := min{(a, B) | ¢5 # 0}, (2.1)

Note that v, is determined by the Newton polygon of > BeNT cpy”.

A valuation of the form v, is called quasi-monomial. If o € QX, then v, is a
divisorial valuation. Indeed, after a sequence of smooth blowups Y’ — Y that are
toroidal with respect to the coordinates 1, . .., v,, we may find a prime divisor ' C Y’
and ¢ € Q¢ so that v, = cordp.

Let E = E; + --- + E; be a reduced snc divisor on Y. Fix a subset J C {1,...,d}
and an irreducible component Z C N;c;E;. Write n € Y for the generic point of Z
and choose a regular system of parameters (y;);cs at 1 such that each y; locally defines
E; at . We write QM, (Y, E) C Valy for the set of quasi-monomial valuations that
can be described at 7 with respect to (y;)ics and note that QM, (Y, E) ~ RL,. We
set QM(Y, E) := U,QM, (Y, E), which has the structure of a simplicial cone complex,
and QM(Y, E)* for the non-trivial valuations in QM(Y, E).
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2.3.3. Log discrepancy. For a pair (X, A), we write
Axa: Valy — RU{+o0}

for the log discrepancy function with respect to (X, A) as in [JM12|BAFFU15| (see
|Blu18| for the case when A # 0). The function Ax a is homogeneous of degree 1 and
lower semicontinous.

A pair (X,A) is kit (resp., lc) if and only if Axa(v) > 0 (resp., > 0) for all
v € Valy. If D is an effective Q-Cartier divisor, then Ax a4p(v) = Axa(v) —v(D)
for all v € Valy.

When p 1 Y — X is a proper birational morphism with ¥ normal and £ C Y a
prime divisor,

AX7A<OI‘dE) =1+ coeffg (Ky — ,U,*(KX + A))

and we will often write Ax A(FE) for this value. If 1 Y — X is a log resolution of
(X,A) and F := Exc(p) +Supp(p; 'A), then Ax A is linear on the cones in QM(Y, E).
Additionally, if we write Ay for the Q-divisor satisfying Ky + Ay = p*(Kx + A),
then AX7A = AY,AY-

The following result is well known.

Lemma 2.3. Keep the above notation. If (X, A) is lc, then
QM(Y, AT") = {v € Valx | Ax a(v) = 0},

where AJ! is the sum of the prime divisors in Ay with coefficient one. In particular,
the set does not depend on Y .

Proof. Set E := Exc(u) + Supp(p; 'A) and observe that Ax o = Ay a, is zero on an
extremal ray of a cone in QM(Y, E) if and only if the corresponding prime divisor on
Y has coefficient 1 in Ay. Since Ax a is linear on the cones in QM(Y, E), this implies
QM(Y, AF!) is the locus of QM(Y, F) where Ax A is zero. By |Blul8| Prop 3.2.5], it
is also the locus of Valy where Ax a is zero. O

2.4. Invariants associated to log Fano pairs. Let (X, A) be a log Fano pair and
r a positive integer such that L := —r(Kx + A) is a Cartier divisor. The section ring
of L is given by

R(X,L):=R= PR, =P H(X,0x(mL)).

meN meN

2.4.1. Filtrations induced by valuations and associated invariants. For v € Valyx and
A € Ry, we set

F)Rpy = {s € R, |v(s) > A}
If v = ordg, where F is a divisor over X arising on a proper birational model p : Y —
X, then
FIR,, ~ H (Y, Oy (mp*L — [AET)).
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We consider the following invariants

1
T(v) := sup T (v), where T, (v):= %sup{/\ | FAR,, # 0}

m€Z>0

and
* dim(F ' R,,)

mrdim R,,

S(v) := lim S,,,(v), where Sp(v) ::/ d\.
0

m—0o0

When the choice of the log Fano pair (X, A) is not clear from context, we write T'x a(v)
and Sx a(v) for these values.

Both invariants can be written in terms of the vanishing of v along classes of anti-
canonical divisors. Specifically, for m divisible by r,

T = max{v(+=D)| D € | —m(Kx + A)l}.
and
Sm(v) = max{v(D)|D € | — Kx — Al|g is m-basis type }.
Here, following |FO18| Def. 0.1], a Q-divisor D € | — Kx — Alg is called m-basis type
if there exists a basis {sy,...,sn,,} of H* (X, Ox(—m(Kx + A))) such that

D=5 ({s1=0}+---+{sn,, = 0}).

The functions S and T are lower semicontinuous on Valyx |BJ20, Prop 3.13] and
homogeneous of degree 1 [BJ20, §3.2]. When FE is a divisor over X arising on a proper
birational model y: Y — X, then

T(ordg) = sup{t € Rog| — p*(Kx + A) — tE is pseudoeffective }
and

S(ordg) := ! A) /000 vol(—p*(Kx +A) —tE) dt

(—Kx —A)"
We will often write T'(F) and S(E) for these values. See |BJ20, Sect. 3] for further
details.

2.4.2. Behaviour of S and T on a simplicial cone. Let p : Y — X be a proper
birational morphism with Y regular and E := Zle E; a reduced snc divisor.

Proposition 2.4. The functions S and T are continuous on QM(Y, E).

When X is smooth, the result is a special case of [BJ18| Prop 5.6]. We provide a
proof that works for all log Fano pairs.

Proof. We will only prove the continuity statement for S, since the proof for T is
similar. To proceed, we first show that for each positive integer m divisible by r, the
function S, is continuous on QM(Y, E).

For a Q-Cartier divisor D on X, write pp : QM(Y, E) — R for the continuous
function sending v — v(D). With this notation, we have S,, = supp ¢p, where the
sup runs through all m-basis type divisors. Since any m-basis type divisor D lies in

m+vm| —mN,,(Kx + A)], Lemmaﬁimplies the set of functions {¢p | D is m-basis type}
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is finite. Therefore, S,, : QM(Y, E') — R is the maximum of finitely many continuous
functions and itself continuous.

We proceed to show S is continuous on QM(Y, E). Since S is lower semicontinuous
on Valy [BJ20, Prop. 3.13], it suffices to show the upper semicontinuity. Pick any
t € Rog. We have to show U := {v € QM(Y, E) | S(v) < t} is open.

Pick any w € U. We may choose £ > 0 so that S(w) + cAxa(w) < t. By the fact
that S, converges pointwise to S and |[BL18, Thm. 5.13], which is a partial uniform
convergence result, we may choose m divisible by 7 so that S,,(w) + cAxa(w) < t
and S < S, +eAx A on QM(Y, E). Since S, and Ax a are continuous on QM(Y, E),
there exists an open neighborhood w € W C QM(Y, E) so that S, + cAxa < t on
W. Then W C U, which completes the proof. U

We must prove the following lemma used in the above proposition. For a Q-Cartier
divisor D on X, write ¢p : QM(Y, E) — R for the function sending v +— v(D).

Lemma 2.5. If H is a Cartier divisor on X, then the set of functions {¢p| D € |H|}
s finite.

Proof. Tt suffices to prove the statement for the restriction of ¢p to a fixed simplicial
cone in QM(Y, E'). Choose any irreducible component Z C N;e;E;. Write n € YV for
the generic point of Z, set r := |J|, and fix a regular system of parameters (y;);c; at
1 € Y such that y; locally defines E;.

Set B := P(H°(X,Ox(H))*) and write H for the universal divisor on X x B
parameterizing elements of |H|. To prove the lemma, we will write B = UB; as a
finite union of constructible subsets so that the restriction of ¢4, to QM, (Y, E) is
independent of b € B;.

Choose a nonempty affine subset U C B and a function f € Oy, ®@; O(U) that
defines the Cartier divisor H|y«p in a neighborhood of n x U. We can write the image

of fin 6;7 ® O(U) as 3 _genr cpyP, where each cg € k(n) @ O(U) and consider the
associated Newton polygon N := conv{ + RL,|cg # 0}. Note that N is determined
by a finite collection of non-zero coefficients cq), . . . , Cgemy . Hence, ifwelet By CU
denote the open set where Cg) # 0 for all 2 = 1,...,m, then the Newton polygon of
the image of f in 6;,7 ® k(b) agrees with NV for all b € By. Hence, p4, is independent

of b € B;. Repeating this argument on the complement eventually yields such a
decomposition. O

2.4.3. K-stability. The definition of K-stability was originally defined in terms of de-
generations |Tia97,Don02]. For this paper, we use the valuative characterization of
K-stability invented in |[Fuj19al/Lil7|, which suits our techniques better.

Let E be a prime divisor over a log Fano pair (X, A) arising on a proper normal
model i : Y — X. Following [Fuj19a/, we set

By a(E) = Ax a(E)(—~Kx — A)" — /0 vol(—pt (K — A) — tE) dt.
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Definition—Theorem 2.6. A log Fano pair (X, A) is K-semistable (resp., K-stable)
if and only if Sx A(E) > 0 (resp., > 0) for all divisors E over X.

The equivalence of this definition with the definition in |Tia97,|Don02||LX14] is
addressed in |Fuj19alLil7| (and [BX19] for part of the K-stable case).

2.4.4. Thresholds. Let (X,A) be a log Fano pair and r a positive integer so that
r(Kx + A) is Cartier. We will consider two thresholds that measure the singularities
of anticanonical divisors.

First is an invariant defined in [FO18|. For a positive integer m divisible by r, we
set

O (X, A) :==min{let(X,A; D) | D € | — Kx — Alg is m-basis type}.
The stability threshold of (X, A) is defined by 6(X,A) := limsup,,_, Omr (X, A). As
shown in [BJ20|, the limsup in the definition of the stability threshold is in fact a limit

and
AX,A(E> — inf AX,A(”)

S (E) N v S (U) ’
where the first infimum runs through all prime divisors £ over X and the sec-
ond through v € Valy with Axa(v) < +o0o. Therefore, the valuative criterion in
Definition-Theorem |2.6| implies (X, A) is K-semistable if and only if 6(X, A) > 1.

Next is Tian’s a-invariant (also known as the global log canonical threshold) defined
by

5(X, A) = inf (2.2)

a(X,A) :=inf{lct(X,A; D) | D € | — Kx — Alg}.
Similar to the stability threshold, the invariant may be expressed in terms of valuations

AX’A(E) . inf AX,A(U) )

a(X,A)::i%f e N T

(2.3)

see |Amb16,BJ20].
We say that a valuation computes the stability threshold (resp., global log canonical

threshold) if it achieves the infimum in (2.2) (resp., (2.3)).

2.5. Complements. The theory of complements was introduced by Shokurov in his
work on threefold log flips [Sho92|. The boundedness of complements proved in [Bir19
(also see its generalization in [HLS19|) plays a key role in this paper.

Definition 2.7 (Global complements). Let (X,A) be a projective lc pair. A Q-
complement of (X, A) is a Q-divisor A* on X such that AT > A (X, A") is I,
and Kx + AT ~g 0. An N-complement of (X,A) is a Q-complement AT satisfying
N(Kx + AT) ~0.

The latter definition differs from the terminology in [Birl9|, which is weaker. An
N-complement AT of (X, A) as defined above agrees with the definition in loc. cit.
of an N-complement A" of (X, A) satisfying AT > A, which is sometimes called a
monotonic N-complement in the literature.
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Clearly, if A" is an N-complement, then AT — A € |- Kx — A|g. Additionally, if r
is a positive integer so that r(Kx +A) is Cartier, then rN(AT—A) € |—rN(Kx+A)].

One crucial input in Theorem[1.1]is the following statement, which follows from the
deep result of [Birl9| Theorem 1.7].

Theorem 2.8 (|Birl9, Theorem 1.7]). Let n be a natural number and I C QN [0,1]
a finite set. There is a positive number N := N(n,I) depending only on n and I
satisfying the following:

Assume (X, A) is an n-dimensional lc pair such that X is of Fano type and the
coefficients of A belong to D(I). If (X, A) admits a Q-complement, then it admits an
N-complement.

Proof. Since —Kx — A is not nef, we cannot directly apply |Birl9, Thm 1.7]. But,
there is an an easy reduction step (see e.g. |Birl9} (6.1)]).

Since X is Fano type and —Ky — A is linearly equivalent to the effective divisor
AT —A, we can run an MMP for —Kx — A to get a birational model h: X --+ X’ such
that —Kx» — h.A is nef. Since (X, A) has a Q-complement, so does (X', h.A). Now,
(X', heA) has an N-complement by [Birl9, Theorem 1.7]. Therefore, [Bir19} (6.1)]
implies (X, A) admits an N-complement as well. O

We note that one can find more general statements on the existence of bounded
complements in [HLS19, Thm 1.13].

3. APPROXIMATION AND BOUNDEDNESS

The idea of approximating a valuation by a sequence of divisors coming from a
special type of birational morphisms was developed in [LX20|[Fuj19b|, modeled on the
arguments in [LX14|. One key observation in this paper is that we can combine the
boundedness of complements with the latter approximation process.

3.1. Approximation of thresholds and Q-complements. We will proceed to dis-
cuss an important class of valuations over a log Fano pair and then describe their
relation to the stability and global log canonical thresholds.

3.1.1. Lc places of Q-complements.

Definition 3.1. Let (X, A) be a log Fano pair. We say v € Valy is an lc place of
a Q-complement (resp., N-complement) if there exists a Q-complement (resp., N-
complement) A™ of (X, A) such that Ax a+(v) = 0. When v = ordg for some divisor
E over X, we simply say E' is an lc place of a Q-complement (resp., N-complement).

In Appendix we will see that lc places of a Q-complements are closely related to
weakly special test configurations with irreducible central fiber.

We state the following elementary lemma concerning divisorial valuations that are
the lc place of a Q-complement.
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Lemma 3.2. Let (X, A) be a log Fano pair and E a prime divisor over X. If E is an
le place of a Q-complement, then there exists a proper birational morphism of normal
varieties i = Y — X satisfying:
(1) E appears as a divisor on' Y with Exc(u) C E,
(2) (Y, 1, 'A+ (1 —a)E) is lc and admits a Q-complement, where a := coeff g(A)
if B is a prime divisor on X and zero otherwise, and
(3) Y is Fano type.

Proof. Choose a Q-complement A™ of (X, A) such that Ay a+(E) = 0 and set
D = A+ —A ~Q —(Kx—f-A)

Fix 0 < ¢ < 1so that 0 < Ax atep(E) < 1.

By |[BCHM10|, there exists a proper birational morphism of normal varieties p :
Y — X such that E appears as a divisor on Y with Exc(u) € E such that —F is
Q-Cartier and p-ample. Write I" for the Q-divisor on Y so that

Ky +T = p"(Kx + A™).
Since (Y,T)islcand T' > p;*A+(1—a)E, (2) holds. Next, set IV =T — (1 —c)u*(D).
Note that (Y,T") is klt, since (X, A + ¢D) is klt. Additionally,
—Ky —T"~g —(1 — )" (Kx + A)
is big and nef. Therefore, Y is of Fano type. U

3.1.2. Stability threshold. We state the following characterization of the stability thresh-
old.

Proposition 3.3. Let (X, A) be a log Fano pair. If §(X,A) <1, then

. Axa(E)
0(X,A) =inf ———
( Y ) 1% S(E)
where the infimum runs through prime divisors E over X such that E s an lc place
of a Q-complement.

The result is proved in |[BLZ19| in the case when §(X,A) < 1. Using an argument
from |Z719], the 6(X, A) =1 case can be deduced from the < 1 case.

Proof. We first treat the case when §(X,A) < 1 which is embedded in the proof of
BLZ19, Theorem 4.1]. For the convenience of the reader, we recall the argument in
loc. cit.

By Equation the inequality 0(X,A) < infg A);’(A};)E) holds. For the reverse
inequality, pick any £ > 0. By the fact that ¢ is a limit and |BJ20, Cor. 3.6], we may
choose m so that

O (X, A) <min{1, (1 +¢)d(X,A)}
and S,,(v) < (14 ¢)S(v) for all v € Valy with finite log discrepancy. Now, fix an
m-basis type divisor B such that 6,,(X,A) = let(X, A; B) and a divisor E over X
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. . Axa(E
computing the lct (i.e. #((Bﬁ) = let(X, A; B)). Note that ordg(B) < Sp,(E) <
(1+4¢)S(E). Therefore,

Axa(E) Axa(E) 2
S(E) <1 +€)ordE(B) = (14e)0n(X,A) < (1+e)%0(X,A).

We will show F is the lc place of a Q-complement. To proceed, note that (X, A +
OmB) is lc and Ax ays,5(E) = 0. By [KM98| Lem. 5.17.2], we can choose a di-
visor H € | — Kx — Alg so that (X,A + 0,8 + (1 — 0,,)H) remains lc. Hence,
At :=A+6,B+ (1 —6,)H is a Q-complement of (X, A) and Ax a+(E) = 0. There-
fore, sending ¢ — 0 shows that the reverse inequality holds.

We now assume 0(X, A) =

Claim: For any ¢ € (0, a(X, A)), there exists D € |- Kx—A|g such that (X, A+eD)
is kIt and 0(X,A+¢eD) < 1.

The claim follows immediately from |ZZ19| Theorem 1.2]. For the convenience of the
reader, we recall the argument in loc. cit. Pick any € € (0, a(X, A)), then (X, A+eD)

is kIt for any D € | — Kx — A|g. Since 6(X,A) = 1, we may choose a prime divisor
E over X such that AX A((E)) < 1+ 5=, where n := dim(X). Using the inequality
Txa(E) > (1+ )SXA( ) [Fujl9a, Prop. 2.1] , we may choose D € | — Kx — Alg

such that ordE(D) > (14 5)Sx,a(E). Observe that
AX,A+£D(E) = AX,A(E) — & OI‘dE(D) and SX,A+5D(E) = (1 — E)SX7A(E),
where the second equation is [BJ20, Lem. 3.7.i]. Therefore,

AXAJrsD(E) _ 1 (AX,A(E> o OI'dE(D>)
Sxaren(E)  1—¢

5(X,A+eD) < Sxa(B)  ° Sxa(E)

?ince gii((g)) —e- g‘fi((E)) <1+£—e(1+ 5) < 1—¢, wecan conclude 6(X, A+eD) <

We now return to the proof of the proposition. By Equation [2.2] E the inequality
(X, A) < infg AX(A(E holds. For the reverse inequality, fix a rational number ¢ €
(0, (X, A)). By the above claim, there exists D € | — Kx — A|g such that §(X, A +
eD) < 1. Using the § < 1 case, we may find a divisor £ over X such that g;’ii—i((g
1 and F is the lc place of a Q-complement AT of (X, A +eD). Note that AT is also

a Q-complement of (X, A) since by definition AT > A —|— eD > A.
We now estimate AX A( ) Using that (X, A) < AX A by (2.3), we see ordg (D) <

Txa(E) < Ii}(()?,(j)‘ Therefore,

AX,A—{—ED(E) _ AX’A(E) —SOI'dE(D) S (1 — E/Oz(X, A)) AX7A(E)
Sx,a+en(E) (1—¢e)(SxalE)) — 1—e Sx.a(E)

Sending € — 0 completes the proof. O

1>
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3.1.3. Global log canonical threshold. We now prove an analog of Proposition for
the global log canonical threshold. The statement follows almost immediately from
definitions.

Proposition 3.4. Let (X, A) be a log Fano pair. If a(X,A) < 1, then
Ax A(E)
T(E)

where the infimum runs through divisors E over X such that E is an lc place of
Q-complement.

a(X,A) = 1%f

By applying a deeper result [Bir21, Thm. 1.5], it follows that the above infimum is
a minimum. Though, Proposition Will be sufficient for proving that min{1, a} is
constructible.

T(E)
places of Q-complements. For the reverse inequality, pick any ¢ € (0,1 — a(X, A)).
We may choose D € | — Kx — Alg such that

c:=lct(X,A; D) < a(X,A) +¢,

Proof. By Equation a(X,A) < infg AxaB) where the infimum runs through lc

and a divisor F over X computing let(X, A; D). Note that ¢ < 1 by our choices of ¢.
Observe that (X, A+cD) islc and Ax at+ep(F) = Ax a(E)—c-ordg(D) = 0. Since

—Kx — A'is ample, we may find H € | — Kx — A|g so that (X, A+¢D + (1 —¢)H)

remains lc [KM98| Lem. 5.17.2]. Hence, AT := A+c¢D+ (1 —c¢)H is a Q-complement

of (X,A) with Ay a+(E) =0.

A)}’(E()E) < let(X,A; D) < a(X,A) + ¢, since ordg(D) < T(E).

Therefore, sending € — 0 completes the proof. U

Now, observe that

3.2. Boundedness. Using the boundedness of complements, we will show that lc
places of Q-complements are in fact lc places of N-complements.

Theorem 3.5. Let n be a natural number and I C Q a finite set. There is a positive
integer N := N(n, 1) satisfying the following:

Assume (X, A) is an n-dimensional log Fano pair such that the coefficients of A
belong to D(I). If E is a divisor over X that is the lc place of a Q-complement, then
E is an lc place of an N-complement.

The statement is a consequence of the boundedness of complements in |Bir19].

Proof. Let E be a divisor over a log Fano pair (X, A) such that E is an lc place of a
Q-complement. Applying Lemma gives a proper birational morphism p:Y — X
satisfying conditions (1)-(3) of the lemma.

Since the latter conditions are satisfied, we may apply Theorem to find an integer
N := N(n,I), depending only on n and I, so that (Y,u;'A + (1 — a)E) admits a
N-complement I'y.
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Hence, N(Ky +I'y) ~ 0, (Y,T'y) is lc, and I'y has coefficient 1 along E. If we set
[':= p.(I'y), then
Ky + FY = /L*<KX + F)
holds. This implies I' is a N-complement of (X, A) and Axr(F) = 0. O

The next two statements follow immediately from combining Theorem with
Propositions and

Corollary 3.6. Let n be a natural number and I C Q a finite set. There is a positive
integer N := N(n, I) satisfying the following:

If (X, A) is an n-dimensional log Fano pair such that the coefficients of A belong
to D(I) and 6(X,A) <1, then

6(X.A) = inf —AE(AE()E )

where the infimum runs through divisors over X that are lc places of an N -complement.

Corollary 3.7. Let n be a natural number and I C Q a finite set. There is a positive
integer N := N(n, 1) satisfying the following:

If (X, A) is an n-dimensional log Fano pair such that the coefficients of A belong
to D(I) and a(X,A) < 1, then

. Axa(E)
alX,A) —1%fﬁ,

where the infimum runs through divisors over X that are lc places of an N -complement.

3.3. Approximating valuations computing the stability threshold. In this sec-
tion, we show that if a valuation computes § < 1, then it is a limit of divisorial valu-
ations that are lc places of bounded complements. The result will not be used in the
proof of Theorem

We will obtain stronger results via passing to the cone to also cover the case when
d(X,A) = 1. Nevertheless, Proposition is proved only using global arguments.

Proposition 3.8. Let n be a natural number and I C Q a finite set. There is a
positive integer N := N(n, I) satisfying the following:

Assume (X, A) is an n-dimensional log Fano pair such that the coefficients of A
belong to D(I) and 6(X,A) < 1. If v* € Valy' computes 6(X, A), then there exists a
sequence of divisorial valuations (vy)y, in Valy' converging to v* such that each vy is

the lc place of a N-complement and limy_,« A?@S’“) =§(X,A).

Here, Valy' denotes the set {v € Valx | Axa(v) = 1}. Before proving the propo-
sition, we need the following lemma, which may be viewed as a global analogue of
|LX20, Lemma 3.8].

Lemma 3.9. Let (X,A) be a log Fano pair with 6(X,A) < 1. Assume v* € Val3'
computes (X, A). For any ideal b on X and e > 0, there exists a divisorial valuation
w € Valy' such that
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(1) w is the lc place of a Q-complement and
(2) w(b) > v*(6)(1 - ).

Proof. Let u: Y — X be a log resolution of (X, A, b). Write E for the Cartier divisor
on Y such that b- Oy = Oy (—FE) and Ay for the Q-divisor on Y such that

Ky—l—Ay = M*<KX —|—A)

Since —Kx — A is ample and —F p-semiample, there exists a rational number 0 <
t < 1 so that —p*(Kx + A) — tE is semiample.

Claim: For any ¢ > 0, there exists D € | — Kx — A|g such that
tw(b) < w(D) < tw(b) 4+ Ax a(w) (3.1)
for all w € Valy and let(X, A; D) > let(X, A; b)/2.
Fix m € Z~ sufficiently divisible so that
Im (—p"(Kx +A) —tE) |

is base point free. By Bertini’s Theorem, we may choose a divisor H in the above
linear system so that Supp(Ay) + H is snc. Set D := p,(m™'H + tE), which is an
element of | — Kx — A|g. We will show D satisfies the claim if m > 0.
Note that u*D = m~'H +tE. Hence, for w € Valy,
w(D) =m w(H) +tw(E) = m w(H) + tw(b).

Since H + Supp(Ay) is snc, let(Y, Ay; H) = 1. Therefore, Ax a(w) = Aya, (w) >
w(H ), which implies (3.1) holds if m > 1/¢’.
To finish the claim, we compute
let(X, A; D)~ = let (Y, Ay;m ™ H +tE) ™
<lct (Y, Ay; m_lH)f1 +lct (Y, Ay tE) ™!
<1/m4t-let (X, A;6) ",

where the first inequality follows from the log concavity of the log canonical thresh-
old (e.g. see |JM12, Lemma 1.7.iv]). Since t < 1, we conclude let(X,A; D) >
let (X, A;b)/2 when m > 0.

Returning to the proof of the lemma, set § := §(X,A), ¢ := let(X, A;b), and g :=
min{1 — J,¢/2}. Choose a divisor D satisfying the above claim with &' := etv*(b)/2.
If we set A’ := A+ D, then (X,A’) is log Fano. Indeed, the pair is klt, since
let (X, A; D) > ¢/2 > . Additionally, —Kx — A’ ~g —(1 — 8)(Kx + A) is ample.

Observe that for w € Valy,

AX,A’(UJ) = AX’A(U)) — Bw(D) and SX’A/(U}) == (1 - B)S)(’A(w),
where the second equality is by [BJ20| Lem. 3.7.i]. Therefore, (3.1) gives

Axa(w)(1 = B') — Btw(b) < Axar(w) < Axa(w) — Btw(b). (3.2)
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If we set p := v*(b), we see

_ Axa(v) — fip _ (1- Bip)o
= Sxar(v*) T (1= 08)Sxa(v) 1-p5
Since 1 — 8 > ¢, it follows that ¢’ < 1.

Applying Proposition to (X, A’), we may find a divisorial valuation w € Valy'
that is an lc place of a Q-complement of (X, A’) so that

Axar(w) _ (1= Btp+ 5=)5

3.3
Sx.ar(w) — 1-p (3:3)
Since A’ > A, w is also an lc place of a Q-complement of (X, A). By (3.2) and the
inequality § < gii((g)) = Sxi . we know
_ / JE— ’
(1 — pe’ — ptw(b)) o < Ax.a (w) (3.4)
1-— ﬁ SX,A’ (U})
Analyzing (3.3) and (3.4), we see p < w(b) + £ Since £ = £v*(b), the proof is
complete. U

Proof of Proposition|3.8, By Lemma there exists a sequence of divisorial valua-
tions (vg), in Val}' that are Ic places of Q-complements satisfying

vk (ax(v"))
k

By Theorem each vy, is also the lc place of a N-complement. We will show that
a subsequence converges to v* in the valuation space.
Let £ € X denote the center of v*. Write m¢ C Ox for the ideal of functions

vanishing along £ and set r := v*(mg¢), which is > 0. Since v*(mgkm) = [k/r|r >k,
mgk/ "I C ay,(v*). Therefore,

[k/r]vk(me) > vp(ap(v) 2 k=1

for all k. This implies there exists € > 0 so that v,(mg) > ¢ for all £ > 1. Since

c:=let(X, A;mg) = igf1 AX&Lm(l;),
weValy  wW(Mg

1
>1-— % and  Axa(vr) = 1.

we also have v(mg) < Ax a(vg)/c = 1/c for all k.
Observe that

V= {v € Valy, |v(m¢) € [e,1/c] and Axa(v) <1} C Valy

is a compact subset of the valuation space by | BAFFU15, Thm 3.1]. Since any compact
subset of the valuation space is also sequentially compact [Poil3| (see also the proof of
\LX20, Prop 3.9]), there exists a subsequence (vy,); so that the limit w* = lim;_,.. vg,
exists in Valyx. We will proceed to show w* = v*.
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By the lower semicontinuity of the log discrepancy function, Axa(w*) < 1. For
any positive integers k, there is an inclusion a,,(v*)*/™ C a,(v*). This implies
[k/m]vg(a,(v*)) > vi(ar(v*)) > k — 1. Therefore,

k. —

1
* * J —
w*(a,,(v")) = ]lggovk (a,,(v")) > jlggo ]
From the latter inequality, we see w*(a,(v*)) > 1. Hence, w* > v* holds by [JM12|
Lem. 2.4]. Therefore, S(w*) > S(v*) and equality holds if and only if w* = v* by
|BJ20, Prop. 3.15].

Since v* computes the stability threshold, 2% (A S v < A’g(A(w Using that Ax a(w*) <

1 = Axa(v*), we conclude S(w*) = S(v*). Hence, w* = v* and v* = lim;_,o vy, .
Since S is lower semicontinuous on the valuation space liminf; ,o, S(vy;) > S(v*).

A v v* . .
Hence, limsup; ., );(A( ';) < A?@% ) = §(X,A). By (22), the limit exists and

equals §(X, A). O

4. CONSTRUCTIBILITY

4.1. Invariance of volumes. To prove Theorem|l.1} we will need a constructibility
result for the functions S and 7" when the valuation varies in a family.

Consider the following setup: Let (X, A) — B be a Q-Gorenstein family of log Fano
pairs with B smooth. Let D be an effective Q-divisor such that D ~pq —Kx/p — A,
Supp(D) does not contain a fiber, and (X, Ay + D) is Ic for all b € B.

Proposition 4.1. If (X, A+ D) — B admits a fiberwise log resolution g : Y — X and
F is a toroidal divisor with respect to Exc(g)+Supp(g; *A) satisfying Ax a+p(F) < 1,
then

Sx,a,(Fb)  and  Tx, a,(Fy)

are independent of b € B.

The toroidal condition in the above theorem means F' is an exceptional divisor of
a sequence of toroidal blowups of Y with respect to Exc(g) + Supp(g;'A). This is
equivalent to the condition that ordr € QM(Y, Exc(g) + Supp(g; *A)).

The result is a consequence of the deformation invariance of log plurigenera in
smooth families [HMX13| Thm. 1.8], whose proof is based on comparing the relative
MMP over B and the MMP for individual fibers.

Proof. By shrinking B, we may assume B is affine. By repeatedly blowing up the
center of F' on Y, we may assume F'is a prime divisor on Y. We fix t € Q- and aim
to show
vol(—gy (Kx, + Ap) — tF) (4.1)

is independent of b € B.

Let I'; and I'y be the effective Q-divisors without common components in their
support such that

Ky +T1=¢"(Kx+A+D)+T1y
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and ¢g.I'y = A+ D. Note that Supp(I'; 4+ I'y) is relative snc over B and d :=
coeffp(I'y) = 1= Ax a+p(F) > 0. By inversion of adjunction we know that (X, A+ D)
is log canonical. In particular, I'; has coefficients in [0, 1].

Since —Kx/p — A is f-ample, we may use Bertini’s Theorem to find an effective
Q-divisor H ~p g —(d/t)(Kx/p + A) such that I'; + g*H — dF" has coefficients in the
interval [0, 1] and Supp(I'y + ¢g*H — dF') is relative snc over B after possibly shrinking
B. Applying [HMX13, Thm. 1.8 (3)] gives that

vol (Kyb + (Fl)b + g;Hb — de) (42)
is independent of b € B. Observe that
Ky+F1+g*H—dF ~B,Q g*(KX/B+A+D+H) —dF+F2
~B,Q —(d/t)g*(Kx/B -+ A) — dF + FQ
and, hence,
Ky, + (T)y + gy Hy — dFy ~g (/1) (=5 (Kx, + Ay) — tF, + (8/d)(T2)s) -

For any sufficiently divisible m € Z-, every effective Cartier divisor G € |m(—g; (Kx,+
Ap) — tFy, + (t/d)(T2)p)| satisfies that G + mtF, € |m(—g;(Kx, + Ap) + (t/d)(T2)p)].
Since (I'y)p is gp-exceptional, we know that

Im(—gs (Kx, + Ap) + (t/d)(T2)e)| = gylm(—Kx, — A&y)| + (mt/d)(T2)p.-
Hence G+ mtF, > (mt/d)(I'y)p. Since Fy, ¢ Supp(I'z), we know that G — (mt/d)(I's)s
is an effective Cartier divisor in |m(—g;(Kx, + Ap) — tF},)|. Thus we have

vol (—g{f(Kxb + Ab) — th> = vol (—g;(KXb + Ab> — th + (t/d)(Fg)b)

= (t/d)nVOl (Kyb + Fb + gZHb — de) .

Hence, (4.1) is independent of b € B. Since this holds for each t € Q-, Sx,.a,(Fb)
and Tx, a,(Fp) are also independent of b € B. O

For each closed point b € B, we consider the infimum of % and % over the lc centers
of (X, Ap + Dy). Specifically, we set

A A
ap = inf M and dp := inf ZXoBo )7/ ()
v Tx,a,(v) v Sx,.a,(v)

where the infima run through v € Valy, with Ax, a,+p,(v) = 0. Using Proposition
we can understand how these values vary in families.

, (4.3)

Proposition 4.2. If (X, A+ D) — B admits a fiberwise log resolution, then a, and dy
are independent of the closed point b € B. Furthermore, each infimum is a minimum
and achieved by a quasi-monomaial valuation.

Proof. Let g : Y — X be a fiberwise log resolution of (X, A + D) and define I" by the
formula

Ky+F:g*(Kx+A+D>.
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Since ¢ is a fiberwise log resolution, Supp(I') is snc and each stratum of Supp(I') is
smooth with irreducible fibers over B. Write I'=! for the sum of the prime divisors
with coefficient 1 in I'.

For b € B, Ky, +I'y, = ¢*(Kx, +Ap+ D) and the valuations on X, that are lc places
of (X3, Ay+ Dy) are precisely the valuations in QM(Y;, T';!) by Lemma Note that
A, S, and T are continuous on QM(Y,, I';!) (see Proposition for S and T') and
homogeneous of degree 1. Therefore, % and g are continuous and homogeneous of
degree zero on QM(Y}, I';')*. This implies that the functions achieve minima on the
latter set.

Next, observe that there is a natural isomorphism of simplicial cone complexes
QM(Y,T™") = QM(Y;, Ty ),

since the stratum of Supp(I'=!') are smooth over B and have irreducible fibers. To
finish the proof, we will show that the map

A
QM(Y,I=H)* = QM(Y,, I H)* = Ry
is independent of b € B and the same holds for %
It is clear that QM(Y, T=1)* = QM(Y;, [5)* 4 R. is independent of b € B, since

(Ky —g"(Kx + D))|x, = Ky, — g (Kx, + D).

Additionally, Proposition implies QM(Y,T=1)* 5 QM(Y;, ;1) N R.q is inde-
pendent of b € B along the rational points of QM (Y, '=!)* and the same holds for 7.
Since S and T are continuous on cones, the statement holds for all points in QM (T'=!)
and the proof is complete. O

4.2. Constructibility of thresholds. We are now ready to prove that the stability
threshold and global log canonical threshold are constructible in families.

Proposition 4.3. If (X,A) — B is a Q-Gorenstein family of log Fano pairs over a
normal variety B, then the functions

B 3 b— min{a(X3, A;),1}  and B> b min{d(X3, Ay), 1}
are constructible.

Proof. We only prove the statement for the stability threshold, since the statement for
the global log canonical threshold follows from the same argument, but with Corollary
replaced by Corollary

Fix a positive integer r so that r(Kx+A) is a Cartier divisor. Next, apply Corollary
to find a positive integer N so that the following holds: if b € B is a closed point
and 5(Xb, Ab) S 1, then

. Ax,a, (V)
0(Xyp, A\y) = inf ——2=02
( ’ b) v SinAb(v)
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where the infimum runs through all divisorial valuations v € Valy, that are lc places of
an N-complement. Notice that for such a valuation v, there exists Dy, € | — rN(Kx, + Ap)]
such that (X, Ay + Dy) is Ic and Ax, a,+p,(v) = 0.

To parameterize such boundaries, observe that f,Ox(—rN(Kx,p + A)) commutes
with base change, since Kawamata-Viehweg vanishing implies H' (X, Ox, (—rN(Kx, + Ay)))= 0
for all b € B. Set

and note that, for b € B, the k(b)-points of W, are in bijection with divisors in
|—rN(Kx,+A)|. Let H be the universal divisor on X x W under this correspondence
and set D := TLNH . By the lower semicontinuity of the log canonical threshold, the
locus

Z =A{w e W|let(Xy, Ay; Dy) = 1}

is locally closed in W. The scheme Z together with the Q-divisor Dz on X := X xgZ.
parameterizes boundaries of the desired form.
For a closed point z € Z, set

d, := inf {AXZ’—AZ(U)‘U € Valy and Ax_a.4p.(v) = O},
Sx..a.(v) : T

By the above discussion, if b € B is closed, then min{1, 6(X3, Ay)} equals the infimum

of {1} U{d, |z € Z;}.

Now, choose a locally closed decomposition Z = U]_;Z; so that each Z; is smooth
and there is an étale map Z, — Z; such that (X 7z A 7+ DZl{) admits a fiberwise log
resolution. For a closed point z € Z;, d, is independent of z € Z; (by Proposition
and we denote the value by d®. Hence, for a closed point b € B, min{1, §(X,, Ay)}
is the minimum of {1} U {d® |b € 7(Z;)}. Therefore, we may write B = U;B; as a
finite union of constructible subsets such that B; 5 b +— min{1, 6(X3, Ay)} is constant
on closed points. Since the latter function is lower semicontinuous [BL18]|, it must be
constant on all scheme theoretic points and the proof is complete. O

Proof of Theorem . Proposition implies that the functions are constructible.
The main result of |[BL18| implies they are lower semicontinuous. O

Remark 4.4. To deduce Theorem we do not need the full strength of [BL18].
Indeed, we only need that the functions min{l, o} and min{1,6} are weakly lower
semicontinuous, which means that they do not increase under specialization.

Proof of Comlla'ry Since a log Fano pair is K-semistable if and only if 6 > 1,
B° = {b € B|§(X; Ay) > 1}. Theorem implies that the latter set is a Zariski
open subset of B. O

Proof of Theorem[1.3 The proof of [BX19, Cor. 1.4], but with the openness of uni-
form K-stability replaced by the openness of K-semistability (Corollary , implies
%Iésrf is an Artin stack of finite type over k. With that step complete, we may apply
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|ABHLX20, Cor. 1.2] to see %‘Iﬁsrf admits a good moduli space. By [ABHLX20| Rem.
2.2], k-points of the good moduli space are in bijection with closed k-points of Z{Iésj

It remains to show a k-point [X] € %587:7 is closed if and only if X is K-polystable.
By |[LWX19| any K-semistable Q-Fano variety degenerates to a uniquely determined
K-polystable Q-Fano variety via a special test configuration. Hence, if [X] is closed,
X must be K-polystable. Next, assume X is K-polystable. Choose a closed k-point
[Xo] in the closure of [X]. Since [Xj] is closed, it is K-polystable. Therefore, [BX19

implies X ~ X, and, hence, [X] is closed. This completes the proof. U

As a consequence of Corollary and Theorem we deduce the openness of
K-stability and constructibility of K-polystability.

Theorem 4.5. Let (X,A) — B be a Q-Gorenstein family of log Fano pairs over a
normal base B. Then the set

B .= {b e B| (X3, A;) is K-stable}
is a Zariski open subset of B. Moreover, the set
BXPs .= {b € B| (X3, 4;) is K-polystable}
s a constructible subset of B.

Proof. For simplicity, we assume A = 0 as the proof for the general case follows
similarly by replacing the K-moduli space of Q-Fano varities by log Fano pairs (see e.g.
|XZ20, Theorem 2.21]). We may also assume that B is irreducible. Let n := dim X
and V := (—Kx, )" for a closed point b € B. By Corollary there is an open subset
B° of B parametrizing K-semistable fibers. Denote by X° := X xg B°. We take the
Artin stack %gs‘i and its separated good moduli space X,I; ¥ from Theorem Since
the Artin stack %ES& represents the moduli functor of K-semistable Q-Fano varieties,
there is a morphism ¢ : B® — X% whose pull-back of the universal family over X%
gives X° — B°.

As shown in the proof of Theorem K-polystable Q-Fano varieties of dimension
n and volume V' corresponds to closed points of the stack XL5. Let = be such a
closed point with stabilizer group G, which is reductive by [ABHLX20|. Since %Es‘ﬂi
is a global quotient stack, by the Luna étale slice theorem [ABHLX20, Remark 2.11],
there exist an affine scheme Spec(A) with an action of G, a G,-fixed closed point
w € Spec(A), and a Cartesian diagram

f ss
[Spec(A)/Ga] —— X3%

| lw

Spec(A) | G, —— X,ﬁf@s

such that f([w]) = [z], Spec(A4) J G, is an étale neighborhood of 7(z), f sends
closed points to closed points, and f induces an isomorphism of stabilizer groups at
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closed points. In particular, we know that a geometric point y € Spec(A) is GIT
stable (resp. GIT polystable) if and only if f([y]) represents a K-stable (resp. K-
polystable) Q-Fano variety. Since GIT stable locus is open (see |IMFK94| Chapter
1.4] or [Muk03| Proposition 5.15]), and openness is an étale-local property, we know
that B®S is an open subset of B°. Similarly, it is a well-known fact that the GIT
polystable locus is constructible. Here we give a brief proof of this fact. Denote by
Z = Spec(A) and ¢ : Z — Z |/ G, the good quotient morphism. Let Z, := {z € Z |
dim Stab(z) > r}. Then it is clear that Z, is a closed subset of Z. Let ZP® be the GIT
polystable locus of Z. Then by similar argument to [Muk03, Proposition 5.13], we
know that ZP% = UG (7 \ &1(®(Z,,,))). Hence ZP is constructible in Z. Since
constructibility is an étale-local property, we have that BXP® is a constructible subset
of B°. The proof is finished. U

4.3. Existence of valuations computing the stability threshold. A consequence
of the proof of Theorem is the following result. In Theorem we will obtain
properties of valuations computing § < 1.

Theorem 4.6. If (X,A) is a log Fano pair with 6(X,A) < 1, then there ezists a
quasi-monomial valuation v € Valy computing (X, A).

The existence of valuations computing the stability threshold was previously proven
in |[BJ20| using the generic limit construction. The proof below is entirely different.

lary [3.6| to find a positive integer N so that §(X, A) = inf, A’é'é)(v), where the infimum
runs through all valuations v € DivValy that are lc places of an N-complement. For
such a valuation v, there exists D € —-| — rN(Kx + A)| such that (X, A + D) is Ic
and Ax a+p(v) = 0. We proceed to parameterize such Q-divisors.

Set W := P (HY(X,Ox(—rN(Kx + A)))*). Write H for the universal divisor on
X x W parameterizing divisors in | — rN(Kx + A)| and set D := —=H. By the lower

semicontinuity of the log canonical threshold, the locus

Z ={w e W|let(Xy, Ay; Dy) = 1}

ProoﬂFiX a positive integer r so that r(Kx + A) is a Cartier divisor and apply Corol-

is locally closed in W. Hence, the Q-divisor Dz on X x Z parameterizes boundaries
of the desired form.

For each closed point z € Z, set d, := inf, Ax,a ()

S(v
all v € Valx, such that Ax ayp.(v) = 0. This( )inﬁmum is a minimum by Proposi-
tion and is achieved by a quasi-monomial valuation v}. By the above discussion,
§(X,A) equals inf{d, |z € Z}.

Now, choose a locally closed decomposition Z = U]_;Z; so that each Z; is smooth
and there is an étale map Z; — Z; such that (Xz, Az + Dy/) admits a fiberwise
log resolution. For closed point z € Z;, d, is independent of z € Z; by Proposition
Therefore, d, takes finitely many values and we can find zg € Z such that
6(X,A) =d., and is computed by v} . O

, where the infimum runs through
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Remark 4.7. The proof of the existence of valuations computing the stability thresh-
old in |[BJ20] requires that the base field be uncountable. The assumption is not needed
in the above proof.

APPENDIX A. K-STABILITY AND COMPLEMENTS

In the appendix, we will combine the cone construction and results from [Xu20| to
further use complements to study the K-stability of a log Fano pair (X, A). During our
investigation, we will relate degenerations of the log Fano pair (X, A) to valuations
centered on the vertex of the cone. This idea was first introduced in [Lil7] and
then extended in [LX20,LWX21| in the study of relations between K-stability and
normalized volume. It is a powerful technique and works particularly well for studying
the valuations v which computes 0(X, A) =1 (see e.g. |BX19|). Following the spirit
of |Lil7|LX20LWX21|, we obtain results on the log Fano pair (X, A) by applying the
local results from [Xu20| to cone singularities. We note that |[Xu20| and the current
paper have a similar strategy via the local-to-global principle. Both papers use the
existence of bounded complements proved in |Bir19).

A.1. Test configuration and lc places. In [Tia97|Don02|, the K-(semi,poly)stability
of a log Fano pair is defined by looking at the sign of the generalized Futaki invariant
of every test configuration. For definitions and more background, see e.g. |LX14],
[BHJ17).

Definition A.1. Let (X, A) be alog Fano pair. A test configuration (resp. semiample
test configuration) (X, A¢c; £) of (X, A) is said to be weakly special if (X, A¢. + Xp)
is log canonical and £ ~g —Kx — A is ample (resp. semiample) over A'. A finite
set of (possibly trivial) Z-valued divisorial valuations {vy, -+ ,v4} C Valy is called a
weakly special collection if there exists a weakly special semiample test configuration
(X, Age; £) of (X, A) such that v; = U (see |BHJ17, Def. 4.4]) where {XO(Z) 4 | are
all irreducible components of Xy. A prime divisor E over (X, A) is said to be weakly
special if there exists a weakly special test configuration (X, A¢; L) of (X, A) with
Ap irreducible such that vy, = c- ordg for some ¢ € Z-.

Theorem A.2. Let n be a positive integer and I C QN [0,1] a finite set. Then there
exists a positive integer N = N(n, I) satisfying the following:

If (X, A) is an n-dimensional log Fano pair such that coefficients of A belong to
I, then a finite set of Z-valued divisorial valuations {vy,--- ,vq} C Valx is a weakly
special collection if and only if there exists an N-complement AT of (X, A) such that
each v; is an lc place of (X, A™).

Note that a special case of Theorem on weakly special divisors with small
f-invariants is proved in |ZZ19 Theorem 3.10] independently.

Our argument is a refinement of [LWX21, Proof of Lemma 3.4]. In particular, we
track the integral structure of test configurations and complements.
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We first show that any weakly special collection of Z-valued divisorial valuations
{v1,- -+ ,vq} are lc places of a common Q-complement. We will use the following cone
construction: Fix a positive integer m such that L := —m(Kx + A) is Cartier. Let
Z = C(X, L) be the affine cone over X with polarization L. Denote by o € Z the
cone vertex. Let I' be the Zariski closure of the pull-back of A under the projection
Z \ {o} = X. Denote by wy := ordy, the canonical valuation in Valy where X is
the exceptional divisor of blowing up the cone vertex o in Z. Assume v; = ¢; - ordpg,
with ¢; € Zso. Denote by ko := m - maxi<;<q{Axa(v;)}. For each divisor E; over
X and each integer k > ko, we consider the divisorial valuation w;; on Z as a quasi-
monomial combination of ordx, and ordg, . with weights (1 — w, ) where
E; o is the pull-back of E; under the projection Z \ {o} — X. Since mAxa(E;) is
a positive integer, we know that the value group of wj;y is generated by 1 and 2.
Thus for any & > ko there is a prime divisor E;j over Z centered at o such that

k —
ged (ki) Wik = OrdEi,k'

Proposition A.3. Suppose {vy,- - ,vq4} is a weakly special collection of Z-valued
divisorial valuations over (X,A). Then for any k sufficiently large, there ezists a
proper birational morphism py : Wy, — Z from a normal variety Wy, such that

(1) py, is an isomorphism over Z \ {o} and u; ' (0) = UL, E;;

(2) (Wi, ()2 'T + S50, Ei) is log canonical;

(3) —(Kw, + (u):'T + S0, Ei) is semiample over Z.
Proof. Let (X, A¢.) be the weakly special semiample test configuration corresponding
to {v;}4,. For L = —m(Kx + A), we denote by

R=&2 R = &2 H(X,jL).

It is clear that Z = Spec(R). Let us take an ample model p : X — X’ of —Kx — Ay
over A, Denote by Al := p.A., then it is clear that (X', A],) is a weakly special test
configuration of (X, A). After reindexing we can assume that p precisely contracts
Xo(l) for d' < i < d where d' is the number of irreducible components of X{.

Before constructing py : Wy, — Z, we first construct p) : W) — Z such that (1),(2),
and (3) hold as well after replacing (ug, Wi, d) and “semiample” by (u}, Wy, d') and
“ample”, respectively. We denote these new statements by (1°), (2’), and (3’).

For part (1), consider the following Z-filtration of R

FPR; :={s € R;j | vi(s) > p+mAxa(vi)j forany1<i<d}. (A1)

By |BHJ17, Propositions 2.15, 4.11, and Lemma 5.17], we know that the filtration
F*R is finitely generated,

X' = ProjP € t*FR;, (A.2)
7=0 p=—o0

and —m(K /a1 +Af,) corresponds to O(1) under the grading of j. Consider the ideal
sequence I, := @2 FP/*R; C R for p € Z. By (A.1) we see that F*9*R; = R,
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whenever j > p/(k — mAxa(v;)) for all 1 < i < d'. So I, is cosupported at o if
p > 0,and [, = R if p < 0. Since F*R is finitely generated and multiplicative, we
see that @521, is also a finitely generated R-algebra. Let W := Projp @52 I, with
1y, : Wi — Z the projection morphism

Next we show that I, = N¢ 1ap/k(wl k). Since w;y is Gp,-invariant, its valuation
ideals are graded. Hence it sufﬁces to verify the above equality for all homogeneous
elements. Let s € R; be a homogeneous element. From the definition of w;; we know

win(s) = <1 B mAX];A(Ui))

Thus w;x(s) > p/k if and only if v;(s) > p — jk + mAxa(v;)j, which implies
I, = ﬂf/zlap/k(wi7k). Since for each p > 0 the ideal I, is integrally closed as a finite in-
tersection of valuation ideals, we know that W, is normal. Besides, by [BHJ17| Lemma
5.17] if any ¢ is dropped from the intersection on the right-hand side of we would
not get FPR;. Hence [BHJ17, Theorem 1.10] implies that for p sufficiently divisible,

the set of Rees valuations of [, is given by {%wivk}f/zl. Thus pj, : W, — Z precisely

(jk — mAx a(v;)j +vi(s)).

?rl»—t

extracts U?/:1Ez{,k where Ej, is the birational transform of FE;j and we confirm part

(1)

For part (3), we know that

mA v; C;
Agzr(wig) = (1 — XTA()) Ayr(Xo) + EAZ,F<EZ',OO)

B mAxa(vi)\ 1 1 B
= (1 2 ) m + kAX’A(UJ =

Hence Azr(E; ;) = . Straight computation shows

mgcd(k
v d kB,
I\—1 / !
KW;Q""(M)* F+;Ei,k—“k(KZ+F +;AZF isk) “kQngcdkcz
(A.3)

d' Ei
i=1 ged(k,c;)
is anti-ample over Z. Thus —(Ky, + (), 'T + Z?lzl Ei ) ~u 0 —(’)W/( ) is ample
over Z which confirms part (3).

For part (2’), notice that the ideal sequence I, induces a G,,-equivariant degenera-
tion Z — A of 0 € Z, where Z := Spec @z t PI,. Then we have the central fiber
Zy = Spec(gr;, R) where

From the above discussion on Rees valuations, we know that Oy, (—1) = >

oo

g R=P L/ L= P @ F 'R/ FR;. (A.4)
p=0

p=—00 j=0
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Here we are using the fact that FP/*R; = R; whenever p < 0. From (A.2) we know
that

Xy = Projp 5 F'R;/F*H'R, (A.5)
7=0 p=—o0

and —m(Kx + Af o) Corresponds to O(1) under the grading of j. It is clear that
gr;, R is isomorphic to ©72, &2 FPR; ;/FPTIR; up to a grading shift. Let T'z
be the effective Q-divisor on Z as the Zariski closure of T' x (Al \ {0}). Denote by
[ :=T'z|z, the degeneration of I" to Zy. Then (Zy, ['y) is semi-log canonical (slc) since
it is isomorphic to the affine cone over the slc pair (Aj, A{ ;) with the polarization
—m(Kx;+Al. ). Thus we know that (Z, Tz, £;7) is a weakly special test configuration
of (Z,T,¢) in the sense of [LWX21| Definition 2.14] where £ (resp. n) is the vector
field on Z (resp. Z) induced by the grading of j (resp. of p). We will follow the idea of
[LWX21| Proof of Lemma 2.21(2)] to show log canonicity of (W}, (u;);lr+zf/:l i)

Denote by E' := Zflzl gci’é’j@) and B, = Z?lzl E; .. From the proof of part (37)
we know that E' = Oy, (—1) is anti-ample over Z. Let [ be a sufficiently divisible
positive integer such that [E’ is Cartier on W). The test configuration (Z,I'z,&;n)
has the natural G,,-action generated by 1. Consider the p-action on (Z,T'z) where
w; < G,, is the multiplicative group of I-th roots of unity. Let (Z2','z/) := (Z,T'z) /.
By construction, we have that Z’ := Spec @,z t 7I;, — A}, such that the quotient
map o : Z — Z'is a lifting of the map A} — Al ¢ +— t!. Clearly o is étale away
from the central fibers. Since Z, = Spec @pez., I,/Ip+1, we know that Z,/pu; =
Spec Bpezs, Lip/ lip+1, and SUPP(ZO/M) = Supp(Z;).

Next, we show that Zo/p = Co(Ele, O (—IE'|pr ) where C,(X, L) represents
the affine cone over X with polarization L (see [Kol13| Section 3.1]). Indeed, from the
equality I, = N% a,1(w; ) we see that I, = (113)«Ow: (| —pE']). Since [E" is Cartier

and [E'] = E! 4, we know that |—(lp+ 1)E'| = —lpE’ E! 4. Then we have a short
exact sequence
0— OW/(—lpE’ —E ) — OW/(—lpE’) — Og, (—lpE’]E/ ) = 0. (A.6)

Since [ is sufficiently divisible and —FE" is ample over Z, we have R'(u},). Ow; (—IpE'—
E!.;) = 0for p > 1 by Serre vanishing. Thus taking (u},). of (A.6| - ) yields a short exact
sequence

0= i1 = Iy = HY(Eloy, O (—IpE'|pr_)) = 0,

Le. Ip/lpy = HY(Ely,Op (=IpE'|g ) when p > 1. If p = 0, then the above
arguments give an injection ID /I — H O(Eleq, Opr_) which implies that they are
isomorphic as h’(E/,4, Opr_) = 1 by reducedness of E;ed.

Since (Z,1'z,&;n) is weakly special, we know that (Z,I'z 4+ Z) is log canonical. In
particular, we know that Zj is reduced and so is Zy/p; = (Z})rea. Since the quotient
map o : Z — Z' is étale away from central fibers, we have that Kz + 'z + Zy =
0*(Kz 4Tz 4 (Z})rea). Therefore, the quotient (2',T'z/+(Z])rea) is also log canonical
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by [KM98, Proposition 5.20]. By adjunction we know that (Zo,Fo)/m is sle. This
implies that the base (El, g ) is slc where Kgr 4+ T = (Kwr + ()7 'T +
Eloa)|e - By inversion of adJuncuon the pair (Wk, (,uk) T —|— E! ;) is log canonical.
This proves part (27).
So far we have proven (1°), (27), and (3’) for ), : W) — Z. In order to construct
k : Wi — Z, we will show that By, is an le place of (W}, (11,);'T + X0, EL,) for

any d < i’ <d. By (A.3), we know

d /
kE;,

Ay st vy, (W) = Azr (i) = wi 2_; m ged(k, cz-)>

= L (1 Fun (O (1)) (A7)

m

Indeed, since (X, A; £) is the pull-back test configuration of (X’, Af_; £'), by |BHJ17|
Lemma 2.13] they define the same filtration, i.e.

FPR; ={s € Rj | vi(s) > p+mAxa(v;)j forany 1l <i<d}.

Similar to the arguments above, we have [, = N 1ap/k(wZ k). Hence w; 1 (Ow, (=1)) =

for any 1 < ¢ < d. This together with implies wy; is an lc place of
(Wk, ()7 + Zi:l E;,) for any d' < @' < d. It is clear that all non-klt centers
of (W, (1) 'T + Z?lzl E;,.) are contained in U?;lEg,k, thus W}, is of Fano type over
Z. Then |BCHMI10| implies that there exists a projective birational morphism py :
Wy, — W/ from a normal variety W}, such that Exc(py) = Ug<i<aEy . Moreover, we
know that Ky, 4+ (ux); T+ 320, E; . is the log pull-back of Ky, + (,u%);lquZ?,:l iy
since py only extracts lc places of the latter. By taking py := p), o py, it is easy to see
that (1), (2), and (3) are all satisfied. Thus the proof is finished. O

Proposition A.4. There exists a positive integer Ny = Ni(n, I) such that the follow-
ing holds: for any weakly special collection of Z-valued divisorial valuations {vy, -+ ,vq}
over (X, A) where dim(X) = n and coefficients of A belongs to I, and any k > 1,
there exists a local Ny-complement Ty of o € (Z,T) such that E;y, is an lc place of
(Z,TF) for any 1 <i <d.

Proof. By applying the boundedness of relative complements [Bir19, Theorem 1.8]
to the morphism u : Wi, — Z constructed in Proposition E A.3| there exists an Nj-
complement Oy, of (Wi, ()7 ' T+ 3¢, Eix) over o € Z where N only depends on the
dimension n and the coefficient set 1. Then '} := (jux)«(0y) is a local Nj-complement
of o € (Z,T') such that E; is an lc place for any 1 < < d. O

Proof of Theorem Let I'} be the Nj-complement as in Proposition Then we
know that

cd(k, ¢;
MAZI: (ordEi’k) =0.

AZ,F; (wig) = i
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Let 7 be the Gorenstein index of 0 € (Z,I"). Then
TNl(FZ_ — F) ~ TN1<KZ + Fli_) — TNl(KZ + F) ~ 0.
Thus we have I'}) =T + ﬁdiv( fr) where fi € O, z. It is then clear that

Wik ()
A i == . .
zr(wis) = =
By definition we know that w;, > (1 — mAx‘TA(vi))wo. On the other hand, for any

f € R; it is clear that

wna() = (1= 2L oy Sy < S0 (14 S ),

Hence there exists a sequence of positive numbers ¢, — 0 as k& — oo such that
(1 —ex)wo < wjp < (14 €,)wp for any 1 <4 < d. This implies
wo(fk)

1
Azr(wy) = lim Azr(w;x) < liminf (1+ €x)wo(fi) = lim inf ——2£.
’ k—o0 ’ ’ k—o0 T’Nl k—o0 TV

However, since (Z,T'}) is lc, we always have Az r(wg) > %ff) for k > 1. Then wo(fx)
being an integer implies that
wo ()
A = ——% for k> 1.
z,r(Wo) N, or Kk >

Therefore, wy is also an lc place of (Z,T}) for k > 1. Denote by I, = T +
ﬁdiv(in(fk)) where in(f;) is the initial degeneration of fz. Then by [dFEM10, The-
orem 3.1] we know that (Z,I") is also lc. Furthermore, by lower semicontinuity of the
log discrepancy function, we know that both wy and w;j are still lc places of (Z,I',)
for k> 1. Hence by taking a G,,-equivariant resolution, we see that

mA v; C;
AZvF;c (U}z’k) = (1 — XT’A()> AZvF;c (wo) + EAZ’F;“ (OrdEi,oo)

which implies that E; -, is an lc place of (Z,I',) as well. Since I'}, is G,,-invariant, it
is the cone of some Q-divisor A} on X. Hence, we know that E; is an lc place of A},
which is a Q-complement of (X, A). Then by an easy generalization of Theorem
to the case with multiple divisors over X, we may replace A} by an N-complement
Akk whose lc places still contain E; for any £ > 1 and any 1 < ¢ < d. This finishes
proving the “only if” part. The “if” part follows from Proposition U

Proposition A.5. Let (X, A) be a log Fano pair. Let {vy,- - ,vq4} be a set of Z-valued
divisorial valuations in Valx. If {v;}L, is contained in the set of lc places of some
Q-complement AT, then it is a weakly special collection.

Proof. Let v; = ¢;-ordg,. Then similar as before, we have the the affine cone 0 € (Z,T)
over (X,A). For any k > 1 we have divisorial valuation w;j and prime divisor E; j

god(kei) ordg,,. Denote by I'" the Zariski closure of the

over Z such that w;p = ==,
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pull-back of A" under the projection Z \ {0} — X. Then it is clear that w; is an
le place of (Z,T'F) for any 1 < ¢ < d and any k& > 1. Hence by [BCHMI10|, there

exists a (G,,-equivariant projective birational morphism fiy : W), — Z from a normal
Q-factorial variety Wk such that the following properties hold.
e The exceptional divisors of jiy is nglﬁi,k where E’,k is the birational transform
of E; k3
° Wk is of Fano type over Z;
o (Wi, (fu)I'T* + S E; k) 1s a log canonical crepant model of (Z,T'F).

By [BCHM10], we could run the Gy,-equivariant —(K, + (f); T+ Eir)-

MMP over Z and this MMP yields a birational contraction py : Wk --» W, where W}
is the log canonical model. For simplicity let us assume that py, : Wk --» W/ precisely
contracts E/,k for d < i <d. Denote by E7k = (pr)« Elk for1 <i¢<d.

Next we will show that ), : W] — Z satisfies (1’), (2’), and (3’) in the~proof of

Proposition |A.3| Since /i is isomorphic in codimension 1 over Z \ {o} as cz(E; ;) =
so is pp. Since Wy is the log canonical model, we have that —(Kyw:s + (1), 'T +

Zil E; ) is ample over Z, which implies that pj, is an isomorphism over Z \ {o} as

(KW’ (15.)% IF"‘Zz lEz,k)’W’\,uk (0) = Hi (= (Kz +TD)|z\(0p)- And (W, () 'T +
ZZ , ;1) is log canonical since there is a Q-complement. Thus (1°), (2'), and (3’) in

the proof of Prop051t10nm A.3|hold for pj, from the above arguments.

Next we construct the weakly special test configuration (X”, Af.; L") by essentially

reversing the argument in the proof of Proposition[A.3] By the proof of Proposition
we know that

d/

k
— (K / 711—‘ El ~ — —El A8
( Wy + (luk)* + ;:1 z,k) py,,Q ;:1: mgcd(k, Ci) i,k ( )

is ample over Z. Hence by taking valuation ideals of the Rees valuations of uj, we
know that W, = Proj, &2, I, where I, := N{ a,/;(w;y) is an ideal sequence on
Z cosupported at o. Slnce Wk is the log Canonical model of — (K + (i), T+
Z?:1 Ezk) ~ieQ — Z?Zl #M-Ei,ka we also have that I, = N a,/,(w;x). Hence
the proof of Proposition|A.3|implies that Ey j is an lc place of (W}, (u;)*_lf‘—l—zgl/:l E; )
for any d' < i’ < d. Consider the Z-filtration 7*R of R defined as FPR; := I,; ;N R;.
Then by the proof of Proposition we have

FPRj ={s € Rj | vi(s) > p+mAxa(v;)j foranyl<i<d}
={seR;|uv(s) >p+mAxa(v;)j foranyl<i<d}. (A.9)

Similar to the proof of Proposition denote by Z := Spec @pez 771, as the G,,-
equivariant degeneration of Z over A'. Let ['z be the effective Q-divisor on Z as the
Zariski closure of ' x (A'\ {0}). Then Z is normal by integral closedness of I,,.
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Let E' := Zil % and E/ 4 = Z?lzl Ej,. Let | be a sufficiently divisible
positive integer such that [E’ is Cartier on W]. Let (2',I'z/) := (Z,I'z)/mw;. From
the proof of Proposition we know that Z,/p, is isomorphic to the affine cone
Co(Bloq, O (—1E'|gr_ ). Since (W, ()7 'T + El,q) is log canonical, by adjunction

we know that (B4, g ) is sl where 'y is the corresponding different divisor.

Moreover, by (A.8) we have

_ k
—(Kg, + T ) ~o —(Kw; + (1) T + Ele)ler,, ~o _EE/

/
Ered

which is ample. Thus (£ 4, FEied) is a slc log Fano pair which implies that the affine
cone (Zy, o)/ is also sle. In particular, we know Zy/p; = (Z])req as it is reduced.
Since Zy/ p is reduced, we know that Z is generically reduced, which implies that Z; is
reduced as it is S; by |BHJ17, Proposition 2.6(ii)]. Since the quotient map o : Z — Z’
is étale away from central fibers, we have that Kz+1T'z+ 2y = 0*(Kz + 1z + (Z})rea)-
Since ((Zg)red, Lzr|(2),ea) = (Z0,T0)/pu is slc, inversion of adjunction implies that
(2", Tz + (Z])rea) is log canonical, which implies that (Z,1'z + Zy) is log canonical
by [KM98, Proposition 5.20]. Thus (Z,1'z,&;n) is a weakly special test configuration
of (Z,1',¢) where £ (resp. 1) is the vector field on Z (resp. Z) induced by the grading
of j (resp. of p). By adjunction we know that (Zy, I'g) is slc.

Next, we consider the test configuration (X', A{;L') of (X,A) by setting X" :=
Proj@®;2, D, - .t PFPR; and L' = —m(Kx + Af.). Then by and (A.5) we
know that (Zp,I'g) is isomorphic to the affine cone over (&g, Af. o; Lg). Since (Zo, I'o)
is sle, we know that (&g, Al o; Lp) is also slc, and hence (X7, Af ; £') is weakly special

tcy

by inversion of adjunction. Moreover, v; = v e for any 1 <i < d' where (Xé(z))lgigd,
are all the irreducible components of Aj.

Finally we construct the desired semiample test configuration (X, A; L) by ex-
tracting certain divisors over X’. Let F; be the prime divisor over X x A! as the
quasi-monomial combination of X x {0} and E; x A' with weights (1,¢;). Then it is
clear that ordp, |k (x) = vi. We claim that Fj is an lc place of (X', &5 + Af,) for any
d <1 <d. Let Y be the total space of a test configuration of (X; L) dominating X’
and X x A! such that Fy is a divisor on ) for any d’ < ¢ < d. Denote by m; : Y — X’
and 7 : Y — X x Al the projection morphisms. Set D := w{L' — 7L where
L= —m(Kxxp +AxA). By |[BHJ17, Lemmas 2.13 and 5.17] and , we have
that ordg, (D) = —mAx a(vy). On the other hand, from the definition of D we see
that

ordp, (D) = m(Ax xyiar, (Fr) — Axxar xxqoy+axa (Fir)).

Since Axxar xxfoy+axat (Fir) = Axa(vi), we know that Axs asiar (Fyr) = 0. Thus
the claim is proved. By [BCHMI0|, we can extract the divisors {Fy }y<i<q over X’
to obtain the desired weakly special semiample test configuration (X', Ay; L). This
finishes the proof. O
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Remark A.6. Applying to the case with a prime divisor, we see that a prime divisor
E over (X,A) is weakly special if and only if {ordg} is a weakly special collection,
which is the same as F being an lc place of some N-complement.

A.2. Valuations computing the stability threshold. In this section, we show
any valuation computing § < 1 is the lc place of a bounded complement. The result
may be viewed as a stronger version of Proposition

Theorem A.7. Let n be a natural number and I C Q a finite set. There exists a
positive integer N := N(n,I) depending only on n and I satisfying the following:

Assume (X, A) is an n-dimensional log Fano pair such that coefficients of A belong
to I and 6(X,A) < 1. Ifv € Valy computes 06(X,A), then v is quasi-monomial and
15 an lc place an N-complement.

Proof. Let (X, A) be an n-dimensional log Fano pair such that coefficients of A belong
to I. Assume §(X,A) < 1 and v € Valy computes the stability threshold. By
|BJ20, Prop. 4.8], v is the unique valuation (up to scaling) computing let(X, A; a.(v))
|BJ20, Prop. 4.8]. Hence, v is quasi-monomial by [Xu20).

To prove the second part of Theorem[A.7] we will again use the cone construction.
Fix a positive integer r so that L := —r(Kx + A) is a Cartier divisor and set R :=
R(X,L). Let Z = Spec(R) denote the cone over X with respect to the polarization
L, o € Z the vertex of the cone, and I' the Q-divisor on Z defined by pulling back A.

For each t € R>g, we consider the valuation v, € Val; defined by

v(f) = min{tv(fm) +m| fm # 0},

where f = > f,, and each f,, € R,,. The valuation v; is quasi-monomial, since v is
quasi-monomial, and satisfies Az p(vy) = £ +tAx a(v) (see the proof of [Lil7, Lemma
6.14]).

Lemma A.8. For anyt € Rog, lct(Z, T ae(vr)) = Azr(v).

Proof. Since the inequality let(Z, T ae(v;)) < Azr(v:) always holds, it suffices to show
the reverse inequality. Pick any € > 0. We will proceed to show let(Z, T ae(vy)) >
AZ,F (Ut> — &.

Claim: For any ¢ > 0, there exists a Q-complement A* of (X, A) such that Ay a+(v) <

e’

To prove the claim, for each m divisible by r choose an m-basis type divisor B,,
such that S,,(v) = v(B,,). If we set ¢,, = min{1,6,,(X,A)}, then (X, A + ¢, By,) is
lc by the definition of §,, and

Ax AtvenB, (V) = Axa(V) — ¢nv(Bp) = Ax a(V) — ¢nSim(v).
Since S, (v) = S(v) and ¢, — 6(X,A) as m — oo, we see
7%1_{1’(1)0 AX,A+cmBm(U) = AX7A<U) — 5(X, A)S(U),

which is zero since v computes §(X, A).
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Therefore, we may find m so that Ax aic,, 5, (v) < €. Since —Kx — A is ample,
we may choose H € | — Kx — Alg so that (X, A + ¢, B, + (1 — ¢,)H)) remains lc
[KM98| Lem. 5.17.2]. Hence, AT := A + ¢, By, + (1 — ¢n) H is a Q-complement of
(X, A) and satisfies Ax a+(v) < Ax Atennn, (V) < €.

By the above claim, we may choose a Q-complement A* of (X, A) such that
Axa+(v) < gft. Since AT — A ~g —Kx — A, there exists a positive integer m
and f € H°(X,Ox(mL)) such that AT = A+ L{f =0}.

Since (X, A*)islc and Kx+A" ~g 0, the pair (Z,'+-{f = 0}) is lc [Kol13| Lem.
3.1]. Using that Azr(v;) = + tAxa(v) and v (f) = m + tw(f), we see

AZ,F—}-#{f:O}(”t) =1 (AX,A(U) - #U(f)) =tAxa+(v) <e.
Hence, if we set s := v;(f), then
s =mr(Azr(v) — AZ,F+${f:0}(Ut)) > mr(Azr(v) — e€). (A.10)

To estimate the asymptotic lct, observe that f7/51 ¢ a,(vy) for each positive integer
p. Hence,

1
let(Z, T > let(Z,T; (f1P51) > ———
where the last inequality uses that (Z,I' + —={f = 0}) is lc. Therefore,
. . p S
After referring back to (A.10), we see lct(Z,I'; aq(vy)) > Azrp(ve) — €. O

Lemma A.9. There exists a positive integer M such that the following holds: for
each positive integer k, there exists f*) € R such that the pair

(Z,T + 3 {/® = 0})
is lc in a neighborhood of o € Z and vy, is an lc place of the pair.

Proof. Fix a positive integer k. Choose a log resolution W — Z of (Z,T") and local
coordinates yi, ..., ¥y, at a point n € W such that v/, may be written as v, for some
a=(ag,- - ,q,) € RL; (see for the definition). After replacing W with a higher
model and choosing new local coordinates, we may assume o, ..., q, are linearly
independent over Q.

Note that vy, computes lct(Z, I'; aq(v1/x)), since Az r(vi/i) = let(Z,1'; ae(v1/x)) by
Lemma and the equality vi/x(ae(viyr)) = 1. Hence, [LX18| Rem. 2.52] implies
v1/; admits a weak lc model in the sense of [LX18] Def. 2.49]. In particular, the
argument in loc. cit. implies there exists a proper birational morphism p : W% — Z,
prime divisors Sy, ..., S, on W™ with ordg, = vg() for some pY) e Z< such that

() (W, piiT 4+ 5085 is I,
(i) —Kywe — p; T — > S; is p-nef, and
(iii) « lies in the convex cone generated by W), ... 3@,
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Applying |Birl9, Thm. 1.8], we may find a positive integer M, dependent only on
dim(Z) and the coefficients on T', and an effective Q-divisor I',,,. > p;'(I') +>°S;
such that, in a neighborhood of p=1(0), (W™ T ) islc and M (Kypwie+T5 1) ~z 0.

lec lec
Set I't := p,(I',wic). Observe that

I">T and  Kywe + T = p"(Kz +T7).

Hence, in a neighborhood of 0 € Z, (Z,I'") is Ic and M(Kz + ') ~ 0. Additionally,
each S; is an lc place of I'*.
To see vy, is an lc place of (Z,I'"), note that

Azr+(w) = Azr(w) —w(l'" =T) for any w € Valy.

Since Y — Z is a log resolution of (Z,I'), Azr is linear on our simplicial cone.

Additionally, w — —w(I'" —I') is convex on the cone by |BFJ08| Lem. 1.10]. Using

that « lies in the convex cone generated by g, ..., 3@ and Azr+(vsi) = 0 for each

j=1,...,q, we see Azp+(vi,) < 0. Since (Z,I't) is lc, we conclude Az r+(vi/) = 0.
Finally, note that

rM(T* —=T) = rM(K; +T%) = rM(K; +T) ~ 0

at o € Z. Hence, we may find f*) € R such that I'" — I agrees with -{f® =0} in
a neighborhood of 0 € Z, which completes the proof of the lemma. O

For each positive integer k, consider the lc pair (Z,I + s={f® = 0}) constructed
above. Repeating the proof of Theorem we see that if & > 0, then AT :=
A+ s={in(f®) = 0}) is a Q-complement of (X, A) with v an lc place.

To show v is the lc place of an N := N(n, I) complement, let 7 : Y — X be a log

resolution of (X, A") and write A} for the Q-divisor satisfying
Ky + A}—t = W*(KX + A+>

By Lemma the lc places of (X, AT) coincide with the simplicial cone complex
QM(Y, (Ay)™).

Choose a sequence of divisorial valuations (v;); in QM(Y, (A}))=!) converging to v.
Since each v; is divisorial and an lc place of (X, A™), Theorem implies there exists
a positive integer N := N(n, I), depending only on n and I, such that each v; is the
lc place of an N complement. Hence, for each j, we may choose an N-complement
A;r with AX,A? (’Uj) =0.

Set D; := A7 — A and write ¢p, : QM(Y, (A)=") — R for the function defined
by v +— v(D;). Since each D; is an element of —| — rN(Kx + A)|, the set of
functions {¢p, | j € N} is finite by Lemma|2.5] Therefore, after replacing (v;); with a
subsequence, we may find an individual N-complement A} such that Ax At (v;) =0
for all j. Using that v = lim; v;, we conclude Ay \+(v) = 0. O
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