

Time-Dependent Behavior of Reinforced Concrete Columns Subjected to High Sustained Loads

Wenchen Ma¹; Ying Tian, M.ASCE²; Hailong Zhao³; Sarah L. Orton, M.ASCE⁴

¹Formerly, Ph.D. student, Dept. of Civil and Environmental Engineering and Construction, Univ. of Nevada, Las Vegas, NV 89154. E-mail: maw2@unlv.nevada.edu

²Professor, Dept. of Civil and Environmental Engineering and Construction, Univ. of Nevada, Las Vegas, NV 89154 (corresponding author). E-mail: ying.tian@unlv.edu

³Associate Professor, School of Civil Engineering, Tianjin University, Tianjin 300350, China; Formerly, Visiting Scholar, Dept. of Civil and Environmental Engineering and Construction, Univ. of Nevada, Las Vegas, NV 89154. E-mail: zhaohailong@tju.edu.cn

⁴Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Missouri, Columbia, MO 65211. Email: ortons@missouri.edu

15 **Abstract:** Several catastrophic progressive collapses of reinforced concrete buildings, initiated
16 by column failures, occurred in the past under sustained gravity loads long after the initial
17 construction. To study the near-failure behavior of aged concrete columns under sustained high
18 stresses and the effects of column transverse reinforcement on nonlinear creep, thirteen columns
19 were tested after 200 days of concrete casting. Test variables included sustained load level, age
20 at loading, eccentricity ratio, and transverse reinforcement ratio. Two plain concrete and five
21 reinforced concrete columns were subjected to sustained concentric loads ranging from 76% to
22 110% of nominal short-time strength that neglects the confinement effects provided by
23 transverse reinforcement. One plain concrete column, as a control specimen, was also tested
24 under concentric loading to failure in a short time. Five reinforced concrete columns were tested
25 under sustained eccentric loading that initially caused the bending moment at the critical section
26 to reach 77% to 100% of nominal flexural capacity. The aged columns showed high resistance to
27 heavy sustained loads; however, one concentrically loaded and one eccentrically loaded column
28 failed under the sustained loads. Higher column transverse reinforcement ratio decreased

29 concrete creep during the early stage of concentric loading and increased flexural stiffness during
30 sustained eccentric loading, thereby reducing the risk of failure due to second order effects.
31 Moreover, the tests indicated that Poisson's ratio of the cover concrete at the extreme
32 compressive fibers is a suitable indicator of high sustained load levels.

33

34 **Author keywords:** Creep; Frame; Poisson's ratio; Progressive collapse; Reinforced concrete
35 column; Sustained loading

36

37 **Introduction**

38 Well-engineered reinforced concrete (RC) buildings generally have a good performance.
39 However, faulty design, overloading, construction error, poor material quality, and material
40 deterioration do occur. Each circumstance, if not remedied timely, can lead to high stresses
41 sustained in the concrete of RC columns as compared with their actual capacity. Once the
42 columns fail, a progressive collapse may result. The Hotel New World, a 6-story RC frame
43 building in Singapore, collapsed in 1986 mainly due to faulty column design (Thean et al. 1987).
44 Persistent cracks, announcing imminent structural failure, appeared in three columns several
45 days before the disaster. In the same year, a second-floor column failed in a 26-story RC frame
46 apartment building in Brazil, causing a partial collapse after five hours; five days later, another
47 partial collapse followed (Guimarães and Silva 2001). Combined design and construction
48 mistakes were blamed for the collapse. Recently in 2021, the Champlain Towers South in Florida,
49 U.S., a 13-story RC flat-plate apartment building, experienced a massive progressive collapse;
50 although the exact cause of collapse is still being investigated, one or more lower-story columns
51 failed prior to the collapse of the upper stories of the building according to a surveillance video
52 footage. In each of these failure cases, the structure has been in years of service and, over a

53 relatively long time period prior to the disaster, the gravity loads acting on the structure changed
54 little. Thus, the initial failures were caused by the high stresses sustaining in RC structural
55 components.

56 Sustained high stresses in concrete lead to nonlinear creep and even failure when the
57 material suffers tertiary creep characterized by accelerated permanent strains. Accordingly,
58 Rüsch (1960) suggested the long-term compressive strength of concrete to be 80% of its short-
59 time strength. Concrete creep, a complex material property, is affected by a wide range of
60 parameters. The experiments of concrete materials subjected to sustained high stresses were rare
61 and performed predominantly within 90 days after specimen fabrication. For instance, Shah and
62 Chandra (1970), Awad and Hilsdorf (1971), Smadi et al. (1987), and Iravani and MacGregor
63 (1998) tested concrete cylinders or prisms subjected to sustained stresses of 60% to 95% of
64 short-time strength; the concrete age at the beginning of sustained loading, t_0 , was between 7 to
65 90 days. Rüsch (1960) and Stöckl (1972) reported long-term loading tests of concrete prisms,
66 some of which were loaded at t_0 greater than 170 days; however, detailed test data such as
67 aggregate type and creep deformation history were not provided.

68 Due to the use of longitudinal and transverse reinforcement, RC columns behave
69 differently from plain concrete under sustained loads. Surprisingly, virtually no experiment data
70 exists for RC columns under high sustained concentric loads close to their short-time capacity. It
71 can be expected that the strain compatibility between steel and concrete causes a stress
72 redistribution; as a result, the load carried by concrete decreases with time. Moreover, the
73 transverse reinforcement may restrain the development and propagation of microcracks in
74 concrete under sustained high compressive stresses, thereby delaying concrete creep and creep-
75 induced failure; such an effect, however, has not been examined experimentally. For the design

76 of RC tied columns under pure axial loading, ACI 318 (ACI 2019) limits the load applied on a
77 column to 80% of its nominal axial loading capacity defined with a concrete stress of $0.85f'_c$,
78 where f'_c is concrete short-time cylinder compressive strength. Historically, the 80% limit was
79 used to consider both accidental eccentricity and reduced concrete strength under high sustained
80 loads; however, since the 2014 version, ACI 318 design codes removed the intention of using
81 this limit to address the detrimental effects of high sustained loads.

82 The past studies of RC columns under sustained loading focused mainly on eccentric
83 loading response, in which concrete creep generates second order effects on column deflection
84 and thus extra bending moment. Viest et al. (1956) conducted sustained loading tests on nineteen
85 RC columns constructed with loading capitals. The slenderness (length-to-depth) ratio λ of the
86 column prism portion was only 4. Jenkins and Frosch (2015) tested four RC columns with $\lambda = 12$.
87 Other experiments reported in English literature (Green and Breen 1969 and 1984; Goyal and
88 Jackson 1971; Khalil et al. 2001; Jenkins and Frosch 2015), however, are concerned with the
89 creep stability of slender RC columns with λ ranging from 15 to as high as 62. Similar to the
90 concrete material tests, the RC column tests considering high sustained loads were conducted
91 predominantly within 3 months of concrete casting. Exceptions included two columns with $\lambda = 4$
92 and a high reinforcement ratio of 3% tested by Viest et al. (1956) at $t_0 = 271$ and 274 days. For
93 the design of RC slender columns under eccentric loading, ACI 318 (ACI 2019) employs a single
94 factor of β_{dns} as an allowance for creep-induced bending moment. This parameter, existing in the
95 ACI 318 codes for decades, is crude because it does not take into account the various parameters
96 affecting concrete creep.

97 The exact mechanism of collapse evolution of RC frame buildings under sustained
98 gravity loading condition is largely unknown. Prior to its creep-induced failure, a column should

99 have interacted with the surrounding elements due to the statically indeterminate nature of the
100 structural system. Once the column fails, load redistribution can lead to high sustained stress in
101 the nearby columns, putting them also at the risk of failure. It is not clear how high sustained
102 stresses lead to a local column failure or how the local failure evolves into a collapse. Describing
103 this complex time-dependent process is challenging and requires reliable structural models
104 involving not only strength but also stiffness degradation properties. Creep of concrete under
105 high stresses is associated with the progression of microcracks (Shah and Chandra 1970). A few
106 nonlinear creep models (Mazzotti and Savoia 2003; Tasevski et al. 2018) have been proposed for
107 plain concrete. These models, however, need extensive validations and did not account for the
108 confinement effects of column transverse reinforcement on restraining concrete microcracking.

109 As part of an effort exploring the time-dependent near-collapse response of RC buildings
110 overstressed by gravity loads, the experimental study presented in this paper investigated the
111 performance of concrete columns subjected to sustained loads exceeding 75% of their short-time
112 capacity. The tests also examined the effects of column transverse reinforcement on creep
113 behavior and the suitability of using Poisson's ratio of concrete cover as a warning indicator of
114 sustained high stresses in RC columns approaching failure. The study created experimental data
115 crucial for calibrating constitutive models of concrete under sustained high stresses suitable for
116 system-scale numerical simulations.

117

118 **Test Specimens**

119 Eight short columns under concentric loading and five longer columns under eccentric loading
120 were tested. Specimen geometry and reinforcing details are shown in Figs. 1 and 2 for the
121 concentrically and eccentrically loaded columns, respectively. The specimens represented the
122 columns in a prototype RC frame building where gravity loads govern structural design. These

123 columns contain less longitudinal reinforcement than the lower floors and are thus more prone to
124 creep-induced failure under high sustained loads. Large-scale structural testing is preferred but it
125 is challenging to maintain high sustained axial loads. Accordingly, the largest column section
126 size in the sustained loading tests conducted by Viest et al. (1956), Green and Breen (1969), and
127 Jenkins and Frosch (2015) was 152-mm square. The test specimens in this study were
128 constructed at 1/2-scale with a 150-mm square cross section. The height was 540 mm for the
129 short specimens and 1626 mm for the longer ones.

130 Test variables included sustained load level, loading age, eccentricity ratio, and
131 transverse reinforcement ratio. The concentrically loaded specimens with zero eccentricity
132 included three plain concrete and five RC columns. Among them, one plain concrete column was
133 tested to failure in a short time to obtain concrete compressive strength of square cross section.
134 Two plain concrete columns were subjected to high sustained stresses to better interpret the
135 experimental results of the RC columns and create test data for aged concrete material under
136 sustained high stresses. For the five RC columns subjected to eccentric sustained loading, two
137 eccentricities with respect to section centroid, $e = 25.4$ and 38.1 mm, were considered,
138 corresponding to eccentricity ratios of $e/h = 0.17$ and 0.25 , where h is column section width.

139 The RC column specimens were identically reinforced by four No. 3 bars with a nominal
140 diameter of 9.53 mm. Because the actual diameter was 9 mm, D9 is used to denote these bars.
141 The column longitudinal reinforcement ratio was 1.13%, close to the minimum column
142 reinforcement ratio of 1% permitted by ACI 318 (ACI 2019). The thickness of concrete cover
143 measured from the outer edge of D9 bars was 25 mm. To avoid any premature failure at column
144 ends, each RC specimen was strengthened by four 152-mm long D16 bars bundled with the D9
145 bars. The transverse reinforcement consisted of 5-mm diameter (D5) hoops with seismic hooks.

146 ACI 318 (2019) requires the center-to-center spacing of column ties not exceed the least of 16
147 times the nominal diameter of longitudinal bars, 48 times the nominal diameter of tie bars, and
148 the smallest section dimension. The first and third requirements, leading to an almost identical
149 value of 152 mm, govern the maximum tie spacing for the RC column specimens. Two
150 transverse reinforcement spacings, 152 and 51 mm, were considered in the tests. The
151 corresponding transverse reinforcement ratios were $\rho_t = 0.26\%$ and 0.78% .

152 Table 1 shows a test matrix. The plain concrete specimen, concentrically loaded in a short
153 time to failure, was denoted as PS. In the designations of other specimens, “P” stands for plain
154 concrete columns loaded concentrically. “C” and “E” represent concentric and eccentric loading,
155 respectively. The following number (e.g. 77) represents a percentage sustained load ratio α to
156 indicate the level of sustained load. For the plain concrete columns, α is defined as the ratio of
157 sustained load P_{sus} to the short-time axial loading capacity defined based on the test result of
158 Specimen PS; for the RC columns under concentric loading, α is the ratio of P_{sus} to the nominal
159 axial strength defined by ACI 318 (2019); for the RC columns under eccentric loading, α is the
160 ratio of moment at column mid-height at the start of sustained loading to the nominal flexural
161 strength considering axial force-moment interaction based on ACI 318 (ACI 2019). The letters A
162 and B following the number for sustained load ratio denote specimens with a transverse
163 reinforcement spacing of 152 and 51 mm, respectively. The last number following “A” or “B”
164 for the eccentrically loaded RC columns indicates a percentage eccentricity ratio.

165 The lower level of sustained load ($\alpha = 0.76$ or 0.77) was used to obtain test data for
166 columns experiencing a relatively low rate of nonlinear concrete creep and thus having little
167 chance of fast failure. The higher level of sustained load ($\alpha = 0.90$ to 1.10) was intended to
168 generate data for columns that may quickly fail. Therefore, α was selected as 0.90 for the

169 concentrically loaded plain concrete column P90. For the concentrically loaded RC columns
170 C98A and C98B, because longitudinal reinforcement can release some concrete stress during
171 sustained loading, the sustained load level was chosen as $\alpha = 0.98$ (i.e., 98% of the code-defined
172 nominal short-time strength). To consider a sustained load close to column actual short-time
173 loading capacity enhanced by the confining effect of transverse reinforcement, $\alpha = 1.10$ was
174 selected for Specimen C110A. Eccentrically loaded columns E98A17 and E99A17 were applied
175 with sustained loads at $\alpha = 0.98$ and 0.99. Due to the higher eccentricity, E77A25 and E92A25
176 were expected to suffer greater 2nd order effects and thus applied with sustained loads
177 corresponding to $\alpha = 0.91$ and 0.92.

178

179 **Material Properties**

180 Tensile tests were conducted on two samples for each size of the column reinforcement. Fig. 3a
181 shows the stress-strain curves of a D9 and a D5 bars. The average yield stress, f_y , and elastic
182 modulus, E_s , were 479 MPa and 208 GPa for the D9 bars. The f_y and E_s of the D5 bars were 715
183 MPa (0.2% offset yield stress) and 251 GPa. To minimize the unwanted influence of material
184 property variations, all the column specimens were cast using a single batch of ready-mix
185 concrete. Concrete cylinders, 152 mm in diameter and 305 mm in height, were companionly cast.
186 The concrete mix per cubic meter contained 777 kg limestone, 1150 kg sand, and 307 kg Type V
187 cement. The water-cement ratio was 0.64. Because aggregate size may affect concrete creep
188 (Bažant and Wittmann 1983), the maximum coarse aggregate size was specified as 9.5 mm,
189 based on the same scale factor for the column specimens. Concrete slump was 140 mm. The
190 columns and cylinders were moisture-cured for three weeks and then demolded and stored in the
191 air in the laboratory.

192 At the start as well as the completion of a sustained loading test, concrete short-time
193 cylinder compressive strength, f'_c , was determined by testing at least three samples, each loaded
194 to failure within five minutes. Fig. 3b shows f'_c of individual cylinders at different concrete ages.
195 No strength gain due to age was found when the concrete was beyond 200-days old; instead, f'_c
196 was constant between ages $t = 209$ and 317 days and then slightly decreased by 7.9% 150 days
197 later. Beyond $t = 468$ days, the average cylinder strength varied in a narrow range; thus, f'_c was
198 again considered constant until $t = 657$ days when the last column test was finished. The values
199 of f'_c defined for each specimen at the start and end of testing are given in Table 1 and shown by
200 the dashed line in Fig. 3b. Fig. 3c shows the stress-strain curve of a concrete cylinder tested in
201 compression at $t = 546$ days, where the strain was measured by strain gauges attached to the
202 concrete cylinder at mid-height along axial direction. Concrete elastic modulus, E_c , was not
203 measured in the cylinder tests but can be evaluated based on plane section assumption, steel
204 Young's modulus, and the data collected during the initial short-time loading of the
205 concentrically loaded specimens P77, P90, C76A, C98A, and C110A. The concrete secant
206 stiffness at compressive stresses about 50% of the short-time prism strength was determined in
207 this manner as $E_c = 31.2$ 31.4, 29.7, 26.6, and 26.3 GPa at concrete ages of 238, 268, 317, 348,
208 and 547 days, respectively. Because the concrete strength was stabilized after 468 days, E_c for all
209 eccentrically loaded columns can be taken as 26.3 GPa.

210

211 **Test Setup**

212 The test setups are shown in Figs. 1 and 2. For each type of sustained loading, two sets of
213 loading frames were prepared and seated on a steel pedestal beam anchored to a strong floor. The
214 sustained loads were applied by tightening four 25-mm diameter high-strength posttensioning
215 (PT) rods distributed around the four sides of a specimen at a spacing of 559 mm in one direction

216 and 457 mm in the other. Such a loading approach is typical for testing RC or steel-concrete
217 composite columns under sustained loads (Viest et al. 1956, Green and Breen 1969, Han et al.
218 2004, Jenkins and Frosch 2015, Kim et al. 2017, Cao et al. 2019). The PT force was transferred
219 in sequence to secondary loading beams, primary loading beams, and eventually the specimen.
220 All the loading beams were made of steel channel sections. To reduce creep-induced load drop
221 during sustained loading, four springs were stacked in series at the upper end of each PT rod. In
222 the columns tests by Viest et al. (1956) and Green and Breen (1969), heavy duty coil springs
223 were used because the sustained loads were less than 260 kN. However, the highest sustained
224 load considered in this study was almost 660 kN; accordingly, Belleville disk springs with much
225 higher strength than coil springs were employed.

226 To evenly distribute the load, a 38.1-mm thick steel plate was attached to each column
227 end by high-strength gypsum cement. For concentric loading, the specimen bore against the
228 primary loading beam through a 25.4-mm wide, 12.7-mm thick, and 150-mm long steel strip. For
229 eccentric loading, the load was applied to a specimen by a 25.4-mm diameter and 150-mm long
230 steel pin located at a distance of $e = 25.4$ or 38.1 mm from the centerline of column section. The
231 pin was accommodated by a 6.35-mm deep circular groove milled into the steel end plate. As
232 shown in Fig. 2, steel channel sections were used to clamp the steel plate and column end
233 together to ensure safety during the eccentric loading tests. The self-weight of some loading
234 components, such as the upper loading beams and the load cells, introduced an axial force of
235 3.78 kN to the concentrically loaded specimens and 3.60 kN to the eccentrically loaded
236 specimens prior to loading. These gravity forces are accounted into the total load applied to a
237 specimen in the following discussions.

238 As stated previously, the collapses of several buildings under sustained loads occurred
239 years after construction. Although concrete age at loading, t_0 , is a parameter affecting concrete
240 linear creep (ACI 209, 2008), the existing data of nonlinear creep were predominantly obtained
241 from the tests of young concrete or RC columns ($t_0 \leq 90$ days). Accordingly, the experiments in
242 this study were not commenced until the specimens have been constructed for more than 200
243 days. This loading age was also intended to reduce the increases in both concrete short-time
244 strength and shrinkage deformation during the experimental program. Concentric load was
245 applied to the plain concrete column PS until failure using a hydraulic jack, which was situated
246 above the primary loading beam and bear against a steel reaction frame on the top. For the
247 sustained concentric loading tests, initial loading was applied first by the hydraulic jack up to
248 approximately 180 kN; the remaining load needed to reach a target sustained load was applied by
249 the post-tensioning forces. However, for the sustained eccentric loading tests, due to the much
250 lower needed loads, the specimens were loaded in any stage until failure purely by the tightening
251 the PT rods. The initial loading to a target sustained load was completed typically within 90 and
252 60 minutes for the concentrically and eccentrically loaded specimens, respectively. To
253 compensate load decrease due to concrete creep during sustained loading, the load was adjusted
254 by tightening the nuts at the upper end of the PT rods while monitoring the total applied load
255 through a data acquisition system. The load was adjusted at least daily during the first seven days
256 when most concrete creep occurred. After that, the sustained load was maintained less frequently.
257 If no failure occurred during sustained loading, the specimen was reloaded to failure in a short
258 time. The hydraulic jack was used during this process for the concentrically loaded columns.

259

260 **Instrumentation**

261 The material deformations at the mid-height of a column were measured by strain gauges, as
262 shown in Figs. 1 and 2. Concrete axial strain was measured at section mid-depth along all four
263 column faces. To measure concrete transverse strain in the RC columns, a strain gauge was
264 attached to a column face. For the eccentrically loaded columns, the gauge measuring concrete
265 transverse strain was located at the compression side. Strain gauges were also mounted to two
266 longitudinal bars near the tension face of each eccentrically loaded column. Readings from the
267 concrete axial strain gauges were used to guide post-tensioning the rods in order to achieve a
268 relatively even strain distribution among the four column faces during concentric loading and a
269 symmetric strain response between the two side faces during eccentric loading. For the
270 eccentrically loaded columns, deflections were measured at the column mid-height as well as the
271 top and bottom ends by horizontally oriented linear variable differential transformers (LVDTs).

272 As shown in Figs. 1 and 2, two load cells were placed between the primary and secondary
273 loading beams to measure the PT forces. The load applied by the hydraulic jack was measured
274 by a load cell sitting on the primary loading beam. The laboratory is air-conditioned and located
275 in a dry region in the U.S. with an annual precipitation of only 105 mm. Thus, the typical
276 temperature and relative humidity inside the laboratory were 23°C and 21%, respectively.

277

278 **Results of Concentric Loading Tests**

279 ***Axial Stress-Strain Response and Failure Pattern***

280 The plain concrete column PS was tested first. It was loaded to failure within 10 minutes at $t_0 =$
281 209 days. Other short columns were subjected to concentric sustained loading at t_0 between 238
282 and 478 days. Due to the time restraint of the experimental program, the sustained loading for
283 Specimens C98A and C98B was terminated after 120 days when the average increase rate of
284 axial strain during the last 5 days was less than $10^{-5}/\text{day}$. For the columns subjected to lower

285 levels of sustained load, the loading was ended much earlier when the daily strain increase has
286 already dropped below 10^{-5} and the specimens were assumed to have little chance to fail within
287 120 days. Figs. 4 and 5 show the measured load-axial strain response and failure pattern of the
288 columns. It is seen that, due to the use of disk springs, the sustained loads applied through the
289 post-tensioning rods were relatively well maintained. Because of the square cross-sectional shape,
290 higher slenderness, and lower loading rate, the peak stress obtained in PS was 83% of concrete
291 cylinder strength at the same age. The result was similar to that observed in the tests by Scott et
292 al. (1982), in which the peak stress of a plain concrete square column loaded under a comparable
293 strain rate was 86% of cylinder strength. Based on the test result of Specimen PS, the short-time
294 strength of a plain concrete column at zero eccentricity, is defined herein as $P_{o,c} = 0.83f'_c A_c$,
295 where f'_c is the short-time cylinder strength of concrete at the same age and A_c is concrete
296 sectional area. The so-defined $P_{o,c}$ for plain concrete columns P77 and P90 at the start of
297 sustained loading is indicated by the dashed lines in Fig. 4.

298 Sustained loading of Specimens P77 and P90 started from $t_0 = 238$ and 317 days. The
299 average sustained load evaluated based on a 12-hours interval was $P_{sus} = 425$ kN = $0.77P_{o,c}$ for
300 P77 and $P_{sus} = 497$ kN = $0.90P_{o,c}$ for P90. The load fluctuation due to creep and load adjustment
301 was within 3% of P_{sus} , except for P90 during the initial 18 hours of sustained loading, when the
302 load dropped by 8%. Because the axial strains in P77 and P90 were stabilized after 20 days, the
303 sustained loading was terminated at $t - t_0 = 22$ days. The test result of P90 indicates that loading
304 age plays a significant role in concrete creep and likely long-term strength under sustained high
305 stresses. In the material tests conducted at $t_0 = 28$ to 56 days by Smadi et al. (1985) and Iravani
306 and MacGregor (1998), all cylinders with a short-time strength between 21 and 69 MPa failed
307 within 4 days if the sustained stress exceeded 80% of short-time strength; particularly, when a

308 sustained stress of 90% of short-time strength was applied, the concrete cylinders could not
309 endure the high stress for more than one hour and, on average, failed at an axial strain of 0.00296.
310 In contrast, Specimen P90 ($t_0 = 317$ days) spent 22 days of sustained loading to reach an axial
311 strain of 0.00196 and survived this level of high sustained stress without any sign of failure. In
312 addition to loading age, the coarse aggregate type may also have contributed to the much lower
313 creep rate. Under service-level sustained stresses, the creep of limestone concrete was about 60%
314 of gravel concrete (Troxell et al. 1958). The concrete was made of limestone in this study;
315 however, gravel was used in the tests by Iravani and MacGregor (1998). Aggregate type was not
316 reported by Smadi et al. (1985).

317 After the completion of sustained loading, P77 and P90 were completely unloaded. The
318 residual strain upon unloading was 0.00102 in P77 and 0.00118 in P90. After resting for one day,
319 when the residual strains were reduced to 0.00096 in P77 and 0.00113 in P90, these columns
320 were reloaded to failure within 40 minutes. During this process, the load was first increased to
321 the previously applied sustained load by tightening the PT rods; the hydraulic jack was then used
322 to further load the specimens to failure. As shown in Fig. 4, the unloading and reloading stiffness
323 of P77 was similar to that during the initial loading. The peak load of P77 was $P_{max} = 588$ kN,
324 exceeding $P_{o,c}$ at the end of sustained loading by 5.6%. The reloading response of P90 is not
325 shown in Fig. 4 due to an accidental loss of strain data; however, the peak load was measured as
326 598 kN, 7.5% higher than $P_{o,c}$ of this specimen. Given that the cylinder compressive strength, f'_c ,
327 was essentially unchanged for P77 and reduced slightly by 2.7% for P90 over the sustained
328 loading period (Table 1), the test results of these specimens indicate that sustained loading can
329 slightly increase concrete compressive strength. Due to the strength increase, the level of
330 sustained stress in P90 was essentially lowered down from 90% of short-time strength at t_0 to

331 83% of that at the end of sustained loading, thereby significantly reducing failure likelihood.
332 Moreover, the strength increase was accompanied with a shift from splitting failure in Specimen
333 PS to shearing diagonal failure in P77 and P90 during reloading, as shown in Fig. 5.

334 For the five short RC columns, their nominal short-time axial strength at zero eccentricity,
335 P_o , is indicated by the dashed lines in Fig. 4. P_o was evaluated based on f'_c at t_0 and ACI 318
336 (2019) without considering the 0.80 factor used to account for accidental eccentricity. Specimens
337 C76A and C76B were both applied with a sustained load of $P_{sus} = 518$ kN = $0.76P_o$ at $t_0 = 268$
338 days; the load was sustained for 47 days. A high sustained load of $P_{sus} = 659$ kN = $0.98P_o$ was
339 applied to C98A at $t_0 = 348$ days and C98B at $t_0 = 354$ days and lasted for 120 days. For these
340 RC short columns, the largest load drop occurred only during the first day of sustained loading.
341 The variation of sustained load from the average was less than 2.7% for each specimen.

342 After the completion of sustained loading, C76A, C76B, C98A, and C98B were reloaded
343 to failure in a short time using the hydraulic jack. The reloading response is shown by the third
344 portion of load-strain response in Fig. 4. The reloading stiffness was consistently greater than the
345 initial loading stiffness. The peak load achieved in this loading stage was 767 kN = $1.12P_o$, 797
346 kN = $1.16P_o$, 799 kN = $1.19P_o$, and 758 kN = $1.13P_o$ for C76A, C76B, C98A, and C98B, where
347 P_o is defined based on f'_c measured at the end of sustained loading. As described previously, the
348 peak load of plain concrete specimens P77 and P90 after 22-days sustained loading was 5.6%
349 and 7.5% greater than the expected short-time strength. For the RC column specimens C76A,
350 C76B, C98A, and C98B, the strength increase from P_o (15% on average) can be attributed to
351 both the concrete strength gain due to sustained loading and the enhanced core concrete strength
352 due to confinement effect. Given that the nonlinear creep of concrete is sensitive to the ratio of

353 sustained stress to strength, the more than 10% strength increase from P_o may not be negligible
354 when the creep of a RC column under high sustained loads needs to be accurately predicted.

355 Because the high sustained loads of $0.98P_o$ did not cause any failure in C98A and C98B
356 and their reloading strength was 16% higher than P_o , the sustained load applied to Specimen
357 C110A was increased to $699 \text{ kN} = 1.10P_o$ so that it could fail quickly during sustained loading.
358 The initial loading resulted in a concrete axial strain of 0.00200. After only 2.55 minutes of
359 sustained loading, the specimen suddenly failed at an axial strain of 0.00225 when the load
360 dropped by 1.3% to 690 kN.

361

362 ***Load Redistribution in RC Columns during Sustained Loading***

363 Assuming that concrete was linear elastic prior to reaching a load of 130 kN, concrete Young's
364 modulus was estimated for each RC column based on the plane section assumption, measured
365 concrete axial strain, and steel elastic modulus. The free shrinkage strain of concrete material
366 was not measured in the tests but estimated according to the formulations recommended by ACI
367 209 (ACI 2008), concrete age, environment temperature, and relative humidity. Based on
368 concrete free shrinkage, the initial stresses and strains in concrete and steel due to restrained
369 concrete shrinkage prior to loading were predicted based on deformation compatibility and
370 equilibrium. The net axial force carried by the four D9 longitudinal bars, N_s , during the initial
371 and sustained loading was determined according to their initial stress caused by concrete
372 shrinkage, the measured concrete axial strain, and the material property of the D9 bars. The net
373 axial force resisted by concrete, N_c , was then evaluated by deducting N_s from the measured load.

374 The variations of N_s and N_c during sustained loading are shown in Fig. 6 for Specimens
375 C76A, C76B, C98A, and C98B. Time is indicated using logarithmic scale in the figure. N_c
376 decreased with time; however, the reduction was limited because the axial force in a column was

377 primarily carried by concrete due to the relatively low longitudinal reinforcement ratio. The total
378 yield force of the four column longitudinal bars was 122 kN. These bars reached yielding in
379 Specimen C76B at $t - t_0 = 3$ days. No yielding was predicted for C76A during the 47-days
380 sustained loading. Steel yielding occurred in C98A and C98B soon after the start of sustained
381 loading at $t - t_0 = 5$ and 7 hours. After steel yielding, the average stress sustained in concrete was
382 24.1 MPa, a value exactly equal to the short-time concrete strength for square section ($0.83f_c'$) at
383 t_0 . Apparently, the transverse reinforcement must have enhanced the strength of core concrete so
384 that C98A and C98B could carry the sustained loads for 120 days without any failure.

385

386 ***Creep Development***

387 Table 2 summaries the key concrete deformation properties during the sustained concentric
388 loading of the RC short columns. Compared with the large instantaneous and creep strains
389 caused by the high loads, shrinkage strain should be very limited. For each specimen, the
390 estimated concrete tensile strain due to restrained shrinkage prior to loading was less than 6% of
391 the axial compressive strain caused by initial loading; moreover, because $t_0 > 230$ days, the
392 change in predicted concrete free shrinkage strain over the sustained loading period accounted
393 for at most 3% of the measured creep strains. Thus, the effects of shrinkage during sustained
394 loading are neglected and a creep coefficient, φ , is defined based on the axial strains at the start
395 and end of sustained loading given in Table 2.

396 Fig. 7 plots the development of creep during sustained loading. As shown in Fig. 7a, in
397 the first day of sustained loading, axial strain rapidly increased by 36% in P77, 30% in P90, 25%
398 in C76A, 26% in C76B, 36% in C98A, and 17% in C98B. The creep rate then decreased with
399 time. Even if the sustained load ratio of P90 ($t_0 = 317$ days) was 17% greater than that of P77 (t_0
400 = 238 days), φ was slightly lower in P90 until $t - t_0 = 7.4$ days and became nearly identical

401 thereafter. Apparently, the 79-days difference in loading age affected φ . After 20 days of loading,
402 the axial strain in both columns became stabilized and, when the sustained loading was stopped
403 at $t - t_0 = 22$ days, φ was equal to 1.00 for P77 and 0.99 for P90.

404 Specimens C76A with $\rho_t = 0.26\%$ and C76B with $\rho_t = 0.78\%$, subjected to a sustained
405 load of $0.76P_o$, presented nearly same creep response, as indicated in Fig. 7b. At $t - t_0 = 47$ days
406 when the sustained loading was stopped, φ was equal to 0.86 for both columns. Thus, the
407 difference in transverse reinforcement ratio did not cause any impact on creep coefficient of
408 these columns. However, the effects of column transverse reinforcement on creep became
409 notable when a high sustained load of $0.98P_o$ was applied. As shown in Fig. 7c, the φ of C98B
410 was 77%, 51%, and 28% less than that of C98A at $t - t_0 = 1$ hour, 1 day, and 7 days, respectively.
411 Because the sustained loading of C98B started only 6 days later than C98A, the difference in φ
412 should not be attributed to loading age. However, the creep discrepancy decreased with time and,
413 when the sustained loading was ended at $t - t_0 = 120$ days, $\varphi = 1.14$ for C98A and 1.13 for C98B.

414 Comparison of creep coefficient is also made between C98A and the plain concrete
415 column P90 to examine the effects of transverse reinforcement. By $t - t_0 = 22$ days (when the
416 sustained loading of P90 was ended), φ of C98A was 0.708, nearly 30% lower than that of P90.
417 Even if the t_0 of C98A was 31 days greater, both specimens were loaded at an age beyond 310
418 days and therefore loading age effect should be less pronounced. Moreover, the level of concrete
419 sustained stress in C98A was 11% greater than in P90. Thus, the difference in creep deformation
420 between the two specimens should be attributed mainly to the confinement effect of transverse
421 reinforcement in C98A. It follows that, even with the largest spacing permitted by design code,
422 the ties having seismic hooks can protect a RC column again failure under high sustained
423 concentric loads.

424

425 **Transverse Deformation**

426 The transverse strains of concrete cover measured at column mid-height, ε_{ct} , during sustained
427 loading are shown in Fig. 8 and Table 2 for the concentrically loaded RC columns. The
428 transverse strain ε_{ct} at the beginning of sustained loading was consistently greater for the
429 columns subjected to higher loads. During sustained loading, ε_{ct} changed little in Specimen
430 C76B and even decreased in C76A. This explains that, in spite of the different transverse
431 reinforcement ratios, the two specimens presented almost identical creep response. In contrast, in
432 C98A and C98B, the two columns subjected to higher sustained loads, the transverse
433 deformation was more than tripled over time. The trend of reduced difference in ε_{ct} between
434 these specimens was consistent with that of the creep response shown in Fig. 7c. It is likely that,
435 due to the higher ρ_t , the core concrete of C98B attracted greater stress than C98A and was thus
436 softened quicker as time elapsed. This caused a portion of the stress initially carried by the core
437 to be redistributed to the cover so that the difference in both creep coefficient (Fig. 7) and
438 transverse strain (Fig. 8) between C98A and C98B was reduced toward the end of sustained
439 loading. Because Specimen C110A failed soon after the start of sustained loading, transverse
440 strain increased by only 10%. The distinctively different transverse strain responses under two
441 levels of sustained load ($\alpha = 0.76$ and $\alpha = 0.98$) affected the transverse strain during the
442 subsequent reloading to failure. The ε_{ct} measured at the peak load reached 0.00227 and 0.00233
443 in C98A and C98B but was only 0.000216 and 0.000753 in C76A and C76B.

444 Based on the measured axial and transverse strains, the Poisson's ratio of concrete cover,
445 ν , was computed for each RC column during sustained loading and shown in Fig. 9 and Table 2.
446 The evolution trend of ν was similar to that of concrete transverse strain. For both C76A and
447 C76B, ν was equal to 0.23 at t_0 and decreased during sustained loading. For C98A and C98B, ν

448 was equal to 0.29 and 0.21 at t_0 . The lower ν in C98B was most likely caused by greater
449 confinement effect. After one day of sustained loading, ν quickly increased by 0.08 in C98A and
450 0.06 in C98B. The difference in ν between C98A and 98B decreased over time; by the end of
451 sustained loading for 120 days, ν was equal to 0.45 in C98A and 0.42 in C98B. The Poisson's
452 ratio of C110A was 0.35 at the start of sustained loading and quickly increased to 0.41 at failure.
453 The variation trend of ν was consistent with the findings made from the tests of young concrete
454 material (Stöckl 1972; Mazzotti and Savoia 2002). Firstly, ν increased over time when the
455 sustained stress was greater than 80% of concrete short-time strength but remained unchanged or
456 even decreased when the sustained load was moderate. Secondly, ν at failure increased for
457 concrete under reduced level of sustained stress; accordingly, even if the ν of C98A and C98B
458 exceeded that of C110A, no failure occurred.

459

460 **Results of Eccentric Loading Tests**

461 ***Load – Moment Response and Failure Pattern***

462 The sustained eccentric loading tests of RC columns were conducted between $t_0 = 547$ and 629
463 days, when concrete strength can be taken as constant, as indicated in Fig. 3b. The overall
464 performance is shown in Fig. 10 by the axial force versus mid-height moment response. Second
465 order effects were not obvious during the initial loading when the load was lower than 100 kN.
466 Also shown in Fig. 10 is a sectional interaction diagram defined based on ACI 318 (2019) to
467 indicate the nominal short-time flexural strength of columns, M_n , at different axial forces. Only
468 one column, E99A17, failed during sustained loading. All other columns underwent three
469 loading stages: initial loading, sustained loading, and reloading to failure. Similar to the
470 concentric loading tests, the largest load drop occurred during the first day of loading but was
471 lower than 2.5% of the target sustained load; in the remaining period of sustained loading, the

472 loads were maintained with less fluctuation. The sustained loading was terminated when the
473 average deflection increase rate at column mid-height was at most 0.05 mm/day.

474 The initial loads applied to the columns with an eccentricity ratio of $e/h = 0.17$ were
475 chosen to generate a mid-height moment, M , close to the code-defined nominal flexural strength
476 at a particular axial force, M_n . Accordingly, a sustained load of P_{sus} of 387 kN (0.60 P_o), 362 kN
477 (0.57 P_o), 382 kN (0.60 P_o) was applied to Specimens E98A17, E99A17, and E100B17, leading to
478 an initial center deflection of $\Delta = 5.03, 8.71$, and 6.40 mm and $M = 0.98M_n, 0.99M_n$, and M_n ,
479 respectively. From $t - t_0 = 18$ days for E98A17 and 6 days for E100B17, the daily deflection
480 increase became less than 0.05 mm. When the sustained loading was terminated at $t - t_0 = 22$
481 days for E98A17 and 11 days for E100B17, deflection Δ reached 10.8 and 9.94 mm, causing an
482 18.7% and 11.1% increase in mid-height moment, respectively. The peak load during reloading
483 was achieved at $\Delta = 11.5$ mm in E98A17 and 10.5 mm in E100B17. The moment at the peak
484 axial load, M_{max} , was $1.33M_n$ for E98A17 and $1.28M_n$ for E100B17. As described previously for
485 the concentrically loaded column C110A, confinement effect enhanced its short-time strength by
486 approximately 10%; this effect, however, should be less pronounced in the flexural strength of an
487 eccentrically loaded column. Accordingly, the extra strength of E98A17 and E100B17 beyond
488 M_n may be partially attributed to the strength increase due to the previously applied sustained
489 loads. Specimen E99A17 endured the sustained load for only 53 hours and failed at $\Delta = 13.2$ mm
490 when a load adjustment was made. The failure moment was 12% greater than M_n . The strength
491 gain of this specimen from sustained loading was limited due to the short loading period; as a
492 result, the extent of strength increase from M_n was the lowest among the three columns with an
493 eccentricity ratio of 0.17.

494 Specimen E77A25 with $e/h = 0.25$ was initially applied with a load of $P_{sus} = 247$ kN
 495 ($0.39P_o$), resulting in a deflection of $\Delta = 5.49$ mm and a mid-height moment of $M = 0.77M_n$. The
 496 load was sustained for 11 days, over which Δ was increased by only 1.19 mm and M by 5.5%.
 497 The load was then increased to 274 kN ($0.43P_o$), causing $\Delta = 7.20$ mm and $M = 0.91M_n$. During
 498 the second sustained loading of 17 days, Δ was increased by 1.07 mm, leading to only a 2.5%
 499 moment increase. The low increase in deflection in both loading stages made the sustained
 500 loading effect almost indiscernible in Fig. 10d. When reloaded, E77A25 failed at $\Delta = 13.3$ mm
 501 with $M_{max} = 1.34M_n$. Specimen E92A25 was initially loaded to $P_{sus} = 270$ kN ($0.42P_o$), causing Δ
 502 = 8.19 mm and $M = 0.92M_n$. After 28 days of sustained loading, Δ increased to 12.8 mm,
 503 resulting in an 11% moment increase. During the subsequent reloading, peak load occurred at Δ
 504 = 13.4 mm and the corresponding moment M_{max} was 12% greater than M_n .

505 For the design of non-sway columns, ACI 318 (2019) employs a moment amplification
 506 factor, δ , to increase first-order moment, thereby accounting for the effects of second-order
 507 deformation and creep. Neglecting the strength and stiffness reduction factors associated with
 508 reliability, δ is expressed as

$$509 \quad \delta = \frac{1}{1 - \frac{P_{sus}}{P_c}} \quad \text{Eq. (1)}$$

510 where P_c is critical buckling load and defined by Eq. (2) for single curvature columns.

$$511 \quad P_c = \frac{\pi^2 E_c I}{(1 + \beta_{dns}) l_u^2} \quad \text{Eq. (2)}$$

512 where β_{dns} is a parameter accounting for stiffness reduction due to creep effect, $E_c I$ is section
 513 flexural rigidity during short-time loading, and l_u is unsupported length of column. Based on its
 514 definition, $\beta_{dns} = 0$ if only short-time loading is considered, and $\beta_{dns} = 1$ if only sustained load

515 exists after the initial short-time loading (i.e., no other type of load participates in loading
516 combination).

517 The effectiveness of Eqs. (1) and (2) was examined by the results of the five eccentrically
518 loaded columns tested in this study. The curvature measured at column mid-height at the end of
519 initial short-time loading (described later in this paper) was used to define E_cI in Eq. (2). The
520 center distance between the two pins at column ends was used to define l_u . E99A17 failed during
521 sustained loading; thus, the moment amplification factor was examined only for short-time
522 loading for this column. E77A25 experienced two levels of sustained loading; thus, test data for
523 the first level were considered. Fig. 11 compares the predicted and measured results. On average,
524 the ACI 318 approach underestimates 13% of the bending moment amplified by 2nd order effect
525 during the initial short-time loading. However, due to the crude nature of parameter β_{dns} , there is
526 a notable difference between the predicted and measured values for the extra bending moment
527 caused by sustained loading. Particularly, compared with the experimental result, the ACI 318
528 approach more than triples the moment increase in the sustained loading stage for E100B17 and
529 E77A25. Based on the observed creep rate at the end of sustained loading, the large discrepancy
530 would not be dramatically reduced even if these specimens can be loaded for a longer time.

531 Fig. 12 shows the crack pattern and failure mode of the eccentrically loaded columns.
532 Flexural cracks were not visible during the initial loading and the first day of sustained loading
533 of the columns with $e/h = 0.17$. For the columns with $e/h = 0.25$, cracks were noticed in the
534 column mid-height region immediately after the initial loading. The failure of Specimens
535 E98A17, E99A17, E77A25, and E92A25 was brittle and accompanied with severe buckling of
536 the column longitudinal bars at mid-height. However, rebar buckling did not occur at the failure
537 of E100B17 where the transverse reinforcement spacing was reduced.

538

539 **Axial Strains**

540 The measured axial strains indicate that plane section assumption was approximately held during
541 both short-time and sustained loading. Moreover, along the loading path, the pin at each beam
542 end caused a distributed bearing stress on the steel plate due to contact. The resultant force of the
543 bearing stress ideally should be aligned with pin center; otherwise, the actual eccentricity would
544 deviate from the nominal value. The strain measurements were used to partially validate the
545 eccentricity ratios defined for the specimens. Fig. 13 shows column mid-height axial strains
546 measured in Specimens E100B17 and E92A25 at four locations, including tension face, tensile
547 reinforcement, mid-depth of side faces, and compression face. When the load was low so that the
548 second order effect was negligible and the columns behaved elastically, the axial strain should be
549 approximately equal to zero at the tension face of the columns with $e/h = 0.17$ and in the tensile
550 reinforcement of the columns with $e/h = 0.25$. As shown in Fig. 13, such a strain condition was
551 achieved when axial load was below 100 kN.

552 The axial strain at compression face, ε_c , could not be captured in Specimen E98A17 due
553 to strain gauge malfunction. For Specimens E99A17, E100B17, E92A25, and E77A25, the initial
554 loading caused $\varepsilon_c = 0.00273, 0.00264, 0.00208$, and 0.00164 . Thus, the compressive stress at
555 concrete cover of the first three specimens should already be in the descending branch of stress-
556 strain response. By the end of sustained loading, ε_c was increased to 0.00368 in E100B17 and
557 0.00329 in E92A25. The ultimate compressive strain, ε_{cu} , at the failure of E99A17 during
558 sustained loading was 0.00417. The ε_{cu} for other specimens, which survived the sustained
559 loading and were reloaded to failure, was similar to that of E99A17 and equal to 0.00482,
560 0.00394, and 0.00454 for E100B17, E92A25, and E77A25, respectively. As expected, and
561 shown in Fig. 13, when the peak load was reached, the tensile reinforcement has not yielded so
562 that the failure of each specimen was governed by concrete crushing. Viest et al. (1956) stated

563 that the ultimate strain of concrete following sustained loading may be approximated by
564 superimposing the concrete ultimate strain under short-time loading with creep strain. This
565 observation, however, was made from the tests of 13 columns with only one loaded at an age
566 greater than 90 days, and is thus examined herein. After subtracting the creep strains, ϵ_{cu}
567 becomes 0.00378, 0.00273, and 0.00376 for Specimen E100B17, E92A25, and E77A25, with an
568 average of 0.00342, sufficiently close to the typical concrete ultimate strains under short-time
569 loading.

570

571 ***Moment-Curvature Response***

572 Based on plane section assumption, the axial strains measured at the column side and
573 compression faces were used to calculate column mid-height curvature, from which a moment-
574 curvature response was constructed and shown in Fig. 14. Because the axial strain at
575 compression face was unavailable for Specimen E98A17, its curvature was determined from the
576 axial strains measured at the tensile reinforcement and the side faces. E98A17 had the highest
577 flexural stiffness during initial loading, whereas the stiffness of remaining columns was similar.
578 Compared with the initial loading, concrete creep caused by sustained loading significantly
579 softened the columns; however, the stiffness during this loading stage was approximately
580 constant. Based on the moments and curvatures at the start and end of sustained loading, a secant
581 flexural stiffness was calculated. This stiffness during sustained loading was nearly identical in
582 E98A17 and E99A17; in comparison, the stiffness of E100B17 with reduced transverse
583 reinforcement spacing was 21% higher, which contributed to the lower creep effects discussed
584 later. The ultimate curvatures at failure were comparable among E98A17, E99A17, E100B17,
585 and E92A25. Specimen E77A25 achieved higher flexural strength and deformation capacity than
586 E92A25, which may be explained by the different sustained loading histories.

587

588 **Creep for Deflection and Curvature**

589 Two types of creep were examined: column center deflection representing global deformation
590 and mid-height curvature reflecting local deformation. Such deformation properties measured at
591 the start and end of sustained loading are summarized in Table 3. The variation of creep
592 coefficient, φ , over time during sustained loading is shown in Figs. 15 and 16. Load was initially
593 applied to E98A17, E99A17, and E100B17 at $t_0 = 547, 604$, and 603 days, respectively. Even if
594 E98A17 was loaded 57 days earlier than E99A17, they had similar φ during the first two days of
595 sustained loading, as shown in Fig. 15. This indicates that the difference in loading age was not
596 influential for the eccentrically loaded columns, which were already more than 500-days old at
597 the start of testing. E100B17 had the lowest φ among the three specimens with $e/h = 0.17$ and
598 remained intact during sustained loading; however, E99A17 quickly failed within three days of
599 loading. On the other hand, after 10 days of sustained loading, the φ for E100B17 was 45%
600 lower for deflection and 67% lower for curvature than those for E98A17. Thus, the test data of
601 E98A17, E99A17, and E100B17 revealed that increasing transverse reinforcement ratio can
602 reduce creep deformations in an eccentrically loaded column carrying high sustained loads.

603 The creep coefficients for E77A25 during the first and second sustained loading, which
604 started at $t_0 = 629$ and 640 days, are shown separately in Fig. 16. Due to the lower load, φ during
605 the first sustained loading of 11 days was less than 50% of that for Specimen E92A25 loaded at
606 nearly the same age. Even if the second sustained load applied to E77A25 resulted in an initial
607 mid-height moment comparable to that of E92A25, the φ in term of either deflection or curvature
608 of E77A25 was lower than in its first sustained loading and much less than that of E92A25. Thus,
609 the test of E77A25 indicated a history-dependent creep behavior of RC columns: the lower

610 sustained load applied previously reduced the creep deformation caused by the higher sustained
611 load applied later.

612 The creep deformation of E92A25 is compared with that of a column tested by Jenkins
613 and Frosch (2015). This column, designated as R3-40-25-LT(1), had the same column section
614 size, eccentricity ratio, and longitudinal reinforcement ratio; other properties, including column
615 slenderness and transverse reinforcement ratio, were similar. Compared to E92A25, R3-40-25-
616 LT(1) was applied with a lower level of sustained load ($P_{sus} = 0.35P_o$), thereby causing an 38%
617 lower initial deflection. However, the deflection after 28 days of sustained loading was 48%
618 higher than E92A25 and the corresponding creep coefficient ϕ was as high as 2.75, far exceeding
619 $\phi = 0.562$ in E92A25. The use of gravel as coarse aggregate in R3-40-25-LT(1) can partially
620 explain its high value of ϕ . However, the early loading age of $t_0 = 53$ days for R3-40-25-LT(1)
621 may have dominated the considerably different creep response. This indicates that, if a greater
622 accuracy is desired, column design approach should incorporate the effects of aggregate type and
623 loading age.

624

625 ***Transverse Deformation at Compression Face***

626 The variations of concrete transverse strain, ε_{ct} , and Poisson's ratio, v , at the compression face of
627 column mid-height during sustained loading are shown in Figs. 17 and 18 for four columns.
628 Higher level of load caused greater transverse strain. After initial loading, $\varepsilon_{ct} = 0.00137$, 0.00117 ,
629 and 0.00081 , and $v = 0.50$, 0.45 , and 0.39 in Specimens E99A17, E100B17, and E92A25,
630 respectively. Similar to the concentric loading tests, the evolution of Poisson's ratio during
631 sustained loading was impacted mainly by transverse strain. After loading for one day, v
632 increased to 0.48 and 0.42 in E100B17 and E92A25; after three days, v became stabilized at

633 around 0.50 in E100B17, whereas ν in E92A25 varied in a narrow range of 0.40 to 0.44. In
634 contrast, ϵ_{ct} and ν quickly increased to 0.00259 and 0.69 in E99A17 by the end of the first day's
635 loading and kept increasing thereafter. When this specimen failed during the third day of
636 sustained loading, ϵ_{ct} was equal to 0.00359 and ν reached 0.86. For Specimen E77A25, ν was
637 0.19 after the initial loading and slightly reduced to 0.15 after 11 days; even if the sustained load
638 was then increased, ν showed little change and was equal to 0.17 by the end of the second
639 sustained loading. When E100B17, E92A25, and E77A25 failed during reloading, $\epsilon_{ct} = 0.00283$,
640 0.00202, and 0.00208, and $\nu = 0.59, 0.51$, and 0.46, respectively.

641

642 **Conclusions**

643 Sustained concentric and eccentric loading tests were conducted on plain concrete and reinforced
644 concrete columns at ages greater than 200 days. The levels of sustained load ranged from 76% to
645 110% of the predicted column nominal short-time strength. The following major observations
646 and conclusions were reached:

- 647 ▪ The creep of concrete under sustained high stresses was affected by loading age and
648 coarse aggregate type. The aged concrete columns constructed with limestone aggregates
649 demonstrated high strength to carry heavy sustained loads. The concentrically loaded
650 columns resisted a sustained load as high as 98% of column short-time strength for 120
651 days. Moreover, no column failed during eccentric loading if the initial moment caused
652 by sustained loads was no more than 92% of short-time flexural strength.
- 653 ▪ Under a high sustained load close to a column's short-time capacity, the confinement
654 effects provided by transverse reinforcement resulted in lower creep deformation, thereby
655 reducing the risk of column failure under sustained loading. Under concentric loading,
656 the beneficial effect of higher transverse reinforcement ratio was prominent during the

657 early sustained loading stage but diminished over time. More experiments are needed to
658 further examine the effects of transverse reinforcement on concrete creep.

- 659 ▪ Previous sustained loading increased the residual short-time loading capacity of columns.
660 On average, sustained loading increased the short-time strength of plain concrete columns
661 by 6.6%. The combined effects of sustained loading and transverse reinforcement
662 confinement increased the axial strength of reinforced concrete columns by 12% to 19%
663 and flexural strength by 11% to 33%.
- 664 ▪ The Poisson's ratio of concrete cover can be taken as an indicator of column safety under
665 sustained loading. No failure occurred during either concentric or eccentric loading, if the
666 Poisson's ratio of concrete cover increased only slightly or decreased. In contrast, two
667 columns that failed during sustained concentric and eccentric loading experienced a fast
668 increase in Poisson's ratio when the failures were approached.
- 669 ▪ Due to concrete creep, the flexural stiffness at the column critical section during
670 sustained eccentric loading was much lower than that prior to the application of sustained
671 loading. The flexural stiffness during sustained loading was approximately constant and
672 about 20% higher when column transverse reinforcement ratio was tripled.
- 673 ▪ The test of an eccentrically loaded column experiencing two levels of sustained load
674 indicated that the lower sustained load applied earlier reduced creep effects under the
675 higher sustained load applied later. In spite of the different loading histories, the
676 compressive strain of concrete at failure after deducting creep-induced strain was similar
677 to the ultimate strain of concrete under short-time loading.

678 ▪ The ACI 318 moment amplifier approach for eccentrically loaded columns is too rough
679 to accurately estimate the extra bending moment caused by creep deformation during
680 sustained loading.

681

682 **Acknowledgements**

683 This paper is based on work supported by the National Science Foundation (NSF) under Grant
684 No. 1762362 and 1760915. The authors gratefully acknowledge the financial support from NSF.
685 The opinions, findings, and conclusions or recommendations expressed in this paper are those of
686 the authors and do not necessarily reflect the views of the sponsor.

687

688 **Data Availability Statement**

689 Experimental data that support the findings of this study are available from the corresponding
690 author upon reasonable request.

691

692 **References**

693 ACI (American Concrete Institute). 2019. *Building code requirements for structural concrete
694 and Commentary*. ACI 318. Farmington Hills, MI: ACI.

695 ACI (American Concrete Institute). 2008. *Guide for Modeling and Calculating Shrinkage and
696 Creep in Hardened Concrete*. ACI 209. Farmington Hills, MI: ACI.

697 Awad, M.E. and Hilsdorf, H.K. (1971). "Strength and Deformation Characteristics of Plain
698 Concrete Subjected to High Repeated and Sustained Loads," Structural Research Series
699 No. 372, University of Illinois.

700 Bažant, Z. P. and Wittmann F. H. (1983). *Creep and Shrinkage in Concrete Structures*, John
701 Wiley & Sons, 374 pp.

702 Cao, G., Han, C., Peng, P., Zhang, W., and Tang., H. (2019). "Creep Test and Analysis of
703 Concrete Columns under Corrosion and Load Coupling." *ACI Structural Journal*, 116(6),
704 121-130.

705 Green, R. and Breen, J.E. (1969). "Eccentrically Loaded Concrete Columns under Sustained
706 Load," *ACI Journal*, 66(11), 866-874.

707 Green, R. and Breen, J. E. (1984). "Eccentrically Loaded Concrete Columns: 15 Years of
708 Sustained Load," IABSE congress report, 911-918.

709 Goyal, B.B. and Jackson, N. (1971). "Slender Concrete Columns under Sustained Load,"
710 *Journal of the Structural Division*, 97(11), 2729-2750.

711 Guimarães, G.B. and Silva, R.R. (2001). "Analysis of the Structural Collapse of a 26-Story
712 Building," *Rehabilitating and Repairing the Buildings and Bridges of the Americas
713 Conference*, 186-201.

714 Han, L., Tao, Z., and Liu, W. (2004). "Effects of Sustained Load on Concrete-Filled Hollow
715 Structural Steel Columns." *Journal of Structural Engineering*, 130(9), 1392-1404.

716 Iravani, S. and MacGregor, J.G. (1998). "Sustained Load Strength and Short-Term Strain
717 Behavior of High-Strength Concrete," *ACI Structural Journal*, 95(5), 636-647.

718 Jenkins, R.W. and Frosch, R.J. (2015). "Improved Procedures for the Design of Slender
719 Structural Concrete Columns," Concrete Research Council, American Concrete Institute.

720 Khalil, N., Cusens, A.R., and Parker, M.D. (2001). "Tests on Slender Reinforced Concrete
721 Columns," *Structural Engineer*, 79(18), 21-30.

722 Kim, C.-S., Park, H.-G., Choi, I.-R., and Chung, K.-S. (2017). "Effect of Sustained Load on
723 Ultimate Strength of High-Strength Composite Columns Using 800-MPa Steel and 100-
724 MPa Concrete." *Journal of Structural Engineering*, 143(3), 04016189.

725 Mazzotti, C. and Savoia, M. (2002). "Nonlinear Creep, Poisson's Ratio, and Creep-Damage
726 Interaction of Concrete in Compression, *ACI Material Journal*, 99(5), 450-457.

727 Mazzotti, C. and Savoia, M. (2003). "Nonlinear Creep Damage Model for Concrete under
728 Uniaxial Compression," *Journal of Engineering Mechanics*, 129(9), 1065-1075.

729 Rüsch, H. (1960). "Researches toward a General Flexural Theory for Structural Concrete," *ACI
730 Journal Proceedings*, 57(7), 1-28.

731 Shah, S.P. and Chandra, S. (1970). "Fracture of concrete subjected to cyclic and sustained
732 loading," *ACI Journal Proceedings*, 67(10), 739-758.

733 Smadi, M.M., Slate, F.O., and Nilson, A.H. (1985). "High, Medium, and Low-Strength
734 Concretes Subject to Sustained Overloads - Strains, Strengths, and Failure Mechanisms,"
735 *ACI Journal*, 82(5), 657-664.

736 Stöckl, S. (1972). "Strength of Concrete under Uniaxial Sustained Loading," ACI Special
737 Publication, SP34-16, 313-326.

738 Tasevski, D., Ruiz, M.F., and Muttoni, A. (2018). "Compressive Strength and Deformation
739 Capacity of Concrete under Sustained Loading and Low Stress Rates," *Journal of
740 Advanced Concrete Technology*, 16(8), 396-415.

741 Thean, L.P., Vijiaratnam, A., Lee, S.-L., and Broms, B.B. (1987). Report of the Inquiry into the
742 Collapse of Hotel New World. Singapore: Singapore National Printers.

743 Troxell, G. E., Raphael, J. M. and Davis, R. E., (1958). "Long-Time Creep and Shrinkage Tests
744 of Plain and Reinforced Concrete," *ASTM Proceedings*, 58, 1101-1120.

745 Viest, I.M., Elstner, R.C., and Hognestad, E. (1956). "Sustained Load Strength of Eccentrically
746 Loaded Short Reinforced Concrete Columns," *ACI Journal Proceedings*, 52(3), 727-754.

747

748

749 **Table 1.** Test Matrix

Specimen	Loading type	Sustained load ratio α	Transverse reinf. ratio (%)	Eccentricity ratio	Loading age t_0 (days)	Duration of sustained load t_d (days)	Concrete strength f'_c (MPa)	
							t_0	$t_0 + t_d$
PS	Concentric	—	—	0	209	—	29.8	—
P77	Concentric	0.77	—	0	238	22	29.8	29.8
P90	Concentric	0.90	—	0	317	22	29.8	29.0
C76A	Concentric	0.76	0.26	0	268	47	29.8	29.8
C76B	Concentric	0.76	0.78	0	268	47	29.8	29.8
C98A	Concentric	0.98	0.26	0	348	120	29.0	27.4
C98B	Concentric	0.98	0.78	0	354	120	29.0	27.4
C110A	Concentric	1.10	0.26	0	478	0.0018*	27.4	27.4
E98A17	Eccentric	0.98	0.26	0.17	547	22	27.4	27.4
E99A17	Eccentric	0.99	0.26	0.17	604	2.237*	27.4	27.4
E100B17	Eccentric	1.00	0.78	0.17	603	11	27.4	27.4
E77A25	Eccentric	0.77/0.91	0.26	0.25	628	11/17	27.4	27.4
E92A25	Eccentric	0.92	0.26	0.25	629	28	27.4	27.4

750 * failed during sustained loading.

751

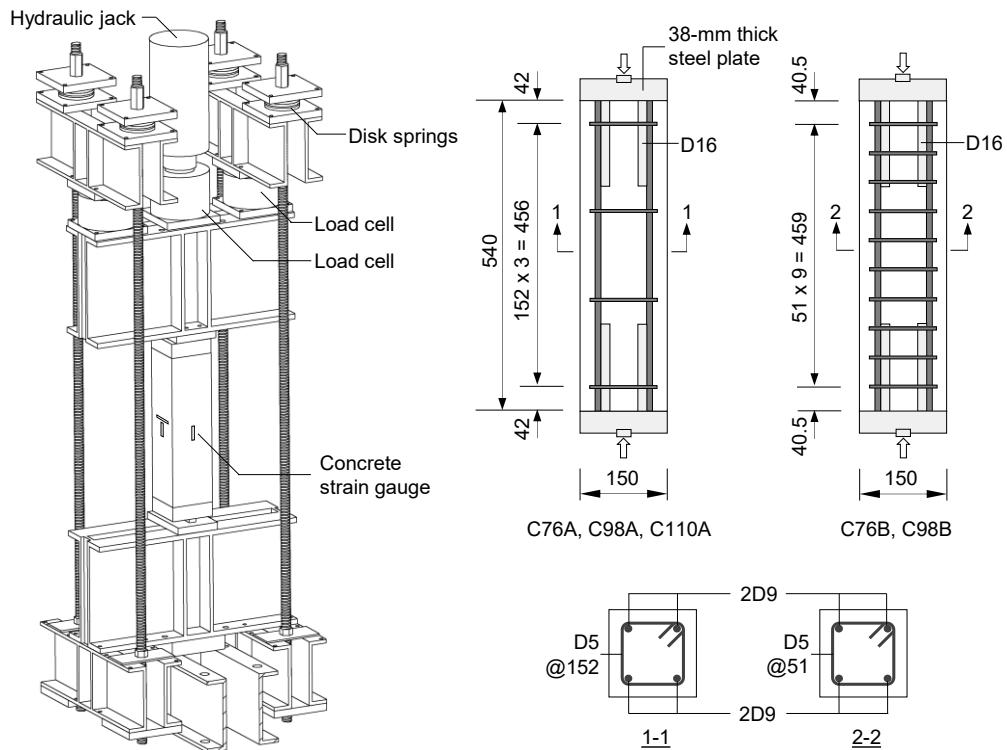
752 **Table 2.** Deformations of concrete during sustained eccentric loading

Specimen	Duration (days)	Axial strain (10^{-3})		Creep coefficient	Transverse strain (10^{-3})		Poisson's ratio	
		beginning	end		beginning	end	beginning	end
P77	22	0.857	1.70	0.99	—	—	—	—
P90	22	0.984	1.96	1.00	—	—	—	—
C76A	47	0.742	1.38	0.86	0.170	0.111	0.229	0.081
C76B	47	1.22	2.27	0.86	0.277	0.326	0.227	0.142
C98A	120	1.30	2.77	1.14	0.531	1.638	0.287	0.454
C98B	120	1.48	3.15	1.13	0.432	1.821	0.214	0.415
C110A*	0.0018	2.00	2.25	0.12	0.700	0.919	0.350	0.409

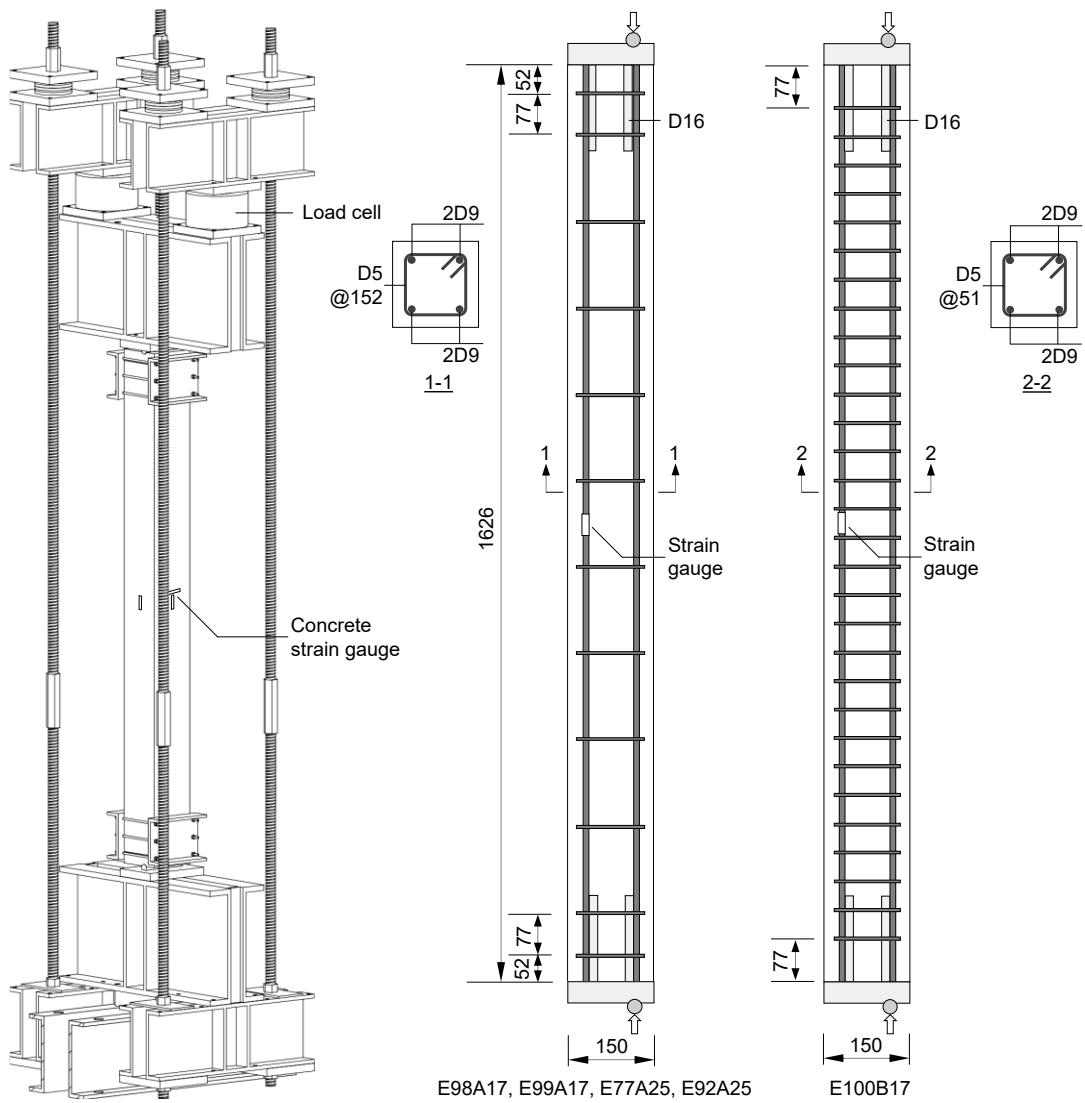
753 * failed during sustained loading

754

755 **Table 3.** Deflection and Curvature during Sustained Eccentric Loading

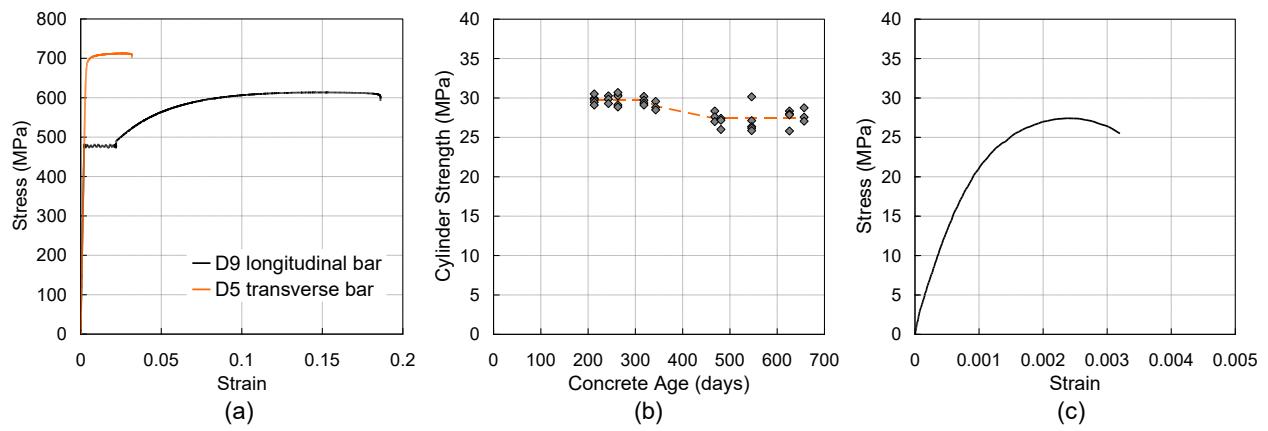

Specimen	Duration (days)	Deflection			Curvature		
		beginning (mm)	end (mm)	creep coefficient	beginning ($10^{-3}/m$)	end ($10^{-3}/m$)	creep coefficient
E98A17	22	5.03	10.8	1.15	11.9	31.4	1.64
E99A17	2.237*	8.72	13.3	0.516	24.4	38.9	0.594
E100B17	11	6.40	9.94	0.553	22.3	32.2	0.442
E77A25 (1st)	11	5.49	6.68	0.217	18.3	22.1	0.207
E77A25 (2nd)	17	7.19	8.27	0.149	23.8	26.9	0.124
E92A25	28	8.19	12.8	0.562	21.5	35.1	0.632

756 * failed during sustained loading


757

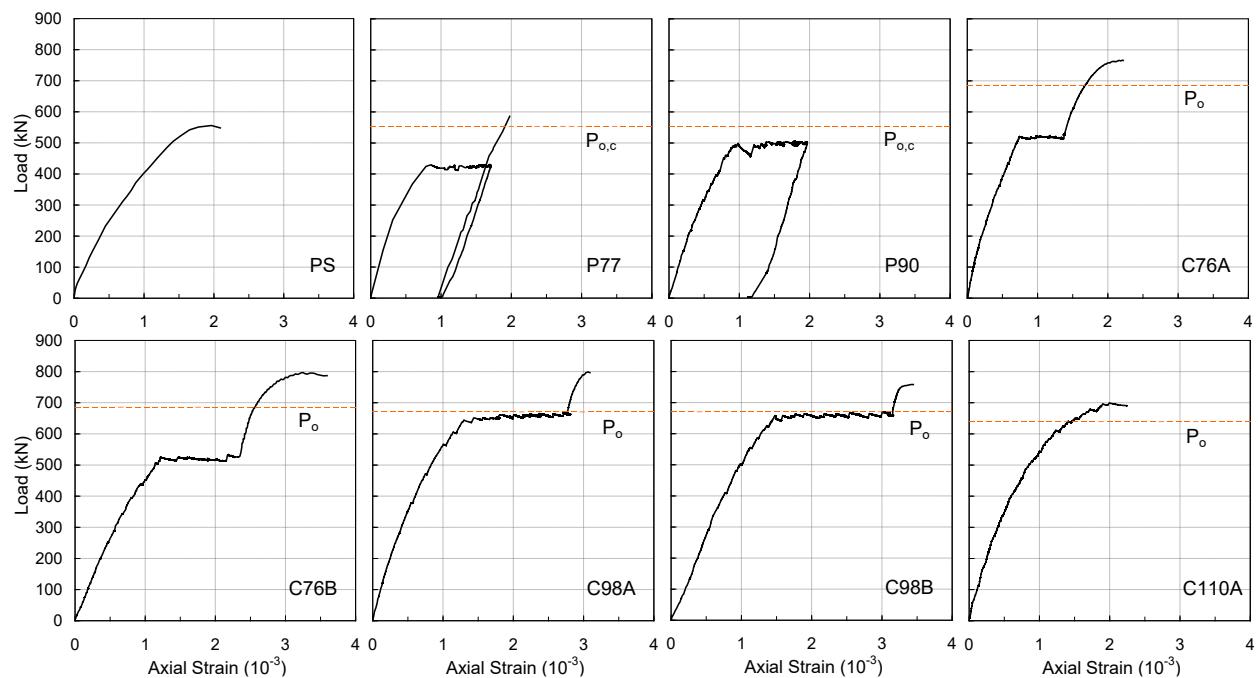
758

759
760
761


Fig. 1. Test setup and reinforcing detail for concentrically loaded columns (dimension in mm).

762
763

Fig. 2. Test setup and reinforcing details for eccentrically loading columns (dimension in mm).

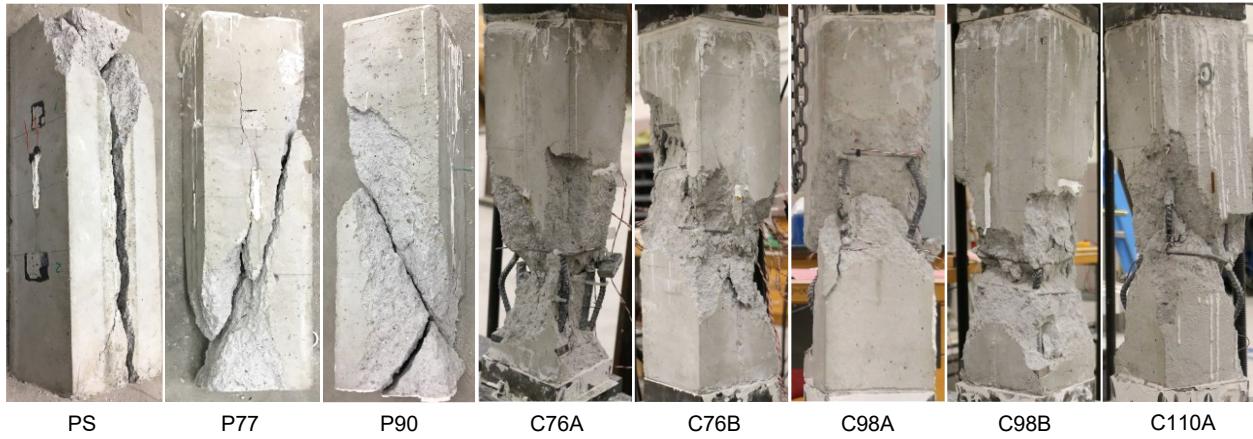

764

765
766

Fig. 3. Material properties: (a) reinforcement stress-strain response, (b) concrete cylinder compressive strength over time, and (c) a sample stress-strain response of concrete cylinder in short-time loading.

769

770

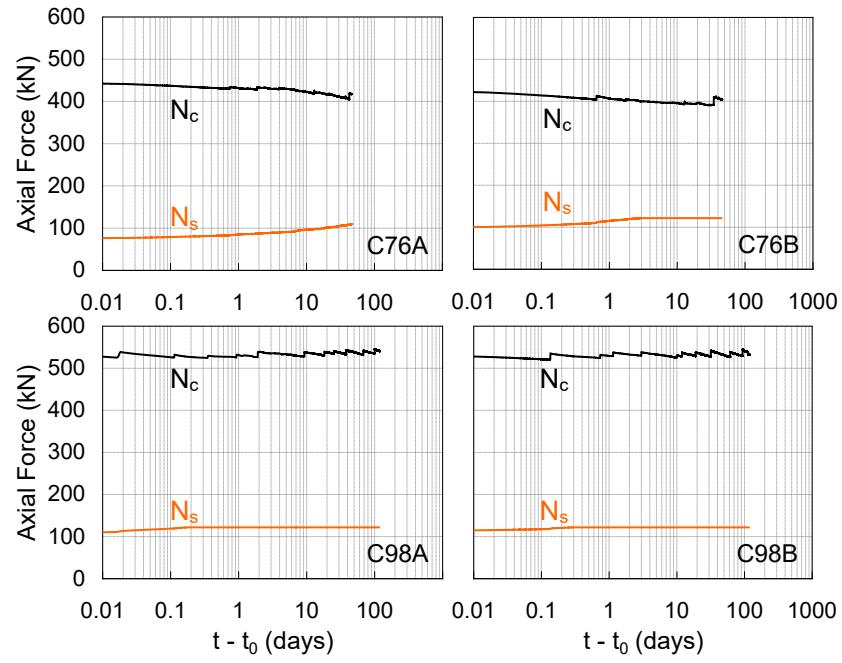

771

772

773

Fig. 4. Load-axial strain response of concentrically loaded columns.

774


775

776

777

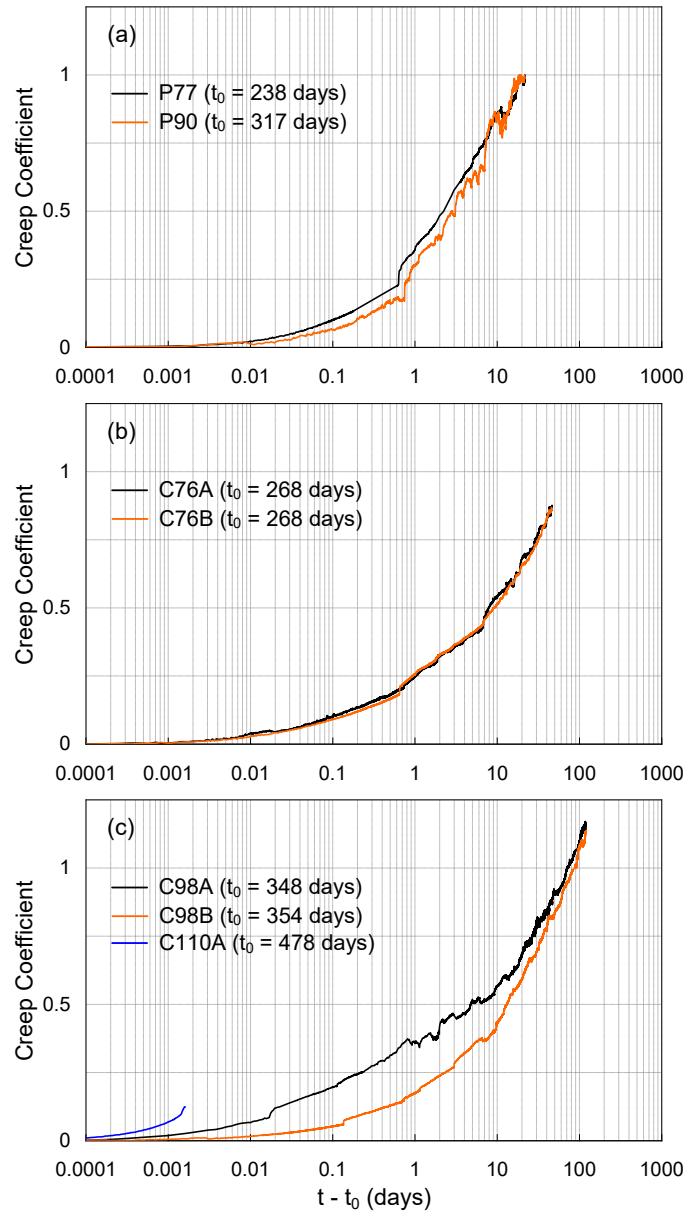
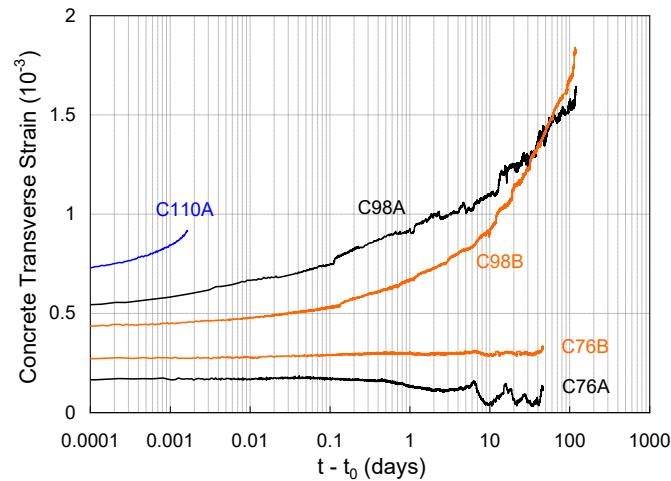

778

Fig. 5. Failed columns after concentric loading.

Fig. 6. Axial forces resisted by concrete and steel during sustained concentric loading.

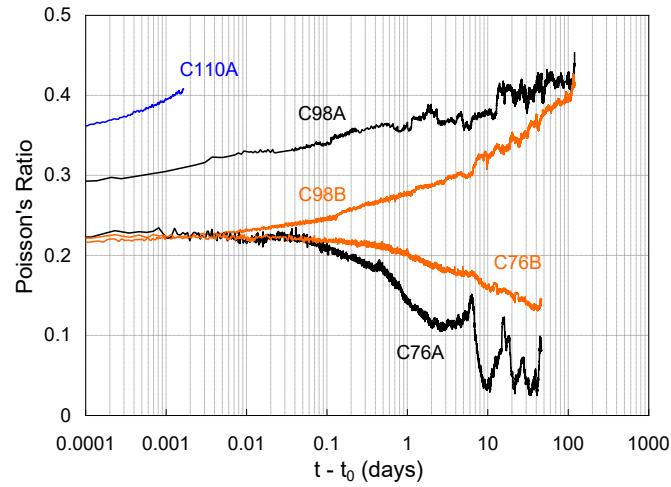
779
780
781
782


Fig. 7. Creep coefficient during sustained concentric loading.

783

784

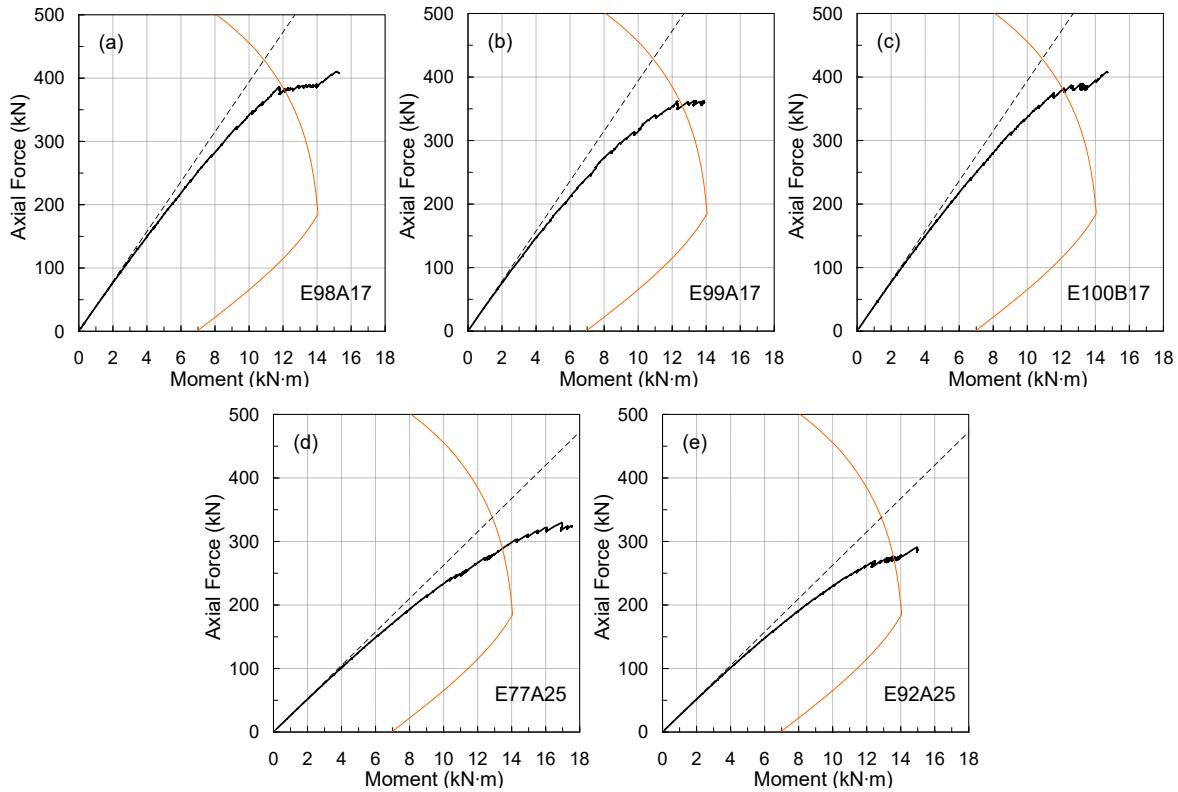
785


786

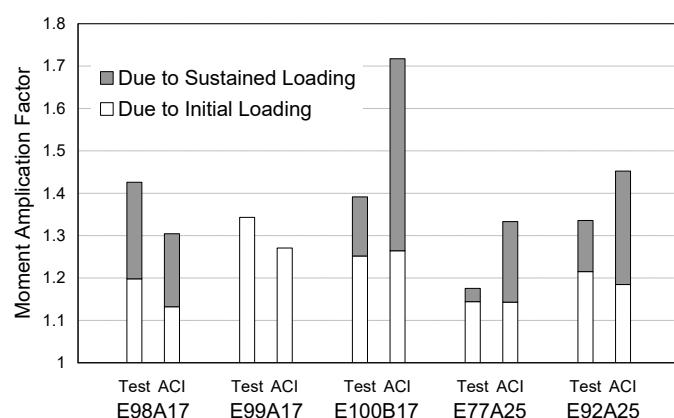
787
 788 **Fig. 8.** Transverse strain of concrete cover during sustained concentric loading.

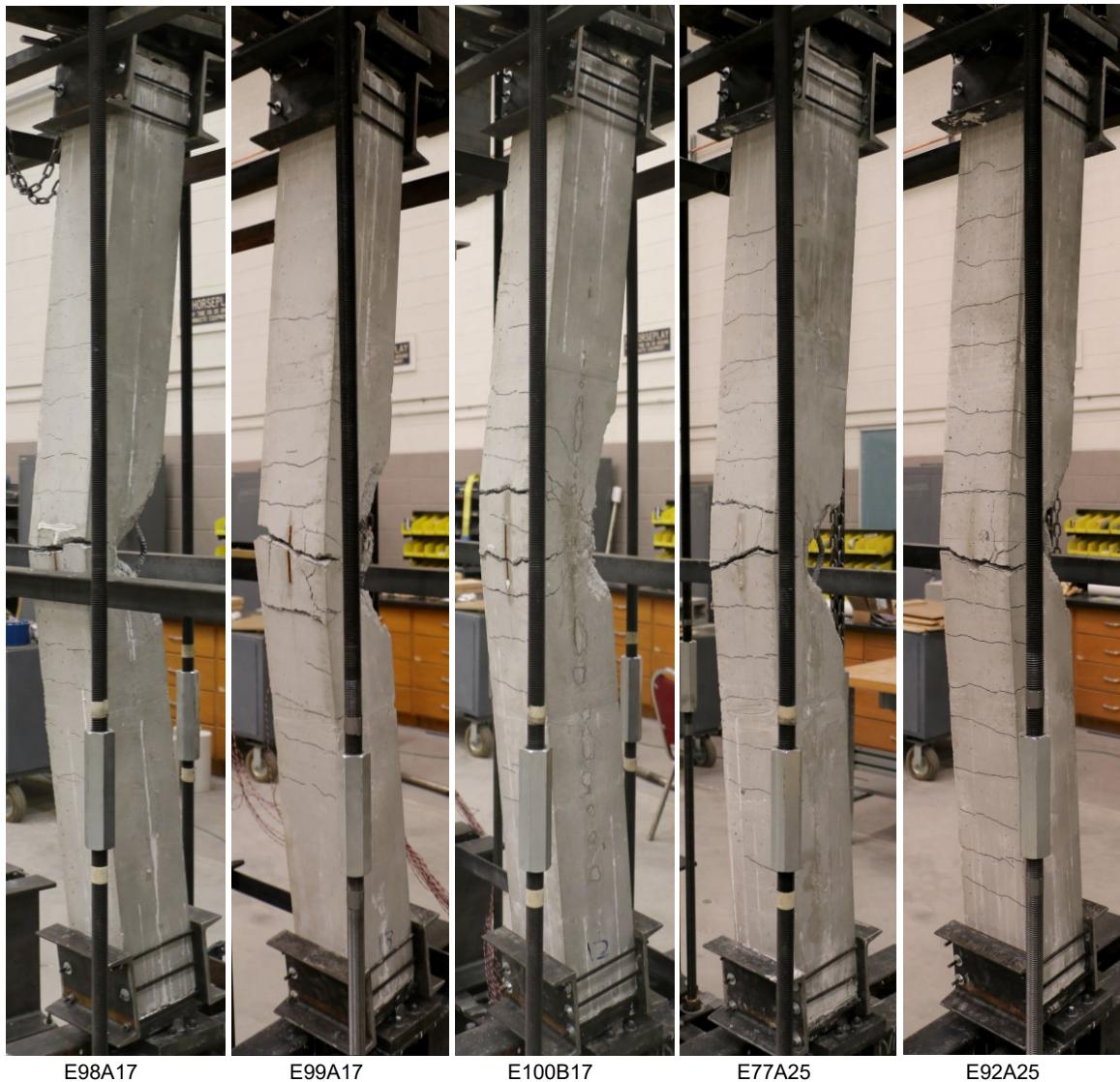
789

790



791
 792 **Fig. 9.** Variation of Poisson's ratio during sustained concentric loading.


793


794

795

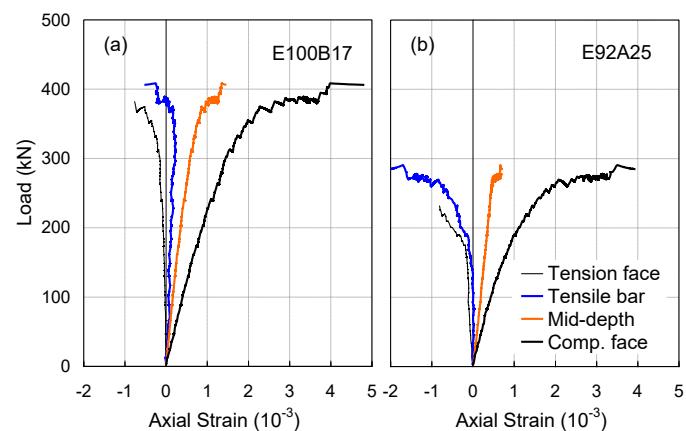
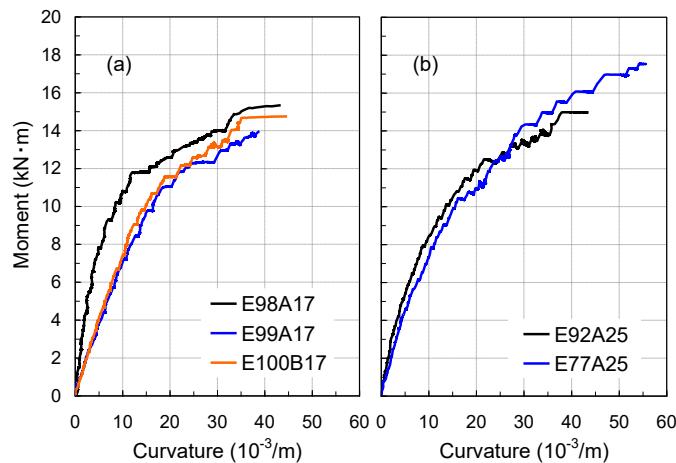
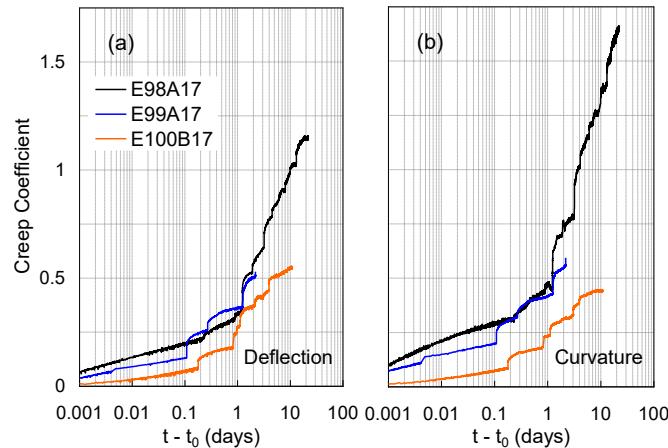
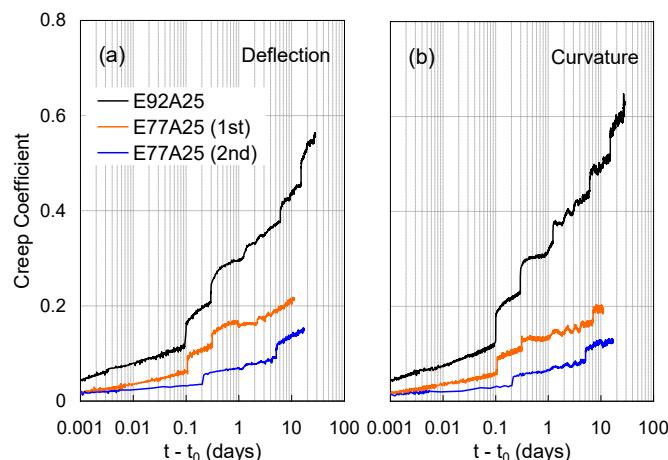


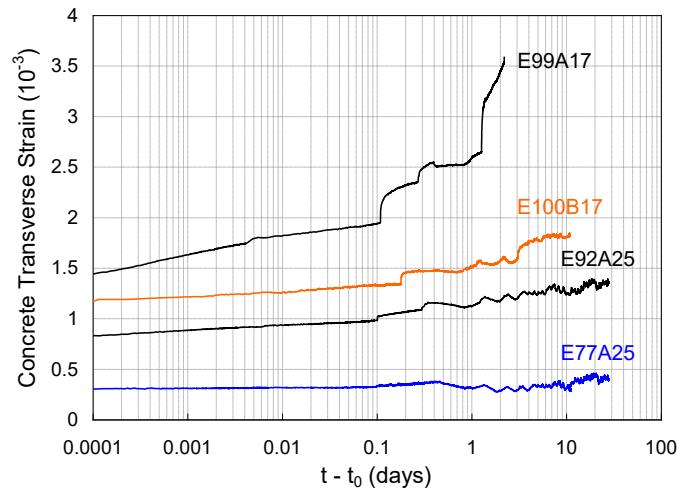
Fig. 10. Load-moment response at column mid-height.




Fig. 12. Damage and failure mode of eccentrically loaded columns.

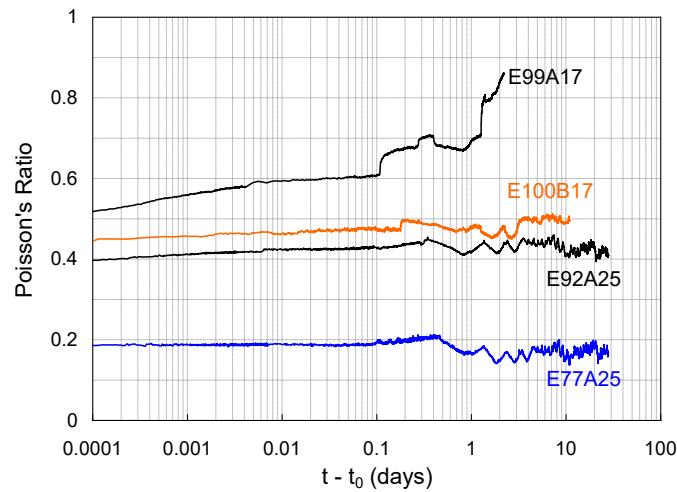

Fig. 13. Axial strains at four locations in Specimens E100B17 and E92A25.

809 **Fig. 14.** Moment-curvature response of columns under eccentric loading: (a) $e/h = 0.17$; (b) $e/h = 0.25$.
 810 eccentric loading.



814 **Fig. 15.** Creep coefficient of columns ($e/h = 0.17$) at mid-height: (a) deflection; (b) curvature.

817 **Fig. 16.** Creep coefficient of columns ($e/h = 0.25$) at mid-height: (a) deflection; (b) curvature.


818

819
820

Fig. 17. Transverse strain of concrete cover at compression side during sustained eccentric loading.

821

822
823

Fig. 18. Poisson's ratio of concrete cover at compression side during sustained eccentric loading.

824
825
826
827