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Abstract

We construct finite element approximations of the Levi-Civita connection and its curvature
on triangulations of oriented two-dimensional manifolds. Our construction relies on the Regge
finite elements, which are piecewise polynomial symmetric (0, 2)-tensor fields possessing single-
valued tangential-tangential components along element interfaces. When used to discretize the
Riemannian metric tensor, these piecewise polynomial tensor fields do not possess enough regu-
larity to define connections and curvature in the classical sense, but we show how to make sense
of these quantities in a distributional sense. We then show that these distributional quantities
converge in certain dual Sobolev norms to their smooth counterparts under refinement of the
triangulation. We also discuss projections of the distributional curvature and distributional
connection onto piecewise polynomial finite element spaces. We show that the relevant projec-
tion operators commute with certain linearized differential operators, yielding a commutative
diagram of differential complexes.

1 Introduction

The finite element method is used ubiquitously to approximate solutions to partial differential
equations in Euclidean space, but it sees relatively limited use in Riemannian geometry. The goal
of this paper is to lay down foundations for computing two quantities of interest in Riemannian
geometry—the Levi-Civita connection and its curvature—with finite elements. We focus on the
two-dimensional setting.

Our construction relies on the Regge finite elements, which are a recently developed family of
finite elements for discretizing symmetric (0, 2)-tensor fields on simplicial triangulations [14, 29, 32].
When used to discretize the Riemannian metric tensor, these piecewise polynomial tensor fields do
not possess enough regularity to define connections and curvature in the classical sense. We show
in this paper how to make sense of these quantities in a distributional sense. Importantly, these dis-
tributional quantities converge to their smooth counterparts under refinement of the triangulation
in a sense that we make precise in Section 6. The rates of convergence depend on the polynomial
degree of the approximate metric tensor, with higher polynomial degrees yielding higher rates of
convergence.

To be more concrete, let us briefly describe the Regge finite elements [14, 29, 32]. Given
a triangulation S of an oriented manifold of dimension d, the lengths of all of the edges in S
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determine a piecewise constant Riemannian metric g on §. This metric automatically possesses the
following continuity property: g has single-valued tangential-tangential components on every (d—1)-
dimensional simplex in §. The metric g is an example of a tensor field belonging to the lowest-order
Regge finite element space. More generally, for an integer r > 0, the Regge finite element space of
order r consists of symmetric (0,2)-tensor fields on S that are piecewise polynomial of degree at
most r and obey the same tangential-tangential continuity constraint as above. Often the integer
r is unimportant, and we will simply be concerned with the space of piecewise smooth symmetric
(0,2)-tensor fields with tangential-tangential continuity across (d — 1)-dimensional faces. We call
elements of this space Regge metrics if they are positive definite everywhere.

Obviously, the scalar curvature of a Regge metric g is not well-defined in the classical sense,
unless attention is restricted to the interior of a d-simplex in §. However, there is a natural way
to interpret the scalar curvature (more precisely, the scalar curvature times the volume form) of g
in a distributional sense when ¢ is piecewise constant. One considers a linear combination of Dirac
delta distributions supported on (d — 2)-simplices z, each weighted by the angle defect at z. The
angle defect measures the failure of the dihedral angles incident at z to sum to 27. This definition
of scalar curvature was posited by Regge in his discrete theory of relativity [32] and has since been
given various justifications [10, 14, 17].

The first aim of this paper is to study a generalization of Regge’s definition of scalar curvature
to piecewise polynomial Regge metrics in dimension d = 2. It turns out that the appropriate
generalization is a distribution with three contributions: the scalar curvature within each triangle,
the jump in the geodesic curvature across each edge, and the angle defect at each vertex. Such a
definition has been mentioned in the discrete differential geometry and geometric analysis literature
(see for instance [34, p. 6] and [33, Corollary 3.1]), but, to our knowledge, no efforts have been
made to understand its convergence until now, and it does not appear to have been mentioned
in [29].

The second aim of this paper is to give meaning to the Levi-Civita connection associated with a
Regge metric g. We again restrict our attention to dimension d = 2, where it is possible to encode
the Levi-Civita connection locally with a scalar-valued one-form. We construct such a one-form
using certain rotation angles associated with parallel transport across edges in the triangulation.
Our construction leads to a distributional one-form I'yis¢ whose distributional exterior coderivative
is equal to the distributional curvature of g discussed above. As such, this one-form can be regarded
as a distributional version of the Hodge star of the corresponding connection one-form from the
smooth setting. When g is piecewise constant, I'g;s is a distribution supported on edges. This aligns
with a common viewpoint in discrete exterior calculus [21, 26], where discrete connections on two-
dimensional triangulations are often regarded as discrete dual one-forms [20, 27]; the discrete Hodge
star of such a discrete dual one-form is naturally associated with (primal) edges of the triangulation,
just as our distributional connection is. In fact, relative to an appropriate orthonormal frame,
the distributional connection one-form that we construct encodes a parallel transport operator
with the following properties. Along any curve C that lies entirely in the interior of a triangle,
the parallel transport operator along C coincides with the smooth Levi-Civita parallel transport
operator. If C crosses an edge, then the tangential and normal components of any vector are
preserved during parallel transport across the edge. This is a widely used notion of parallel transport
on triangulations [14, 20, 27, 29].

It turns out that a great deal of information about a Regge metric’s distributional curvature
and distributional connection can be gleaned from studying their evolution under deformations of
the metric. For one thing, doing so allows us to show that the distributional curvature operator
described above is (infinitesimally) consistent; its linearization around a given Regge metric g is
precisely the linearized curvature operator, interpreted in a distributional sense. Christiansen [14,



Proposition 2| showed this in the special case where g is Euclidean, and the second author showed
this when g is a piecewise constant Regge metric [21, Lemma 3.3]. The present paper shows this
for arbitrary Regge metrics g. The calculation is more involved than in the former papers, since,
among other things, one must linearize the jumps in the geodesic curvature across edges of the
triangulation and make use of several non-Euclidean integration by parts identities.

The result of this calculation becomes especially illuminating when expressed in finite element
parlance. As we show in Theorem 4.1, the formula for the linearization of the distributional
curvature of a Regge metric g is expressible in terms of a bilinear form that appears in the Hellan-
Herrmann-Johnson (HHJ) finite element method [1, 4, 5, 7-9, 11, 31]. It is not the familiar
Euclidean version of this bilinear form, but rather one obtained by replacing the Euclidean metric
by g.

This link with the HHJ method plays a central role in our analysis. It reveals that the second
author’s prior work [241] on curvature approximation—where an integral of the HHJ bilinear form
was used to define the curvature of piecewise polynomial Regge metrics—is directly applicable to
our setting, because the approximate curvature defined there is (somewhat fortuitously) equivalent
to the one studied here. This allows us to leverage the analysis in [24] to deduce the convergence of
the distributional curvature under refinement. In this analysis, the evolution of geometric quantities
under metric deformations plays a key role. Roughly speaking, to bound the error in the curvature
approximation, one studies the evolution of the error along a one-parameter family of Regge metrics
emanating from the Euclidean metric, where the error is zero.

Although we have chosen to focus on defining distributional connections and distributional cur-
vature in this paper, it is worth noting that both the distributional curvature and the distributional
connection can, if desired, be projected onto finite element spaces. Doing so produces piecewise
polynomial quantities that are computable using standard finite element assembly routines. As
we show in Section 7, appropriate finite element spaces to use for the curvature and connection
(when the Regge metric g is piecewise polynomial of degree at most r) are the spaces P, A? and
P +1A1 from finite element exterior calculus [2, 3]. These choices, which correspond to continuous
Lagrange finite elements and two-dimensional Nédélec finite elements of the first kind, respectively,
are guided by commutative diagrams of differential complexes; see Section 7.

Note that elsewhere in the literature, one can find notions of discrete connections and curvature
on simplicial triangulations that differ from ours in important ways. For example, [6] and [15]
associate a parallel transport map to each (primal) edge in the triangulation, which is interpreted
as a map between vector spaces anchored at vertices. As such, it leads to a notion of curvature
that is associated with triangles rather than (d — 2)-simplices. Another approach [16] associates a
parallel transport map to every pair of simplices for which one member of the pair is a codimension-
1 subsimplex of the other, leading to a notion of curvature that is associated with elements of the
cubical refinement of the triangulation. Similarly, [30] associates (in dimension d = 2) a parallel
transport map to every pair of incident simplices of arbitrary dimension, leading to a notion of
curvature associated with triangles. In contrast, the viewpoint we adopt in this paper is more closely
aligned with the discrete exterior calculus viewpoint in [20, 27] and with the classical viewpoint
that curvature is concentrated on (d — 2)-simplices in the piecewise flat setting.

This paper is organized as follows. We start by deriving formulas for the evolution of various
geometric quantities under deformations of the metric in Section 2. There, the focus is on smooth
Riemannian metrics. We then turn our attention toward Regge metrics in Section 3 and define
the distributional curvature of a Regge metric. We use the results of Section 2 to compute the lin-
earization of the distributional curvature in Section 4. The formula for the linearization, together
with the calculations from Section 2, play a role in Section 5, where we introduce and study the
properties of the distributional Levi-Civita connection. We study the convergence of the distribu-



tional curvature and distributional connection to their smooth counterparts under refinement in
Section 6. We discuss projections of the distributional curvature and distributional connection onto
piecewise polynomial finite element spaces in Section 7. We show there that the relevant projection
operators commute with certain linearized differential operators, yielding a commutative diagram
of differential complexes.

2 Evolution of geometric quantities

Notation. Let M be a smooth oriented manifold of dimension d. We use TM and T*M to
denote the tangent and cotangent bundles of M, respectively. The set of differential k-forms on M
is denoted A*(T*M), and the endomorphism bundle of TM is denoted End(TM).

Let g be a smooth Riemannian metric on M. We use w to denote the volume form on M induced
by g. The Levi-Civita connection associated with ¢ is denoted V. Thus, if ¢ is a (p, ¢)-tensor field,
then the covariant derivative of o is the (p,q + 1)-tensor field Vo, and the covariant derivative of
o along a vector field X is the (p, ¢)-tensor field Vxo. We use Tro to denote the contraction of o
along the first two indices, using g to raise or lower indices as needed. We write dive = Tr Vo and
Ao = div Vo. The Riemannian Hessian of a scalar field f is denoted Hess f = VV f.

The pointwise inner product of two (p,q)-tensor fields o and p with respect to g is denoted
(0,p)g. Their L*inner product over M is (o,p)gm = [y,(0,p)gw. Sometimes we suppress the
subscript ¢ when the metric is clear from the context.

The Lie derivative of a (p, ¢)-tensor field o along a vector field X is denoted Lxo. If X and
Y are two vector fields, then we denote their Lie bracket by [X,Y] = LxY. We also use [u,v] to
denote the commutator uv — vu of two endorphisms u and v, which we interpret pointwise if v and
v vary spatially.

If « is a differential k-form, then its exterior derivative is the (k + 1)-form da, its Hodge star
is the (d — k)-form *a, its exterior coderivative is the (k — 1)-form d*a = (=1)* x~! d x @, and its
contraction along a vector field X is the (k — 1)-form ix«. The wedge product of two differential
forms « and S is denoted a A 5.

In addition to using ix to denote the contraction along X, we use the letter ¢ for another
purpose. If NV is a submanifold of M, then iy, n denotes the inclusion N < M, and i},  denotes
the pullback under this inclusion.

We use f and b to denote the musical isomorphisms sending one-forms to vector fields and vice
versa. If f is a scalar field, then its covariant derivative V f coincides with the one-form df, but we
will frequently abuse notation by interpreting V f as either df or (df)* depending on the context.

We make occasional use of index notation to do calculations in coordinates. We always follow
the Einstein summation convention. Thus, Vx f = X'V, f = X;V'f, Af = V'V, f = V,;Vif, etc.

We use the letter § to denote the Euclidean metric.

In our analysis, an important role will be played by the operator S which sends a symmetric
(0,2)-tensor field o to the symmetric (0, 2)-tensor field

So=0—gTro.

From this point forward, we restrict our attention to dimension d = 2.

Outline. The goal of this section is to understand how various quantities associated with the
metric g, like the curvature and Levi-Civita connection, evolve with time if ¢ is time-dependent.
Thus, we consider an evolving Riemannian metric g(t) with time derivative
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and we express all of our results in terms of 0. We use dots to denote differentiation with respect
to t.

We calculate the evolution of four quantities, working throughout in dimension d = 2: the
Gaussian curvature (Section 2.1), the Levi-Civita connection (Section 2.2), the geodesic curvature
of a curve in M (Section 2.3), and the angle between two curves in M (Section 2.4). The results of
these calculations will be used extensively when we study Regge metrics in Sections 3-7.

2.1 Gaussian curvature evolution

We first study the evolution of the curvature two-form: the Gaussian curvature s (which is half
the scalar curvature R) times the volume form w.

Proposition 2.1. If g(t) is an evolving Riemannian metric on M with time derivative o = %g,
then the curvature 2-form kw satisfies

0 ...

n (kw) = §(d1Vd1VSU)w, (1)
where So =0 — gTro.
Proof. We use the following well-known formula for the time derivative of x [23, Lemma 2], [13,

Equation 2.4]:
1
k= B (divdive — ATro — (o, Ric)) .

Here, Ric denotes the Ricci tensor, which is simply kg in two dimensions. Since Av = divdiv(gv)
for any scalar field v, we can write

1 1
k= 5 (divdiv(c —gTro) —kTro) = 3 (divdivSe —kTro).

On the other hand, we have [13, Equation 2.4]

S0
0 . 1 Lo
g (kw) = kw + im(Tro*)w = 5(d1v div So)w.

2.2 Evolution of the Levi-Civita connection

We now turn our attention to the evolution of the Levi-Civita connection V. For this task, it will
be convenient to focus on a region U C M on which the tangent bundle TU is trivial. On such
a region, given a metric g, we can choose a frame (e, e2) that is orthonormal with respect to g.
Conversely, given a choice of frame (e, ez), there is a unique metric g with respect to which the
frame is orthonormal. In this context, we can encode any metric-compatible connection (not just
the torsion-free Levi-Civita connection) with a (scalar-valued) one-form A as follows.

Definition 2.2. Given a choice of frame eq, es for TU and a one-form A on U, we define a connection
V via

Vei := Aesg, Vey := —Ae; (3)



These equations should be interpreted as Vxe; = A(X)eg and Vxea = —A(X)e; for all vector
fields X.

Given (ej, e2) orthonormal with respect to a Riemannian metric g, there is a unique one-form
A that encodes the Levi-Civita connection via (3). For the moment, however, we will leave A
unspecified and study its evolution in generality. In fact, we will temporarily dispense with g and
simply consider frames eq, e and one-forms A that vary in time. It will be helpful to also have a
fixed frame E1, Fs that does not vary with time, and for simplicity we can set F; to be e; at t = 0.
We will also use this frame to define a reference connection V.

Definition 2.3. Let Fj, E» be a time-independent frame, specifically E; = e;];—9. Let u be the
linear transformation (dependent on both space and time) that sends F; to e;. Let V be the flat
connection corresponding to the trivialization Fp, Fo, that is, VE, = VE, = 0. As usual, V is
extended to the tensor algebra via the Leibniz rule.

Additionally, we define notation for “90° counterclockwise rotation” with respect to each of
these frames.

Definition 2.4. Let J be the linear transformation, depending on both space and time, defined
by Jei = ez and Jey = —ey. Let J be the linear transforma}ion, depending on space but not time,
such that JE; = F5 and JE; = —E;. Observe that J = uJu 1.

The difference between any two connections is a matrix-valued one-form.

Definition 2.5. Let a be the End(7'U)-valued 1-form a := V — V. Equivalently, we can view a as
defining V via V :=V + a.

Notation 2.6. There can be confusion with End(7'U)-valued 1-forms, since, given a vector field,
we can plug it into the one-forms or we can apply the linear transformations to it. We will follow
convention and use the notation VxY = VxY + a(X)Y, the notation Vx = Vx + a(X), and the
notation VY = VY +aY. We think of a(X) as a space-varying linear transformation, and we think
of aY as a vector-valued one-form.

We will also encounter End(7'U)-valued one-forms when we multiply a one-form and a section
of End(TU), such as AJ, which we interpret as (AJ)(X)Y = (A(X))JY. Another situation is
the covariant derivative of a section of End(TU), such as Vu, which we interpret as (Vu)(X)Y =
(Vxu)Y. We can also multiply an endomorphism-valued one-form a by a linear transformation u,
obtaining endomorphism-valued one-forms au and ua, which we interpret as (au)(X)Y = (a(X))uY
and (ua)(X)Y = u(a(X))Y. We thus also have a commutator operator [a,u] = au — ua.

We summarize the above definitions and notation in Table 1.

Viewing F; and Es as given, we can now think about V as being defined in two different ways.
The first way is via the one-form A and the frame (e1,e3), or, equivalently, via A and the linear
transformation u. The second way is via the matrix-valued one-form a. What is the relationship
between A, u, and a?

Proposition 2.7. We have
a=AuJu™t — (Vu)u™t = AJ — (Vu)u™t. (4)
Proof. We rewrite (3) as

V(uE) = AuJE;, V(uEy) = AuJEs.



FEq, Es A frame that does not vary in time.
e1, e A time-varying frame. In contexts with a metric g, this frame
is orthonormal.
U A time-dependent linear transformation sending (E1, Fs) to
(e1,e2).
wu L.

G

90° counterclockwise rotation with respect to the metric de-
fined by (E1, Ey): JE|, = Ey, JEy = —E.

90° counterclockwise rotation with respect to the metric de-
fined by (e1,e2): Jey = eq, Jea = —ey.

The trivial connection defined by the frame (E7, Es): VE, =
VE; =0.

A connection compatible with the metric defined by (e, e2).
The endomorphism-valued one-form of V with respect to the
gauge (E1, E), defined by Vx E; = a(X)E;.

AJ The endomorphism-valued one-form of V with respect to the
gauge (er,ez), defined by Vxe; = A(X)Je;. A itself is a
scalar-valued one-form.

Aa(X,Y) a(X)Y —a(Y)X.

<

e < <

o)
So c—gTro.
w The volume form; e! A e2.

Table 1: Summary of notation in Section 2.

Meanwhile,
V(uEy) = (Vu)FEy, V(uEs) = (Vu)Es.
Subtracting these equations, we obtain
auB) = (AuJ — Vu)E, auBy = (AuJ — Vu)E,.
The difference between two connections is tensorial, so we have
au = AuJ — Vu.
Multiplying both sides by u ™! gives the desired result. ]

One might also recognize (4) as the equation for a gauge transformation. Indeed, a is the matrix-
valued 1-form for V with respect to the trivialization (F7, Es), whereas AJ is the matrix-valued
1-form for V with respect to the trivialization (ej, e2).

Next, we discuss how (4) changes with time.

Proposition 2.8. We have
a=AJ— V¢,
where &€ = uu™!.

Proof. Observe first that

J=aJut —uJutaut = [€, ] = —[J, €]



Next, observe that .
VE = VE+a, €]

Indeed, more generally, if v is a section of End(TU), and X is a vector field, we have
V(wX) = (Vv)X +vVX.

We likewise have that ~ . .
VwX)=(Vv)X +vVX.

Subtracting the two equations, we have
awX = (Vv — Vo)X +vaX,

SO )
Vv = Vv +[a,v].

Continuing our computation of V&, we focus on the first term and compute that

= (Vi)u™" — (Va)uau™" + [(@u)u_l,uu_l}
= (Fupt) + [(Fupg].

We are now ready to differentiate (4). We compute

a=AJ+ AJ — 4 ((@u)u*)

dt
= AT~ [A.€] = Ve + [(Vupu ' ¢]
= AJ - (ﬁﬁ + [a,€]>
— AJ— Ve =

Here we place a warning that A is how the 1-form changes, but if one would like to determine
the evolution of its coefficients with respect to the basis (e, e3), one would need to take into account
the fact that the basis is time-dependent, so there would be an additional term involving .

We now discuss the torsion-free condition. First, we need the following notation.

Definition 2.9. We can think of End(7'U)-valued one-forms in a different way by noting that they
are sections of the bundle

AYT*U) @ End(TU) = T*U @ TU @ T*U.
Thus, there is a natural antisymmetrization map
A: AYT*U) @ End(TU) — A*(T*U) @ TU,
defined by antisymmetrizing the two T*U factors in T*U @ TU & T*U.
The implication for the torsion-free condition is the following.

Proposition 2.10. Assume that V is torsion-free at t = 0. Then V remains torsion-free if and
only if Aa = 0.



Proof. The torsion-free condition is that
VxY - VyX = [X,Y]
for all vector fields X and Y. We can rewrite this equation as
VxY —VyX +a(X)Y —a(Y)X = [X,Y].
In terms of our antisymmetrization operator, the above equation is
VxY —VyX 4+ Aa(X,Y) = [X,Y]. (5)

Note that, if X and Y are time-independent, then the only term in (5) that depends on time is Aa.
We assumed that V is torsion-free at ¢t = 0, so (5) holds at ¢ = 0. Thus, it continues to hold at all
future times if and only if Aa = 0. O

Combining with Proposition 2.8, we can then understand how A evolves in time if V is torsion-
free. We first need the following definitions and lemma.

Definition 2.11. Let b denote the time-dependent map TU — T*U that sends e; — e! and
eo — €2, and let § denote its inverse. Let w be the time-dependent 2-form e! A e?.

Lemma 2.12. If o is a one-form, then
Alad) = —wa
Proof. We compute
Alad) = w A(aJ)(e1, e2)
=w (a(e1)Jea — alez)Jer)
=w(—aler)er — alez)es)
= —wal. O
Proposition 2.13. If V is torsion-free, then we have
A= (Verber = Ve ber)’
= — ((AVE)(er, c2))’

where & = wu™ and the notation Vx£Y denotes first applying the covariant derivative to &, and
then applying the resulting linear transformation to Y .

Proof. Applying the antisymmetrization operator A to Proposition 2.8 and using the torsion-free
condition Ad = 0, we obtain that

A(AT) = A(VE).
By Lemma 2.12, the left-hand side is —w Af. Moving on to the right-hand side, we have
A(VE) = w (Ve §e2 — Ve, €en) .

Thus, .
(A)ﬁ - (V62§)el - (ve1§)€2a

and the result follows. O



Let us now re-introduce the metric g and interpret Proposition 2.13 in the following context: We
suppose that g evolves with time and eq, eo forms an orthonormal frame at all times. Our setup en-
sures that the connection V will be the Levi-Civita connection in this context, since orthonormality
of e1, e2 is tantamount to metric compatibility.

We can relate the components of o = % g to those of u with the help of two observations. On
one hand, we have

since d
0= —e'(ej) = ¢'(ej) + €'(é5) = &(ej) + gei &)

and p
0= %g(eivej) = G(eivej) + g(ez7ej) —i—g(ez,e])
for each 7,5 = 1,2. On the other hand,

) = gy (€e) = € (0) =~ (B ) =~y = ~eitauey)

Thus, with &€ = @u™!, we have

26 = —o11, 28 = —o12 — 2,
262 = —o19 + 2f, 263 = —099,
where 5} = e'(&ej), 0ij = o(ei,ej), and f = Lo1o — é2(e1) = —1012 + é!(e2). Put another way, we

have a decomposition of £ into its symmetric and antisymmetric parts as
§=—tot+ 17 (6)

where, in this case, f refers to the map defined by ¢! ® e/ — e; ® /. Indeed, we note that, in
coordinates, Ji = el(Jeg) = el(—e1) = —1 and J? = e%(Jey) = €?(ez) = 1.

Observe that V.J = 0. One way to see this is to observe that J” = w, where b is the inverse of
f. Metric compatibility gives Vg = 0 and Vw = 0. Moreover, note that b is just contraction with
g, SO (VJ)b =V (Jb) = Vw = 0. Since b is an isomorphism, V.J = 0. We thus have

Ve = —1Vot + (df)J.
Antisymmetrizing both sides, we get
AVE = —L AV + A((df)T).
Using Proposition 2.13, we have that
(AVE) (e, e9) = — AP
Meanwhile, using Lemma 2.12, we have,

A((df))(er, e2) = —(df)*.
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We conclude that
. f
(A — df) = %AVUﬁ(el, er) = % (Velaﬁez — Vezaﬁq) .

By metric compatibility, the # and b maps commute with the covariant derivative, so, applying b to
the above equation (i.e. contracting with g), we obtain

A—df = 5(Ve,0e5 — Veyoe1), (7)

where we interpret V., oes as the one-form X — (Ve 0)(e2, X).
It turns out that the right-hand side of the above equation is —% of the Hodge star of div So.
We summarize and prove this fact below.

Proposition 2.14. If V is the Levi-Civita connection associated with an evolving metric g(t), and
if e1, ea is orthonormal at all times, then

A—df:—%*divSa, (8)

where o = %g, * denotes the Hodge star operator associated with g, and

f= %012 — (1) = —%Um +él(ea). (9)

Proof. In light of (7) and the fact that xxa = —a for one-forms «, it remains to check that div So
is the Hodge star of
o =V, 0e9 — Ve,oeq.

Since So = 0 — g Tr o, we have

(div So)(ea) = Ve, (So)(e1,e2) + Ve, (So)(ez, €2)
= (Ve,0)(e1,e2) — Ve, (gTro)(er,e2) + (Ve,0)(€2,€2) — Ve, (g Tro)(ez, e2)
= (Ve,0)(e2,e1) —g(ez,e1)Ve, Tro + (Ve,0)(e2,€2) — g(e2,€2)Ve, Tro
= (Ve,0)(e2,€1) + (Ve,0)(e2,e2) — Ve, Tro.

Since the trace commutes with covariant differentiation,
Ve, Tro =TrVe,0 = (Ve,0)(e1,€1) + (Vey0) (€2, €2).
Thus,

(div So)(ez) = (Ve,0)(e2,e1) — (Ve,0)(e1,€1)

= afey).

A similar calculation gives

(divSo)(e1) = —afea),
so div So is indeed the Hodge star of a. O

We now remark on the relationship between the connection one-form A and the Gaussian
curvature k.
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Proposition 2.15. The curvature of the connection V in Definition 2.2 is the endomorphism-
valued 2-form (dA)J.

Proof. Given vector fields X and Y, we have

VxVyer —VyVxer — Vixyer
= Vx(A(Y)ez) — Vy (A(X)e2) — A([X, Y])ez
— Vx(A(Y))es + A(Y)Vxes — Vy (A(X))es — A(X)Vyes — A(X, Y])es
= (Vx(A(Y)) = Vy (A(X)) — A([X,Y])) e2 — A(Y)A(X)er + A(X)A(Y)er
— dA(X,Y)Jer.

The computation for VxVyes — VyVyxes — Vix,y)ez is analogous.

Alternatively, we can observe that, with respect to the gauge defined by the frame (ey, es), the
endomorphism-valued one-form of the connection V is AJ. The curvature is d(AJ) + 3[AJ A AJ],
which is equal to (dA)J; indeed, the matrix of J with respect to the frame (e1, e2) is constant, so

dJ = 0, and the commutator term vanishes because J € s0(2), which is Abelian. O
Remark 2.16. The Gaussian curvature k is then g(dA(e,esz)Jes,e1) = —dA(e1,ea), so kw =
0

—dA. Thus, another way to obtain formula (1) for 5;(xw) is to take the exterior derivative of (8),
which yields

. 1 1 1 1
dA = —§d*div So = —3 *x* tdxdiv So = ) * divdiv So = —§(divdiv So)w

since the operators x 'dx and div coincide on one-forms.

2.3 Geodesic curvature evolution

Next, we consider a curve C in M and study the evolution of its geodesic curvature k, weighted by
the induced length 1-form on C. Let 7 be a unit tangent and n a unit normal, with the convention
that (n,7) is a right-handed frame, so for a circle oriented counterclockwise, n is the outward
normal. With this convention, we let the geodesic curvature be

k= _g(vT7—7 n) = g(anv 7-)?

so the geodesic curvature of a counterclockwise circle is positive. We let ds be the natural length
one-form on C; that is, ds = 7 with respect to the induced metric on C. We now determine how the
geodesic curvature evolves over time in terms of ¢, or, more specifically, we compute the evolution
of kds as a one-form on C.

Proposition 2.17. With notation as above,

0 1, ..
a(lﬁ ds) = —5((dlv So)(n) + V(o(n,7)))ds.

Proof. The main idea is that we apply Proposition 2.14 to the Frenet frame, e; = n, eq = 7,
restricting the one-forms in equation (8) to C, or, equivalently, evaluating these one-forms on 7.
We start by observing that applying (3) to this frame implies

A(r) =g(Vn, ) = k.

12



Letting i: C — M denote the inclusion map, we therefore conclude that i*A = kds. The pullback
of forms does not depend on the metric, so we can conclude that
0
A = kd
i 8t( s).

Next, we move on to f. We first observe that 7 is parallel to 7, so g(n,7) = 0. In the notation of
Section 2.2, since the e; are an orthonormal frame, we can write this as 0 = e!(é3) = —¢é!(e), where
the second equality comes from differentiating e!(es) = 0. We conclude then that f = —%0'12 =
—0(n, 7). From here, we conclude that df(r) = =4V, (0(n, 7)), and so

- 1
itdf = —§VT(J(n,T)) ds.

Finally, we observe that since % rotates one-forms 90° counterclockwise that (* div SJ) (1) =
(div So)(n), so
i*(xdiv So) = (div So)(n) ds.

Putting everything together, the restriction of (8) to C tells us that

0 1 '
a1 —(kds) = 5 = (Vr(o(n,7)) + (div So)(n)) ds. 0

2.4 Evolution of angles

Next we study how angles evolve with time.

Proposition 2.18. Let (e1(t),e2(t)) and (é1(t),e2(t)) be two time-varying frames that are each
g(t)-orthonormal at all times. Let 6(t) denote the counterclockwise angle by which (e1(t),ea(t)) is
rotated relative to (é1(t),e2(t)), so that cos® = g(e1,€1). Then

o 1 1 .1 =1/
8,59 = _20(61762) - 20(91762) +é(e2) —e(e2),

-9
where 0 = 3;g.

Proof. Assume without loss of generality that (€1(0),é2(0)) = (e1(0),e2(0)). Let u(t) denote the
linear transformation that sends (e;1(0), e2(0)) to (e1(t), e2(t)), and let @(t) denote the linear trans-
formation that sends (€1(0),e2(0)) to (e1(t),e2(t)). The matrix of v(t ) u(t)u(t)~! with respect
to the basis (e1(t), e2(t)) is a rotation by 6(t), so the matrix of ©(¢)v(t)~! with respect to that basis
is skew-symmetric with off-diagonal entries equal to +6. In other words,

6 = g(iw_lel,eg)

1

=3 (g(vvter, e2) — g(iv

71627 61)) )

where we used skew-symmetry to pass from the first to the second line. Since

vt = aa Yaut — wa Yaa tau !

=qu "t —via ot

13



Ci

ni

T1
T2 C2

Figure 1: Configuration of the curves C; and Cy in Proposition 2.19.

and v is an isometry, we find

A 1 . - 1 .~ _ — . —
= 3 (glimex,e2) — glines, 1)) — 3 (glviin v ex, 2) — glviin v en, 1)
1 . .o 1, . 4 _ _ .y _
:i(g(uu 161,62)—9(UU 162,61)) —i(g(uu v 161,’0 162)—9(UU Ly 162,’0 161))
1 . .o 1, . 4 _ s _
=3 (g(uu 161,62) — g(uu 162,61)) —5 (g(uu le1,e2) — g(un 162,61)) .

In view of (6) and the symmetry of o, this is equal to

1 1 - -

=5 (9(fTer, e2) —g(fTes, 1)) — 5 (9(f 1, @2) — g(f Tez, 1)) ,

where J is the linear transformation that sends (eq,e2) to (e2, —e1), J is the linear transformation
that sends (€1, é2) to (€2, —e1) (which equals J), and

0

1 ) 1 )
f= 50’(61,62) —é%(e)) = —50'(61,62) + ¢l (eq), (10)
- 1 . 1 .
f=50(E,8) - & () = —50(@1, )+ é'(é2). (11)
Simplifying, we get
I=f-T

1 1 ) 21,
= —50(61, e2) + ia(él’ &2) + él(e2) — €' (&2).
O
Proposition 2.19. Let C; and Co be two curves in M that intersect transversally at a point z. If

the metric g evolves with time but C; and Co are fized, then the angle 0 between C1 and Co at z
satisfies

0 1

50 = 5 (0(12,n2) —o(m,m1)), (12)
where o = %g and 1;,n; are the unit tangent and unit normal vectors along C;. Here, our convention
is that cos = —g(71,m2), g(n1,m) < 0, and (n;, ) forms a right-handed frame for each i; see

Figure 1.
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Proof. This is a special case of Proposition 2.18. The angle 6 between C; and Cs at z is the same
as the angle between the frames (&1, é3) := (n2, 72) and (e1, e2) := (—n1, —71) at z. We have

é'(e) = %(61(62)) —e'(é2) = —€'(é2) = —gler,é2) = —g(n1,71) =0

since 71 is parallel to 7;. Similarly, €' (€2) = 0, so (12) follows. O

Proposition 2.20. Let (e1,e2) be a smoothly varying g-orthonormal frame field on a triangle T
Along an edge e C 0T with outward unit normal vector n and unit tangent vector T, let 6 be the
counterclockwise angle by which (e1,es) is rotated relative to (n,T) at each point along e. Then

0 1

a& = 50(71, T)+ f (13)
and

do(r) = A(t) — k, (14)

where o = %g, f is given by (9), A is the Levi-Civita connection one-form associated with (e1,es),
and k is the geodesic curvature of e.

Proof. To compute the time rate of change of 8, we apply Proposition 2.18 with (e, é2) = (n, 7).

As we saw in the proof of Proposition 2.19, we have é!(é;) = 0, so

. 1 1
0 = —50(61, es) + 50(61, &2) + é'(e2)

1
= 70‘(’”’ T) + f
2
Next we compute df(7). Differentiating the relation cosf = g(ej,n) in the direction 7 yields

—sinfdf(7) =V, (g(e1,n)),
= g(Vrer,n) + g(e1, Von)
= g(A(7)ez,n) + g(e1, Vrn)
= —A(7)sinf + g(e1, V,n).

Writing e; = ncos6 + 7sinf and noting that g(n, V.n) = 3V- (g(n,n)) = 0, we find that

—sin@df(r) = —A(7)sinf + g(r, V,n) sin 6
= —A(7)sinf + ksin6.
It follows that (14) holds at all points on e where sin # 0. In the event that sinf = 0 on a subset
€ C e with positive length, we have (e1,e2) = (£n,+7) and A(1) = g(V n,7) = k on ¢, so (14)

holds on € with both sides of the equation equaling zero. We conclude that (14) holds everywhere
on e by continuity. O

3 Distributional curvature

In this section, we give meaning to the distributional curvature of a Regge metric.
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Notation. Let S be a triangulation of an oriented manifold of dimension d = 2. Let T3, &, and
V}, denote the set of triangles, edges, and vertices, respectively, that comprise S. For the moment,
the subscript h serves no purpose other than to label discrete objects, but later it will be useful to
consider families of triangulations parametrized by h = maxrpeT, diam(7). Let V,? C V), denote the
set of vertices z € V}, that do not lie on 9§, and let 82 C &, denote the set of interior edges—edges
with at least one endpoint in V}?.

On a triangle T, let M(T') denote the space of smooth Riemannian metrics on 7. We think of
elements of M(T') as symmetric (0, 2)-tensor fields that are positive definite everywhere in 7" and
have smooth components. The space of Regge metrics is

M={ge [[ M) |it, 9 =5, .91, Ye =TiNT, € &},
TeT

where 1}1 . denotes the pullback under the inclusion irje e = Tj. In other words, the tangential-
tangential component of a Regge metric g along each interior edge e is continuous. For us, the most
important Regge metrics are those that are piecewise polynomial. When referring to the value of
g on a triangle T' € Ty, we write either gp or (if there is no danger of confusion) simply g. The
Gaussian curvature k of gr is denoted

kr(9) = Kk(gr).

On each edge e of T', we let 7 and n denote the unit tangent and unit normal with respect to gr.
We assume that n points outward and (n, 7) forms a right-handed frame. The L?-inner product of
two scalar functions v and v on e with respect to gr is denoted

(U, V) ge = /uvds.

Note that this integral does not depend on the triangle 7' D e under consideration, since the
tangential-tangential component of g is the same on both sides of e. The geodesic curvature of e is

ke(gr) = —gr(n, V,T).

In general, when e € 82 lies on the boundary of two triangles 77, T5, the geodesic curvature of e
measured by g, need not agree with the geodesic curvature of e measured by gr,. For such an
edge e, we denote

[[ke<g)]] = ke(gT1) + ke(gTQ)'

We use similar notation for the jumps in other quantities across edges. Thus, for example, if v is a
function whose normal derivatives along e are well-defined, then we denote the jump in V,v across
e by
[Vav] = (an)|T1 + (Vn”)‘Tz‘
If e € &, \ £, then we set
[Vav] = Vyv
along e.
At a vertex z € VY, the angle defect at z is

O.(g) =2m — Z 0.1,

TeN,

where 2, is the set of triangles in 7}, sharing the vertex z, and 6, is the interior angle of T" at z
as measured by gr.
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Curvature. We wish to give meaning to the distributional curvature two-form associated with
a Regge metric. To do so, we introduce a space of functions on which this distribution will act.
Although the space of continuous functions would suffice, we prefer to use a Sobolev space to
facilitate the analysis in Section 6.

On a triangle T', we let W*P(T') denote the Sobolev space of differentiability index k € Ny and
integrability index p € [1,00]. We write H*(T) = W*2(T). For functions v € H*(T) with k > 1,
the trace of v on any edge e C 0T is well-defined. We denote

V=quve H H*(T) | vyy|, = vn|, Ve =TiNTs € &Y, v|ps = 0
TeT

Note that the Sobolev embedding theorem guarantees that elements of H2(T) are continuous, so
v(z) is well-defined and single-valued at each vertex z € V;, when v € V. We use the notation V'
to refer to the dual space of V.

We are now ready to define the distributional curvature two-form associated with g.

Definition 3.1. Let g be a Regge metric. The distributional curvature two-form associated with
g is the linear functional (kw)qgist(g) € V' defined by

()i (9) vy = S (5r(0), g + 3 [l v)ge + S O2(gh0(z) (1)

TeTy, ect? zeV?
for every v € V.

To motivate this definition, notice that when g is a piecewise constant Regge metric, only the
third term in (15) is present, so we recover the standard definition of the curvature two-form on
triangulations: a summation of Dirac delta distributions supported at the vertices z € V,?, each
weighted by the angle defect at z. When ¢ varies within each triangle T', we encounter additional
contributions from the first two terms in (15). The role of the first term is self-evident. To
understand the term involving [k.(g)], consider a thin four-sided region U enclosing a portion
¢ of an edge e € &), two of whose sides consist of points having geodesic distance €/2 from ¢,
and two of whose sides are (non-smooth) geodesics of length e that intersect e orthogonally with
respect to g, as in Figure 2. If g were smooth, then the Gauss-Bonnet theorem would yield
Jykw+ [okds = 2m. For small €, we have [, kds ~ — [[ke(g)] ds + 2m, where the second
term comes from summing the angles of the four corners of U. Hence, fU’“" ~ [ke(g)] ds,
which suggests that the curvature two-form should include a Dirac delta distribution supported on
e and weighted by [k.(g)] whenever [k.(g)] is nonzero. In Section 4 we give a more systematic
justification of Definition 3.1 by showing that the linearization of (kw)qist(g) around a given Regge
metric g is precisely the linearized curvature operator, interpreted in a distributional sense. See
also [33] for another justification of Definition 3.1.

4 Linearization of the distributional curvature

Our next goal is to determine how the distributional curvature two-form evolves under deformations
of the metric.
We will prove the following result.
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Figure 2: Region containing a portion of an edge e € S,? .

Theorem 4.1. Let g(t) be a Regge metric depending smoothly on t. Then

d

1
£<(Hw)dist(9)v U>V’,V = ibh(% o,v)

for every v € V, where o = %g and

by(g;0,v) = Z (So,Hessv)g 1 + Z (o(7,7), [Var])y e - (16)

TeT, ecéy

The theorem above has important ramifications, since it allows one to analyze the distributional
curvature (kw)gist(g) by analyzing the g-dependent bilinear form by (g;-,-). This bilinear form is
well-studied in the finite element literature: it is a non-Euclidean generalization of the bilinear form
used to discretize the Euclidean div div operator in the Hellan-Herrmann-Johnson finite element
method. Hence, classical techniques from finite element theory can be brought to bear. We use
this observation in Section 6 to analyze the convergence of (kw)qist(g) under refinement.

In our study of by (g;o,v) below, we will primarily deal with the setting in which ¢ is a time-
dependent Regge metric with time derivative o. In particular, o will be piecewise smooth. But for
future reference, we remark that for any Regge metric g, by(g; -, ) extends to a bounded bilinear
form on X x V, where

S=Soe [[ #H'SND) | i, or, =it om, Ve =TiNT, € &)
TeTh

Here, H*S9(T) denotes the space of all symmetric (0,2)-tensor fields on 7" with coefficients in
HE(T).
4.1 Proof of Theorem 4.1

Let us prove Theorem 4.1. We first use Propositions 2.1, 2.17, and 2.19 to differentiate the three
terms on the right-hand side of (15). We get

d d 1 1
—(k7(9),V)g17 = — [ vEr(9)w = / v(divdiv So)w = —(divdiv So,v), T, (17)
dt dt )y 2 Jr 2

U@ o) = 5 [ olhlo)lds =5 [0l So)m) + V. (ot )] ds

_ _% ((div So)(n) + Vr(o(n, )], v) (18)

g7€7
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and

20.()(z) = —u(2) 3 o 50(2) 3 ool (19)
where
o1, 7)ler = (7w (2) = 00, 7)o (2 (20)

and e e 9T are the two edges of T having an endpoint at z. Here, our convention is that
e and e are ordered so that the unit tangent vector along e(!) points toward z and the unit
tangent vector along ¢ points away from z.

Next we show that these are precisely the quantities that appear if one integrates by, by parts.

Proposition 4.2. For any (g,0,v) € M x ¥ x V satisfying o|p € H2SY(T) for every T € Ty, we
have

br(g;o,v) = Z (divdiv So,v)g 1
TeTh
- Z <[[(diV SU)(”) + VT(U(n7 T))]] 7U>g,e (21)

6682

+ Y0z Y o, )l

ZGV}OL Te Qz

Remark 4.3. The Euclidean version of this identity appears in [18, Equation 2.4] and [12, Lemma
2.1].

Proof of Proposition /.2. We start by rewriting the integrals over e € &, in (16) as integrals over
triangle boundaries:

br(g;0,v) = Z (/T<S<7,Hessv>w+/

o(r, 7)Vyv ds) ) (22)

Next, by thinking of Vv as a vector field and using SoVv to denote the one-form X +— So(Vuv, X),
we use the identity
div(SoVv) = (div So)(Vv) + (So, Hess v)

and the divergence theorem to write
/(SU, Hessv) w = / div(SoeVv)w — /(div So)(Vv)w
T T T
/ So(n,Vv)ds — / (div So)(Vv) w. (23)
oT

T

Since Vv = 7V, v + nV,v, we have

So(n,Vv)ds = So(n,7)Vyvds + So(n,n)Vyvds
oT aT oT

- /8 TU(n,T)VTvdS— / o(r,7)Vvds. (24)

oT

In the second line above, we used the identities

So(n,7) =0(n,7) — (Tro)g(n,7) = o(n, 1),
So(n,n) =o(n,n) — (Tro)g(n,n) = o(n,n) — (o(r,7) + o(n,n)) = —o (7, 7).
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It follows from (22), (23), and (24) that

bu(gio,v) = Y <—/T(divSa)(Vv)w+/

o(n, 7)V v ds) . (25)

Next, we use the integration by parts formula

/T(divSa)(Vv)w = /aT(divSa)(n)vds—/T(divdivSa)vw

to write

bu(giov) = Y </T(divdivSa)vw—/

TET oT

(div So) (n)v ds + /

o(n, 7)V v ds).
oT

On each triangle T', the last term above involves integrals over the three edges of T', each of which
can be integrated by parts to give

/(nT)Vvds—onT|<1)—/V o(n,7))vds.

Here, 21 and 2 are the endpoints of e, ordered so that 7 points from z(1) to z(2). It follows that

O, (divdiv So)vw — [(div So)(n) + V,(o(n,7))]vds
g T; / e%;h/
+ Y w(2) Y [o(n,7)]r

2€Vh TeQ,

Finally, since v vanishes on 9§, the sums over e € &, and z € V}, can be replaced by sums over
e € &) and z € V). This completes the proof of (21). O

Theorem 4.1 follows from comparing (17-19) with (21).

5 Distributional connection

In this section, we discuss how to associate with a Regge metric g a distributional connection
one-form: a one-form that encodes the Levi-Civita connection in the sense of Definition 2.2. The
one-form we construct will have the property that its distributional exterior coderivative is equal
to —(kw)aist(g). As such, it can be thought of as a distributional version of the Hodge star of A
from Definition 2.2.

Our construction will make use of a space of differential one-forms having single-valued (tan-
gential) trace on element interfaces and vanishing (tangential) trace on 9S. Let H*A'(T) denote
the space of one-forms on a triangle T' with coefficients in H(T'), and let

W={ac [[ H'ANT)| i} on =if, on,Ve=TiNT, € &,
T€Th
irc.ar =0Ve € &\ E.T Del.
We also set
={Fe ] L2A%(T) |Z/ =0,
T€Th TeT,

where L?A%(T) denotes the space of square-integrable two-forms on T. Note that dV C W and
dW C X. In addition, on contractible domains, the sequence
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M Regge metrics: metrics which are smooth on each triangle and
have tangential-tangential interelement continuity.

V' Scalar functions with interelement continuity and vanishing on
the boundary:

(o€ Tlper, HAT) | vn|, = vm|, Ve =Ty N T € £, vlys =0},
¥ Symmetric (0, 2)-tensor fields with tangential-tangential interele-
ment continuity:

{0 € Mrer, B'SY(T) | i, com, = it om, Ve =Ty N Ty € £ }.
W One-forms with tangential interelement continuity and tangential
vanishing on the boundary:

{a € [lrer, H'ANT) |if, pory, = if, am, Ve =Ty NTh € &y,
iroor =0Ve € EL\EL,T De
X  Two-forms with vanishing mean:
X = {F € [rer, LAXT) | Srer fo F = 0}.
U  Vector fields: {u € H'(Q) @ R? | u|l € H3(T) @ R%, VT € Tp}.

Table 2: Summary of notation in Sections 3-7.

0 sV 4w 4 X

~
o

is exact, and hence so its dual; see Appendix A.

Let g be a Regge metric, and let (e1, e2) be a g-orthonormal frame field that is smooth on each
triangle T" € T,. We do not assume that (e, e2) enjoys any interelement continuity. On a triangle
T € Tp, we let Ap(g) denote the Levi-Civita connection one-form associated with (e, es), so that
(in the notation of Section 2.2) Ve; = Ar(g)ez and Vea = —Ar(g)e; on T

On an oriented edge e € 5,? shared by two triangles T and T, the frame (e, e2) generally
differs on either side of e. We let (e, e3) and (ey,e;) denote the values of (e1,e2) on the two
sides of e, with the convention that e is oriented positively with respect to T and negatively with
respect to T ; see Figure 3. We also let n™ and n~ denote the unit normal vectors on the two
sides of e, with the convention that n™ points outward from 7+ and has unit length with respect
to gr+, and n~ points outward from 7'~ and has unit length with respect to gr-. We define unit
tangent vectors 7+ and 7~ by requiring that (n™,77) and (n~,77) form orthonormal frames with
respect to gp+ and gp-, respectively. By the tangential-tangential continuity of g, 77 = —7—. We
will sometimes abbreviate 7+ as 7, thereby recovering our notation from previous sections.

We use 6 to denote the counterclockwise angle by which (e], e3) is rotated relative to (n™, 7).
Likewise, 8, denotes that counterclockwise angle by which (e , e5 ) is rotated relative to (—n~, —77).
The difference

0. =05 — 6.

will play an important role in what follows. When we wish to emphasize its dependence on g and/or
(e1,e2), we write .(g) or 6.(g,e1,ez). This angle has the following interpretation. Consider the
linear transformation Ily—7+ : span{e], ey } — span{ej,e; } that sends (n*,7%) to (—n=, —77).
Because I+ is an isometry, the matrix of Il p+ with respect to the bases (e], e ) and (e],e5)

is an orthogonal matrix. In fact, its value is readily seen to be
cosf, —sindb,
sinf, cosf, /)’
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T+

Figure 3: Frames on either side of an edge shared by two triangles 7" and 7. In this example,
the metrics gp+ and gp- are Euclidean, so 77 = —7~ and nt = —n~. In general, n™ need not
equal —n .

Thus, thinking of II;- 1+ as a parallel transport operator across the edge e, we can think of 6. as
the angle by which a vector rotates, relative to the (discontinuous) frame (ej, e2), when it is parallel
transported from T to 7.

With this in mind, we are almost ready to define the distributional connection one-form associ-
ated with the frame. However, there is one complication that we must address first: the angle 0. is
a priori only defined up to a multiple of 2. This issue is intimately connected to the fact that, in
the smooth setting, one can only define the connection one-form on a region that has a continuous
frame. Such a frame always exists locally, but there can be topological obstructions to defining it
globally.

In our setting, we have a discontinuous frame. Nonetheless, across an edge, it is always possible
to smooth the frame, and the angle 6, tells us how. For instance, in Figure 3, if we take 6. to be
30°, then we quickly rotate the frame slightly clockwise as we cross the edge, but if we take 6, to
be the equivalent angle 6. = —330°, then we quickly rotate the frame almost all the way around
counterclockwise as we cross the edge. Thus, even though 30° and —330° are equivalent angles,
the choice impacts the topology of how we might smooth the frame. Moreover, depending on the
choices we make, due to topological obstructions it may or may not be possible to smooth the frame
near a vertex. To ensure that we have “topologically consistent” choices of 8., we do the following.

First, we assume that our triangulation S admits a globally constant (but not necessarily g-
orthonormal) frame field (€7, e2). By this we mean that (€7, €2) is constant on every triangle T' € Ty,
and g(e1,7) and g(€2,7) are single-valued on every edge e € £, where 7 is the unique metric with
respect to which (€y,@») is g-orthonormal. As a result, 0 (g,€1,é3) and 6. (g, €1, é2) represent the
same angle, so, a priori, 8.(g, €1, e2) is a multiple of 2r. We now require that, for each edge, we
make a consistent choice of angle representative, so that 61 (g,e1,é3) = 6. (g,€1,é), and hence
0.(g,e1,e2) = 0.

Next, on every triangle, we continuously vary the frame (e1,e2) to the frame (ej,e2). Con-
sequently, the metric defined by this frame varies from g to g. The angles #F thus also vary
continuously, thereby giving us a specific value of #F (g, e1, e2) that is defined without the previous
ambiguity up to multiples of 2. We remark that 6F will depend on exactly how we vary the
frame from (e, é2) to the frame (e1,es), but the important thing is that we will be “topologically
consistent” around vertices in a way that will become evident in the proof of Proposition 5.4.
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We do remark that one systematic way of varying the frame from (ej,e2) to (e1,e2) is as
follows. We can linearly interpolate between the metric g and the metric g. Consequently, we can
use equation (6) with 0 = ¢ and f = 0 to obtain ¢ = wu~!. Solving this differential equation
for the linear transformation u, we obtain a frame (uey, uez) that is orthonormal at all times. In
particular, at the final time, the frame is orthonormal with respect to g; call this g-orthonormal
frame (€1, €2). Our remaining task is to continuously rotate (€1, €2) until it agrees with (ej, ez). The
angle 1 between these frames is continuous, but the difficulty is, once again, that 1 is a priori only
defined up to 2m; if at one point we continuously rotate the frame by 30° and at a nearby point we
continuously rotate the frame by —330°, the result will be discontinuous. However, since on each
triangle T', both frames are continuous, and 7' is contractible, we can always choose a continuous
real-valued (as opposed to angle-valued) ¢ and use this choice to rotate (é1,é2) to (e1,e2) in a
continuous manner on 7.

Once we have chosen the particular representative 6. for the angle between frames on adjacent
triangles as discussed above, we can define the distributional connection one-form.

Definition 5.1. Let g be a Regge metric. Let (e1,es) be a g-orthonormal frame field that is
smooth on each triangle T € T;,. The distributional connection one-form associated with (e, e2) is
the linear functional Tgist(g) € W/ defined by

<Fdist(g)7 a)W’,W = Z <*AT(9)7 a>g,T - Z (96(9)7 a(T)>g,e7 Va e W.
TeT, 6652

Remark 5.2. We remark that, formally, the distributional connection one-form is associated not
just to the frame (ej, e2) but to the specific path from (e1,e2) to (ey, e2); different choices of path
will lead to 6, that differ by a multiple of 27. However, we note that our results hold regardless of
which path we choose.

Remark 5.3. The parallel transport operator Ilp-7+ that we used to motivate Definition 5.1 is a
widely used notion of parallel transport on piecewise flat triangulations [14, 20, 27, 29]. It is also
used implicitly in [29, Chapter 3] when studying geodesics on triangulations equipped with general
(not necessarily piecewise flat) Regge metrics.

Next we will show that the distributional exterior coderivative of T'gist(g) 18 —(Kw)qist (9)-

Proposition 5.4. The (Hodge star of the) distributional exterior coderivative of Tt (g) is —(kw)dist (9)-
That is,

(Caist(9), dv)ywr w = —((kw)dist(9), v)vr v, Yv € V.

Proof. For any v € V, we have

<Fdist (g)a dU>W’,W = Z <*AT(9), dU>g,T - Z <96(g)? dU(T»g,e' (26)

TeTh ecs?

On each triangle T', we can use Stokes’ theorem to write

(A7 (g), dv)gr = /T Ar(g) A dv

_ _/aT AT(g)v+/TdAT(g)v
S Ap(g)v — | kr(g9)vw, (27)
oT T
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where k7(g) is the Gaussian curvature of g within 7. On any edge e shared by two triangles 7"
and T, we have

wmmmmwzjﬂ@mmw—/@@mmw.

€ €

We can integrate each of these terms by parts and use Proposition 2.20 to compute

[ oot s = 0ol )~ [ do(g) s

e
22

= Gf(g)v‘z(l) :F/AT:t(g)(T)’U dsi/ke(gTi)vds

e

= Gét(g)v‘z(l) $/ATi(g)v:|:/ke(gTi)vds, (28)

where z(1), 2(2) € V), are the two endpoints of e, and we have taken care to note the different sign
conventlons for 6F and 6, when invoking Proposition 2.20. When we substitute these relations
into (26), the integrals of Ar+(g)v over edges in (28) cancel with the integrals of Ap(g)v over
triangle boundaries in (27). Noting that v vanishes on 0S, we are left with

(Taist(9), dv)ywr w = — Z/&T vw—z ]]vds—Z@

TeTh ecg? ¢ zeV?
== > (kr(9),v)gr — Y ([ke(9) — > 6.
T€Th ect) zeVy
where
= Z Sez0e(9)(2) (29)
edz
zind Sez = +1 if e points toward z and s., = —1 if e points away from z. It remains to show that

©.(g) equals the angle defect ©,(g), which we recall is given by

(g) =2m — Z 0.7.

TeQ,

To show that @)Z(g) = 0.(g), consider a vertex z shared by m triangles Ty, Ty, T5, ..., Ty = To.
Assume that these triangles are ordered so that for each i = 1,2,...,m, T;_1 and T; share an edge
e;—1/2 With one endpoint at z. Assume that each such edge e;_; o points toward z, so that the
numbers s, in (29) are all +1 for this vertex z. Consider for each i the linear transformation
pr, that rotates vectors in 7; at z counterclockwise by 6,7, radians with respect to the metric gr,

assigned to T; at z. The matrix of p7; with respect to the basis (61 ‘T‘ (2), eg‘T_ (z)) is

A

P cos@,r, —sinf,7,
L= sinf,r, cosf,r,

and the matrix of Il7.7,_, at z with respect to the bases (61 ‘val (2), e ‘T'—l (z)) and (61 ‘TV (2)

cos 0., —sin 6,
RTz’Ti—l = < . ci-1/2 “i- 1/2> .

sin 661‘—1/2 cos 661_1/2

()

is
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The product
q = proUryr,, o1, U1, 1705 - Py o oy 130

is the identity operator: it is a rotation, and one can check that prIl7,1, | sends the tangent vector
of e;_1/9 to the tangent vector of €;, /5. Thus,

1 0
< ) = Pr,Rpy1,,  Pr,, . Br, 1,5 - Py By Pry Ry,

0 1
[ cos <éz(g) + > 0.r,) —sin (éz(g) +> GZTZ.)
sin (éz(g) + Zz@l 0.1, COs (éz (9) + Zgl ezTZ')
where ©.(g) is given by (29). It follows that ©.(g) + 2™, 6.7, € 2xZ. One can see that in fact

O.(g) +>.% 0.1, = 2 by continuously deforming g to a flat metric on U™, T; (as discussed above
Definition 5.1), in which case we clearly have Y ", 0.7, = 27 and ©, = 0. It follows that

)

O.(g) =27 = > 0.1, = ©.(g).
=1

O]

The following proposition explains how the distributional connection one-form behaves under a
change in frame.

Proposition 5.5. Let g be a Regge metric, and let (é1,€2) be a piecewise smooth g-orthonormal

frame field with distributional connection one-form Tgist(g). Let 1 be a piecewise smooth scalar
field (not necessarily continuous), let (e1,ez) be the piecewise smooth g-orthonormal frame field ob-
tained by rotating (€1, e2) counterclockwise by 1, and let Tgist(g) be the corresponding distributional
connection one-form. We have

(Taist(9) — Taise(9), a)wrw = — (¥, da)xr x, Va e W,
where (U, F)x1 x = Y peq. [pOF for all F € X.
Proof. Using bars to denote quantities that are computed with respect to (€1, é2), we have
0 (9) =02 (9) + 4~

on each edge e € 5,? , where 9™ and 1~ denote the values of ¥ on opposite sides of e. Meanwhile,
the change-of-frame formula for smooth connection one-forms yields

Ar(g) = Ap(g) + dv.
It follows that

(Paist(9) — Caise(9), ) wrw = D (i, adgr — > (W], (7))

TET, ecs?
=2 (fawna [, v0)
= —T; /T Yda.
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Next we study how the distributional connection one-form evolves under deformations of the
metric.

Proposition 5.6. Let g(t) be a Regge metric depending smoothly on t. Let (ei(t),e2(t)) be a
g(t)-orthonormal frame field that is smooth on each triangle T € Ty, and depends smoothly on t.

Then p . d
dt <Fd1st(g(t))a a>W’,W = _ich(g(t); U(t)v Oé) - %

where o = Eg. In this formula, c, : M x X x W — R is given by

(F(t),do)xr x, YaeW,

Ch(g§0'7a) = Z <SU Va gT + Z T, 7_ [[a( )]]>g78’

TET ecép

and F(t) € X' is given by

<F X/X_Z/f G VGGX

TETh
where f(t) fo f()dt, and f = Lo(er,e2) — €%(e1) = —30(e1, e2) + €l (e2).
Remark 5.7. We have
cn(g;o,dv) = by(g;0,v), V(g,0,0) E M x X XV, (30)
since Vdv = Hessv and dv(n) = Vyv. Thus, taking @ = dv in Proposition 5.6 provides an

alternative proof of Theorem 4.1.

Remark 5.8. An equivalent definition of ¢j,, which can be derived using integration by parts, is

cn(gio,e) == > (divSo,a)gr + Y ([o(n, 7)), a(7))ge- (31)

TETh 8652

Here, [o(n, 7)] denotes the jump in o(n,7) across the edge e, which is not to be confused with the
quantity [o(n,7)].r defined in (20).

Proof of Proposition 5.6. For any o € W, we have

%<Fdist(9(t))va>W’7W = Z %<*AT(g(t))’a>g,T - Z %<66(9(t))7a(7-)>976‘

TETh ect?

On each triangle T', Proposition 2.14 implies
d
A Arp(
Gl )y = 5 [ Arlg

= /*leSU/\oH-/df/\a
2 )y T

1
:—/*diVSU/\()é+/ fa—/fda
2 )r T T

1
= 5<div So,a) g —l—/ fo— (xf,da)g T,
oT
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where f = fo(e1,e2) — é%(e1) = —30(e1,e2) + é'(e2). On each interior edge e, Proposition 2.20
implies

G10La®).a(ge = 5 [ oloe)alrds
dt eld 5 g,e—dteeg

d

=a ) (07 (g(1)) — 62 (9(1)))
:/eﬂia(m)uﬂ o

1
= 5<[[a(n,7')]],04(7'»9,6 + /eﬂfﬂa

When we sum over all triangles T" and all interior edges e, the integrals of fa over triangle boundaries
cancel with the integrals of [f]a over edges. Noting that «(7) vanishes on 08, we get

d 1 . 1
dt <Fdist(.g(t))v a>W’,W = 5 Z <d1V SU? Oé)g,T - 5 Z <[[0'(7’L, 7_)]]7 04(7_)>g,e - Z <*f7 da>g7T-
TET; ccg? TET,
In view of Remark 5.8 and the fact that
d d ~
L(R(D), dojxrx = 430 /T Ftyda =% /T F(tda = 3 (1), dady r,
TeT, TeT, TeT,
we see that ) p
@(Fdist(g(t)% a)W’,W - _ich(g(t); U(t)v O[) - @(F(t)a da)X’,X-

O]

Choosing a frame field. Definition 5.1 assumes that one has selected a piecewise smooth g-
orthonormal frame field (e1, e2) in advance. On a triangulated planar domain, there is a natural way
to construct such a frame field. Starting from a frame field E;, F» that is orthonormal and globally
parallel with respect to the Euclidean metric §, we deform both the metric and the frame field until
the frame field is g-orthonormal. The deforming metric can be taken to be (1—t)d+tg with t € [0, 1].
According to (6), the frame field must then satisfy e;(t) = u(t)E; and ea(t) = u(t)E2, where u is
the linear transformation (dependent on both space and time) that satisfies the differential equation
u(t)u(t)™t = —L(g — 6)* + fJ with initial condition u(0) = id and f arbitrary. Here, the sharp is
taken with respect to the metric (1 — ¢)d + tg. Choosing f = 0 for simplicity, we obtain (up to
an overall rotation) a canonical g-orthonormal frame field (e;,e2) at time ¢ = 1. We refer to the
distributional connection one-form associated with this frame field as the canonical distributional
connection one-form. With the help of Proposition 5.6, one can compute it directly without ever
constructing (e, e2).

Definition 5.9. Let g be a Regge metric on a triangulated planar domain. The canonical distri-
butional connection one-form is the distributional connection one-form T4 (g) associated with the
canonical frame field (e, e2) constructed above. Equivalently,

1 1
Caslo)aweaw = =5 [ en((1=03+tg:g - 8.0)dt, Vae W, (32)
0
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6 Convergence

In this section, we study the convergence of the distributional curvature and distributional connec-
tion under refinement. We restrict our attention to the setting in which S triangulates a polygonal
domain Q C R2. We suppose that S belongs to a family of such triangulations parametrized by

h = max h
T,
where hr = diam 7" denotes the diameter of a triangle 7. We assume this family is shape-regular.
That is, there exists a constant C' independent of h such that

h
max —- <C
TeTn pT
for every h > 0, where pr denotes the inradius of 7. We reuse the letter C below to denote a
constant independent of h which is not necessarily the same at each occurrence.
For a« € W and v € V, we denote

1/2

ldllwn = llellzz@) + | D Plalinm
TET,

and
1/2
[vllv = ldvllwa = [olm@ + | D hrlolead |
TET

where | - k() denotes the H ¥(T)-seminorm. The dual norms are denoted

18l = sup BrOWW
acw  lollwn

Jully s = sup L0V
vEV H’UHV,h

Note that | - ||y, is a valid norm on V' by the Poincaré inequality and the containment V' C HE(€2).
Given a smooth Riemannian metric g on €, we identify its curvature two-form (g)w(g) with
an element of V' via

(9w (9), V)vry = / or(g)w(g).

Q

In order to discuss convergence of the canonical distributional connection (32), we also need to
single out a canonical smooth connection one-form A(g). In view of (8) and (32), we select

1
A(g) = —;/0 *xdiv S(g — 9) dt,

where the operators %, div, and S in the integrand are taken with respect to the metric G(t) =
(1 —t)0 + tg. The Hodge star of A(g) with respect to g is the smooth counterpart of what we
defined in Definition 5.9. We identity xA(g) with an element of W’ via

(+A(g), a)wrw = /Q (xA(g), 0)g w(g).
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Theorem 6.1. Let g be a smooth Riemannian metric on Q. Let {gn}tnso be a family of Regge
metrics satisfying limp 0 [|gn — gllL(@) = 0 and supy~omaxreT;, ||gnllwiecr) < o0. Then there
exists a constant C' independent of h such that

| (Fw)aist (gn) — w(@)w(@)llvr,n + [ITaist (gn) — *A(9)[lw,n
1/2 1/2

<C{ D hPlon—aliery | + | Do lon— gl
TET, TeT),

(33)
for every h sufficiently small.

This theorem, proved below, shows that if g; converges to g rapidly enough, then the distri-
butional curvature two-form associated with g converges to k(g)w(g) in V', and the canonical
distributional connection one-form associated with g, converges to xA(g) in W’. One way to ac-
complish this is to take g5 equal to a suitable interpolant of g onto M3, the space of Regge metrics
on {2 that are piecewise polynomial with respect to 7; of degree at most r. Below we state a
corollary of Theorem 6.1 that applies when the chosen interpolant satisfies an elementwise error
estimate of the form

lgn = gllz2(ry + hrlgn — glmry < chi gl g (34)
for some constant ¢ depending only on r and the ratio hp/pr.
Corollary 6.2. Ifr > 1, h is sufficiently small, and gy, € M; satisfies (34), then

1/2

(50 aist (90) = £(9)w(9)lv n + |Taist (1) = *A(@)lwrn < C | D hFlglirry
TeTh

Remark 6.3. Under a stronger assumption on g, Gopalakrishnan, Neunteufel, Schoberl, and
Wardetzky [25] have recently proved improved error estimates for (piecewise polynomial projections
of) the distributional curvature and distributional connection. Their estimates require that g, be
the canonical interpolant of g onto Mj [29, p. 29|, which is an interpolant that we will discuss
in more detail in Section 7. By exploiting subtle properties of this interpolant, they derive error
estimates that are one order higher in h and include the case r = 0.

To be clear, we presented error estimates for the distributional curvature and distributional
connection in the V’'-norm and W’-norm, whereas [25] presents error estimates in the H~1(()-
norm and L?(Q)-norm for projections of the aforementioned quantities onto piecewise polynomial
finite element spaces (just like [24] did for the curvature). One can relate the two versions of the
estimates without much difficulty by estimating the projection error; see [241] and [25].

Remark 6.4. Under a different assumption on gp,, Cheeger, Miiller, and Schrader [10] proved that
when r = 0, the distributional curvature two-form of g;, converges in the (setwise) sense of measures
to the curvature two-form of g at a rate of O(h) in two dimensions [10, Equation (5.7)] and at a
rate of O(h'/?) in three and higher dimensions [10, Theorem 5.1]. Their estimate requires that gy
be the unique piecewise flat Regge metric with the property that on each T' € Tj, the lengths of
the edges of T', as measured by gy, agree with the geodesic distances between the vertices of T', as
measured by g.
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Let us prove Theorem 6.1. Consider the one-parameter family of Regge metrics Gp(t) = (1 —
t)d + tgp emanating from the Euclidean metric § at ¢ = 0. Since (kw)gist(0) = 0, %Gh =gy — 90,
and Gp(1) = gp, Theorem 4.1 implies that

1

1
((kw)aist(gn), v)vr v = 2/ bp((1 —t)0 + tgn; gn — 6,v) dt, Vv e V. (35)
0

On the other hand, Proposition 2.1 implies that the curvature two-form (g)w(g) satisfies

1

1
(slg)o(a) by =5 [ BL= 05+ tgig-s0)dt, oV,
0

where
b(g;0,v) = (divdiv So,v)4s.

In view of Proposition 4.2, b(g; o, v) coincides with by (g; o, v) for smooth g and o, so we may replace
b by by:

1 1
(k(g)w(g), v)vv = 2/ bp((1 —1)d +tg;g — 6,v)dt, Vv € V.
0
It follows that for any v € V,
1 1
((kw)aise(gn) — w(g)w(9), v)vry =5 / [bn((1 = )6 + tgn; gn — 6,v) — bp((1 — 1) +tg; g — 6, v)] dt
0
1 1
= 2/ [bn((1 — )6 + tgn; gn — 6,v) — bp((1 — )6 + tg; gn — 6, v)] dt
0
1 1
+ 2/ bn((1 =)0 +tg; gn — g,v) dt.
0

Thus,
1 1
[((kw)aist (9n) — K(g)w(g), v)vr v | < 2/ 1bn((1 = )6 + tgn; gn — 6,v) — bp((L — 1) +tg; gn — 6,v)| dt
0
1 1
4y [ Ioul =05+ tgign — g.0)] at. (36)
0
Arguing similarly for T'gist(g), we find that for any o € W,

1 1
|(Taist (gn) — *A(g), a)wrw| < 2/ len((1—1)0 + tgn; gn — 6, ) — cp((1 — 1)0 +tg; gn — 0, )| dt
0

1 1
45 [ len(( =08 +tgi g0 — g.0)] (37)
0

Lemma 6.5. We have

b ((1 = 1)0 + tgn; gn — 6,v) — bp((1 — )0 +tg; gn — 0,v)| + [ba((1 — )6 +tg; gn — g,v)|

1/2 1/2 1/2
<c (Z hTQghg%z@)) + (Z ghginm) [l + (Z hzT”?ﬂm)

TET, TET TET,
(38)
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and

len (1 —=1)0 + tgn; gn — 6, ) — cp (1 =)0 + tg; g — 6, )| + |en((1 — )0 + tg; gn — g, @)
1/2 1/2 1/2

<C Y2 rllon—9lieery |+ D2 lon— bt oy + | Y2 Plalii
TeTh TeT TeT,

(39)
for every t € [0,1] and every h sufficiently small.

Proof. The first inequality is a direct application of Lemmas 4.11-4.12 of [24]. Our situation is
identical to the one there, except that we have not assumed that v and g;, are piecewise polynomial,
that 7 is quasi-uniform, nor that limj,_,oh~'logh=!|gn — gllz2@) — 0. It is easy to check that
these discrepancies are immaterial in the context of [24, Lemmas 4.11-4.12]. Note that the upper
bounds in [24, Lemmas 4.11-4.12] are written in a slightly simpler form there using the bounds
h! < Ch™! (from quasi-uniformity, which was assumed in [21] but not here) and hr < h.

The inequality (39) is obtained by replacing all instances of dv by « in the proof of Lemmas
4.11-4.12 in [24]. O

By combining Lemma 6.5 with the bounds (36-37) and the definitions of ||-||v.n, || [v.h. || - [lwin,
and ||-||w n, we arrive at Theorem 6.1. Corollary 6.2 then follows from interpolation error estimates
for piecewise polynomial Regge metrics [29, Theorem 2.5].

7 Piecewise polynomial setting

So far we have discussed curvature and connections for Regge metrics in the distributional sense.
For practical computing, it is often desirable to work with piecewise polynomial projections of these
quantities. We define such quantities below, and we show that the associated projection operators
and linearized differential operators fit nicely into a commutative diagram of differential complexes.

We first define a few finite element spaces. For each integer r» > 0, let P,(T') denote the space
of polynomials of degree at most r on a triangle T. Let P.A*(T) denote the space of k-forms on
T with coefficients in P,.(T'), and let P,.SY(T) denote the space of symmetric (0,2)-tensor fields on
T with coefficients in P.(T). Also let P, A¥(T) = {a € P.A*¥(T) | kosa € P.A*~1(T)}, where kos
denotes the Koszul differential [2, p. 329].

With r > 0 fixed, we define finite element spaces

Vitt ={v eV | vlp € Pra(T)VT € Ta},
Wit ={a e W | aly € P ANT)VT € Ta},
Xh={F e X | F|; € P,A*(T)VT € T},
h={o€X|alp € PSY(T)VT € Th},

h={9eM]|gly € PSYUT)VT € Tn}.

On a triangulation of a planar domain, the space V}’ *1is the standard Lagrange finite element
space consisting of continuous functions that are piecewise polynomial. The space W,:'H is isomor-
phic (via the identification of one-forms with vector fields) to the space of two-dimensional Nédélec
finite elements of the first kind, whose members have single-valued tangential components along
edges. The space X} is isomorphic (via the identification of two-forms with scalar fields) to the
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space of discontinuous polynomials. The space ¥} is the space of Regge finite elements: symmetric
(0,2)-tensor fields that are piecewise polynomial and possess single-valued tangential-tangential
components along edges. The space M) consists of piecewise polynomial Regge metrics; it is the
subset of ¥} whose members are positive definite everywhere.

Note that dV,:+1 C W;;'H and alVV,:Jrl C Xj;. In fact, the complex

0 —— vyt Ly wrtt 4, xr 0

is exact on triangulations of contractible planar domains [2, Section 5.5]. We will not make extensive
use of this complex in what follows, except in the paragraph preceding Section 7.1; our main interest
is in a different complex involving 7. But it is worth remarking that a commutative diagram

0 v—4 w94 5 x 0
0 —— vyt Ly wrtt 4, xr 0

can be constructed using the canonical interpolation operators of finite element exterior calculus in
the vertical arrows above [2, 3].

The following definitions should be regarded as piecewise polynomial versions of Definitions 3.1
and 5.1.

Definition 7.1. Let g be a Regge metric. The discrete Gaussian curvature of g is the function
#n(g) € VI defined by

(k1(9):v)gs = D (kr(9),vdgr + D (Tke(@)]s v)ge + Y O:(9)u(z), Vo€ Vit (40)

TeT, e€&l zeV)

Equivalently,
(k1 (9), v)g,s = {(Kw)aist (9), V) 7y, Yo € Vi (41)

Definition 7.2. Let g be a Regge metric. Let (e, e2) be a g-orthonormal frame field that is smooth
on each triangle T' € Tp,. The discrete connection one-form associated with (eq, e2) is the one-form

Th(g) € Wi defined by

<Ph(g)7 a>973 = Z <*AT(9)7 O‘>97T - Z <06(g)7 a(T»gve’ Va € WIZ—H‘

TeTs ecg)

Equivalently,
(Ch(9), a)gs = Taist(9), )wrw, Vo€ Wit (42)

As in Definition 5.1, the distributional connection requires not just a choice of frame field (eq, e2)
but also a topologically consistent way of choosing 6., which a priori is defined only up to 27; recall
the discussion preceding Definition 5.1.

Remark 7.3. Note the distinction between (kw)qist(g) and kp(g): the former is an element of V'
whereas the latter is a continuous, piecewise polynomial function. Similarly, I'gist(g) is an element
of W’ whereas I';,(g) is a piecewise polynomial 1-form. One can see from (41) that computing xp(g)
from (Kw)qist(g) involves inverting a mass matrix. Similarly, one can see from (42) that the same
is true for computing I',(g) from T'gist(g).
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Remark 7.4. In view of (35), an equivalent definition of kj,(g) on a planar triangulation is

1 /1
(kn(9),v)gs = 2/ br((1—t)0 +tg;g —6,v)dt, Yve Vit (43)
0
This is precisely the definition of discrete Gaussian curvature that was proposed in [24]. The

discovery that (43) and (40) are equivalent is one of the main contributions of the present paper.
The following are immediate consequences of (41), (42), and Propositions 5.4, 5.5, and 5.6

Proposition 7.5. The discrete exterior coderivative of T'y(g) is —kp(g). That is,

<Fh<g)adv>g,8 = _<Hh(g)7v>g7$7 Vv € V}:J’_l'

Proposition 7.6. Let g be a Regge metric, and let (€1,€2) be a piecewise smooth g-orthonormal
frame field with discrete connection one-form I'y(g) € W;;Jrl. Let ¢ be a piecewise smooth scalar
field (not necessarily continuous), let (e1,e2) be the piecewise smooth g-orthonormal frame field
obtained by rotating (€1,€2) counterclockwise by v, and let T'y(g) € W,:H be the corresponding
discrete connection one-form. We have

<Fh(g) - fh(g)7a>g,$ = _<¢h:d04>g,8; Va € W;L‘—’—l?

where Y, € X}, satisfies (Yn, Flgs = reT, JrOF for all F € X}.

Proposition 7.7. Let g(t) be a Regge metric depending smoothly on t. Let (ei(t),e2(t)) be a
g(t)-orthonormal frame field that is smooth on each triangle T € T and depends smoothly on t.

Then
d 1

S0, 0 = —3n(g(0io(0), @) = L), days, Vo€ W,

where o = ag and Fp,(t) € X; is given by

<Fh gS—Z/f G VGEXh

TET),
Here, f(t) fo f)dt, and f = Lo(er,e2) — é%(e1) = —%0(e1, e2) + €l (e2).

Choosing a frame field. Just like in Section 5, Definition 7.2 assumes that one has selected a
g-orthonormal frame field (e, e2) in advance. On a triangulated planar domain, we can construct

such a frame field as we did in Section 5, leading to a canonical discrete connection one-form
T'y(g) € W defined by

1
(T'n(9), )95 = —;/ cn(L=1t)d+tg;9—6,a) dt, VYace W,:H. (44)
0
This is a piecewise polynomial version of Definition 5.9. Recall the interpretation of this one-form.
Among all possible discrete connection one-forms that can be constructed with Definition 7.2, the
canonical discrete connection one-form (44) is the one that is associated with a specific frame field
constructed as follows: starting from a constant frame field that is orthonormal with respect to the
Euclidean metric, we deform the metric and the frame field until the frame field is orthonormal
with respect to g. Tracking the evolution of the connection along the way yields (44).
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An alternative way to (implicitly) single out a frame field is to find a one-form I'j, € W,’;H that
solves the Hodge—Dirac problem [28]

(Th,dv)gs = —(kn(9),v)g,s: Vo e Vit (45)
(T, G) =0, VG e XT. (46)

This approach is motivated by the Coulomb gauge condition that chooses a gauge by requiring that
the divergence of the connection vector field be zero. We now show that there exists at least one
solution of (45-46) that is a valid discrete connection one-form, and this solution is unique if the
domain is contractible. Note that the canonical discrete connection one-form, hereafter denoted T,
satisfies (45) but not necessarily (46). Setting Fy, := dI';, € X}, we can solve the Hodge Laplace
problem

<ﬁh7a>g,5 = <¢h7da>g,87 Va € W;;J'_l,
(dBn, G)g,s = (Fn, Gg,s, VG € X7,

for (Bh,¥n) € Wit x X7, and then define I', € W] ! by
<Fh704>g,5‘ = <Fh7 Oz>g75 — <1/}h7 da>g7$7 Yo € W];"-l—l. (47)

By construction, I'j, satisfies (45-46). To see that I'j, yields a valid discrete connection one-form,
we must show that it is associated with some g-orthonormal frame field (e1,e2). In view of Propo-
sition 7.6, we see that I'j, is the discrete connection one-form associated with a frame field (e, e2)
that is rotated by 1y, relative to (€1, &), the frame field associated with I';,. Note that this one-
form I'j, is uniquely determined by (45-46) when the domain is contractible, because then there are
no discrete harmonic one-forms. On non-contractible domains, equations (45-46) only determine
I';, up to the addition of a discrete harmonic one-form, and not all solutions of (45-46) are valid
discrete connection one-forms. A sufficient condition ensuring I'y’s validity is that (47) holds for
some 1, € X}, which is equivalent to the condition that the harmonic part of I';, coincides with
the harmonic part of I'j,.

7.1 Differential complexes

The linearization of (kw)qist around a Regge metric g is a differential operator that maps per-
turbations of g to elements of V’. This operator, together with the linearization of ry, fits into
a commutative diagram of differential complexes which we describe below. This diagram bears
strong similarities to ones studied in [11, 11]; see also [12, 16] for related complexes with higher
regularity.

Throughout the following discussion, we let g € M and g, € M} be fixed Regge metrics.

Differential operators. We define operators divgis; : W' — V' and (div S)gist : ¥ — W' by

<divdist OJ,U>V/7V = —<a, dU>W/7w, Va € W/, vevV,
((div S)aisto, )wr.w = —cp(g;0,a), Vo e X, a € W.

We also define (divdiv S)gist = divgist(div S)gist, which is a map from X to V'. By construction,
we have

((div div S)gisto, v) v,y = —((div S)aisto, dv)yw w
cn(g; 0, dv) (48)
bh(g;O',U), VUGE,UGM
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which shows that (div div 9)qgist is the linearization of 2(kw)gist around g.
We define analogous operators on the finite element spaces. Namely, divy, : W;;H -V 1 and
(div ), : &7 — Wt are defined by
(divp o, v) g, s = —(a,dv)g, s, Va € W,ZH, vE V;H,

((div S)po,a)g,.s = —cn(gn;0,a), Vo e, ac W,:H.
Denoting (divdiv S), = div,(div S), : £ — V'™, we have

((divdiv S)po,v)g,.s = —((div S)po, dv)g, s
= cp(gn; 0, dv)
= bh(gh;O',’U), Vo € 2717 S V];n+17

so (divdiv S)y, is the linearization of 2kpwy, around gp, where wy, denotes the volume form associated
with gp,.

Projections. We define projectors 7} : V' — VhT+1 and )V W' — W;;H by

(7} u, V)gn.s = (u, )y, YueV' ve VhT'H,
<7r}iva,5)g,“3 ={a,B)ww, YaeW' Be W;L“H.

To define an interpolation operator onto 7, it will be convenient to fix a piecewise constant
Regge metric g;, € M%. We define WE : ¥ — X} by requiring that for o € ¥, the interpolant
77%0 € X} satisfies

(mpo —o,p)g, 7 =0, Vp€Pr_1S)T), T € Th, (49)

<(7T§U)(7h,?h) — U(?h,?h), U>§hv€ =0, Yve 'Pr(e), e c gh, (50)

where 7, is the unit tangent with respect gj,. This interpolation operator onto Xj was introduced
in [29, p. 29]. If S triangulates a planar domain and g, = ¢, then 71’%) is the canonical interpolation
operator onto Xj referenced in Corollary 6.2. It maps o into Mj if h is sufficiently small and o

belongs to M.
Note that (49) is equivalent to the condition that

(Sn(mio —0),p)g,m =0, YpePrySYT), T €Ty, (51)

where S0 = 0 — g, Tro and the trace is taken with respect to gj,. This follows from two ob-
servations. First, S, is an involution that maps P,_159(T) to itself, so it is an automorphism of
P,—155(T). Second, we have (o, Spp)g, 7 = (Sho, p)g, r for all p,o € X.

In view of (50), (51) and the definition (16) of by, we have

b (Gp; o — o,v) =0, VYoeX, ve Vit (52)

Additional definitions on planar domains. In the event that S triangulates a planar domain
Q and g is smooth, we also introduce additional spaces and operators. We define

U={uec H(Q)@R?| u|l;, € H}(T) @ R*, VT € T3},
U ={ueU|ulp €Pry1(T) @R: VT € Ty}
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We let def : U — X be the differential operator
def u L

In coordinates [13, p. 12],
1
(def u)ij = B ((Viu)j + (Vju)l) .

Note that if u € U, then our assumption that g is smooth ensures that def u is well-defined, and it
belongs to ¥ for the following reason. On any edge e shared by two triangles, the trace of V., u is
well-defined and single-valued, so (def u)(7,7) = g(V,u, 1) is as well.

For a fixed g, € M?L, we define an interpolation operator Wg U - U g“ by requiring that for
u € U, the interpolant 77u € U,’;H satisfies

(W,(l]u —u,v)g, 7 =0, YveEP »T)® R2, T € Ty,
<7r,({u —u,V)g,e=0, YweEP_1(e)® R? e € &,
mou(z) —u(z) =0, Vze V.
This is the standard Lagrange interpolation operator for continuous, piecewise polynomial vector
fields of degree r + 1.

Theorem 7.8. Let g € M, g, € M, and g, € M3. The following statements hold:

1. The diagram

divaist

Vl

14

r+1 _divp r+1
Wh —_— Vh
commutes.

2. If g = gn, = Gy, then the diagram

> (div div S)qist v/
(divdiv S)p
r r+1
Eh Vh

commutes.

3. If § is planar and g = gn, = g;, = 9, then the diagram

commutes.
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Proof. 1. For any o € W' and any v € V), +1 we have

(divy, ﬂ'};VOé,U>gh,S = —<7TiI;V047 dv)g,,s
—(a, dv)ywr w
= (divaist o, V) yr v
= (1) divaist @, V).,

so divy, 77}‘?/ = Tr}‘lf divgist -

2. If g = gn =7, then for any o € ¥ and any v € VhTH, we have

((div div 8)pmj; 0, ) g, = br(gh; ”h o)
= bh(gh’ 7Th0- U)
= bn(gp; 0,v)
= by(g; 0, U)
= ((div div §) s, v)vr,v

= (m (div div S)aist7, V) g, .5
so (divdiv 9),my = m) (divdiv S)qist.

3. If S is planar and g = g, = g;, = 0, then consider an arbitrary v € U. On each triangle
T € Ty, the definitions of 73" and 7Y imply that for any p € P,_1.59(T),

<7Th def u, p)gT = (def u, ,0>6T

= (u, pn)sor — (u,div p)sr

= (mfu, pn)sor — (mf u, div p)s.r
=

def 7/ u, p)sr.

On each edge e € &, the definitions of w}? and ﬂ'g imply that for any v € P,(e),

((mjy def u)(7,7), v)5e = ((def u)(7,7),v)5

Vru, T0)5 .

S(u(z), 1)v — 5(u(zM), )v — (U, TV )5
S(ru(z®), 1w — s(xu(zV), 7)o — (7l u, 7V 0)5
( (1,7

(def 7y, u) )sV)se,

where z()| 2 are the two endpoints of e. It follows that 7Th def u = def 7rh U.

{
=

)
7_

O

When § is planar and g = g, = g;, = 0, the theorem above can be summarized by saying that
the diagram

(div S)aiss (div)dise

w’ s V! s 0

b
\Lﬂ'g lﬂ% vﬂ'f‘iv lﬂ-f‘l/
s (div S)p, W}:H M V}:+1 .0

37



commutes if the dashed arrow is excluded or if the vertical arrows to its left are excluded. Here, we

introduced the space RM = ker(def), which consists of vector fields on S of the form u(z!,z?) =

(a + bx?,c — bx!), where a,b,c € R. The top and bottom rows are both complexes if we exclude

the column containing W’ and W;H:

(div div S)qist .V 0
|= (53)

y Vit —— 0

RM —S sy —df , »

(divdiv S)p

Indeed, we will show below that
(divdiv S)gist def =0, if g = 4. (54)
Since (div div S), def 77,[{ = W,Y (div div S)qist def, the surjectivity of 77,[{ implies that
(divdiv S), def|U}7L-+1 =0, ifg=gr=7,=0 (55)
as well.

Remark 7.9. The bottom row of (53) has a direct correspondence to the complex studied in [11,
Equation 2.10]. The spaces that are labelled P1(Q;R?), S, Vi, and Py in [11, Equation 2.10]
correspond in our notation to J(RM), J(U;;H) = U,’;H, S(X}), and V,:H, respectively, where J
denotes a 90° rotation. Furthermore, their differential operators V*x and (divdiv); correspond
to our Sdef J~! and (divdiv.S),S~!, respectively. Thus, [I1, Equation 2.10] reads

(divdiv 8),S~1
A/ i)

J(RM) —S— J(Upthy S9LI7 g

in our notation.

Because of this correspondence, it follows from [l 1, Lemma 2.6] that the bottom row of (53)
is exact on contractible domains. Exactness of the top row of (53) can be studied using a similar
correspondence, although there is one subtlety: one must use an argument analogous to the one
in Appendix A in order to account for the fact that our infinite-dimensional spaces have higher
elementwise regularity than global regularity. This argument yields exactness at the positions U
and X in the top row of (53). Exactness at the position V', i.e. surjectivity of (divdiv.9)gist : X —
V', does not appear to hold. For example, on a triangulation consisting of a single triangle T,
(div div S)gist is not surjective from H'SS(T) to the dual of H*(T) N H{(T).

We emphasize that (54) and (55) only hold if g = ¢ and g = g, = g;, = 0, respectively. In the
non-Euclidean setting, two obstructions emerge. First, it is not clear how the spaces U and U, ;L"H
should be defined for non-smooth metrics. Second, even for smooth g, (div div S)gist def # 0 in the
presence of curvature. Instead we have the following identities.

Proposition 7.10. Let g be a smooth Riemannian metric with Gaussian curvature k. For any
u € U, we have
(div div ) gist def u = divgiss (Ku), (56)

where we view ku as an element of W' via
(ku, )y w = / ka(u)w, VaeW.
S

In particular, (54) holds if Kk = 0.
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Proof. We will first show that for any smooth vector field wu,
. b 1 * 7.

div Sdefu = ku’ — id du’, (57)

where d* denotes the codifferential. To see this, we compute
div S def u = div def u — div(g Tr def u).

A calculation in geodesic normal coordinates shows that

. . b 1 * 7.b

divdefu = divVv’ + §d du’.

On the other hand,
div(g Trdef u) = d Trdef u = d divu = —dd*u’.

Hence,
1
div S def u = div Va’ + id*dub + dd*u’
. b * * b 1 % 7 b
=divVu + (dd* + d*d)v’ — Qd du’.

The first two terms above are the difference between the Bochner and Hodge Laplacians of u’. The
Weitzenbock formula gives
div Vo’ + (dd* + d*d)u’ = ru,

o (57) follows.

Now we will consider a vector field u € U and prove (56). Since u‘T € H*(T) ® R? on each
T € Ty, and since the equality (57) extends to vector fields in H?(T) ® R? by density, we have
that (57) holds elementwise. Observe also that, by (48), for any v € V', we have

((divdiv S)gist def w, v)yr v = by(g; def u, v).

Using (25), we see that

bn(g; def u,v) = Y <— /T(dideefu)(Vv)w+/

(def w)(n, 7)Vsv ds> . (58)
TeT, oT

Using (57), the integrals over T' can each be rewritten as
— / (div S def u)(Vv)w = —(div S def u, dv) g 1
T
b L b
= —(kt’,dv)gT + §(d du’,dv)g

1
:—/ /{dv(u)w—/ *du® A dv,
T 2 Jor

where we used Stokes’ theorem in the last line. Inserting this into (58) and rewriting the second
term, we get

1
bn(g; def u,v) = —(Kku, dv)w w + Z / (—2 * du’ A dv + (def w)(n, 7)dv(T) ds> . (59)
TeT;, /T
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One checks that the tangential component of the one-form being integrated above is

ir <—; * du’ A dv + (def w)(n, 7)dv(T) ds) = <—; * du’ 4 (def u)(n, 7')) dv(T)
= g(n, V,u)dv(T).

Since V,u and dv(r) are single-valued on edges e € &7, and since dv(r) vanishes on 98, the
summation in (59) vanishes. We conclude that

((div div S)aist def u, v)y v = bp(g; def u, v) = —(ku, dv)w w = (divaist (K1), v)y7 v
for all v e V. O
Remark 7.11. Proposition 7.10 implies in particular that for any smooth vector field w,
divdiv S def u = div(ku).

This can also be seen by considering the evolution of the curvature two-form xkw under metric
deformations induced by the flow ¢; : Q2 — Q of the vector field u : Q — R?. Indeed, consider the
case where u vanishes on 99 for simplicity. Let g(t) = ¢;g(0) be a smooth family of Riemannian
metrics on € obtained by pulling back g(0) by ¢;. Denote x(t) = k(g(t)) and w(t) = w(g(t)). Using
Proposition 2.1, we see that

div(k(0)u)w(0) = Ly, (k(0)w(0)) = % . (k(t)w(t)) = %(div div.S¢(0)) w(0)

= § (divdiv SL,9(0)) w(0) = (div iv § def u) w(0),

where the operators div, def, and S are taken with respect to ¢g(0). See also [13, p. 13, Equation
(1.28)].
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A Appendix
Below we verify that the sequence

0——V 4w -4y x 50

is exact on triangulations of contractible domains. We do so by making three observations:

1. If v € V and dv = 0, then clearly v = 0 by the boundary conditions and the interelement
continuity constraints imposed on functions in V.

2. The map d: W — X is surjective for the following reason. On each T € Ty, the map

div: HY(T) @ R? — L?ZO(T)
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is surjective [22, Lemma B.69, p. 492], where H}(T) = {f € HYT) | f = 0 on 8T} and
LQIZO(T) = {f € L*(T) | [; fw = 0}. By rotating vectors 90° and identifying them with
one-forms, we see that

d: HIAYT) — L}:OAQ(T)

is surjective, where Hi A(T) denotes the space of one-forms on T with coefficients in H}(T')
and L?[:OAQ (T') denotes the space of square-integrable two-forms on 7" with vanishing integral.

Now let F' € X be arbitrary. We can write F' = Fy+ F1, where fT Fy vanishes on each T € 7T,
and F is piecewise constant. The two-form Fj is in the range of d : W — X, since we can
construct ap € [[rer H}AYT) € W satisfying dag = Fp by above. The two-form Fy is
also in the range of d : W — X, since d maps the Whitney one-forms with vanishing trace
surjectively onto the piecewise constant two-forms with vanishing mean. Thus F' is in the
range of d: W — X.

. Now consider a one-form o € W satisfying da = 0. We will show that there exists v € V

such that dv = a. The canonical Whitney interpolant of «, being closed, belongs to the
range of d : V — W; it is the image under d of a continuous, piecewise linear function (a
Whitney zero-form). So it suffices to focus on the case where fe a = 0 for every e € &,. On
each triangle T' € Tp, a|T is a closed one-form belonging to H'A(T), so we can construct
vy € H?(T) such that dvy = a‘T [19, Theorem 1.1] and (by adding a suitable constant) vy
vanishes at one of the vertices of T'. Since fe dvp = fe O[‘T = 0 along each edge e of T', vy
in fact vanishes at every vertex of 7. On any edge e shared by two triangles 77 and T3, the
equality
di;“l,eUTl = iéﬁ,edUTl = iéﬁ,ea = Z.’?g,ea = Z.;“g,edeT2 = di?z,eva

together with the fact that vy, and vy, vanish at the endpoints of e, ensures that the trace of
v, agrees with that of vy, everywhere along e. By similar reasoning, v (the function whose
restriction to 7' is vy for each T' € T,) vanishes on edges e € &, \ 52 . It follows that v € V
and o = dv.
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