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Abstract

We construct finite element approximations of the Levi-Civita connection and its curvature
on triangulations of oriented two-dimensional manifolds. Our construction relies on the Regge
finite elements, which are piecewise polynomial symmetric (0, 2)-tensor fields possessing single-
valued tangential-tangential components along element interfaces. When used to discretize the
Riemannian metric tensor, these piecewise polynomial tensor fields do not possess enough regu-
larity to define connections and curvature in the classical sense, but we show how to make sense
of these quantities in a distributional sense. We then show that these distributional quantities
converge in certain dual Sobolev norms to their smooth counterparts under refinement of the
triangulation. We also discuss projections of the distributional curvature and distributional
connection onto piecewise polynomial finite element spaces. We show that the relevant projec-
tion operators commute with certain linearized differential operators, yielding a commutative
diagram of differential complexes.

1 Introduction

The finite element method is used ubiquitously to approximate solutions to partial differential
equations in Euclidean space, but it sees relatively limited use in Riemannian geometry. The goal
of this paper is to lay down foundations for computing two quantities of interest in Riemannian
geometry—the Levi-Civita connection and its curvature—with finite elements. We focus on the
two-dimensional setting.

Our construction relies on the Regge finite elements, which are a recently developed family of
finite elements for discretizing symmetric (0, 2)-tensor fields on simplicial triangulations [14, 29, 32].
When used to discretize the Riemannian metric tensor, these piecewise polynomial tensor fields do
not possess enough regularity to define connections and curvature in the classical sense. We show
in this paper how to make sense of these quantities in a distributional sense. Importantly, these dis-
tributional quantities converge to their smooth counterparts under refinement of the triangulation
in a sense that we make precise in Section 6. The rates of convergence depend on the polynomial
degree of the approximate metric tensor, with higher polynomial degrees yielding higher rates of
convergence.

To be more concrete, let us briefly describe the Regge finite elements [14, 29, 32]. Given
a triangulation S of an oriented manifold of dimension d, the lengths of all of the edges in S
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determine a piecewise constant Riemannian metric g on S. This metric automatically possesses the
following continuity property: g has single-valued tangential-tangential components on every (d−1)-
dimensional simplex in S. The metric g is an example of a tensor field belonging to the lowest-order
Regge finite element space. More generally, for an integer r ≥ 0, the Regge finite element space of
order r consists of symmetric (0, 2)-tensor fields on S that are piecewise polynomial of degree at
most r and obey the same tangential-tangential continuity constraint as above. Often the integer
r is unimportant, and we will simply be concerned with the space of piecewise smooth symmetric
(0, 2)-tensor fields with tangential-tangential continuity across (d − 1)-dimensional faces. We call
elements of this space Regge metrics if they are positive definite everywhere.

Obviously, the scalar curvature of a Regge metric g is not well-defined in the classical sense,
unless attention is restricted to the interior of a d-simplex in S. However, there is a natural way
to interpret the scalar curvature (more precisely, the scalar curvature times the volume form) of g
in a distributional sense when g is piecewise constant. One considers a linear combination of Dirac
delta distributions supported on (d − 2)-simplices z, each weighted by the angle defect at z. The
angle defect measures the failure of the dihedral angles incident at z to sum to 2π. This definition
of scalar curvature was posited by Regge in his discrete theory of relativity [32] and has since been
given various justifications [10, 14, 17].

The first aim of this paper is to study a generalization of Regge’s definition of scalar curvature
to piecewise polynomial Regge metrics in dimension d = 2. It turns out that the appropriate
generalization is a distribution with three contributions: the scalar curvature within each triangle,
the jump in the geodesic curvature across each edge, and the angle defect at each vertex. Such a
definition has been mentioned in the discrete differential geometry and geometric analysis literature
(see for instance [34, p. 6] and [33, Corollary 3.1]), but, to our knowledge, no efforts have been
made to understand its convergence until now, and it does not appear to have been mentioned
in [29].

The second aim of this paper is to give meaning to the Levi-Civita connection associated with a
Regge metric g. We again restrict our attention to dimension d = 2, where it is possible to encode
the Levi-Civita connection locally with a scalar-valued one-form. We construct such a one-form
using certain rotation angles associated with parallel transport across edges in the triangulation.
Our construction leads to a distributional one-form Γdist whose distributional exterior coderivative
is equal to the distributional curvature of g discussed above. As such, this one-form can be regarded
as a distributional version of the Hodge star of the corresponding connection one-form from the
smooth setting. When g is piecewise constant, Γdist is a distribution supported on edges. This aligns
with a common viewpoint in discrete exterior calculus [21, 26], where discrete connections on two-
dimensional triangulations are often regarded as discrete dual one-forms [20, 27]; the discrete Hodge
star of such a discrete dual one-form is naturally associated with (primal) edges of the triangulation,
just as our distributional connection is. In fact, relative to an appropriate orthonormal frame,
the distributional connection one-form that we construct encodes a parallel transport operator
with the following properties. Along any curve C that lies entirely in the interior of a triangle,
the parallel transport operator along C coincides with the smooth Levi-Civita parallel transport
operator. If C crosses an edge, then the tangential and normal components of any vector are
preserved during parallel transport across the edge. This is a widely used notion of parallel transport
on triangulations [14, 20, 27, 29].

It turns out that a great deal of information about a Regge metric’s distributional curvature
and distributional connection can be gleaned from studying their evolution under deformations of
the metric. For one thing, doing so allows us to show that the distributional curvature operator
described above is (infinitesimally) consistent; its linearization around a given Regge metric g is
precisely the linearized curvature operator, interpreted in a distributional sense. Christiansen [14,
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Proposition 2] showed this in the special case where g is Euclidean, and the second author showed
this when g is a piecewise constant Regge metric [24, Lemma 3.3]. The present paper shows this
for arbitrary Regge metrics g. The calculation is more involved than in the former papers, since,
among other things, one must linearize the jumps in the geodesic curvature across edges of the
triangulation and make use of several non-Euclidean integration by parts identities.

The result of this calculation becomes especially illuminating when expressed in finite element
parlance. As we show in Theorem 4.1, the formula for the linearization of the distributional
curvature of a Regge metric g is expressible in terms of a bilinear form that appears in the Hellan-
Herrmann-Johnson (HHJ) finite element method [1, 4, 5, 7–9, 11, 31]. It is not the familiar
Euclidean version of this bilinear form, but rather one obtained by replacing the Euclidean metric
by g.

This link with the HHJ method plays a central role in our analysis. It reveals that the second
author’s prior work [24] on curvature approximation—where an integral of the HHJ bilinear form
was used to define the curvature of piecewise polynomial Regge metrics—is directly applicable to
our setting, because the approximate curvature defined there is (somewhat fortuitously) equivalent
to the one studied here. This allows us to leverage the analysis in [24] to deduce the convergence of
the distributional curvature under refinement. In this analysis, the evolution of geometric quantities
under metric deformations plays a key role. Roughly speaking, to bound the error in the curvature
approximation, one studies the evolution of the error along a one-parameter family of Regge metrics
emanating from the Euclidean metric, where the error is zero.

Although we have chosen to focus on defining distributional connections and distributional cur-
vature in this paper, it is worth noting that both the distributional curvature and the distributional
connection can, if desired, be projected onto finite element spaces. Doing so produces piecewise
polynomial quantities that are computable using standard finite element assembly routines. As
we show in Section 7, appropriate finite element spaces to use for the curvature and connection
(when the Regge metric g is piecewise polynomial of degree at most r) are the spaces Pr+1Λ0 and
P−r+1Λ1 from finite element exterior calculus [2, 3]. These choices, which correspond to continuous
Lagrange finite elements and two-dimensional Nédélec finite elements of the first kind, respectively,
are guided by commutative diagrams of differential complexes; see Section 7.

Note that elsewhere in the literature, one can find notions of discrete connections and curvature
on simplicial triangulations that differ from ours in important ways. For example, [6] and [15]
associate a parallel transport map to each (primal) edge in the triangulation, which is interpreted
as a map between vector spaces anchored at vertices. As such, it leads to a notion of curvature
that is associated with triangles rather than (d− 2)-simplices. Another approach [16] associates a
parallel transport map to every pair of simplices for which one member of the pair is a codimension-
1 subsimplex of the other, leading to a notion of curvature that is associated with elements of the
cubical refinement of the triangulation. Similarly, [30] associates (in dimension d = 2) a parallel
transport map to every pair of incident simplices of arbitrary dimension, leading to a notion of
curvature associated with triangles. In contrast, the viewpoint we adopt in this paper is more closely
aligned with the discrete exterior calculus viewpoint in [20, 27] and with the classical viewpoint
that curvature is concentrated on (d− 2)-simplices in the piecewise flat setting.

This paper is organized as follows. We start by deriving formulas for the evolution of various
geometric quantities under deformations of the metric in Section 2. There, the focus is on smooth
Riemannian metrics. We then turn our attention toward Regge metrics in Section 3 and define
the distributional curvature of a Regge metric. We use the results of Section 2 to compute the lin-
earization of the distributional curvature in Section 4. The formula for the linearization, together
with the calculations from Section 2, play a role in Section 5, where we introduce and study the
properties of the distributional Levi-Civita connection. We study the convergence of the distribu-
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tional curvature and distributional connection to their smooth counterparts under refinement in
Section 6. We discuss projections of the distributional curvature and distributional connection onto
piecewise polynomial finite element spaces in Section 7. We show there that the relevant projection
operators commute with certain linearized differential operators, yielding a commutative diagram
of differential complexes.

2 Evolution of geometric quantities

Notation. Let M be a smooth oriented manifold of dimension d. We use TM and T ∗M to
denote the tangent and cotangent bundles of M , respectively. The set of differential k-forms on M
is denoted Λk(T ∗M), and the endomorphism bundle of TM is denoted End(TM).

Let g be a smooth Riemannian metric on M . We use ω to denote the volume form on M induced
by g. The Levi-Civita connection associated with g is denoted ∇. Thus, if σ is a (p, q)-tensor field,
then the covariant derivative of σ is the (p, q + 1)-tensor field ∇σ, and the covariant derivative of
σ along a vector field X is the (p, q)-tensor field ∇Xσ. We use Trσ to denote the contraction of σ
along the first two indices, using g to raise or lower indices as needed. We write div σ = Tr∇σ and
∆σ = div∇σ. The Riemannian Hessian of a scalar field f is denoted Hess f = ∇∇f .

The pointwise inner product of two (p, q)-tensor fields σ and ρ with respect to g is denoted
〈σ, ρ〉g. Their L2-inner product over M is 〈σ, ρ〉g,M =

∫
M 〈σ, ρ〉g ω. Sometimes we suppress the

subscript g when the metric is clear from the context.
The Lie derivative of a (p, q)-tensor field σ along a vector field X is denoted LXσ. If X and

Y are two vector fields, then we denote their Lie bracket by [X,Y ] = LXY . We also use [u, v] to
denote the commutator uv− vu of two endorphisms u and v, which we interpret pointwise if u and
v vary spatially.

If α is a differential k-form, then its exterior derivative is the (k + 1)-form dα, its Hodge star
is the (d − k)-form ?α, its exterior coderivative is the (k − 1)-form d∗α = (−1)k ?−1 d ? α, and its
contraction along a vector field X is the (k − 1)-form iXα. The wedge product of two differential
forms α and β is denoted α ∧ β.

In addition to using iX to denote the contraction along X, we use the letter i for another
purpose. If N is a submanifold of M , then iM,N denotes the inclusion N ↪→M , and i∗M,N denotes
the pullback under this inclusion.

We use ] and [ to denote the musical isomorphisms sending one-forms to vector fields and vice
versa. If f is a scalar field, then its covariant derivative ∇f coincides with the one-form df , but we
will frequently abuse notation by interpreting ∇f as either df or (df)] depending on the context.

We make occasional use of index notation to do calculations in coordinates. We always follow
the Einstein summation convention. Thus, ∇Xf = Xi∇if = Xi∇if , ∆f = ∇i∇if = ∇i∇if , etc.

We use the letter δ to denote the Euclidean metric.
In our analysis, an important role will be played by the operator S which sends a symmetric

(0, 2)-tensor field σ to the symmetric (0, 2)-tensor field

Sσ = σ − gTrσ.

From this point forward, we restrict our attention to dimension d = 2.

Outline. The goal of this section is to understand how various quantities associated with the
metric g, like the curvature and Levi-Civita connection, evolve with time if g is time-dependent.
Thus, we consider an evolving Riemannian metric g(t) with time derivative

σ =
∂

∂t
g,
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and we express all of our results in terms of σ. We use dots to denote differentiation with respect
to t.

We calculate the evolution of four quantities, working throughout in dimension d = 2: the
Gaussian curvature (Section 2.1), the Levi-Civita connection (Section 2.2), the geodesic curvature
of a curve in M (Section 2.3), and the angle between two curves in M (Section 2.4). The results of
these calculations will be used extensively when we study Regge metrics in Sections 3-7.

2.1 Gaussian curvature evolution

We first study the evolution of the curvature two-form: the Gaussian curvature κ (which is half
the scalar curvature R) times the volume form ω.

Proposition 2.1. If g(t) is an evolving Riemannian metric on M with time derivative σ = ∂
∂tg,

then the curvature 2-form κω satisfies

∂

∂t
(κω) =

1

2
(div divSσ)ω, (1)

where Sσ = σ − gTrσ.

Proof. We use the following well-known formula for the time derivative of κ [23, Lemma 2], [13,
Equation 2.4]:

κ̇ =
1

2
(div div σ −∆ Trσ − 〈σ,Ric〉) .

Here, Ric denotes the Ricci tensor, which is simply κg in two dimensions. Since ∆v = div div(gv)
for any scalar field v, we can write

κ̇ =
1

2
(div div(σ − gTrσ)− κTrσ) =

1

2
(div divSσ − κTrσ) .

On the other hand, we have [13, Equation 2.4]

ω̇ =
1

2
(Trσ)ω, (2)

so
∂

∂t
(κω) = κ̇ ω +

1

2
κ(Trσ)ω =

1

2
(div divSσ)ω.

2.2 Evolution of the Levi-Civita connection

We now turn our attention to the evolution of the Levi-Civita connection ∇. For this task, it will
be convenient to focus on a region U ⊆ M on which the tangent bundle TU is trivial. On such
a region, given a metric g, we can choose a frame (e1, e2) that is orthonormal with respect to g.
Conversely, given a choice of frame (e1, e2), there is a unique metric g with respect to which the
frame is orthonormal. In this context, we can encode any metric-compatible connection (not just
the torsion-free Levi-Civita connection) with a (scalar-valued) one-form A as follows.

Definition 2.2. Given a choice of frame e1, e2 for TU and a one-form A on U , we define a connection
∇ via

∇e1 := Ae2, ∇e2 := −Ae1 (3)
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These equations should be interpreted as ∇Xe1 = A(X)e2 and ∇Xe2 = −A(X)e1 for all vector
fields X.

Given (e1, e2) orthonormal with respect to a Riemannian metric g, there is a unique one-form
A that encodes the Levi-Civita connection via (3). For the moment, however, we will leave A
unspecified and study its evolution in generality. In fact, we will temporarily dispense with g and
simply consider frames e1, e2 and one-forms A that vary in time. It will be helpful to also have a
fixed frame E1, E2 that does not vary with time, and for simplicity we can set Ei to be ei at t = 0.
We will also use this frame to define a reference connection ∇̃.

Definition 2.3. Let E1, E2 be a time-independent frame, specifically Ei = ei|t=0. Let u be the
linear transformation (dependent on both space and time) that sends Ei to ei. Let ∇̃ be the flat
connection corresponding to the trivialization E1, E2, that is, ∇̃E1 = ∇̃E2 = 0. As usual, ∇̃ is
extended to the tensor algebra via the Leibniz rule.

Additionally, we define notation for “90◦ counterclockwise rotation” with respect to each of
these frames.

Definition 2.4. Let J be the linear transformation, depending on both space and time, defined
by Je1 = e2 and Je2 = −e1. Let J̃ be the linear transformation, depending on space but not time,
such that J̃E1 = E2 and J̃E2 = −E1. Observe that J = uJ̃u−1.

The difference between any two connections is a matrix-valued one-form.

Definition 2.5. Let a be the End(TU)-valued 1-form a := ∇− ∇̃. Equivalently, we can view a as
defining ∇ via ∇ := ∇̃+ a.

Notation 2.6. There can be confusion with End(TU)-valued 1-forms, since, given a vector field,
we can plug it into the one-forms or we can apply the linear transformations to it. We will follow
convention and use the notation ∇XY = ∇̃XY + a(X)Y , the notation ∇X = ∇̃X + a(X), and the
notation ∇Y = ∇̃Y +aY . We think of a(X) as a space-varying linear transformation, and we think
of aY as a vector-valued one-form.

We will also encounter End(TU)-valued one-forms when we multiply a one-form and a section
of End(TU), such as AJ , which we interpret as (AJ)(X)Y = (A(X))JY . Another situation is
the covariant derivative of a section of End(TU), such as ∇̃u, which we interpret as (∇̃u)(X)Y =
(∇̃Xu)Y . We can also multiply an endomorphism-valued one-form a by a linear transformation u,
obtaining endomorphism-valued one-forms au and ua, which we interpret as (au)(X)Y = (a(X))uY
and (ua)(X)Y = u(a(X))Y . We thus also have a commutator operator [a, u] = au− ua.

We summarize the above definitions and notation in Table 1.
Viewing E1 and E2 as given, we can now think about ∇ as being defined in two different ways.

The first way is via the one-form A and the frame (e1, e2), or, equivalently, via A and the linear
transformation u. The second way is via the matrix-valued one-form a. What is the relationship
between A, u, and a?

Proposition 2.7. We have

a = AuJ̃u−1 − (∇̃u)u−1 = AJ − (∇̃u)u−1. (4)

Proof. We rewrite (3) as

∇(uE1) = AuJ̃E1, ∇(uE2) = AuJ̃E2.
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E1, E2 A frame that does not vary in time.
e1, e2 A time-varying frame. In contexts with a metric g, this frame

is orthonormal.
u A time-dependent linear transformation sending (E1, E2) to

(e1, e2).
ξ u̇u−1.

J̃ 90◦ counterclockwise rotation with respect to the metric de-
fined by (E1, E2): J̃E1 = E2, J̃E2 = −E1.

J 90◦ counterclockwise rotation with respect to the metric de-
fined by (e1, e2): Je1 = e2, Je2 = −e1.

∇̃ The trivial connection defined by the frame (E1, E2): ∇̃E1 =
∇̃E2 = 0.

∇ A connection compatible with the metric defined by (e1, e2).
a The endomorphism-valued one-form of ∇ with respect to the

gauge (E1, E2), defined by ∇XEi = a(X)Ei.
AJ The endomorphism-valued one-form of ∇ with respect to the

gauge (e1, e2), defined by ∇Xei = A(X)Jei. A itself is a
scalar-valued one-form.

Aa(X,Y ) a(X)Y − a(Y )X.

σ ∂
∂tg.

Sσ σ − gTrσ.
ω The volume form; e1 ∧ e2.

Table 1: Summary of notation in Section 2.

Meanwhile,

∇̃(uE1) = (∇̃u)E1, ∇̃(uE2) = (∇̃u)E2.

Subtracting these equations, we obtain

auE1 = (AuJ̃ − ∇̃u)E1, auE2 = (AuJ̃ − ∇̃u)E2.

The difference between two connections is tensorial, so we have

au = AuJ̃ − ∇̃u.

Multiplying both sides by u−1 gives the desired result.

One might also recognize (4) as the equation for a gauge transformation. Indeed, a is the matrix-
valued 1-form for ∇ with respect to the trivialization (E1, E2), whereas AJ is the matrix-valued
1-form for ∇ with respect to the trivialization (e1, e2).

Next, we discuss how (4) changes with time.

Proposition 2.8. We have
ȧ = ȦJ −∇ξ,

where ξ = u̇u−1.

Proof. Observe first that

J̇ = u̇J̃u−1 − uJ̃u−1u̇u−1 = [ξ, J ] = −[J, ξ].
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Next, observe that
∇ξ = ∇̃ξ + [a, ξ].

Indeed, more generally, if v is a section of End(TU), and X is a vector field, we have

∇(vX) = (∇v)X + v∇X.

We likewise have that
∇̃(vX) = (∇̃v)X + v∇̃X.

Subtracting the two equations, we have

avX = (∇v − ∇̃v)X + vaX,

so
∇v = ∇̃v + [a, v].

Continuing our computation of ∇ξ, we focus on the first term and compute that

∇̃ξ = (∇̃u̇)u−1 − u̇u−1(∇̃u)u−1

= (∇̃u̇)u−1 − (∇̃u)u−1u̇u−1 +
[
(∇̃u)u−1, u̇u−1

]
=

d

dt

(
(∇̃u)u−1

)
+
[
(∇̃u)u−1, ξ

]
.

We are now ready to differentiate (4). We compute

ȧ = ȦJ +AJ̇ − d

dt

(
(∇̃u)u−1

)
= ȦJ − [AJ, ξ]− ∇̃ξ +

[
(∇̃u)u−1, ξ

]
= ȦJ −

(
∇̃ξ + [a, ξ]

)
= ȦJ −∇ξ.

Here we place a warning that Ȧ is how the 1-form changes, but if one would like to determine
the evolution of its coefficients with respect to the basis (e1, e2), one would need to take into account
the fact that the basis is time-dependent, so there would be an additional term involving u̇.

We now discuss the torsion-free condition. First, we need the following notation.

Definition 2.9. We can think of End(TU)-valued one-forms in a different way by noting that they
are sections of the bundle

Λ1(T ∗U)⊗ End(TU) = T ∗U ⊗ TU ⊗ T ∗U.

Thus, there is a natural antisymmetrization map

A : Λ1(T ∗U)⊗ End(TU)→ Λ2(T ∗U)⊗ TU,

defined by antisymmetrizing the two T ∗U factors in T ∗U ⊗ TU ⊗ T ∗U .

The implication for the torsion-free condition is the following.

Proposition 2.10. Assume that ∇ is torsion-free at t = 0. Then ∇ remains torsion-free if and
only if Aȧ = 0.
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Proof. The torsion-free condition is that

∇XY −∇YX = [X,Y ]

for all vector fields X and Y . We can rewrite this equation as

∇̃XY − ∇̃YX + a(X)Y − a(Y )X = [X,Y ].

In terms of our antisymmetrization operator, the above equation is

∇̃XY − ∇̃YX +Aa(X,Y ) = [X,Y ]. (5)

Note that, if X and Y are time-independent, then the only term in (5) that depends on time is Aa.
We assumed that ∇ is torsion-free at t = 0, so (5) holds at t = 0. Thus, it continues to hold at all
future times if and only if Aȧ = 0.

Combining with Proposition 2.8, we can then understand how A evolves in time if ∇ is torsion-
free. We first need the following definitions and lemma.

Definition 2.11. Let [ denote the time-dependent map TU → T ∗U that sends e1 7→ e1 and
e2 7→ e2, and let ] denote its inverse. Let ω be the time-dependent 2-form e1 ∧ e2.

Lemma 2.12. If α is a one-form, then

A(αJ) = −ω α]

Proof. We compute

A(αJ) = ωA(αJ)(e1, e2)

= ω (α(e1)Je2 − α(e2)Je1)

= ω (−α(e1)e1 − α(e2)e2)

= −ω α].

Proposition 2.13. If ∇ is torsion-free, then we have

Ȧ = (∇e2ξe1 −∇e1ξe2)[

= − ((A∇ξ)(e1, e2))[

where ξ = u̇u−1 and the notation ∇XξY denotes first applying the covariant derivative to ξ, and
then applying the resulting linear transformation to Y .

Proof. Applying the antisymmetrization operator A to Proposition 2.8 and using the torsion-free
condition Aȧ = 0, we obtain that

A(ȦJ) = A(∇ξ).

By Lemma 2.12, the left-hand side is −ω Ȧ]. Moving on to the right-hand side, we have

A(∇ξ) = ω (∇e1ξe2 −∇e2ξe1) .

Thus,
(Ȧ)] = (∇e2ξ)e1 − (∇e1ξ)e2,

and the result follows.
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Let us now re-introduce the metric g and interpret Proposition 2.13 in the following context: We
suppose that g evolves with time and e1, e2 forms an orthonormal frame at all times. Our setup en-
sures that the connection ∇ will be the Levi-Civita connection in this context, since orthonormality
of e1, e2 is tantamount to metric compatibility.

We can relate the components of σ = ∂
∂tg to those of u with the help of two observations. On

one hand, we have

σ(e1, e1) = 2ė1(e1),

σ(e2, e2) = 2ė2(e2),

σ(e1, e2) = ė1(e2) + ė2(e1),

since

0 =
d

dt
ei(ej) = ėi(ej) + ei(ėj) = ėi(ej) + g(ei, ėj)

and

0 =
d

dt
g(ei, ej) = σ(ei, ej) + g(ėi, ej) + g(ei, ėj)

for each i, j = 1, 2. On the other hand,

ėi(ej) =
d

dt

(
ei(ej)

)
− ei (ėj) = −ei

(
d

dt
(uEj)

)
= −ei(u̇Ej) = −ei(u̇u−1ej).

Thus, with ξ = u̇u−1, we have

2ξ1
1 = −σ11, 2ξ1

2 = −σ12 − 2f,

2ξ2
1 = −σ12 + 2f, 2ξ2

2 = −σ22,

where ξij = ei(ξej), σij = σ(ei, ej), and f = 1
2σ12 − ė2(e1) = −1

2σ12 + ė1(e2). Put another way, we
have a decomposition of ξ into its symmetric and antisymmetric parts as

ξ = −1
2σ

] + fJ, (6)

where, in this case, ] refers to the map defined by ei ⊗ ej 7→ ei ⊗ ej . Indeed, we note that, in
coordinates, J1

2 = e1(Je2) = e1(−e1) = −1 and J2
1 = e2(Je1) = e2(e2) = 1.

Observe that ∇J = 0. One way to see this is to observe that J [ = ω, where [ is the inverse of
]. Metric compatibility gives ∇g = 0 and ∇ω = 0. Moreover, note that [ is just contraction with
g, so (∇J)[ = ∇

(
J [
)

= ∇ω = 0. Since [ is an isomorphism, ∇J = 0. We thus have

∇ξ = −1
2∇σ

] + (df)J.

Antisymmetrizing both sides, we get

A∇ξ = −1
2A∇σ

] +A((df)J).

Using Proposition 2.13, we have that

(A∇ξ)(e1, e2) = −Ȧ].

Meanwhile, using Lemma 2.12, we have,

A((df)J)(e1, e2) = −(df)].

10



We conclude that (
Ȧ− df

)]
= 1

2A∇σ
](e1, e2) = 1

2

(
∇e1σ]e2 −∇e2σ]e1

)
.

By metric compatibility, the ] and [ maps commute with the covariant derivative, so, applying [ to
the above equation (i.e. contracting with g), we obtain

Ȧ− df = 1
2 (∇e1σe2 −∇e2σe1) , (7)

where we interpret ∇e1σe2 as the one-form X 7→ (∇e1σ)(e2, X).
It turns out that the right-hand side of the above equation is −1

2 of the Hodge star of divSσ.
We summarize and prove this fact below.

Proposition 2.14. If ∇ is the Levi-Civita connection associated with an evolving metric g(t), and
if e1, e2 is orthonormal at all times, then

Ȧ− df = −1

2
? divSσ, (8)

where σ = ∂
∂tg, ? denotes the Hodge star operator associated with g, and

f =
1

2
σ12 − ė2(e1) = −1

2
σ12 + ė1(e2). (9)

Proof. In light of (7) and the fact that ? ?α = −α for one-forms α, it remains to check that divSσ
is the Hodge star of

α = ∇e1σe2 −∇e2σe1.

Since Sσ = σ − gTrσ, we have

(divSσ)(e2) = ∇e1(Sσ)(e1, e2) +∇e2(Sσ)(e2, e2)

= (∇e1σ)(e1, e2)−∇e1(gTrσ)(e1, e2) + (∇e2σ)(e2, e2)−∇e2(gTrσ)(e2, e2)

= (∇e1σ)(e2, e1)− g(e2, e1)∇e1 Trσ + (∇e2σ)(e2, e2)− g(e2, e2)∇e2 Trσ

= (∇e1σ)(e2, e1) + (∇e2σ)(e2, e2)−∇e2 Trσ.

Since the trace commutes with covariant differentiation,

∇e2 Trσ = Tr∇e2σ = (∇e2σ)(e1, e1) + (∇e2σ)(e2, e2).

Thus,

(divSσ)(e2) = (∇e1σ)(e2, e1)− (∇e2σ)(e1, e1)

= α(e1).

A similar calculation gives
(divSσ)(e1) = −α(e2),

so divSσ is indeed the Hodge star of α.

We now remark on the relationship between the connection one-form A and the Gaussian
curvature κ.

11



Proposition 2.15. The curvature of the connection ∇ in Definition 2.2 is the endomorphism-
valued 2-form (dA)J .

Proof. Given vector fields X and Y , we have

∇X∇Y e1 −∇Y∇Xe1 −∇[X,Y ]e1

= ∇X(A(Y )e2)−∇Y (A(X)e2)−A([X,Y ])e2

= ∇X(A(Y ))e2 +A(Y )∇Xe2 −∇Y (A(X))e2 −A(X)∇Y e2 −A([X,Y ])e2

= (∇X(A(Y ))−∇Y (A(X))−A([X,Y ])) e2 −A(Y )A(X)e1 +A(X)A(Y )e1

= dA(X,Y )Je1.

The computation for ∇X∇Y e2 −∇Y∇Xe2 −∇[X,Y ]e2 is analogous.
Alternatively, we can observe that, with respect to the gauge defined by the frame (e1, e2), the

endomorphism-valued one-form of the connection ∇ is AJ . The curvature is d(AJ) + 1
2 [AJ ∧AJ ],

which is equal to (dA)J ; indeed, the matrix of J with respect to the frame (e1, e2) is constant, so
dJ = 0, and the commutator term vanishes because J ∈ so(2), which is Abelian.

Remark 2.16. The Gaussian curvature κ is then g(dA(e1, e2)Je2, e1) = −dA(e1, e2), so κω =
−dA. Thus, another way to obtain formula (1) for ∂

∂t(κω) is to take the exterior derivative of (8),
which yields

dȦ = −1

2
d ? divSσ = −1

2
? ?−1d ? divSσ = −1

2
? div divSσ = −1

2
(div divSσ)ω

since the operators ?−1d? and div coincide on one-forms.

2.3 Geodesic curvature evolution

Next, we consider a curve C in M and study the evolution of its geodesic curvature k, weighted by
the induced length 1-form on C. Let τ be a unit tangent and n a unit normal, with the convention
that (n, τ) is a right-handed frame, so for a circle oriented counterclockwise, n is the outward
normal. With this convention, we let the geodesic curvature be

k = −g(∇ττ, n) = g(∇τn, τ),

so the geodesic curvature of a counterclockwise circle is positive. We let ds be the natural length
one-form on C; that is, ds = τ [ with respect to the induced metric on C. We now determine how the
geodesic curvature evolves over time in terms of σ, or, more specifically, we compute the evolution
of k ds as a one-form on C.

Proposition 2.17. With notation as above,

∂

∂t
(k ds) = −1

2

(
(divSσ)(n) +∇τ (σ(n, τ))

)
ds.

Proof. The main idea is that we apply Proposition 2.14 to the Frenet frame, e1 = n, e2 = τ ,
restricting the one-forms in equation (8) to C, or, equivalently, evaluating these one-forms on τ .

We start by observing that applying (3) to this frame implies

A(τ) = g(∇τn, τ) = k.

12



Letting i : C → M denote the inclusion map, we therefore conclude that i∗A = k ds. The pullback
of forms does not depend on the metric, so we can conclude that

i∗Ȧ =
∂

∂t
(k ds).

Next, we move on to f . We first observe that τ̇ is parallel to τ , so g(n, τ̇) = 0. In the notation of
Section 2.2, since the ei are an orthonormal frame, we can write this as 0 = e1(ė2) = −ė1(e2), where
the second equality comes from differentiating e1(e2) = 0. We conclude then that f = −1

2σ12 =
−1

2σ(n, τ). From here, we conclude that df(τ) = −1
2∇τ

(
σ(n, τ)

)
, and so

i∗df = −1

2
∇τ
(
σ(n, τ)

)
ds.

Finally, we observe that since ? rotates one-forms 90◦ counterclockwise that
(
?divSσ

)
(τ) =(

divSσ
)
(n), so

i∗
(
? divSσ

)
=
(
divSσ

)
(n) ds.

Putting everything together, the restriction of (8) to C tells us that

∂

∂t
(k ds) = −1

2

(
∇τ (σ(n, τ)) + (divSσ)(n)

)
ds.

2.4 Evolution of angles

Next we study how angles evolve with time.

Proposition 2.18. Let (e1(t), e2(t)) and (ē1(t), ē2(t)) be two time-varying frames that are each
g(t)-orthonormal at all times. Let θ(t) denote the counterclockwise angle by which (e1(t), e2(t)) is
rotated relative to (ē1(t), ē2(t)), so that cos θ = g(e1, e1). Then

∂

∂t
θ = −1

2
σ(e1, e2) +

1

2
σ(ē1, ē2) + ė1(e2)− ˙̄e1(ē2),

where σ = ∂
∂tg.

Proof. Assume without loss of generality that (ē1(0), ē2(0)) = (e1(0), e2(0)). Let u(t) denote the
linear transformation that sends (e1(0), e2(0)) to (e1(t), e2(t)), and let ū(t) denote the linear trans-
formation that sends (ē1(0), ē2(0)) to (ē1(t), ē2(t)). The matrix of v(t) = u(t)ū(t)−1 with respect
to the basis (e1(t), e2(t)) is a rotation by θ(t), so the matrix of v̇(t)v(t)−1 with respect to that basis
is skew-symmetric with off-diagonal entries equal to ±θ̇. In other words,

θ̇ = g(v̇v−1e1, e2)

=
1

2

(
g(v̇v−1e1, e2)− g(v̇v−1e2, e1)

)
,

where we used skew-symmetry to pass from the first to the second line. Since

v̇v−1 = u̇ū−1ūu−1 − uū−1 ˙̄uū−1ūu−1

= u̇u−1 − v ˙̄uū−1v−1
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Figure 1: Configuration of the curves C1 and C2 in Proposition 2.19.

and v is an isometry, we find

θ̇ =
1

2

(
g(u̇u−1e1, e2)− g(u̇u−1e2, e1)

)
− 1

2

(
g(v ˙̄uū−1v−1e1, e2)− g(v ˙̄uū−1v−1e2, e1)

)
=

1

2

(
g(u̇u−1e1, e2)− g(u̇u−1e2, e1)

)
− 1

2

(
g( ˙̄uū−1v−1e1, v

−1e2)− g( ˙̄uū−1v−1e2, v
−1e1)

)
=

1

2

(
g(u̇u−1e1, e2)− g(u̇u−1e2, e1)

)
− 1

2

(
g( ˙̄uū−1ē1, ē2)− g( ˙̄uū−1ē2, ē1)

)
.

In view of (6) and the symmetry of σ, this is equal to

θ̇ =
1

2
(g(fJe1, e2)− g(fJe2, e1))− 1

2

(
g(f̄ J̄ ē1, ē2)− g(f̄ J̄ ē2, ē1)

)
,

where J is the linear transformation that sends (e1, e2) to (e2,−e1), J̄ is the linear transformation
that sends (ē1, ē2) to (ē2,−ē1) (which equals J), and

f =
1

2
σ(e1, e2)− ė2(e1) = −1

2
σ(e1, e2) + ė1(e2), (10)

f̄ =
1

2
σ(ē1, ē2)− ˙̄e2(ē1) = −1

2
σ(ē1, ē2) + ˙̄e1(ē2). (11)

Simplifying, we get

θ̇ = f − f̄

= −1

2
σ(e1, e2) +

1

2
σ(ē1, ē2) + ė1(e2)− ˙̄e1(ē2).

Proposition 2.19. Let C1 and C2 be two curves in M that intersect transversally at a point z. If
the metric g evolves with time but C1 and C2 are fixed, then the angle θ between C1 and C2 at z
satisfies

∂

∂t
θ =

1

2
(σ(τ2, n2)− σ(τ1, n1)) , (12)

where σ = ∂
∂tg and τi, ni are the unit tangent and unit normal vectors along Ci. Here, our convention

is that cos θ = −g(τ1, τ2), g(n1, τ2) < 0, and (ni, τi) forms a right-handed frame for each i; see
Figure 1.
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Proof. This is a special case of Proposition 2.18. The angle θ between C1 and C2 at z is the same
as the angle between the frames (ē1, ē2) := (n2, τ2) and (e1, e2) := (−n1,−τ1) at z. We have

ė1(e2) =
d

dt
(e1(e2))− e1(ė2) = −e1(ė2) = −g(e1, ė2) = −g(n1, τ̇1) = 0

since τ̇1 is parallel to τ1. Similarly, ˙̄e1(ē2) = 0, so (12) follows.

Proposition 2.20. Let (e1, e2) be a smoothly varying g-orthonormal frame field on a triangle T .
Along an edge e ⊂ ∂T with outward unit normal vector n and unit tangent vector τ , let θ be the
counterclockwise angle by which (e1, e2) is rotated relative to (n, τ) at each point along e. Then

∂

∂t
θ =

1

2
σ(n, τ) + f (13)

and
dθ(τ) = A(τ)− k, (14)

where σ = ∂
∂tg, f is given by (9), A is the Levi-Civita connection one-form associated with (e1, e2),

and k is the geodesic curvature of e.

Proof. To compute the time rate of change of θ, we apply Proposition 2.18 with (ē1, ē2) = (n, τ).
As we saw in the proof of Proposition 2.19, we have ˙̄e1(ē2) = 0, so

θ̇ = −1

2
σ(e1, e2) +

1

2
σ(ē1, ē2) + ė1(e2)

=
1

2
σ(n, τ) + f.

Next we compute dθ(τ). Differentiating the relation cos θ = g(e1, n) in the direction τ yields

− sin θ dθ(τ) = ∇τ (g(e1, n)) ,

= g(∇τe1, n) + g(e1,∇τn)

= g(A(τ)e2, n) + g(e1,∇τn)

= −A(τ) sin θ + g(e1,∇τn).

Writing e1 = n cos θ + τ sin θ and noting that g(n,∇τn) = 1
2∇τ (g(n, n)) = 0, we find that

− sin θ dθ(τ) = −A(τ) sin θ + g(τ,∇τn) sin θ

= −A(τ) sin θ + k sin θ.

It follows that (14) holds at all points on e where sin θ 6= 0. In the event that sin θ = 0 on a subset
ẽ ⊂ e with positive length, we have (e1, e2) = (±n,±τ) and A(τ) = g(∇τn, τ) = k on ẽ, so (14)
holds on ẽ with both sides of the equation equaling zero. We conclude that (14) holds everywhere
on e by continuity.

3 Distributional curvature

In this section, we give meaning to the distributional curvature of a Regge metric.
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Notation. Let S be a triangulation of an oriented manifold of dimension d = 2. Let Th, Eh, and
Vh denote the set of triangles, edges, and vertices, respectively, that comprise S. For the moment,
the subscript h serves no purpose other than to label discrete objects, but later it will be useful to
consider families of triangulations parametrized by h = maxT∈Th diam(T ). Let V0

h ⊆ Vh denote the
set of vertices z ∈ Vh that do not lie on ∂S, and let E0

h ⊆ Eh denote the set of interior edges—edges
with at least one endpoint in V0

h.
On a triangle T , let M(T ) denote the space of smooth Riemannian metrics on T . We think of

elements of M(T ) as symmetric (0, 2)-tensor fields that are positive definite everywhere in T and
have smooth components. The space of Regge metrics is

M = {g ∈
∏
T∈Th

M(T ) | i∗T1,egT1 = i∗T2,egT2 ∀e = T1 ∩ T2 ∈ E0
h},

where i∗Tj ,e denotes the pullback under the inclusion iTj ,e : e ↪−→ Tj . In other words, the tangential-
tangential component of a Regge metric g along each interior edge e is continuous. For us, the most
important Regge metrics are those that are piecewise polynomial. When referring to the value of
g on a triangle T ∈ Th, we write either gT or (if there is no danger of confusion) simply g. The
Gaussian curvature κ of gT is denoted

κT (g) = κ(gT ).

On each edge e of T , we let τ and n denote the unit tangent and unit normal with respect to gT .
We assume that n points outward and (n, τ) forms a right-handed frame. The L2-inner product of
two scalar functions u and v on e with respect to gT is denoted

〈u, v〉g,e =

∫
e
uv ds.

Note that this integral does not depend on the triangle T ⊃ e under consideration, since the
tangential-tangential component of g is the same on both sides of e. The geodesic curvature of e is

ke(gT ) = −gT (n,∇ττ).

In general, when e ∈ E0
h lies on the boundary of two triangles T1, T2, the geodesic curvature of e

measured by gT1 need not agree with the geodesic curvature of e measured by gT2 . For such an
edge e, we denote

Jke(g)K = ke(gT1) + ke(gT2).

We use similar notation for the jumps in other quantities across edges. Thus, for example, if v is a
function whose normal derivatives along e are well-defined, then we denote the jump in ∇nv across
e by

J∇nvK = (∇nv)|T1
+ (∇nv)|T2

.

If e ∈ Eh \ E0
h, then we set

J∇nvK = ∇nv

along e.
At a vertex z ∈ V0

h, the angle defect at z is

Θz(g) = 2π −
∑
T∈Ωz

θzT ,

where Ωz is the set of triangles in Th sharing the vertex z, and θzT is the interior angle of T at z
as measured by gT .
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Curvature. We wish to give meaning to the distributional curvature two-form associated with
a Regge metric. To do so, we introduce a space of functions on which this distribution will act.
Although the space of continuous functions would suffice, we prefer to use a Sobolev space to
facilitate the analysis in Section 6.

On a triangle T , we let W k,p(T ) denote the Sobolev space of differentiability index k ∈ N0 and
integrability index p ∈ [1,∞]. We write Hk(T ) = W k,2(T ). For functions v ∈ Hk(T ) with k ≥ 1,
the trace of v on any edge e ⊂ ∂T is well-defined. We denote

V =

v ∈ ∏
T∈Th

H2(T ) | vT1 |e = vT2 |e ∀e = T1 ∩ T2 ∈ E0
h, v|∂S = 0

 .

Note that the Sobolev embedding theorem guarantees that elements of H2(T ) are continuous, so
v(z) is well-defined and single-valued at each vertex z ∈ Vh when v ∈ V . We use the notation V ′

to refer to the dual space of V .
We are now ready to define the distributional curvature two-form associated with g.

Definition 3.1. Let g be a Regge metric. The distributional curvature two-form associated with
g is the linear functional (κω)dist(g) ∈ V ′ defined by

〈(κω)dist(g), v〉V ′,V =
∑
T∈Th

〈κT (g), v〉g,T +
∑
e∈E0

h

〈Jke(g)K, v〉g,e +
∑
z∈V0

h

Θz(g)v(z) (15)

for every v ∈ V .

To motivate this definition, notice that when g is a piecewise constant Regge metric, only the
third term in (15) is present, so we recover the standard definition of the curvature two-form on
triangulations: a summation of Dirac delta distributions supported at the vertices z ∈ V0

h, each
weighted by the angle defect at z. When g varies within each triangle T , we encounter additional
contributions from the first two terms in (15). The role of the first term is self-evident. To
understand the term involving Jke(g)K, consider a thin four-sided region U enclosing a portion
ẽ of an edge e ∈ E0

h, two of whose sides consist of points having geodesic distance ε/2 from ẽ,
and two of whose sides are (non-smooth) geodesics of length ε that intersect e orthogonally with
respect to g, as in Figure 2. If g were smooth, then the Gauss-Bonnet theorem would yield∫
U κω +

∫
∂U k ds = 2π. For small ε, we have

∫
∂U k ds ≈ −

∫
ẽJke(g)K ds + 2π, where the second

term comes from summing the angles of the four corners of U . Hence,
∫
U κω ≈

∫
ẽJke(g)K ds,

which suggests that the curvature two-form should include a Dirac delta distribution supported on
e and weighted by Jke(g)K whenever Jke(g)K is nonzero. In Section 4 we give a more systematic
justification of Definition 3.1 by showing that the linearization of (κω)dist(g) around a given Regge
metric g is precisely the linearized curvature operator, interpreted in a distributional sense. See
also [33] for another justification of Definition 3.1.

4 Linearization of the distributional curvature

Our next goal is to determine how the distributional curvature two-form evolves under deformations
of the metric.

We will prove the following result.
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Figure 2: Region containing a portion of an edge e ∈ E0
h.

Theorem 4.1. Let g(t) be a Regge metric depending smoothly on t. Then

d

dt
〈(κω)dist(g), v〉V ′,V =

1

2
bh(g;σ, v)

for every v ∈ V , where σ = ∂
∂tg and

bh(g;σ, v) =
∑
T∈Th

〈Sσ,Hess v〉g,T +
∑
e∈Eh

〈σ(τ, τ), J∇nvK〉g,e . (16)

The theorem above has important ramifications, since it allows one to analyze the distributional
curvature (κω)dist(g) by analyzing the g-dependent bilinear form bh(g; ·, ·). This bilinear form is
well-studied in the finite element literature: it is a non-Euclidean generalization of the bilinear form
used to discretize the Euclidean div div operator in the Hellan-Herrmann-Johnson finite element
method. Hence, classical techniques from finite element theory can be brought to bear. We use
this observation in Section 6 to analyze the convergence of (κω)dist(g) under refinement.

In our study of bh(g;σ, v) below, we will primarily deal with the setting in which g is a time-
dependent Regge metric with time derivative σ. In particular, σ will be piecewise smooth. But for
future reference, we remark that for any Regge metric g, bh(g; ·, ·) extends to a bounded bilinear
form on Σ× V , where

Σ =

σ ∈ ∏
T∈Th

H1S0
2(T ) | i∗T1,eσT1 = i∗T2,eσT2 ∀e = T1 ∩ T2 ∈ E0

h

 .

Here, HkS0
2(T ) denotes the space of all symmetric (0, 2)-tensor fields on T with coefficients in

Hk(T ).

4.1 Proof of Theorem 4.1

Let us prove Theorem 4.1. We first use Propositions 2.1, 2.17, and 2.19 to differentiate the three
terms on the right-hand side of (15). We get

d

dt
〈κT (g), v〉g,T =

d

dt

∫
T
vκT (g)ω =

1

2

∫
T
v(div divSσ)ω =

1

2
〈div divSσ, v〉g,T , (17)

d

dt
〈Jke(g)K, v〉g,e =

d

dt

∫
e
vJke(g)Kds = −1

2

∫
e
v J(divSσ)(n) +∇τ (σ(n, τ))K ds

= −1

2
〈J(divSσ)(n) +∇τ (σ(n, τ))K , v〉g,e , (18)
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and
d

dt
Θz(g)v(z) = −v(z)

d

dt

∑
T∈Ωz

θzT =
1

2
v(z)

∑
T∈Ωz

Jσ(n, τ)KzT , (19)

where
Jσ(n, τ)KzT = σ(n, τ)|e(1) (z)− σ(n, τ)|e(2) (z) (20)

and e(1), e(2) ⊂ ∂T are the two edges of T having an endpoint at z. Here, our convention is that
e(1) and e(2) are ordered so that the unit tangent vector along e(1) points toward z and the unit
tangent vector along e(2) points away from z.

Next we show that these are precisely the quantities that appear if one integrates bh by parts.

Proposition 4.2. For any (g, σ, v) ∈ M× Σ× V satisfying σ|T ∈ H2S0
2(T ) for every T ∈ Th, we

have

bh(g;σ, v) =
∑
T∈Th

〈div divSσ, v〉g,T

−
∑
e∈E0

h

〈J(divSσ)(n) +∇τ (σ(n, τ))K , v〉g,e

+
∑
z∈V0

h

v(z)
∑
T∈Ωz

Jσ(n, τ)KzT .

(21)

Remark 4.3. The Euclidean version of this identity appears in [18, Equation 2.4] and [12, Lemma
2.1].

Proof of Proposition 4.2. We start by rewriting the integrals over e ∈ Eh in (16) as integrals over
triangle boundaries:

bh(g;σ, v) =
∑
T∈Th

(∫
T
〈Sσ,Hess v〉ω +

∫
∂T
σ(τ, τ)∇nv ds

)
. (22)

Next, by thinking of ∇v as a vector field and using Sσ∇v to denote the one-form X 7→ Sσ(∇v,X),
we use the identity

div(Sσ∇v) = (divSσ)(∇v) + 〈Sσ,Hess v〉

and the divergence theorem to write∫
T
〈Sσ,Hess v〉ω =

∫
T

div(Sσ∇v)ω −
∫
T

(divSσ)(∇v)ω

=

∫
∂T
Sσ(n,∇v) ds−

∫
T

(divSσ)(∇v)ω. (23)

Since ∇v = τ∇τv + n∇nv, we have∫
∂T
Sσ(n,∇v) ds =

∫
∂T
Sσ(n, τ)∇τv ds+

∫
∂T
Sσ(n, n)∇nv ds

=

∫
∂T
σ(n, τ)∇τv ds−

∫
∂T
σ(τ, τ)∇nv ds. (24)

In the second line above, we used the identities

Sσ(n, τ) = σ(n, τ)− (Trσ)g(n, τ) = σ(n, τ),

Sσ(n, n) = σ(n, n)− (Trσ)g(n, n) = σ(n, n)− (σ(τ, τ) + σ(n, n)) = −σ(τ, τ).
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It follows from (22), (23), and (24) that

bh(g;σ, v) =
∑
T∈Th

(
−
∫
T

(divSσ)(∇v)ω +

∫
∂T
σ(n, τ)∇τv ds

)
. (25)

Next, we use the integration by parts formula∫
T

(divSσ)(∇v)ω =

∫
∂T

(divSσ)(n)v ds−
∫
T

(div divSσ)v ω

to write

bh(g;σ, v) =
∑
T∈Th

(∫
T

(div divSσ)v ω −
∫
∂T

(divSσ)(n)v ds+

∫
∂T
σ(n, τ)∇τv ds

)
.

On each triangle T , the last term above involves integrals over the three edges of T , each of which
can be integrated by parts to give∫

e
σ(n, τ)∇τv ds = σ(n, τ)v|z

(2)

z(1) −
∫
e
∇τ (σ(n, τ))v ds.

Here, z(1) and z(2) are the endpoints of e, ordered so that τ points from z(1) to z(2). It follows that

bh(g;σ, v) =
∑
T∈Th

∫
T

(div divSσ)v ω −
∑
e∈Eh

∫
e
J(divSσ)(n) +∇τ (σ(n, τ))K v ds

+
∑
z∈Vh

v(z)
∑
T∈Ωz

Jσ(n, τ)KzT .

Finally, since v vanishes on ∂S, the sums over e ∈ Eh and z ∈ Vh can be replaced by sums over
e ∈ E0

h and z ∈ V0
h. This completes the proof of (21).

Theorem 4.1 follows from comparing (17-19) with (21).

5 Distributional connection

In this section, we discuss how to associate with a Regge metric g a distributional connection
one-form: a one-form that encodes the Levi-Civita connection in the sense of Definition 2.2. The
one-form we construct will have the property that its distributional exterior coderivative is equal
to −(κω)dist(g). As such, it can be thought of as a distributional version of the Hodge star of A
from Definition 2.2.

Our construction will make use of a space of differential one-forms having single-valued (tan-
gential) trace on element interfaces and vanishing (tangential) trace on ∂S. Let H1Λ1(T ) denote
the space of one-forms on a triangle T with coefficients in H1(T ), and let

W = {α ∈
∏
T∈Th

H1Λ1(T ) | i∗T1,eαT1 = i∗T2,eαT2 ∀e = T1 ∩ T2 ∈ E0
h,

i∗T,eαT = 0∀e ∈ Eh \ E0
h, T ⊃ e}.

We also set

X =

F ∈ ∏
T∈Th

L2Λ2(T ) |
∑
T∈Th

∫
T
F = 0

 ,

where L2Λ2(T ) denotes the space of square-integrable two-forms on T . Note that dV ⊂ W and
dW ⊂ X. In addition, on contractible domains, the sequence
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M Regge metrics: metrics which are smooth on each triangle and
have tangential-tangential interelement continuity.

V Scalar functions with interelement continuity and vanishing on
the boundary:{
v ∈

∏
T∈Th H

2(T ) | vT1 |e = vT2 |e ∀e = T1 ∩ T2 ∈ E0
h, v|∂S = 0

}
.

Σ Symmetric (0, 2)-tensor fields with tangential-tangential interele-
ment continuity:{
σ ∈

∏
T∈Th H

1S0
2(T ) | i∗T1,e

σT1 = i∗T2,e
σT2 ∀e = T1 ∩ T2 ∈ E0

h

}
.

W One-forms with tangential interelement continuity and tangential
vanishing on the boundary:{
α ∈

∏
T∈Th H

1Λ1(T ) |i∗T1,eαT1 = i∗T2,eαT2 ∀e = T1 ∩ T2 ∈ E0
h,

i∗T,eαT = 0∀e ∈ Eh \ E0
h, T ⊃ e

}
.

X Two-forms with vanishing mean:

X =
{
F ∈

∏
T∈Th L

2Λ2(T ) |
∑

T∈Th
∫
T F = 0

}
.

U Vector fields: {u ∈ H1(Ω)⊗ R2 | u|T ∈ H2(T )⊗ R2, ∀T ∈ Th}.

Table 2: Summary of notation in Sections 3–7.

0 V W X 0d d

is exact, and hence so its dual; see Appendix A.
Let g be a Regge metric, and let (e1, e2) be a g-orthonormal frame field that is smooth on each

triangle T ∈ Th. We do not assume that (e1, e2) enjoys any interelement continuity. On a triangle
T ∈ Th, we let AT (g) denote the Levi-Civita connection one-form associated with (e1, e2), so that
(in the notation of Section 2.2) ∇e1 = AT (g)e2 and ∇e2 = −AT (g)e1 on T .

On an oriented edge e ∈ E0
h shared by two triangles T+ and T−, the frame (e1, e2) generally

differs on either side of e. We let (e+
1 , e

+
2 ) and (e−1 , e

−
2 ) denote the values of (e1, e2) on the two

sides of e, with the convention that e is oriented positively with respect to T+ and negatively with
respect to T−; see Figure 3. We also let n+ and n− denote the unit normal vectors on the two
sides of e, with the convention that n+ points outward from T+ and has unit length with respect
to gT+ , and n− points outward from T− and has unit length with respect to gT− . We define unit
tangent vectors τ+ and τ− by requiring that (n+, τ+) and (n−, τ−) form orthonormal frames with
respect to gT+ and gT− , respectively. By the tangential-tangential continuity of g, τ+ = −τ−. We
will sometimes abbreviate τ+ as τ , thereby recovering our notation from previous sections.

We use θ+
e to denote the counterclockwise angle by which (e+

1 , e
+
2 ) is rotated relative to (n+, τ+).

Likewise, θ−e denotes that counterclockwise angle by which (e−1 , e
−
2 ) is rotated relative to (−n−,−τ−).

The difference
θe = θ+

e − θ−e
will play an important role in what follows. When we wish to emphasize its dependence on g and/or
(e1, e2), we write θe(g) or θe(g, e1, e2). This angle has the following interpretation. Consider the
linear transformation ΠT−T+ : span{e+

1 , e
+
2 } → span{e−1 , e

−
2 } that sends (n+, τ+) to (−n−,−τ−).

Because ΠT−T+ is an isometry, the matrix of ΠT−T+ with respect to the bases (e+
1 , e

+
2 ) and (e−1 , e

−
2 )

is an orthogonal matrix. In fact, its value is readily seen to be(
cos θe − sin θe
sin θe cos θe

)
.
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T+ T−

n+

τ+

e+
1e+

2
θ+
e

−n−

−τ−
e−1

e−2

θ−e

Figure 3: Frames on either side of an edge shared by two triangles T+ and T−. In this example,
the metrics gT+ and gT− are Euclidean, so τ+ = −τ− and n+ = −n−. In general, n+ need not
equal −n−.

Thus, thinking of ΠT−T+ as a parallel transport operator across the edge e, we can think of θe as
the angle by which a vector rotates, relative to the (discontinuous) frame (e1, e2), when it is parallel
transported from T+ to T−.

With this in mind, we are almost ready to define the distributional connection one-form associ-
ated with the frame. However, there is one complication that we must address first: the angle θe is
a priori only defined up to a multiple of 2π. This issue is intimately connected to the fact that, in
the smooth setting, one can only define the connection one-form on a region that has a continuous
frame. Such a frame always exists locally, but there can be topological obstructions to defining it
globally.

In our setting, we have a discontinuous frame. Nonetheless, across an edge, it is always possible
to smooth the frame, and the angle θe tells us how. For instance, in Figure 3, if we take θe to be
30◦, then we quickly rotate the frame slightly clockwise as we cross the edge, but if we take θe to
be the equivalent angle θe = −330◦, then we quickly rotate the frame almost all the way around
counterclockwise as we cross the edge. Thus, even though 30◦ and −330◦ are equivalent angles,
the choice impacts the topology of how we might smooth the frame. Moreover, depending on the
choices we make, due to topological obstructions it may or may not be possible to smooth the frame
near a vertex. To ensure that we have “topologically consistent” choices of θe, we do the following.

First, we assume that our triangulation S admits a globally constant (but not necessarily g-
orthonormal) frame field (ê1, ê2). By this we mean that (ê1, ê2) is constant on every triangle T ∈ Th,
and ĝ(ê1, τ) and ĝ(ê2, τ) are single-valued on every edge e ∈ E0

h, where ĝ is the unique metric with
respect to which (ê1, ê2) is ĝ-orthonormal. As a result, θ+

e (ĝ, ê1, ê2) and θ−e (ĝ, ê1, ê2) represent the
same angle, so, a priori, θe(ĝ, ê1, ê2) is a multiple of 2π. We now require that, for each edge, we
make a consistent choice of angle representative, so that θ+

e (ĝ, ê1, ê2) = θ−e (ĝ, ê1, ê2), and hence
θe(ĝ, ê1, ê2) = 0.

Next, on every triangle, we continuously vary the frame (ê1, ê2) to the frame (e1, e2). Con-
sequently, the metric defined by this frame varies from ĝ to g. The angles θ±e thus also vary
continuously, thereby giving us a specific value of θ±e (g, e1, e2) that is defined without the previous
ambiguity up to multiples of 2π. We remark that θ±e will depend on exactly how we vary the
frame from (ê1, ê2) to the frame (e1, e2), but the important thing is that we will be “topologically
consistent” around vertices in a way that will become evident in the proof of Proposition 5.4.
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We do remark that one systematic way of varying the frame from (ê1, ê2) to (e1, e2) is as
follows. We can linearly interpolate between the metric ĝ and the metric g. Consequently, we can
use equation (6) with σ = ġ and f = 0 to obtain ξ = u̇u−1. Solving this differential equation
for the linear transformation u, we obtain a frame (uê1, uê2) that is orthonormal at all times. In
particular, at the final time, the frame is orthonormal with respect to g; call this g-orthonormal
frame (ē1, ē2). Our remaining task is to continuously rotate (ē1, ē2) until it agrees with (e1, e2). The
angle ψ between these frames is continuous, but the difficulty is, once again, that ψ is a priori only
defined up to 2π; if at one point we continuously rotate the frame by 30◦ and at a nearby point we
continuously rotate the frame by −330◦, the result will be discontinuous. However, since on each
triangle T , both frames are continuous, and T is contractible, we can always choose a continuous
real-valued (as opposed to angle-valued) ψ and use this choice to rotate (ē1, ē2) to (e1, e2) in a
continuous manner on T .

Once we have chosen the particular representative θe for the angle between frames on adjacent
triangles as discussed above, we can define the distributional connection one-form.

Definition 5.1. Let g be a Regge metric. Let (e1, e2) be a g-orthonormal frame field that is
smooth on each triangle T ∈ Th. The distributional connection one-form associated with (e1, e2) is
the linear functional Γdist(g) ∈W ′ defined by

〈Γdist(g), α〉W ′,W =
∑
T∈Th

〈?AT (g), α〉g,T −
∑
e∈E0

h

〈θe(g), α(τ)〉g,e, ∀α ∈W.

Remark 5.2. We remark that, formally, the distributional connection one-form is associated not
just to the frame (e1, e2) but to the specific path from (ê1, ê2) to (e1, e2); different choices of path
will lead to θe that differ by a multiple of 2π. However, we note that our results hold regardless of
which path we choose.

Remark 5.3. The parallel transport operator ΠT−T+ that we used to motivate Definition 5.1 is a
widely used notion of parallel transport on piecewise flat triangulations [14, 20, 27, 29]. It is also
used implicitly in [29, Chapter 3] when studying geodesics on triangulations equipped with general
(not necessarily piecewise flat) Regge metrics.

Next we will show that the distributional exterior coderivative of Γdist(g) is −(κω)dist(g).

Proposition 5.4. The (Hodge star of the) distributional exterior coderivative of Γdist(g) is −(κω)dist(g).
That is,

〈Γdist(g), dv〉W ′,W = −〈(κω)dist(g), v〉V ′,V , ∀v ∈ V.

Proof. For any v ∈ V , we have

〈Γdist(g), dv〉W ′,W =
∑
T∈Th

〈?AT (g), dv〉g,T −
∑
e∈E0

h

〈θe(g), dv(τ)〉g,e. (26)

On each triangle T , we can use Stokes’ theorem to write

〈?AT (g), dv〉g,T =

∫
T
AT (g) ∧ dv

= −
∫
∂T
AT (g)v +

∫
T
dAT (g)v

= −
∫
∂T
AT (g)v −

∫
T
κT (g)v ω, (27)
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where κT (g) is the Gaussian curvature of g within T . On any edge e shared by two triangles T+

and T−, we have

〈θe(g), dv(τ)〉g,e =

∫
e
θ+
e (g)dv(τ) ds−

∫
e
θ−e (g)dv(τ) ds.

We can integrate each of these terms by parts and use Proposition 2.20 to compute∫
e
θ±e (g)dv(τ) ds = θ±e (g)v

∣∣z(2)

z(1) −
∫
e
dθ±e (g)(τ)v ds

= θ±e (g)v
∣∣z(2)

z(1) ∓
∫
e
AT±(g)(τ)v ds±

∫
e
ke(gT±)v ds

= θ±e (g)v
∣∣z(2)

z(1) ∓
∫
e
AT±(g)v ±

∫
e
ke(gT±)v ds, (28)

where z(1), z(2) ∈ Vh are the two endpoints of e, and we have taken care to note the different sign
conventions for θ+

e and θ−e when invoking Proposition 2.20. When we substitute these relations
into (26), the integrals of AT±(g)v over edges in (28) cancel with the integrals of AT (g)v over
triangle boundaries in (27). Noting that v vanishes on ∂S, we are left with

〈Γdist(g), dv〉W ′,W = −
∑
T∈Th

∫
T
κT (g)v ω −

∑
e∈E0

h

∫
e
Jke(g)Kv ds−

∑
z∈V0

h

Θ̃z(g)v(z)

= −
∑
T∈Th

〈κT (g), v〉g,T −
∑
e∈E0

h

〈Jke(g)K, v〉g,e −
∑
z∈V0

h

Θ̃z(g)v(z),

where
Θ̃z(g) =

∑
e⊃z

sezθe(g)(z) (29)

and sez = +1 if e points toward z and sez = −1 if e points away from z. It remains to show that
Θ̃z(g) equals the angle defect Θz(g), which we recall is given by

Θz(g) = 2π −
∑
T∈Ωz

θzT .

To show that Θ̃z(g) = Θz(g), consider a vertex z shared by m triangles T0, T1, T2, . . . , Tm = T0.
Assume that these triangles are ordered so that for each i = 1, 2, . . . ,m, Ti−1 and Ti share an edge
ei−1/2 with one endpoint at z. Assume that each such edge ei−1/2 points toward z, so that the
numbers sez in (29) are all +1 for this vertex z. Consider for each i the linear transformation
pTi that rotates vectors in Ti at z counterclockwise by θzTi radians with respect to the metric gTi
assigned to Ti at z. The matrix of pTi with respect to the basis

(
e1

∣∣
Ti

(z), e2

∣∣
Ti

(z)
)

is

PTi :=

(
cos θzTi − sin θzTi
sin θzTi cos θzTi

)
,

and the matrix of ΠTiTi−1 at z with respect to the bases
(
e1

∣∣
Ti−1

(z), e2

∣∣
Ti−1

(z)
)

and
(
e1

∣∣
Ti

(z), e2

∣∣
Ti

(z)
)

is

RTiTi−1 :=

(
cos θei−1/2

− sin θei−1/2

sin θei−1/2
cos θei−1/2

)
.
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The product
q = pT0ΠT0Tm−1pTm−1ΠTm−1Tm−2 · · · pT2ΠT2T1pT1ΠT1T0

is the identity operator: it is a rotation, and one can check that pTiΠTiTi−1 sends the tangent vector
of ei−1/2 to the tangent vector of ei+1/2. Thus,(

1 0
0 1

)
= PT0RT0Tm−1PTm−1RTm−1Tm−2 · · ·PT2RT2T1PT1RT1T0

=

cos
(

Θ̃z(g) +
∑m

i=1 θzTi

)
− sin

(
Θ̃z(g) +

∑m
i=1 θzTi

)
sin
(

Θ̃z(g) +
∑m

i=1 θzTi

)
cos
(

Θ̃z(g) +
∑m

i=1 θzTi

)  ,

where Θ̃z(g) is given by (29). It follows that Θ̃z(g) +
∑m

i=1 θzTi ∈ 2πZ. One can see that in fact

Θ̃z(g) +
∑m

i=1 θzTi = 2π by continuously deforming g to a flat metric on ∪mi=1Ti (as discussed above

Definition 5.1), in which case we clearly have
∑m

i=1 θzTi = 2π and Θ̃z = 0. It follows that

Θ̃z(g) = 2π −
m∑
i=1

θzTi = Θz(g).

The following proposition explains how the distributional connection one-form behaves under a
change in frame.

Proposition 5.5. Let g be a Regge metric, and let (ē1, ē2) be a piecewise smooth g-orthonormal
frame field with distributional connection one-form Γ̄dist(g). Let ψ be a piecewise smooth scalar
field (not necessarily continuous), let (e1, e2) be the piecewise smooth g-orthonormal frame field ob-
tained by rotating (ē1, ē2) counterclockwise by ψ, and let Γdist(g) be the corresponding distributional
connection one-form. We have

〈Γdist(g)− Γ̄dist(g), α〉W ′,W = −〈ψ, dα〉X′,X , ∀α ∈W,

where 〈ψ, F 〉X′,X :=
∑

T∈Th
∫
T ψF for all F ∈ X.

Proof. Using bars to denote quantities that are computed with respect to (ē1, ē2), we have

θ±e (g) = θ̄±e (g) + ψ±

on each edge e ∈ E0
h, where ψ+ and ψ− denote the values of ψ on opposite sides of e. Meanwhile,

the change-of-frame formula for smooth connection one-forms yields

AT (g) = ĀT (g) + dψ.

It follows that

〈Γdist(g)− Γ̄dist(g), α〉W ′,W =
∑
T∈Th

〈?dψ, α〉g,T −
∑
e∈E0

h

〈JψK, α(τ)〉

=
∑
T∈Th

(∫
T
dψ ∧ α−

∫
∂T
ψα

)
= −

∑
T∈Th

∫
T
ψdα.
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Next we study how the distributional connection one-form evolves under deformations of the
metric.

Proposition 5.6. Let g(t) be a Regge metric depending smoothly on t. Let (e1(t), e2(t)) be a
g(t)-orthonormal frame field that is smooth on each triangle T ∈ Th and depends smoothly on t.
Then

d

dt
〈Γdist(g(t)), α〉W ′,W = −1

2
ch(g(t);σ(t), α)− d

dt
〈F (t), dα〉X′,X , ∀α ∈W,

where σ = ∂
∂tg. In this formula, ch :M× Σ×W → R is given by

ch(g;σ, α) =
∑
T∈Th

〈Sσ,∇α〉g,T +
∑
e∈Eh

〈σ(τ, τ), Jα(n)K〉g,e,

and F (t) ∈ X ′ is given by

〈F (t), G〉X′,X =
∑
T∈Th

∫
T
f̃(t)G, ∀G ∈ X,

where f̃(t) =
∫ t

0 f(t′) dt′, and f = 1
2σ(e1, e2)− ė2(e1) = −1

2σ(e1, e2) + ė1(e2).

Remark 5.7. We have

ch(g;σ, dv) = bh(g;σ, v), ∀(g, σ, v) ∈M× Σ× V, (30)

since ∇dv = Hess v and dv(n) = ∇nv. Thus, taking α = dv in Proposition 5.6 provides an
alternative proof of Theorem 4.1.

Remark 5.8. An equivalent definition of ch, which can be derived using integration by parts, is

ch(g;σ, α) = −
∑
T∈Th

〈divSσ, α〉g,T +
∑
e∈E0

h

〈Jσ(n, τ)K, α(τ)〉g,e. (31)

Here, Jσ(n, τ)K denotes the jump in σ(n, τ) across the edge e, which is not to be confused with the
quantity Jσ(n, τ)KzT defined in (20).

Proof of Proposition 5.6. For any α ∈W , we have

d

dt
〈Γdist(g(t)), α〉W ′,W =

∑
T∈Th

d

dt
〈?AT (g(t)), α〉g,T −

∑
e∈E0

h

d

dt
〈θe(g(t)), α(τ)〉g,e.

On each triangle T , Proposition 2.14 implies

d

dt
〈?AT (g(t)), α〉g,T =

d

dt

∫
T
AT (g(t)) ∧ α

= −1

2

∫
T
?divSσ ∧ α+

∫
T
df ∧ α

= −1

2

∫
T
?divSσ ∧ α+

∫
∂T
fα−

∫
T
fdα

=
1

2
〈divSσ, α〉g,T +

∫
∂T
fα− 〈?f, dα〉g,T ,
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where f = 1
2σ(e1, e2) − ė2(e1) = −1

2σ(e1, e2) + ė1(e2). On each interior edge e, Proposition 2.20
implies

d

dt
〈θe(g(t)), α(τ)〉g,e =

d

dt

∫
e
θe(g(t))α(τ) ds

=
d

dt

∫
e

(
θ+
e (g(t))− θ−e (g(t))

)
α

=

∫
e

s
1

2
σ(n, τ) + f

{
α

=
1

2
〈Jσ(n, τ)K, α(τ)〉g,e +

∫
e
JfKα.

When we sum over all triangles T and all interior edges e, the integrals of fα over triangle boundaries
cancel with the integrals of JfKα over edges. Noting that α(τ) vanishes on ∂S, we get

d

dt
〈Γdist(g(t)), α〉W ′,W =

1

2

∑
T∈Th

〈divSσ, α〉g,T −
1

2

∑
e∈E0

h

〈Jσ(n, τ)K, α(τ)〉g,e −
∑
T∈Th

〈?f, dα〉g,T .

In view of Remark 5.8 and the fact that

d

dt
〈F (t), dα〉X′,X =

d

dt

∑
T∈Th

∫
T
f̃(t)dα =

∑
T∈Th

∫
T
f(t)dα =

∑
T∈Th

〈?f(t), dα〉g,T ,

we see that
d

dt
〈Γdist(g(t)), α〉W ′,W = −1

2
ch(g(t);σ(t), α)− d

dt
〈F (t), dα〉X′,X .

Choosing a frame field. Definition 5.1 assumes that one has selected a piecewise smooth g-
orthonormal frame field (e1, e2) in advance. On a triangulated planar domain, there is a natural way
to construct such a frame field. Starting from a frame field E1, E2 that is orthonormal and globally
parallel with respect to the Euclidean metric δ, we deform both the metric and the frame field until
the frame field is g-orthonormal. The deforming metric can be taken to be (1−t)δ+tg with t ∈ [0, 1].
According to (6), the frame field must then satisfy e1(t) = u(t)E1 and e2(t) = u(t)E2, where u is
the linear transformation (dependent on both space and time) that satisfies the differential equation
u̇(t)u(t)−1 = −1

2(g − δ)] + fJ with initial condition u(0) = id and f arbitrary. Here, the sharp is
taken with respect to the metric (1 − t)δ + tg. Choosing f = 0 for simplicity, we obtain (up to
an overall rotation) a canonical g-orthonormal frame field (e1, e2) at time t = 1. We refer to the
distributional connection one-form associated with this frame field as the canonical distributional
connection one-form. With the help of Proposition 5.6, one can compute it directly without ever
constructing (e1, e2).

Definition 5.9. Let g be a Regge metric on a triangulated planar domain. The canonical distri-
butional connection one-form is the distributional connection one-form Γdist(g) associated with the
canonical frame field (e1, e2) constructed above. Equivalently,

〈Γdist(g), α〉W ′,W = −1

2

∫ 1

0
ch((1− t)δ + tg; g − δ, α) dt, ∀α ∈W. (32)
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6 Convergence

In this section, we study the convergence of the distributional curvature and distributional connec-
tion under refinement. We restrict our attention to the setting in which S triangulates a polygonal
domain Ω ⊂ R2. We suppose that S belongs to a family of such triangulations parametrized by

h = max
T∈Th

hT ,

where hT = diamT denotes the diameter of a triangle T . We assume this family is shape-regular.
That is, there exists a constant C independent of h such that

max
T∈Th

hT
ρT
≤ C

for every h > 0, where ρT denotes the inradius of T . We reuse the letter C below to denote a
constant independent of h which is not necessarily the same at each occurrence.

For α ∈W and v ∈ V , we denote

‖α‖W,h = ‖α‖L2(Ω) +

∑
T∈Th

h2
T |α|2H1(T )

1/2

and

‖v‖V,h = ‖dv‖W,h = |v|H1(Ω) +

∑
T∈Th

h2
T |v|2H2(T )

1/2

,

where | · |Hk(T ) denotes the Hk(T )-seminorm. The dual norms are denoted

‖β‖W ′,h = sup
α∈W

〈β, α〉W ′,W
‖α‖W,h

,

‖u‖V ′,h = sup
v∈V

〈u, v〉V ′,V
‖v‖V,h

.

Note that ‖ · ‖V,h is a valid norm on V by the Poincaré inequality and the containment V ⊂ H1
0 (Ω).

Given a smooth Riemannian metric g on Ω, we identify its curvature two-form κ(g)ω(g) with
an element of V ′ via

〈κ(g)ω(g), v〉V ′,V :=

∫
Ω
vκ(g)ω(g).

In order to discuss convergence of the canonical distributional connection (32), we also need to
single out a canonical smooth connection one-form A(g). In view of (8) and (32), we select

A(g) = −1

2

∫ 1

0
? divS(g − δ) dt,

where the operators ?, div, and S in the integrand are taken with respect to the metric G(t) =
(1 − t)δ + tg. The Hodge star of A(g) with respect to g is the smooth counterpart of what we
defined in Definition 5.9. We identity ?A(g) with an element of W ′ via

〈?A(g), α〉W ′,W =

∫
Ω
〈?A(g), α〉g ω(g).
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Theorem 6.1. Let g be a smooth Riemannian metric on Ω. Let {gh}h>0 be a family of Regge
metrics satisfying limh→0 ‖gh − g‖L∞(Ω) = 0 and suph>0 maxT∈Th ‖gh‖W 1,∞(T ) < ∞. Then there
exists a constant C independent of h such that

‖(κω)dist(gh)− κ(g)ω(g)‖V ′,h + ‖Γdist(gh)− ?A(g)‖W ′,h

≤ C


∑
T∈Th

h−2
T ‖gh − g‖

2
L2(T )

1/2

+

∑
T∈Th

|gh − g|2H1(T )

1/2

(33)

for every h sufficiently small.

This theorem, proved below, shows that if gh converges to g rapidly enough, then the distri-
butional curvature two-form associated with gh converges to κ(g)ω(g) in V ′, and the canonical
distributional connection one-form associated with gh converges to ?A(g) in W ′. One way to ac-
complish this is to take gh equal to a suitable interpolant of g ontoMr

h, the space of Regge metrics
on Ω that are piecewise polynomial with respect to Th of degree at most r. Below we state a
corollary of Theorem 6.1 that applies when the chosen interpolant satisfies an elementwise error
estimate of the form

‖gh − g‖L2(T ) + hT |gh − g|H1(T ) ≤ chr+1
T |g|Hr+1(T ) (34)

for some constant c depending only on r and the ratio hT /ρT .

Corollary 6.2. If r ≥ 1, h is sufficiently small, and gh ∈Mr
h satisfies (34), then

‖(κω)dist(gh)− κ(g)ω(g)‖V ′,h + ‖Γdist(gh)− ?A(g)‖W ′,h ≤ C

∑
T∈Th

h2r
T |g|2Hr+1(T )

1/2

.

Remark 6.3. Under a stronger assumption on gh, Gopalakrishnan, Neunteufel, Schöberl, and
Wardetzky [25] have recently proved improved error estimates for (piecewise polynomial projections
of) the distributional curvature and distributional connection. Their estimates require that gh be
the canonical interpolant of g onto Mr

h [29, p. 29], which is an interpolant that we will discuss
in more detail in Section 7. By exploiting subtle properties of this interpolant, they derive error
estimates that are one order higher in h and include the case r = 0.

To be clear, we presented error estimates for the distributional curvature and distributional
connection in the V ′-norm and W ′-norm, whereas [25] presents error estimates in the H−1(Ω)-
norm and L2(Ω)-norm for projections of the aforementioned quantities onto piecewise polynomial
finite element spaces (just like [24] did for the curvature). One can relate the two versions of the
estimates without much difficulty by estimating the projection error; see [24] and [25].

Remark 6.4. Under a different assumption on gh, Cheeger, Müller, and Schrader [10] proved that
when r = 0, the distributional curvature two-form of gh converges in the (setwise) sense of measures
to the curvature two-form of g at a rate of O(h) in two dimensions [10, Equation (5.7)] and at a
rate of O(h1/2) in three and higher dimensions [10, Theorem 5.1]. Their estimate requires that gh
be the unique piecewise flat Regge metric with the property that on each T ∈ Th, the lengths of
the edges of T , as measured by gh, agree with the geodesic distances between the vertices of T , as
measured by g.
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Let us prove Theorem 6.1. Consider the one-parameter family of Regge metrics Gh(t) = (1 −
t)δ + tgh emanating from the Euclidean metric δ at t = 0. Since (κω)dist(δ) = 0, ∂

∂tGh = gh − δ,
and Gh(1) = gh, Theorem 4.1 implies that

〈(κω)dist(gh), v〉V ′,V =
1

2

∫ 1

0
bh((1− t)δ + tgh; gh − δ, v) dt, ∀v ∈ V. (35)

On the other hand, Proposition 2.1 implies that the curvature two-form κ(g)ω(g) satisfies

〈κ(g)ω(g), v〉V ′,V =
1

2

∫ 1

0
b((1− t)δ + tg; g − δ, v) dt, ∀v ∈ V,

where
b(g;σ, v) = 〈div divSσ, v〉g,S .

In view of Proposition 4.2, b(g;σ, v) coincides with bh(g;σ, v) for smooth g and σ, so we may replace
b by bh:

〈κ(g)ω(g), v〉V ′,V =
1

2

∫ 1

0
bh((1− t)δ + tg; g − δ, v) dt, ∀v ∈ V.

It follows that for any v ∈ V ,

〈(κω)dist(gh)− κ(g)ω(g), v〉V ′,V =
1

2

∫ 1

0
[bh((1− t)δ + tgh; gh − δ, v)− bh((1− t)δ + tg; g − δ, v)] dt

=
1

2

∫ 1

0
[bh((1− t)δ + tgh; gh − δ, v)− bh((1− t)δ + tg; gh − δ, v)] dt

+
1

2

∫ 1

0
bh((1− t)δ + tg; gh − g, v) dt.

Thus,

∣∣〈(κω)dist(gh)− κ(g)ω(g), v〉V ′,V
∣∣ ≤ 1

2

∫ 1

0
|bh((1− t)δ + tgh; gh − δ, v)− bh((1− t)δ + tg; gh − δ, v)| dt

+
1

2

∫ 1

0
|bh((1− t)δ + tg; gh − g, v)| dt. (36)

Arguing similarly for Γdist(gh), we find that for any α ∈W ,

∣∣〈Γdist(gh)− ?A(g), α〉W ′,W
∣∣ ≤ 1

2

∫ 1

0
|ch((1− t)δ + tgh; gh − δ, α)− ch((1− t)δ + tg; gh − δ, α)| dt

+
1

2

∫ 1

0
|ch((1− t)δ + tg; gh − g, α)| dt. (37)

Lemma 6.5. We have

|bh((1− t)δ + tgh; gh − δ, v)− bh((1− t)δ + tg; gh − δ, v)|+ |bh((1− t)δ + tg; gh − g, v)|

≤ C


∑
T∈Th

h−2
T ‖gh − g‖

2
L2(T )

1/2

+

∑
T∈Th

|gh − g|2H1(T )

1/2

|v|H1(Ω) +

∑
T∈Th

h2
T |v|2H2(T )

1/2


(38)
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and

|ch((1− t)δ + tgh; gh − δ, α)− ch((1− t)δ + tg; gh − δ, α)|+ |ch((1− t)δ + tg; gh − g, α)|

≤ C


∑
T∈Th

h−2
T ‖gh − g‖

2
L2(T )

1/2

+

∑
T∈Th

|gh − g|2H1(T )

1/2

‖α‖L2(Ω) +

∑
T∈Th

h2
T |α|2H1(T )

1/2


(39)

for every t ∈ [0, 1] and every h sufficiently small.

Proof. The first inequality is a direct application of Lemmas 4.11-4.12 of [24]. Our situation is
identical to the one there, except that we have not assumed that v and gh are piecewise polynomial,
that Th is quasi-uniform, nor that limh→0 h

−1 log h−1‖gh − g‖L2(Ω) → 0. It is easy to check that
these discrepancies are immaterial in the context of [24, Lemmas 4.11-4.12]. Note that the upper
bounds in [24, Lemmas 4.11-4.12] are written in a slightly simpler form there using the bounds
h−1
T ≤ Ch−1 (from quasi-uniformity, which was assumed in [24] but not here) and hT ≤ h.

The inequality (39) is obtained by replacing all instances of dv by α in the proof of Lemmas
4.11-4.12 in [24].

By combining Lemma 6.5 with the bounds (36-37) and the definitions of ‖·‖V,h, ‖·‖V ′,h, ‖·‖W,h,
and ‖·‖W ′,h, we arrive at Theorem 6.1. Corollary 6.2 then follows from interpolation error estimates
for piecewise polynomial Regge metrics [29, Theorem 2.5].

7 Piecewise polynomial setting

So far we have discussed curvature and connections for Regge metrics in the distributional sense.
For practical computing, it is often desirable to work with piecewise polynomial projections of these
quantities. We define such quantities below, and we show that the associated projection operators
and linearized differential operators fit nicely into a commutative diagram of differential complexes.

We first define a few finite element spaces. For each integer r ≥ 0, let Pr(T ) denote the space
of polynomials of degree at most r on a triangle T . Let PrΛk(T ) denote the space of k-forms on
T with coefficients in Pr(T ), and let PrS0

2(T ) denote the space of symmetric (0, 2)-tensor fields on
T with coefficients in Pr(T ). Also let P−r Λk(T ) = {α ∈ PrΛk(T ) | kosα ∈ PrΛk−1(T )}, where kos
denotes the Koszul differential [2, p. 329].

With r ≥ 0 fixed, we define finite element spaces

V r+1
h = {v ∈ V | v|T ∈ Pr+1(T ) ∀T ∈ Th},

W r+1
h = {α ∈W | α|T ∈ P

−
r+1Λ1(T ) ∀T ∈ Th},

Xr
h = {F ∈ X | F |T ∈ PrΛ

2(T )∀T ∈ Th},
Σr
h = {σ ∈ Σ | σ|T ∈ PrS

0
2(T )∀T ∈ Th},

Mr
h = {g ∈M | g|T ∈ PrS

0
2(T )∀T ∈ Th}.

On a triangulation of a planar domain, the space V r+1
h is the standard Lagrange finite element

space consisting of continuous functions that are piecewise polynomial. The space W r+1
h is isomor-

phic (via the identification of one-forms with vector fields) to the space of two-dimensional Nédélec
finite elements of the first kind, whose members have single-valued tangential components along
edges. The space Xr

h is isomorphic (via the identification of two-forms with scalar fields) to the
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space of discontinuous polynomials. The space Σr
h is the space of Regge finite elements: symmetric

(0, 2)-tensor fields that are piecewise polynomial and possess single-valued tangential-tangential
components along edges. The space Mr

h consists of piecewise polynomial Regge metrics; it is the
subset of Σr

h whose members are positive definite everywhere.
Note that dV r+1

h ⊂W r+1
h and dW r+1

h ⊂ Xr
h. In fact, the complex

0 V r+1
h W r+1

h Xr
h 0d d

is exact on triangulations of contractible planar domains [2, Section 5.5]. We will not make extensive
use of this complex in what follows, except in the paragraph preceding Section 7.1; our main interest
is in a different complex involving Σr

h. But it is worth remarking that a commutative diagram

0 V W X 0

0 V r+1
h W r+1

h Xr
h 0

d d

d d

can be constructed using the canonical interpolation operators of finite element exterior calculus in
the vertical arrows above [2, 3].

The following definitions should be regarded as piecewise polynomial versions of Definitions 3.1
and 5.1.

Definition 7.1. Let g be a Regge metric. The discrete Gaussian curvature of g is the function
κh(g) ∈ V r+1

h defined by

〈κh(g), v〉g,S =
∑
T∈Th

〈κT (g), v〉g,T +
∑
e∈E0

h

〈Jke(g)K, v〉g,e +
∑
z∈V0

h

Θz(g)v(z), ∀v ∈ V r+1
h . (40)

Equivalently,
〈κh(g), v〉g,S = 〈(κω)dist(g), v〉V ′,V , ∀v ∈ V r+1

h . (41)

Definition 7.2. Let g be a Regge metric. Let (e1, e2) be a g-orthonormal frame field that is smooth
on each triangle T ∈ Th. The discrete connection one-form associated with (e1, e2) is the one-form
Γh(g) ∈W r+1

h defined by

〈Γh(g), α〉g,S =
∑
T∈Th

〈?AT (g), α〉g,T −
∑
e∈E0

h

〈θe(g), α(τ)〉g,e, ∀α ∈W r+1
h .

Equivalently,
〈Γh(g), α〉g,S = 〈Γdist(g), α〉W ′,W , ∀α ∈W r+1

h . (42)

As in Definition 5.1, the distributional connection requires not just a choice of frame field (e1, e2)
but also a topologically consistent way of choosing θe, which a priori is defined only up to 2π; recall
the discussion preceding Definition 5.1.

Remark 7.3. Note the distinction between (κω)dist(g) and κh(g): the former is an element of V ′

whereas the latter is a continuous, piecewise polynomial function. Similarly, Γdist(g) is an element
of W ′ whereas Γh(g) is a piecewise polynomial 1-form. One can see from (41) that computing κh(g)
from (κω)dist(g) involves inverting a mass matrix. Similarly, one can see from (42) that the same
is true for computing Γh(g) from Γdist(g).
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Remark 7.4. In view of (35), an equivalent definition of κh(g) on a planar triangulation is

〈κh(g), v〉g,S =
1

2

∫ 1

0
bh((1− t)δ + tg; g − δ, v) dt, ∀v ∈ V r+1

h . (43)

This is precisely the definition of discrete Gaussian curvature that was proposed in [24]. The
discovery that (43) and (40) are equivalent is one of the main contributions of the present paper.

The following are immediate consequences of (41), (42), and Propositions 5.4, 5.5, and 5.6.

Proposition 7.5. The discrete exterior coderivative of Γh(g) is −κh(g). That is,

〈Γh(g), dv〉g,S = −〈κh(g), v〉g,S , ∀v ∈ V r+1
h .

Proposition 7.6. Let g be a Regge metric, and let (ē1, ē2) be a piecewise smooth g-orthonormal
frame field with discrete connection one-form Γ̄h(g) ∈ W r+1

h . Let ψ be a piecewise smooth scalar
field (not necessarily continuous), let (e1, e2) be the piecewise smooth g-orthonormal frame field
obtained by rotating (ē1, ē2) counterclockwise by ψ, and let Γh(g) ∈ W r+1

h be the corresponding
discrete connection one-form. We have

〈Γh(g)− Γ̄h(g), α〉g,S = −〈ψh, dα〉g,S , ∀α ∈W r+1
h ,

where ψh ∈ Xr
h satisfies 〈ψh, F 〉g,S =

∑
T∈Th

∫
T ψF for all F ∈ Xr

h.

Proposition 7.7. Let g(t) be a Regge metric depending smoothly on t. Let (e1(t), e2(t)) be a
g(t)-orthonormal frame field that is smooth on each triangle T ∈ Th and depends smoothly on t.
Then

d

dt
〈Γh(g(t)), α〉g,S = −1

2
ch(g(t);σ(t), α)− d

dt
〈Fh(t), dα〉g,S , ∀α ∈W r+1

h ,

where σ = ∂
∂tg and Fh(t) ∈ Xr

h is given by

〈Fh(t), G〉g,S =
∑
T∈Th

∫
T
f̃(t)G, ∀G ∈ Xr

h.

Here, f̃(t) =
∫ t

0 f(t′) dt′, and f = 1
2σ(e1, e2)− ė2(e1) = −1

2σ(e1, e2) + ė1(e2).

Choosing a frame field. Just like in Section 5, Definition 7.2 assumes that one has selected a
g-orthonormal frame field (e1, e2) in advance. On a triangulated planar domain, we can construct
such a frame field as we did in Section 5, leading to a canonical discrete connection one-form
Γh(g) ∈W r+1

h defined by

〈Γh(g), α〉g,S = −1

2

∫ 1

0
ch ((1− t)δ + tg; g − δ, α) dt, ∀α ∈W r+1

h . (44)

This is a piecewise polynomial version of Definition 5.9. Recall the interpretation of this one-form.
Among all possible discrete connection one-forms that can be constructed with Definition 7.2, the
canonical discrete connection one-form (44) is the one that is associated with a specific frame field
constructed as follows: starting from a constant frame field that is orthonormal with respect to the
Euclidean metric, we deform the metric and the frame field until the frame field is orthonormal
with respect to g. Tracking the evolution of the connection along the way yields (44).
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An alternative way to (implicitly) single out a frame field is to find a one-form Γh ∈W r+1
h that

solves the Hodge–Dirac problem [28]

〈Γh, dv〉g,S = −〈κh(g), v〉g,S , ∀v ∈ V r+1
h , (45)

〈dΓh, G〉 = 0, ∀G ∈ Xr
h. (46)

This approach is motivated by the Coulomb gauge condition that chooses a gauge by requiring that
the divergence of the connection vector field be zero. We now show that there exists at least one
solution of (45–46) that is a valid discrete connection one-form, and this solution is unique if the
domain is contractible. Note that the canonical discrete connection one-form, hereafter denoted Γ̄h,
satisfies (45) but not necessarily (46). Setting Fh := dΓ̄h ∈ Xr

h, we can solve the Hodge–Laplace
problem

〈βh, α〉g,S = 〈ψh, dα〉g,S , ∀α ∈W r+1
h ,

〈dβh, G〉g,S = 〈Fh, G〉g,S , ∀G ∈ Xr
h,

for (βh, ψh) ∈W r+1
h ×Xr

h, and then define Γh ∈W r+1
h by

〈Γh, α〉g,S = 〈Γ̄h, α〉g,S − 〈ψh, dα〉g,S , ∀α ∈W r+1
h . (47)

By construction, Γh satisfies (45–46). To see that Γh yields a valid discrete connection one-form,
we must show that it is associated with some g-orthonormal frame field (e1, e2). In view of Propo-
sition 7.6, we see that Γh is the discrete connection one-form associated with a frame field (e1, e2)
that is rotated by ?ψh relative to (ē1, ē2), the frame field associated with Γ̄h. Note that this one-
form Γh is uniquely determined by (45-46) when the domain is contractible, because then there are
no discrete harmonic one-forms. On non-contractible domains, equations (45-46) only determine
Γh up to the addition of a discrete harmonic one-form, and not all solutions of (45-46) are valid
discrete connection one-forms. A sufficient condition ensuring Γh’s validity is that (47) holds for
some ψh ∈ Xr

h, which is equivalent to the condition that the harmonic part of Γh coincides with
the harmonic part of Γ̄h.

7.1 Differential complexes

The linearization of (κω)dist around a Regge metric g is a differential operator that maps per-
turbations of g to elements of V ′. This operator, together with the linearization of κh, fits into
a commutative diagram of differential complexes which we describe below. This diagram bears
strong similarities to ones studied in [11, 14]; see also [12, 16] for related complexes with higher
regularity.

Throughout the following discussion, we let g ∈M and gh ∈Mr
h be fixed Regge metrics.

Differential operators. We define operators divdist : W ′ → V ′ and (divS)dist : Σ→W ′ by

〈divdist α, v〉V ′,V = −〈α, dv〉W ′,W , ∀α ∈W ′, v ∈ V,
〈(divS)distσ, α〉W ′,W = −ch(g;σ, α), ∀σ ∈ Σ, α ∈W.

We also define (div divS)dist = divdist(divS)dist, which is a map from Σ to V ′. By construction,
we have

〈(div divS)distσ, v〉V ′,V = −〈(divS)distσ, dv〉W ′,W
= ch(g;σ, dv)

= bh(g;σ, v), ∀σ ∈ Σ, v ∈ V,
(48)
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which shows that (div divS)dist is the linearization of 2(κω)dist around g.
We define analogous operators on the finite element spaces. Namely, divh : W r+1

h → V r+1
h and

(divS)h : Σr
h →W r+1

h are defined by

〈divh α, v〉gh,S = −〈α, dv〉gh,S , ∀α ∈W r+1
h , v ∈ V r+1

h ,

〈(divS)hσ, α〉gh,S = −ch(gh;σ, α), ∀σ ∈ Σr
h, α ∈W r+1

h .

Denoting (div divS)h = divh(divS)h : Σr
h → V r+1

h , we have

〈(div divS)hσ, v〉gh,S = −〈(divS)hσ, dv〉gh,S
= ch(gh;σ, dv)

= bh(gh;σ, v), ∀σ ∈ Σr
h, v ∈ V r+1

h ,

so (div divS)h is the linearization of 2κhωh around gh, where ωh denotes the volume form associated
with gh.

Projections. We define projectors πVh : V ′ → V r+1
h and πWh : W ′ →W r+1

h by

〈πVh u, v〉gh,S = 〈u, v〉V ′,V , ∀u ∈ V ′, v ∈ V r+1
h ,

〈πWh α, β〉gh,S = 〈α, β〉W ′,W , ∀α ∈W ′, β ∈W r+1
h .

To define an interpolation operator onto Σr
h, it will be convenient to fix a piecewise constant

Regge metric gh ∈ M0
h. We define πΣ

h : Σ → Σr
h by requiring that for σ ∈ Σ, the interpolant

πΣ
h σ ∈ Σr

h satisfies

〈πΣ
h σ − σ, ρ〉gh,T = 0, ∀ρ ∈ Pr−1S

0
2(T ), T ∈ Th, (49)

〈(πΣ
h σ)(τh, τh)− σ(τh, τh), v〉gh,e = 0, ∀v ∈ Pr(e), e ∈ Eh, (50)

where τh is the unit tangent with respect gh. This interpolation operator onto Σr
h was introduced

in [29, p. 29]. If S triangulates a planar domain and gh = δ, then πΣ
h is the canonical interpolation

operator onto Σr
h referenced in Corollary 6.2. It maps σ into Mr

h if h is sufficiently small and σ
belongs to M.

Note that (49) is equivalent to the condition that

〈Sh(πΣ
h σ − σ), ρ〉gh,T = 0, ∀ρ ∈ Pr−1S

0
2(T ), T ∈ Th, (51)

where Shσ = σ − gh Trσ and the trace is taken with respect to gh. This follows from two ob-
servations. First, Sh is an involution that maps Pr−1S

0
2(T ) to itself, so it is an automorphism of

Pr−1S
0
2(T ). Second, we have 〈σ, Shρ〉gh,T = 〈Shσ, ρ〉gh,T for all ρ, σ ∈ Σ.

In view of (50), (51) and the definition (16) of bh, we have

bh(gh;πΣ
h σ − σ, v) = 0, ∀σ ∈ Σ, v ∈ V r+1

h . (52)

Additional definitions on planar domains. In the event that S triangulates a planar domain
Ω and g is smooth, we also introduce additional spaces and operators. We define

U = {u ∈ H1(Ω)⊗ R2 | u|T ∈ H
2(T )⊗ R2, ∀T ∈ Th},

U r+1
h = {u ∈ U | u|T ∈ Pr+1(T )⊗ R2, ∀T ∈ Th}.
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We let def : U → Σ be the differential operator

def u =
1

2
Lug.

In coordinates [13, p. 12],

(def u)ij =
1

2
((∇iu)j + (∇ju)i) .

Note that if u ∈ U , then our assumption that g is smooth ensures that def u is well-defined, and it
belongs to Σ for the following reason. On any edge e shared by two triangles, the trace of ∇τu is
well-defined and single-valued, so (def u)(τ, τ) = g(∇τu, τ) is as well.

For a fixed gh ∈ M0
h, we define an interpolation operator πUh : U → U r+1

h by requiring that for
u ∈ U , the interpolant πUh u ∈ U

r+1
h satisfies

〈πUh u− u, v〉gh,T = 0, ∀v ∈ Pr−2(T )⊗ R2, T ∈ Th,
〈πUh u− u, v〉gh,e = 0, ∀v ∈ Pr−1(e)⊗ R2, e ∈ Eh,
πUh u(z)− u(z) = 0, ∀z ∈ Vh.

This is the standard Lagrange interpolation operator for continuous, piecewise polynomial vector
fields of degree r + 1.

Theorem 7.8. Let g ∈M, gh ∈Mr
h, and gh ∈M0

h. The following statements hold:

1. The diagram

W ′ V ′

W r+1
h V r+1

h

divdist

πW
h πV

h

divh

commutes.

2. If g = gh = gh, then the diagram

Σ V ′

Σr
h V r+1

h

(div divS)dist

πΣ
h

πV
h

(div divS)h

commutes.

3. If S is planar and g = gh = gh = δ, then the diagram

U Σ

U r+1
h Σr

h

def

πU
h πΣ

h

def

commutes.
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Proof. 1. For any α ∈W ′ and any v ∈ V r+1
h , we have

〈divh π
W
h α, v〉gh,S = −〈πWh α, dv〉gh,S

= −〈α, dv〉W ′,W
= 〈divdist α, v〉V ′,V
= 〈πVh divdist α, v〉gh,S ,

so divh π
W
h = πVh divdist.

2. If g = gh = gh, then for any σ ∈ Σ and any v ∈ V r+1
h , we have

〈(div divS)hπ
Σ
h σ, v〉gh,S = bh(gh;πΣ

h σ, v)

= bh(gh;πΣ
h σ, v)

= bh(gh;σ, v)

= bh(g;σ, v)

= 〈(div divS)distσ, v〉V ′,V
= 〈πVh (div divS)distσ, v〉gh,S ,

so (div divS)hπ
Σ
h = πVh (div divS)dist.

3. If S is planar and g = gh = gh = δ, then consider an arbitrary u ∈ U . On each triangle
T ∈ Th, the definitions of πΣ

h and πUh imply that for any ρ ∈ Pr−1S
0
2(T ),

〈πΣ
h def u, ρ〉δ,T = 〈def u, ρ〉δ,T

= 〈u, ρn〉δ,∂T − 〈u,div ρ〉δ,T
= 〈πUh u, ρn〉δ,∂T − 〈πUh u,div ρ〉δ,T
= 〈def πUh u, ρ〉δ,T .

On each edge e ∈ Eh, the definitions of πΣ
h and πUh imply that for any v ∈ Pr(e),

〈(πΣ
h def u)(τ, τ), v〉δ,e = 〈(def u)(τ, τ), v〉δ,e

= 〈∇τu, τv〉δ,e
= δ(u(z(2)), τ)v − δ(u(z(1)), τ)v − 〈u, τ∇τv〉δ,e
= δ(πUh u(z(2)), τ)v − δ(πUh u(z(1)), τ)v − 〈πUh u, τ∇τv〉δ,e
= 〈(def πUh u)(τ, τ), v〉δ,e,

where z(1), z(2) are the two endpoints of e. It follows that πΣ
h def u = def πUh u.

When S is planar and g = gh = gh = δ, the theorem above can be summarized by saying that
the diagram

RM U Σ W ′ V ′ 0

RM U r+1
h Σr

h W r+1
h V r+1

h 0

⊂ def

πU
h πΣ

h

(divS)dist

πW
h

(div)dist

πV
h

⊂ def (divS)h (div)h
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commutes if the dashed arrow is excluded or if the vertical arrows to its left are excluded. Here, we
introduced the space RM = ker(def), which consists of vector fields on S of the form u(x1, x2) =
(a + bx2, c − bx1), where a, b, c ∈ R. The top and bottom rows are both complexes if we exclude
the column containing W ′ and W r+1

h :

RM U Σ V ′ 0

RM U r+1
h Σr

h V r+1
h 0

⊂ def

πU
h πΣ

h

(div divS)dist

πV
h

⊂ def (div divS)h

(53)

Indeed, we will show below that

(div divS)dist def = 0, if g = δ. (54)

Since (div divS)h def πUh = πVh (div divS)dist def, the surjectivity of πUh implies that

(div divS)h def|Ur+1
h

= 0, if g = gh = gh = δ (55)

as well.

Remark 7.9. The bottom row of (53) has a direct correspondence to the complex studied in [11,
Equation 2.10]. The spaces that are labelled P 1(Ω;R2), Sh, Vh, and Ph in [11, Equation 2.10]
correspond in our notation to J(RM), J(U r+1

h ) = U r+1
h , S(Σr

h), and V r+1
h , respectively, where J

denotes a 90◦ rotation. Furthermore, their differential operators ∇s× and (div div)h correspond
to our S def J−1 and (div divS)hS

−1, respectively. Thus, [11, Equation 2.10] reads

J(RM) J(U r+1
h ) S(Σr

h) V r+1
h 0

⊂ S def J−1 (div divS)hS
−1

in our notation.
Because of this correspondence, it follows from [11, Lemma 2.6] that the bottom row of (53)

is exact on contractible domains. Exactness of the top row of (53) can be studied using a similar
correspondence, although there is one subtlety: one must use an argument analogous to the one
in Appendix A in order to account for the fact that our infinite-dimensional spaces have higher
elementwise regularity than global regularity. This argument yields exactness at the positions U
and Σ in the top row of (53). Exactness at the position V ′, i.e. surjectivity of (div divS)dist : Σ→
V ′, does not appear to hold. For example, on a triangulation consisting of a single triangle T ,
(div divS)dist is not surjective from H1S0

2(T ) to the dual of H2(T ) ∩H1
0 (T ).

We emphasize that (54) and (55) only hold if g = δ and g = gh = gh = δ, respectively. In the
non-Euclidean setting, two obstructions emerge. First, it is not clear how the spaces U and U r+1

h

should be defined for non-smooth metrics. Second, even for smooth g, (div divS)dist def 6= 0 in the
presence of curvature. Instead we have the following identities.

Proposition 7.10. Let g be a smooth Riemannian metric with Gaussian curvature κ. For any
u ∈ U , we have

(div divS)dist def u = divdist(κu), (56)

where we view κu as an element of W ′ via

〈κu, α〉W ′,W =

∫
S
κα(u)ω, ∀α ∈W.

In particular, (54) holds if κ = 0.
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Proof. We will first show that for any smooth vector field u,

divS def u = κu[ − 1

2
d∗du[, (57)

where d∗ denotes the codifferential. To see this, we compute

divS def u = div def u− div(gTr def u).

A calculation in geodesic normal coordinates shows that

div def u = div∇u[ +
1

2
d∗du[.

On the other hand,
div(gTr def u) = dTr def u = ddiv u = −dd∗u[.

Hence,

divS def u = div∇u[ +
1

2
d∗du[ + dd∗u[

= div∇u[ + (dd∗ + d∗d)u[ − 1

2
d∗du[.

The first two terms above are the difference between the Bochner and Hodge Laplacians of u[. The
Weitzenbock formula gives

div∇u[ + (dd∗ + d∗d)u[ = κu[,

so (57) follows.
Now we will consider a vector field u ∈ U and prove (56). Since u

∣∣
T
∈ H2(T ) ⊗ R2 on each

T ∈ Th, and since the equality (57) extends to vector fields in H2(T ) ⊗ R2 by density, we have
that (57) holds elementwise. Observe also that, by (48), for any v ∈ V , we have

〈(div divS)dist def u, v〉V ′,V = bh(g; def u, v).

Using (25), we see that

bh(g; def u, v) =
∑
T∈Th

(
−
∫
T

(divS def u)(∇v)ω +

∫
∂T

(def u)(n, τ)∇τv ds
)
. (58)

Using (57), the integrals over T can each be rewritten as

−
∫
T

(divS def u)(∇v)ω = −〈divS def u, dv〉g,T

= −〈κu[, dv〉g,T +
1

2
〈d∗du[, dv〉g,T

= −
∫
T
κdv(u)ω − 1

2

∫
∂T
?du[ ∧ dv,

where we used Stokes’ theorem in the last line. Inserting this into (58) and rewriting the second
term, we get

bh(g; def u, v) = −〈κu, dv〉W ′,W +
∑
T∈Th

∫
∂T

(
−1

2
? du[ ∧ dv + (def u)(n, τ)dv(τ) ds

)
. (59)
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One checks that the tangential component of the one-form being integrated above is

iτ

(
−1

2
? du[ ∧ dv + (def u)(n, τ)dv(τ) ds

)
=

(
−1

2
? du[ + (def u)(n, τ)

)
dv(τ)

= g(n,∇τu)dv(τ).

Since ∇τu and dv(τ) are single-valued on edges e ∈ E0
h, and since dv(τ) vanishes on ∂S, the

summation in (59) vanishes. We conclude that

〈(div divS)dist def u, v〉V ′,V = bh(g; def u, v) = −〈κu, dv〉W ′,W = 〈divdist(κu), v〉V ′,V

for all v ∈ V .

Remark 7.11. Proposition 7.10 implies in particular that for any smooth vector field u,

div divS def u = div(κu).

This can also be seen by considering the evolution of the curvature two-form κω under metric
deformations induced by the flow ϕt : Ω → Ω of the vector field u : Ω → R2. Indeed, consider the
case where u vanishes on ∂Ω for simplicity. Let g(t) = ϕ∗t g(0) be a smooth family of Riemannian
metrics on Ω obtained by pulling back g(0) by ϕt. Denote κ(t) = κ(g(t)) and ω(t) = ω(g(t)). Using
Proposition 2.1, we see that

div(κ(0)u)ω(0) = Lu(κ(0)ω(0)) =
d

dt

∣∣∣∣
t=0

(κ(t)ω(t)) =
1

2
(div divSġ(0))ω(0)

=
1

2
(div divSLug(0))ω(0) = (div divS def u)ω(0),

where the operators div, def, and S are taken with respect to g(0). See also [13, p. 13, Equation
(1.28)].
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A Appendix

Below we verify that the sequence

0 V W X 0d d

is exact on triangulations of contractible domains. We do so by making three observations:

1. If v ∈ V and dv = 0, then clearly v = 0 by the boundary conditions and the interelement
continuity constraints imposed on functions in V .

2. The map d : W → X is surjective for the following reason. On each T ∈ Th, the map

div : H1
0 (T )⊗ R2 → L2∫

=0(T )
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is surjective [22, Lemma B.69, p. 492], where H1
0 (T ) = {f ∈ H1(T ) | f = 0 on ∂T} and

L2∫
=0

(T ) = {f ∈ L2(T ) |
∫
T f ω = 0}. By rotating vectors 90◦ and identifying them with

one-forms, we see that
d : H1

0 Λ1(T )→ L2∫
=0Λ2(T )

is surjective, where H1
0 Λ1(T ) denotes the space of one-forms on T with coefficients in H1

0 (T )
and L2∫

=0
Λ2(T ) denotes the space of square-integrable two-forms on T with vanishing integral.

Now let F ∈ X be arbitrary. We can write F = F0 +F1, where
∫
T F0 vanishes on each T ∈ Th

and F1 is piecewise constant. The two-form F0 is in the range of d : W → X, since we can
construct α0 ∈

∏
T∈Th H

1
0 Λ1(T ) ⊂ W satisfying dα0 = F0 by above. The two-form F1 is

also in the range of d : W → X, since d maps the Whitney one-forms with vanishing trace
surjectively onto the piecewise constant two-forms with vanishing mean. Thus F is in the
range of d : W → X.

3. Now consider a one-form α ∈ W satisfying dα = 0. We will show that there exists v ∈ V
such that dv = α. The canonical Whitney interpolant of α, being closed, belongs to the
range of d : V → W ; it is the image under d of a continuous, piecewise linear function (a
Whitney zero-form). So it suffices to focus on the case where

∫
e α = 0 for every e ∈ Eh. On

each triangle T ∈ Th, α
∣∣
T

is a closed one-form belonging to H1Λ1(T ), so we can construct

vT ∈ H2(T ) such that dvT = α
∣∣
T

[19, Theorem 1.1] and (by adding a suitable constant) vT
vanishes at one of the vertices of T . Since

∫
e dvT =

∫
e α
∣∣
T

= 0 along each edge e of T , vT
in fact vanishes at every vertex of T . On any edge e shared by two triangles T1 and T2, the
equality

di∗T1,evT1 = i∗T1,edvT1 = i∗T1,eα = i∗T2,eα = i∗T2,edvT2 = di∗T2,evT2 ,

together with the fact that vT1 and vT2 vanish at the endpoints of e, ensures that the trace of
vT1 agrees with that of vT2 everywhere along e. By similar reasoning, v (the function whose
restriction to T is vT for each T ∈ Th) vanishes on edges e ∈ Eh \ E0

h. It follows that v ∈ V
and α = dv.
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