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Using analytical results for viscous dissipation in
phononic crystals, we calculate the decay coefficient
of a sound wave propagating at low frequencies
through a two-dimensional phononic crystal with
a viscous fluid background. It is demonstrated
that the effective acoustic viscosity of the phononic
crystal may exceed by two to four orders of
magnitude the natural hydrodynamic viscosity of
the background fluid. Moreover, the decay coefficient
exhibits dependence on the direction of propagation;
that is, a homogenized phononic crystal behaves like
an anisotropic viscous fluid. Strong dependence on the
filling fraction of solid scatterers offers the possibility
of tuning the dissipative decay length of sound, which
is an important characteristic of any acoustic device.

This article is part of the theme issue ‘Wave
generation and transmission in multi-scale complex
media and structured metamaterials (part 2)’.

1. Introduction
Dissipation accompanies propagation of sound in any
elastic medium, leading to exponential decay of sound
waves with distance. In a homogeneous fluid of
density ρ, the sound amplitude decays approximately
as e−γ0x, where γ0 is the decay coefficient. For
a monochromatic plane wave, the decay coefficient
γ0 = ω2(4η/3 + ξ )/(2ρc3) grows with frequency as ω2,
depending on the speed of sound c, and it is linear
with respect to the viscosity coefficients η and ξ

[1]. For frequencies around 100 kHz, the propagation
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length 1/γ0 of sound in water is several kilometres. Therefore, viscous losses in the bulk can be
neglected in the design of devices of sizes a few metres or centimetres. However, when a sound
wave meets a solid boundary, a narrow viscous layer of thickness δ = (2η/(ωρ))1/2 is formed.
Velocity gradients within this viscous layer greatly exceed the gradients in the bulk, leading to
much higher viscous losses than in free fluid [2,3]. Moreover, if the sound wave meets a set of
solid boundaries, multiple reflections and viscous friction in narrow channels strongly increase
energy losses.

In the case of a periodic distribution of scatterers, dissipation becomes a dominant factor
that defines the efficiency of any acoustic device [4–14]. In particular, double-negative behaviour
of a well-designed dissipationless phononic crystal can be completely suppressed owing to
high viscous losses. Enhanced dissipation may strongly reduce the engineering metamaterial
properties, in particular the effect of negative refraction [15], hydrodynamic cloacking [16] and
the sensitivity of tubular phononic crystal sensors [17].

In some cases, viscous losses are desirable in devices that reduce external noise. Modern sound
absorbers use innovative designs based on metamaterials. Artificial acoustic metamaterials can
be used as structures to increase sound absorption to extents not achieved in natural materials
[18,19]. In phononic metamaterials containing hard scatterers in a fluid background, viscous
dissipation breaks the time-reversal symmetry, making the fluid dynamics irreversible and even
non-reciprocal if mirror symmetry is also broken [20,21].

In the presence of solid scatterers, the energy of a sound wave propagating in a solid–fluid
structure is dissipated mainly within the narrow boundary layer δ formed over each scatterer.
Therefore, dissipation in the bulk fluid with the rate γ0 can be neglected, whicht yields γ0 �
γph, where γph is the decay coefficient within the phononic crystal. At the same time, the decay
coefficient γph should be sufficiently weak to allow propagation over many periods a0 of the
crystal lattice if a given device is not a sound absorber, i.e.

γ0 � γph � 1
a0

. (1.1)

This condition means that although sound absorption is enhanced by the presence of solid–fluid
interfaces, it remains relatively weak and can be considered perturbatively. At low frequencies
(in a phononic crystal below the first band gap), sound dispersion is linear, ω = ceffk, and weak
dissipation gives rise to a pure imaginary correction to the wave vector, k= ω/ceff + iγph. In the
lowest approximation over viscosity, the effective speed of sound ceff can be calculated for an
inviscid background fluid; see [22].

A sound wave with wavelength 2π/k reflecting from a solid flat wall loses a portion 	E/E of
its energy. Since in the lowest approximation over η and ξ the dissipated energy is concentrated
within the boundary layer δ, the energy losses can be estimated as 	E/E∼ δk/(2π ) ∼ (

√
ωη/ρ)/ceff;

see e.g. [1,23]. If the sound wave is scattered at a periodic distribution of cylindrical rods, the
quantity δk/(2π ) acquires a factor L0/a0, where L0 is the circumference of the cylinders. The
relative energy losses within the unit cell become 	E/E∼ (δk/(2π ))(L0/a0). The decay coefficient
γph in the exponential factor e−γphx is the energy loss per unit length and in this approximation is
given by

γph = 	E
a0E

∼ 1
ceffa0

√
fωη

ρ
, (1.2)

where f ∼ (L0/a0)2 is the filling fraction of solid cylinders [24]. This qualitative estimate already
demonstrates the enhanced absorption of acoustic energy in phononic crystals relative to
absorption in free fluid. Note the square-root dependence on the filling fraction. The exact result
for γph confirms this dependence only at small filling fractions, f � 1.

Equation (1.2) for the decay coefficient is valid by order of magnitude for a simple isotropic
lattice and non-interacting scatterers. Anisotropy is a property usually associated with crystalline
solids. While natural Newtonian fluids are isotropic, in metamaterials anisotropy can be
artificially introduced by inserting scatterers into an isotropic fluid. This results in an anisotropic
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elastic metafluid [22,25]. An example of extreme anisotropy can be found in the so-called
hyperbolic metamaterials [26]. It is clear that in the general case the decay coefficient depends on
the direction of propagation of sound. This property means that at low frequencies a solid–fluid
phononic crystal behaves like a viscous metafluid with anisotropic viscosity.

In this article, we explore the analytical theory of homogenization developed in [24] for two-
dimensional (2D) phononic crystals composed of solid rods in a viscous background to study the
effects of strong anisotropy on sound absorption. We consider different 2D phononic crystals with
different Bravais lattices and scatterers of different symmetries. We also analyse the behaviour of
γph at high filling fractions where square-root dependence on f is replaced by a growth of viscous
losses. In the limit where the separation between neighbouring rods is comparable to the thickness
δ, the growth becomes extremely fast. This effect is of the same nature as the enhanced decay of
sound propagating through narrow channels and holes [8–10,12–15,18,20,21].

2. Decay coefficient
Derivation of the analytical formula for the decay coefficient γph = 	E/(a0E) is based on the well-
known result for power dissipated around a solid body oscillating in a viscous fluid [1],

	E= 1

2
√

2

√
ρωη

∮
l0

|v(r)|2 dl. (2.1)

This result can be equally applied to calculate viscous losses of a monochromatic sound wave
scattered by a motionless solid body. Here, the dissipated power is proportional to

√
η, which

means that viscous losses occur within the boundary layer. In the principal approximation over
viscosity, the velocity field v(r) generated in the fluid by incoming and scattered sound waves is
calculated for an inviscid fluid, η = 0. The contour of integration l0 goes along the circumference
of the rod. Note that equation (2.1) becomes meaningless, giving zero losses, if v(r) is the field
of velocities in a viscous fluid, where a no-slip boundary condition is applied at any point of
the solid–fluid boundary.

It is assumed in equation (2.1) that sound does not penetrate inside a solid body, i.e. the rods
of the phononic crystal are considered to be hard scatterers. Equation (2.1) gives the dissipated
power within a unit cell of a 2D phononic crystal, assuming that viscous losses in the bulk
are neglected. It is valid if δ � L0, where L0 is the length of the contour of integration l0.
This inequality, together with the condition of homogenization at low frequencies, defines the
frequency interval where the theory is valid,

η

ρL2
0

� ω � ceff

a0
. (2.2)

For solid rods with a circumference of about L0 ≥ 1 mm in a water environment, this
inequality is satisfied for frequencies starting from around 1 Hz, i.e. practically it is
not a limitation. The upper limit for ω is the lower edge of the band gap. The
distribution of velocities v(r) caused by the propagation of sound can be calculated by
expansion of the wave equation over plane waves. Using the same velocity field v(r),
the acoustic energy can be calculated by integration over the unit cell. In the low-
frequency limit, ω, k→ 0, the following result was obtained for the decay coefficient
γph = 	E/(a0E) [24]:

γph(k̂) = L0

2Acceff(k̂)

√
ωη

2ρ

M(k̂)

N(k̂)
. (2.3)

Here, k̂= k/k is the unit vector in the direction of propagation, Ac is the area of the unit cell, and
the functions M(k̂) and N(k̂) account for integration over the contour l0 and over the area of the
unit cell Ac, respectively. They strongly depend on the geometry of the unit cell, the distribution
of mass density within it and the direction of propagation. These two terms can be represented
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by the following series over the reciprocal lattice vectors G:

M(k̂) = 1 + 2
ρ

∑
G,G′

L∗(G)(k̂ · G)(k̂ · G′)F(G′)I(G,G′)

+ 1
ρ2

∑
G1,...,G4

L∗(G1 + G3)(G1 · G3)(k̂ · G2)(k̂ · G4)

× F(G2)F(G4)I(G1,G2)I(G3,G4) (2.4)

and

N(k̂) = 1 − f − 2
ρ

∑
G,G′

k̂ · Gk̂ · G′F∗(G)F(G′)I(G,G′)

− 1
ρ2

∑
G1,...,G4

F∗(G1 + G3)(G1 · G3)(k̂ · G2)(k̂ · G4)

× F(G2)F(G4)I(G1,G2)I(G3,G4). (2.5)

Here, I(G,G′) = [G · G′ν(G − G′)]−1, ν(G) is the Fourier component of the periodic function
1/ρ(r), and the linear form-factor L(G) is defined as the integral over the circumference of the
solid scatterer,

L(G) = 1
L0

∮
l0

e−iG·r dl. (2.6)

The effective speed of sound ceff(k̂) = limk→0(ω/k) was calculated in [22] and is explicitly given
by

c2
eff(k̂) = 1

β̄

⎡
⎣ν̄ −

∑
G,G′ 	=0

(k̂ · G) (k̂ · G′)ν(G)ν(−G′)I(G′,G)

⎤
⎦

with ν̄ = f
ρs

+ 1 − f
ρ

and β̄ = f
λs

+ 1 − f
λ

, (2.7)

where λs and ρs are the bulk modulus and density of the rods, respectively. In the approximation
of hard scatterers, λs 
 λ and ρs 
 ρ.

3. Results and discussion
Using the equations (2.3)–(2.7), we calculated the decay coefficient as a function of the filling
fraction and the direction of propagation for square and hexagonal lattices with period a0 =
5.5 mm. Calculations were performed for a sound frequency of ω/(2π ) = 50 kHz, which lies well
below the band gap of the corresponding structures. Since γph ∼ √

ω, the decay coefficient can
be rescaled to any other frequency within the first transmission band where the dispersion
is linear but anisotropic, ω = ceff(k̂)k. Water is taken as the background fluid. To increase the
effects of anisotropy, for each of the 2D lattices mentioned earlier we considered solid rods with
square, rectangular and triangular cross-sections. To reach the limit of hard scatterers, the elastic
parameters of the rods, λs and ρs, were selected to be 103 times those of aluminium. The thickness
δ of the viscous layer in water is approximately 3µm at frequency 50 kHz.

In figures 1–5, we plot the normalized (with respect to bulk water) decay coefficient γph/γ0 as
a function of the filling fraction f for different crystal lattices and different cross-sections of the
rods.

Figure 1 and 2 are for square and hexagonal lattices with square and equilateral triangular
scatterers, respectively. For artificial periodic structures, the symmetry of the unit cell is
determined by both the symmetry of the Bravais lattice and the symmetry of the scatterers.
Scatterers in a phononic crystal may have lower symmetry than the Bravais lattice.
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Figure 1. Normalized decay coefficient of sound in a square lattice with square cross-section of the rods in a viscous water
background as a function of the filling fraction. Insets show (i) the effective speed of sound as a function of the filling fraction;
(ii) blow-up of the interval for small values of f , whereγph ∼ √

f ; (iii) the unit cell. Owing to the fourfold rotational symmetry,
the decay coefficient and the effective speed of sound are isotropic. (Online version in colour.)
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Figure 2. Normalized decay coefficient of sound in a hexagonal lattice with equilateral triangular rods of side length b as
a function of the filling fraction. The limit of touching scatterers is reached at fmax = 2/3. Insets show (i) the effective speed of
sound as a function of the filling fraction; (ii) blow-up of the interval for small values of f , where γph ∼ √

f ; (iii) the unit cell.
Owing to the threefold rotational symmetry, the decay coefficient and the effective speed of sound are isotropic.

The effective speed of sound in equation (2.7) can be represented as a product ceff =Aikk̂ik̂k
of the second-rank tensor Aik and the diad k̂ik̂k [22]. The decay coefficient equations (2.3)–(2.5)
also can be written in terms of two second-rank tensors, γph(k̂) = Bikk̂ik̂k/(Clmk̂lk̂m). These three
tensors Aik, Bik and Cik define the parameters of anisotropy of elastic and dissipative 2D phononic
crystals.
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It is known that in a crystal lattice possessing a third- or higher-order rotational axis of
symmetry, a second-rank symmetric tensor is reduced to a scalar. The structures depicted in
figures 1 and 2 possess a fourth- and third-order rotational axis, respectively. Therefore, the
effective speed of sound and the decay coefficient do not depend on the direction of propagation,
i.e. these metamaterials are isotropic in the homogenization limit. There are three insets in each
of figures 1 and 2. Inset (i) shows the effective speed of sound as a function of the filling fraction.
For the square lattice with square rods, the effective speed of sound is presented for the full
range of allowable values of the filling fraction (0 ≤ f ≤ fmax = 1). We observe that the speed
of sound gradually decreases with f , and there is a sharp turn near f = 1 towards the value√

λAl/ρAl = 4346 m s−1, which is the speed of longitudinal sound in aluminium. Although we
present the effective speed of sound for the full range of possible filling fractions, the sound decay
constant is not calculated for values very close to f = fmax = 1, since the maximum permitted value
of filling fraction must be slightly less than the limit of touching scatterers to prevent overlapping
of two viscous layers formed around the neighbouring scatterers.

Inset (ii) shows the region of small filling fractions. For all the structures considered in
this work, the decay coefficient grows as γph = √

f at low filling fractions, as predicted by the
qualitative result presented in equation (1.2). In figures 1 and 2, the decay coefficient is plotted
specifically for f � 1, where the square-root dependence is clearly observed. Finally, inset (iii) is a
schematic representation of the unit cell. As can be seen in both figures, within the region of filling
fractions corresponding to practical applications of phononic crystals, 0 < f < 0.6, the decay length
of sound is reduced by a factor of 103–104 from that in bulk water

For less symmetric structures, the effective parameters ceff and γph depend on the angle θ

characterizing the direction of propagation k̂= (cos θ , sin θ ) of the sound wave, and for these
configurations the homogenized phononic crystal behaves like an anisotropic viscous fluid. In
figures 3 and 4, we present the normalized decay coefficient for three different directions of
propagation as a function of the filling fraction for a square lattice with rectangular and equilateral
triangular rods, respectively. The black, blue and red lines correspond to the directions of
propagation θ = 0◦, 45◦ and 90◦, respectively. For this lattice, the metamaterial with rectangular
cross-section of the rods exhibits the highest anisotropy, as can be seen by comparing the values
of the decay coefficient in the two figures at f = 0.4. The highest value for the decay coefficient
is obtained for θ = 0◦. Sound propagating along this direction is transmitted through a narrow
viscous channel between two scatterers. It is easy to analyse the role of the viscous layer within
a narrow channel for the anisotropic unit cell of a square lattice with rectangular inclusions
oriented by its longer side along the y-axis. There are two viscous layers of width δ = 2.52µm
occupying only 0.13% of the spacing between the scatterers for a filling fraction of 0.499. While
the viscous layers occupy a negligible volume of the channel, the decay of sound is relatively
high (γph/γ0 ∼ 104). Furthermore, a similar situation occurs for triangular inclusions; see figure 4.
In both cases, we have the formation of slit cavities where the velocity gradients reach very high
values.

Finally, in figure 5 we present the normalized decay coefficient for the hexagonal lattice with
rectangular rods. For this metamaterial, the maximum value of the decay coefficient is obtained
for a sound wave propagating along the direction θ = 0◦. While for this direction sound dissipates
its energy along the shorter side of the rectangle, the energy losses reach their maximum because
the wave frequently meets the corners. Near each corner the velocity field exhibits a complicated
pattern with very high values of its gradients. Apparently, dissipation near sharp corners makes
a considerable contribution that leads to a maximum of wave attenuation.

The effects of enhanced acoustic dissipation in narrow slit cavities have been recently studied
in [8,14]. For example, in [8] the authors observed a 5% reduction in the speed of sound
propagating in a narrow air cavity slit in an aluminium matrix. They attribute this effect to
dissipation, which occurs within the viscous boundary layers occupying only 5% of the total
slit width. In [14], a 28% reduction in the transmission of sound is found when the thermoviscous
boundary layer thickness is only about 2.3% of the width of the slit cut in an acoustic metasurface.
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An alternative way to analyse the anisotropic behaviour is depicted in figure 6. Here, we
plot a polar diagram showing the angular dependence of the decay coefficient for three different
lattices with different scatterers but the same filling fraction, f = 30%. The three curves in figure 6
are ellipses with semiaxes representing maximum and minimum attenuation of sound along
the corresponding directions. Note that elliptical angular dependence of the speed of light in
2D photonic crystals was previously reported in [27]. The plots in figure 6 demonstrate that
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viscous losses strongly depend on the shape of the scatterers. The main factors that define viscous
attenuation are the narrow channels between neighbouring scatterers, the number of corners
per unit length and the sharpness of these corners. The combination of these factors leads to
a complicated anisotropic pattern of viscous losses, which is impossible to analyse using only
qualitative or phenomenological approaches.

4. Conclusion
In conclusion, we have presented a possible way of tuning the decay coefficient of sound in
a phononic crystal with a viscous background. A periodic set of solid rods in a viscous fluid
homogenizes in the low-frequency limit and behaves for sound waves like an anisotropic viscous
fluid. The level of anisotropy of the decay coefficient can be tuned to the desired value by selecting
appropriately the crystal lattice, cross-section of the rods and filling fraction of the rods. We
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predict strong enhancement of sound decay along the directions where sound propagates through
narrow slits formed by neighbouring scatterers.
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