
AMPLE STABLE VECTOR BUNDLES ON RATIONAL SURFACES

JACK HUIZENGA AND JOHN KOPPER

Abstract. We study ample stable vector bundles on minimal rational surfaces. We give a complete
classification of those moduli spaces for which the general stable bundle is both ample and globally
generated. We also prove that if V is any stable bundle, then a large enough direct sum V ⊕n has
ample deformations unless there is an obvious numerical reason why it cannot. Previous work in this
area has mostly focused on rank two bundles and relied primarily on classical constructions such as
the Serre construction. In contrast, we use recent advances in moduli of vector bundles to obtain
strong results for vector bundles of any rank.
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1. Introduction

On a curve, a stable vector bundle is ample if and only if it has positive degree. In higher
dimensions, Fulton [Ful76] shows ampleness cannot be characterized numerically, even for stable
bundles. Fulton and Lazarsfeld [FL83] give necessary numerical conditions for the existence of an
ample bundle on any projective variety, but on any particular variety these conditions are typically
far from sufficient. A classification of ample bundles has remained elusive even in the case of very
well-known surfaces. In this paper, we work towards classifying the numerical invariants of ample
stable bundles on minimal rational surfaces. Previous work in this area has mostly focused on rank
two bundles and relied primarily on classical constructions such as the Serre construction (see, for
example, [BL91], [LeP80], [Ste12]). In contrast, we use recent advances in moduli of vector bundles
to obtain strong results for vector bundles of any rank.

Because ampleness is open in families, there exists a stable ample vector bundle of Chern character
v if and only if the general stable bundle in the same component of the moduli space M(v) of
semistable sheaves is also ample. On minimal rational surfaces, the moduli spaces M(v) are always
irreducible, suggesting the following natural rephrasing of the classification problem.

Question 1.1. For which Chern characters v on a minimal rational surface is the general bundle
in M(v) ample?
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We begin by discussing the known numerical obstructions to ampleness, and then state our main
theorems which construct ample bundles to investigate how sharp these obstructions are.

1.1. Obstructions to ampleness. There are two main known numerical obstructions to ample-
ness. The main theorem of [FL83] implies that if V is an ample bundle on a smooth surface then

(∗)
1

2
ν(V )2 >

∆(V )

rk(V ) + 1
,

where

ν(V ) =
c1(V )

rk(V )
and ∆(V ) =

1

2
ν(V )2 −

ch2(V )

rk(V )

are the total slope and discriminant, respectively. These are the so-called logarithmic invariants
and remain constant when a Chern character is scaled.

The curves on a particular surface provide additional obstructions to ampleness beyond the “uni-
versal” Fulton-Lazarsfeld inequality (∗). An ample bundle must be ample when restricted to any
curve. Let P2 be the projective plane with hyperplane class H, and let Fe = P(OP1 ⊕OP1(e)) → P

1

be the Hirzebruch surface with fiber class F , section E of self-intersection −e, and minimal polar-
ization H = E + (e + 1)F . Analyzing the restriction of a stable vector bundle to these curves, we
find the following further necessary conditions for ampleness.

Proposition (3.1). Let X = P
2 or Fe and let V be an ample stable vector bundle on X of rank at

least 2.

(1) If X = P
2, then ν(V ) ·H > 1 + 1

rk(V ) or V ∼= TP2.

(2) If X = F0, then ν(V ) · F > 1 and ν(V ) · E > 1.
(3) If X = Fe with e ≥ 1, then ν(V ) · F > 1 and ν(V ) · E ≥ 1.

In general, the inequalities in Proposition 3.1 do not imply the Fulton-Lazarsfeld bound (∗) since
they do not involve the discriminant ∆(V ). Thus they are not sufficient to guarantee ampleness.
Nevertheless, the two main results in this paper show that under some additional assumptions, the
conditions of Proposition 3.1 are sufficient to guarantee that the general stable bundle is ample.

1.2. Asymptotic ampleness. In our first approach, we consider what happens when we replace
a Chern character v with a sufficiently large multiple nv. Observe that if ν(V ) and ∆(V ) are held
fixed but rk(V ) becomes arbitrarily large, then the inequality (∗) reduces to the simpler condition
ν(V )2 > 0. This inequality is easily implied by the necessary inequalities of Proposition 3.1, so it
no longer provides an obstruction to ampleness. Our first main theorem shows there are no further
obstructions.

Theorem (4.1). Let X = P
2 or Fe and let v be the Chern character of a stable vector bundle.

Suppose either

(1) X = P
2 and ν(v) ·H > 1, or

(2) X = F0 and ν(v) · F > 1 and ν(v) · E > 1, or
(3) X = Fe with e ≥ 1 and ν(v) · F > 1 and ν(v) · E ≥ 1.

If n is a sufficiently large integer and V ∈ M(nv) is general, then V is ample.

The required inequalities in the theorem can be more compactly rephrased as the condition that
ν(v) −H is big and nef. An effective bound on n can be easily given; see Remark 4.3 for details.
The theorem also easily implies the next striking corollary which was stated in the abstract.

Corollary 1.2. Let X = P
2 or Fe and suppose V is a stable bundle such that ν(V ) satisfies

the inequalities in Theorem 4.1. Then any sufficiently large direct sum V ⊕n has ample semistable
deformations.
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The proof of Theorem 4.1 requires new construction techniques for stable ample bundles. One
of the easiest ways to construct an ample bundle is to take a quotient of a known ample bundle.
However, in practice it is very difficult to verify the stability of such a bundle. Our key idea is
to construct an ample bundle of the desired Chern character nv that is not obviously stable, but
does have stable deformations. Since ampleness is an open condition, it follows that the general
stable bundle is ample. Our construction of an appropriate ample quotient relies on the recent
classification of moduli spaces where the general bundle is globally generated. To show that our
bundle has stable deformations, we use recent results computing the cohomology of the general
bundle in a moduli space. We summarize these necessary preliminary results from [CH17] in §2.5
and §2.6. These problems are being actively researched by several authors on other surfaces (e.g.,
K3 surfaces), and we expect our techniques to be useful for constructing ample bundles on those
surfaces as well.

Example 1.3. On P
2, if the rank is rk(V ) = 2 and the total slope is 3

2H, then the inequality (∗)

reads ∆(V ) < 27
8 . However, the only ample stable bundle with this rank and slope is the tangent

bundle with discriminant ∆ = 3
8 (see Proposition 3.3). Thus (∗) is far from sharp in this case.

In particular, even though the character v = (r, ν,∆) = (2, 32H, 78) satisfies the Fulton-Lazarsfeld
bound (∗) and the necessary conditions of Proposition 3.1, there are no stable ample bundles of
character v. However, Theorem 4.1 shows that there are stable ample bundles of character nv for
sufficiently large n.

1.3. Ample globally generated bundles. Next, we consider the ampleness problem under the
additional assumption that the general sheaf V ∈ M(v) is globally generated. Characters v with
this property were completely classified in [CH17], and can be described by certain inequalities; see
§2.6. In this case, Gieseker’s Lemma allows us to check ampleness by restricting to curves.

Theorem (5.1). Let X = P
2 or Fe and let v be a Chern character such that the general sheaf

V ∈ M(v) is a globally generated vector bundle. Suppose either

(1) X = P
2 and µ(v) > 1 + 1

rk(v) , or

(2) X = F0 and ν(v) · F > 1 and ν(v) · E > 1, or
(3) X = Fe with e ≥ 1 and ν(v) · F > 1 and ν(v) · E ≥ 1.

Then V is ample.

We sketch an outline of the proof. First we identify a list of curve classes that could potentially
cause the failure of ampleness. The irreducible curves of these classes turn out to be smooth rational
curves, and we prove the restriction maps from the moduli space M(v) to the stack Coh(P1) are
smooth. This allows us to do a dimension count to show that any given curve class cannot cause
the failure of ampleness. Our results are similar in spirit to the work of Le Potier on P

2 in the rank
two case [LeP80]; however, the recent computation of the cohomology of a general sheaf in [CH17]
is crucial to extending the story to arbitrary rank.

Remark 1.4. The full solution to Question 1.1 remains open. Gieseker [Gie71] gives the following
interesting example on P

2: let Vd be a general cokernel of the form

0 → OP2(−d)2 → OP2(−1)4 → Vd → 0.

If d ≤ 6 then Vd does not satisfy (∗), so Vd is not ample. But Gieseker shows that Vd has stable
deformations and is ample if d � 0. Determining an explicit d such that Vd is ample is an interesting
open problem. However, we show that if d ≥ 12 then Vd ⊕ Vd has ample stable deformations (see
Example 4.4).

Structure of the paper. In §2, we recall the necessary background on moduli of sheaves, the
Weak Brill-Noether theorems, and the classifications of globally generated characters. In §3, we
give our necessary conditions for ampleness. We prove our two main theorems in §4 and §5.
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2. Preliminaries

2.1. Numerical invariants and semistability. We refer the reader to [HuL] and [LeP97] for
further information on stability and moduli spaces of sheaves. Let X be a smooth surface with a
polarization H, and let v ∈ K(X) be a Chern character of nonzero rank. We define the slope µ(v),
the total slope ν(v), and the discriminant ∆(v) by the formulas

µ(v) =
c1(v) ·H

rk(v)H2
, ν(v) =

c1(v)

rk(v)
, and ∆(v) =

1

2
ν(v)2 −

ch2(v)

rk(v)
.

For a torsion-free sheaf V , we define the invariants µ(V ), ν(V ), ∆(V ) by first taking the Chern
character. We define the Hilbert polynomial PV (m) and the reduced Hilbert polynomial pV (m) by

PV (m) = χ(V (mH)) and pV (m) =
χ(V (mH))

rk(V )
.

In terms of these invariants, the Riemann-Roch formula reads

χ(V ) = rk(v)(P (ν(v))−∆(v)),

where

P (ν) = χ(OX) +
1

2
(ν2 − ν ·KX)

is the Hilbert polynomial of OX .

A torsion-free sheaf V is H-Gieseker (semi)stable if for all proper subsheaves W ⊂ V , we have
pW (m) <

(−)
pV (m) for m � 0. The Bogomolov inequality states that if V is semistable then

∆(V ) ≥ 0. If V and W are H-semistable and µ(V ) > µ(W ), then Hom(V,W ) = 0. For v ∈ K(X),
there are projective moduli spaces M(v) = MX,H(v) of H-Gieseker semistable sheaves on X.

2.2. The projective plane and Hirzebruch surfaces. We will primarily be interested in the
surfaces P

2 and Fe, so we fix some notation to streamline the exposition. See [Bea83] or [Hart77]
for additional information on these surfaces. On P

2, we write H for the class of a line and also write
L = H. The Picard group is Pic(P2) = ZH, and the canonical class is KP2 = −3H. The polynomial
P in the Riemann-Roch formula is given by

P (x) =
1

2
(x2 + 3x+ 2).

For e ≥ 0, let Fe = P(OP1 ⊕OP1(e)) be the Hirzebruch surface with a section E of self-intersection
E2 = −e. We let π : Fe → P

1 be the natural projection, and let F be the class of a fiber. We let
H = E + (e + 1)F be the minimal ample polarization, and let L = F be the class of a fiber. We
have Pic(Fe) = ZE ⊕ ZF and the intersection numbers are given by

F 2 = 0, E2 = −e, E · F = 1.

The effective cone of divisors is spanned by E and F , and the nef cone is spanned by E + eF and
F . The canonical class is KFe

= −2E − (e+ 2)F . The polynomial P in the Riemann-Roch formula
can be written as

P (xE + yF ) = (x+ 1)

(

y + 1−
1

2
ex

)

.
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2.3. Ample vector bundles. A vector bundle V on a projective variety X is said to be ample
if OPV (1) is an ample line bundle. We collect a few well-known facts about ample bundles in the
following proposition

Proposition 2.1 ([Laz04]). Let X be a projective variety.

(1) Any quotient of an ample bundle on X is ample.
(2) The direct sum V ⊕W of two bundles V and W is ample if and only if V and W are ample.
(3) If V is ample and W is nef, then V ⊗W is ample.
(4) Ampleness of vector bundles on X is open in families.

In the final section of the paper we will use Gieseker’s Lemma to analyze ampleness of globally
generated bundles.

Lemma 2.2 (Gieseker’s Lemma [Laz04, Prop. 6.1.7]). Let V be a globally generated vector bundle
on an irreducible projective variety X. Then V fails to be ample if and only if there exists an
irreducible curve D ⊂ X such that V |D has a trivial quotient.

2.4. Prioritary sheaves. Let D be a divisor class on the smooth surface X. A sheaf V is called
D-prioritary if it is torsion-free and satisfies Ext2(V, V (−D)) = 0. We denote by PD(v) the stack
of D-prioritary sheaves on X with Chern character v.

A smooth family of sheaves Vs/S is called complete if the Kodaira-Spencer map TsS →
Ext1(Vs,Vs) is surjective for all s in S. The importance of D-prioritary sheaves is that they in-
duce complete families on restrictions to curves of class D. Explicitly, if Vs/S is a complete family
of D-prioritary locally free sheaves on X, then we obtain a family Vs|D/S on D, and the Kodaira-
Spencer map is the composition

TsS → Ext1(Vs,Vs) → Ext1(Vs|D,Vs|D).

The first map is surjective because the family Vs/S is assumed to be complete. To see that the
second map surjects, apply the functor Hom(Vs,−) to the restriction exact sequence

0 → Vs(−D) → Vs → Vs|D → 0.

to get an exact sequence

Ext1(Vs,Vs) → Ext1(Vs,Vs|D) → Ext2(Vs,Vs(−D)).

We can identify Ext1(Vs,Vs|D) with Ext1(Vs|D,Vs|D), and since Vs is prioritary we find that the
map Ext1(Vs,Vs) → Ext1(Vs|D,Vs|D) is surjective.

When V is an H-semistable sheaf, it is automatically D-prioritary for any divisor D such that
(KX +D) ·H < 0. Indeed, by Serre duality

Ext2(V, V (−D)) ∼= Hom(V, V (KX +D))∗

so Hom(V, V (KX +D)) = 0 by stability.

In particular, when X = P
2 or Fe, we see that H-semistable sheaves are L-prioritary. Therefore

the stack M(v) of semistable sheaves is an open substack of PL(v). In particular, to check that an
open property holds for the general semistable sheaf, it is sufficient to produce a single prioritary
sheaf with that property. Much is known about these moduli stacks. We summarize a few important
properties here.

Theorem 2.3 ([HiL93] in the P
2 case; [Wal98] and [CH19, Proposition 3.6] in the Fe case). Let

X = P
2 or Fe and let v ∈ K(X) be a Chern character of positive rank.

(1) If ∆(v) ≥ 0, then the stack PL(v) is nonempty.
(2) The stack PL(v) is irreducible.
(3) If r(v) ≥ 2, then the general sheaf in PL(v) is a vector bundle.
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If there is a semistable sheaf of character v, parts (2) and (3) also hold for the moduli space M(v).

On the other hand, the nonemptinesss of the moduli spaces M(v) is a very interesting question;
for a detailed study of this question we refer the reader to the work of Drézet and Le Potier
[DLP85, LeP97] if X = P

2 or to [CH19] if X = Fe. In this paper we will mostly assume from the
outset that we are working with the character v of a stable sheaf, so the precise classification is not
so important. Of course it is true on any surface that if v has positive rank and ∆(v) � 0 then
M(v) is nonempty; see for example [HuL] or [O’G96].

2.5. Cohomology of general sheaves. We will make frequent use of Weak Brill-Noether theorems
for P

2 and Fe. These theorems describe the cohomology of a general stable or prioritary vector
bundle. The case of P2 is a theorem of Göttsche and Hirschowitz [GHi94], and the case of Fe is a
theorem of Coskun and Huizenga [CH17].

Theorem 2.4 (Weak Brill-Noether for P2). Let v be the Chern character of an L-prioritary vector
bundle on P

2 with ∆(v) ≥ 0. Then the general V ∈ PL(v) has at most one nonzero cohomology
group.

The following statement is weaker than the full Weak Brill-Noether theorem for Fe, but it is
sufficient for our purposes.

Theorem 2.5 (Weak Brill Noether for Fe). Let v be the Chern character of an L-prioritary sheaf
on Fe satisfying ν(v) · F ≥ −1 and ∆(v) ≥ 0. If ν(v) ·E ≥ −1, then the general V ∈ PL(v) has at
most one nonzero cohomology group, and furthermore, H2(Fe, V ) = 0. Conversely, if χ(v) ≥ 0, then
the general sheaf in PL(v) has at most one nonzero cohomology group if and only if ν(v) ·E ≥ −1.

2.6. Globally generated characters. In contrast to ampleness, global generation is not an open
property in families: there can be special globally generated bundles that are globally generated
because they have “extra sections” coming from nonzero higher cohomology (see [CH17, Example
2.13]). However, in families of sheaves with no higher cohomology, global generation is an open
property.

Suppose v ∈ K(X) is a character with ∆(v) ≥ 0 such that the general sheaf in PL(v) is a globally
generated vector bundle. Since the restriction of a globally generated bundle to a curve is globally
generated, it follows that ν(v) is nef. By the Weak Brill-Noether theorems, the general V ∈ PL(v)
has only one nonzero cohomology group, which must be H0(V ) since V is globally generated.

The characters v ∈ K(X) such that the general bundle V ∈ PL(v) is globally generated were
fully classifed by Bertram, Goller, and Johnson [BGJ16] and Coskun and Huizenga [CH17] in the
case of P2, and by Coskun and Huizenga [CH17] in the case of Fe. We will not need the full strength
of the classification, so we give a simple criterion for global generation at the end of this section.

Theorem 2.6 ([CH17, Cor. 5.3]). Let v ∈ K(P2) be a Chern with ∆(v) ≥ 0 and rk(v) ≥ 2. Then
the general V ∈ PL(v) is globally generated if and only if one of the following holds.

(1) We have µ(v) = 0 and v = rk(v) chO.
(2) We have µ(v) > 0 and χ(v(−1)) ≥ 0.
(3) We have µ(v) > 0, χ(v(−1)) < 0, and χ(v) ≥ rk(v) + 2.
(4) We have µ(v) > 0, χ(v(−1)) < 0, χ(v) = rk(v) + 1, and v = (rk(v) + 1) chO − chO(−2).

Theorem 2.7 ([CH17, Thm. 5.1]). Let v ∈ K(Fe) be a Chern character where e ≥ 1, ∆(v) ≥ 0,
and rk(v) ≥ 2. Suppose ν(v) is nef. Then the general V ∈ PL(v) is globally generated if and only
if one of the following holds.

(1) We have ν(v) · F = 0, and there exist integers a,m > 0 such that

v = (rk(v)−m)(chO(aF )) +m ch(O((a+ 1)F )).
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(2) We have ν(v) · F > 0 and χ(ν(−F )) ≥ 0.
(3) We have ν(v) · F > 0, χ(ν(−F )) < 0, and χ(v) ≥ rk(v) + 2.
(4) We have e = 1, ν(v) · F > 0, χ(v(−F )) < 0, χ(v) = rk(v) + 1, and

v = (rk(v) + 1)(ch(O))− ch(O(−2E − 2F )).

The statement for F0 is slightly different.

Theorem 2.8 ([CH17, Thm. 5.2]). Let v ∈ K(F0) be a Chern character with ∆(v) ≥ 0 and
rk(v) ≥ 2. Suppose ν(v) is nef. Then the general V ∈ PL(v) is globally generated if and only if one
of the following holds.

(1) We have ν(v) · E = 0 or ν(v) · F = 0 and there are integers a,m ≥ 0 such that

v = (rk(v)−m) chO(aE) +m chO((a+ 1)E)

or

v = (rk(v)−m) chO(aF ) +m chO((a+ 1)F ).

(2) We have ν(v) · E > 0, ν(v) · F > 0, but χ(v(−E)) ≥ 0 or χ(v(−F )) ≥ 0.
(3) We have ν(v) · E > 0, ν(v) · F > 0, χ(v(−E)) < 0, χ(v(−F )) < 0, and χ(v) ≥ rk(v) + 2.

We can also give the following criterion for global generation which uniformly combines part (2)
of the three preceding results.

Corollary 2.9. Let X = P
2 or Fe and let v ∈ K(X) be a Chern character with ∆(v) ≥ 0 and

rk(v) ≥ 2. Suppose ν(v) is big and nef. If

χ(v(−L)) ≥ 0,

then the general V ∈ PL(v) is globally generated.

3. Obstructions to ampleness

The goal of this section is to explain some precise restrictions on the Chern characters of stable
ample bundles. The results of the section are summarized in the next proposition, the proof of
which will occupy the rest of the section.

Proposition 3.1. Let X = P
2 or Fe and let V be an ample stable vector bundle on X of rank r ≥ 2.

(1) If X = P
2, then ν(V ) ·H > 1 + 1

r
or V ∼= TP2.

(2) If X = F0, then ν(V ) · F > 1 and ν(V ) · E > 1.
(3) If X = Fe with e ≥ 1, then ν(V ) · F > 1 and ν(V ) · E ≥ 1.

An easy necessary property of ample bundles V on P
2 and Fe is that the restriction of V to any

smooth rational curve D must have degree at least equal to its rank. Suppose otherwise: then V |D
splits as a direct sum OP1(m1) ⊕ · · · ⊕ OP1(mr) with r = rkV >

∑

mi. Thus for some i, we have
mi ≤ 0. In particular, V |D has a quotient that is not ample. We record the most important cases
of this fact in the following proposition.

Proposition 3.2. Let V be an ample vector bundle on the surface X = P
2 or X = Fe.

(1) If X = P
2, then µ(V ) ≥ 1.

(2) If X = Fe, then ν(V ) · E ≥ 1 and ν(E) · F ≥ 1.

The above can be sharpened for both P
2 and Fe if V is assumed to be stable of rank at least 2.

The next result generalizes [LeP80, Proposition 3.1] to arbitrary rank.

Proposition 3.3. Let V be an ample stable bundle on P
2 of rank r ≥ 2, and suppose µ(V ) ≤ 1+ 1

r
.

Then V ∼= TP2.
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Proof. Let P2∗ denote the dual projective plane, and let

Σ = {(p, `) : p ∈ `} ⊂ P
2 × P

2∗

be the universal line. Let π1 : P2 × P
2∗ → P

2 and π2 : P2 × P
2∗ → P

2∗ be the projections. Since
V is ample, we know V |` is ample for every line `, and therefore H1(V (−2)|`) = 0. By Grauert’s
theorem

R1π2∗(π
∗

1(V (−2))⊗OΣ) = 0.

The structure sheaf OΣ fits into the restriction sequence

0 → IΣ → OP2×P2∗ → OΣ → 0.

The universal line Σ is defined by a bihomogeneous form of type (1, 1), so its ideal sheaf is

IΣ ∼= OP2(−1)�OP2∗(−1).

Tensor the resolution of OΣ by π∗
1(V (−2)) and apply π2∗ to find that we must have a surjection

R1π2∗(π
∗

1(V (−3)))⊗OP2∗(−1) → R1π2∗(π
∗

1(V (−2)))⊗OP2∗ → 0,

which can be computed to be a map

A : H1(V (−3))⊗OP2∗(−1) → H1(V (−2))⊗OP2∗ → 0.

Since the slope of V satisfies 1 ≤ µ(V ) ≤ 1 + 1
r
, stability implies that the only possible nonzero

cohomology group of V (−3) and V (−2) is H1. From the exact sequence

0 → V (−3) → V (−2) → V (−2)|` → 0

we get χ(V (−2)) = χ(V (−3)) + χ(V (−2)|`). Let ε = χ(V (−2)|`) and m = −χ(V (−2)). Then the
map A is a surjective map

A : OP2∗(−1)m+ε → Om
P2∗ .

Case 1: µ(V ) = 1 + 1
r
. In this case, ε = 1 and A becomes a surjective map

A : OP2∗(−1)m+1 → Om
P2∗ .

Then the kernel must be the line bundle OP2∗(−m− 1), and computing Euler characteristics gives
a contradiction unless m = 0. But if m = 0, then χ(V (−2)) = 0 so

∆(V ) = P

(

1 +
1

r
− 2

)

.

For r = 2 this gives ∆(V ) = 3
8 and V = TP2 . If r ≥ 3, then it gives 0 < ∆(V ) < 3

8 . There is no stable
bundle with this discriminant since stable bundles with discriminant less than 1/2 are exceptional
and have discriminant 1

2(1−
1
r2
); see [LeP97].

Case 2: µ(V ) = 1. In this case, ε = 0 and A is a surjective map

A : OP2∗(−1)m → Om
P2∗ .

Then A must be an isomorphism, which is only possible if m = 0. As in the previous case, this
implies ∆(V ) = 0. Since V has rank 2 and is stable, this is impossible. �

A similar result holds on Hirzebruch surfaces as well. Of course, the tangent bundle TFe
is not

ample [Mor79].

Proposition 3.4. Let V be a stable ample bundle on Fe, e ≥ 0. If ν(V ) · F = 1, then V is a line
bundle.

Proof. Suppose V ∈ M(v) is general and that V is ample. If ` ∈ |F | is any fiber, then V |` is ample,
hence a direct sum of line bundles V |` ∼=

⊕

O`(1). We can now argue as in [CH17, Prop. 5.4]: we
have π∗(π∗(V |E)) ∼= V , and V |E is a balanced direct sum of line bundles by [CH17, Prop. 3.6].
Since V is stable, it must be a line bundle, and then every V ∈ M(v) is a line bundle. �
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4. Asymptotic ampleness

In this section we perform our study of ampleness for Chern characters v with fixed slope and
discriminant but sufficiently large rank. Under this assumption, the results of Section 3 provide the
only obstructions to ampleness. Recall that H denotes the minimal ample polarization.

Theorem 4.1. Let X = P
2 or Fe and let v ∈ K(X) be the Chern character of a stable vector

bundle. Suppose either

(1) X = P
2 and ν(v) ·H > 1, or

(2) X = F0 and ν(v) · F > 1 and ν(v) · E > 1, or
(3) X = Fe with e ≥ 1 and ν(v) · F > 1 and ν(v) · E ≥ 1.

If n is a sufficiently large integer and V ∈ MH(nv) is general, then V is ample.

Also see Remark 4.3 for an explicit effective bound on n.

Remark 4.2. The required inequalities in Theorem 4.1 can be more compactly rephrased as the
condition that ν(v)−H is big and nef.

Proof of Theorem 4.1. Recall that we write L = H if X = P
2 and L = F if X = Fe. The idea of the

proof is to show that the (irreducible) stack PL(nv) of L-prioritary sheaves contains a quotient V
of an obviously ample bundle. Then V is ample, so the general prioritary sheaf is ample, and since
M(nv) ⊂ PL(nv) is an open dense substack, it follows that the general V ∈ M(nv) is ample. The
proof proceeds in several steps.

Step 1: Normalization of ν(v). Without loss of generality, we may assume that 1 < ν(v) ·L ≤ 2.
Indeed, we can find a nef line bundle N such that v(−N) satisfies these inequalities (this is clear
if X = P

2, and if X = Fe we can use a bundle of the form N = O(mE +meF ), noting N · E = 0
and N · F = m). Then if a bundle W ∈ M(nv(−N)) is ample, its twist W (N) ∈ M(nv) is ample
as well. In what follows, we assume ν(v) satisfies this inequality.

Step 2: The character u. Fix an integer s ≥ 2, and let r = rk(v). We wish to show that if n is
sufficiently large, then there is some V ∈ PL(nv) that is a quotient of OX(H)nr+s. Then there will
be an exact sequence

0 → U
φ
→ OX(H)nr+s → V → 0.

To construct V , we reverse this process by starting from a bundle U and taking the cokernel of a
general map φ : U → OX(H)nr+s. Let u = (nr+ s) ch(OX(H))− nv be the Chern character of the
hypothetical kernel U . Note that u depends on s and n; the choice of s is unimportant as long as
s ≥ 2, but allowing n to become large is crucial for the remainder of the proof.

Step 3: L-prioritary vector bundles of character u exist if n � 0. Clearly u has rank s ≥ 2.
Recall from Theorem 2.3 that L-prioritary vector bundles of character u will exist if ∆(u) ≥ 0, so
we just have to pick n so that this is true. Recall

2s2∆(u) = c1(u)
2 − 2s ch2(u),

and write
B = ν(v)−H,

recalling that B is big and nef. We compute

c1(u) = −nrB + sH.

Since B2 > 0, we see that c1(u)
2 is a quadratic function of n with a positive leading coefficient. On

the other hand, ch2(u) is a linear function of n. Therefore ∆(u) ≥ 0 for n � 0.

Step 4: Global generation of Hom(U,OX(H)). Let n � 0 be large enough that there are stable
bundles of character u, and let U ∈ M(u) be general. We show that Hom(U,OX(H)) = U∗(H) is
globally generated. By the results of Section 2.6, this can be determined from the character u. In
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fact, the full classification of globally generated characters is more than we need and we can use the
criterion of Corollary 2.9.

Observe that

ν(U∗(H)) =
nr

s
(ν(v)−H),

so ν(U∗(H)) is nef. Furthermore, we compute ν(U∗(H)) · L > 0. Thus U∗(H) is big. It remains to
show

χ(U∗(H − L)) ≥ 0.

Since χ(OX(−H − L)) = 0, we get

χ(U∗(H − L)) = −nχ(v∗(H − L)),

and we need to show χ(v∗(H − L)) ≤ 0, whence it will follow that U∗(H) is globally generated.
This is where the choice of normalization of ν(v) in Step 1 becomes important.

If X = P
2, then H = L and µ(v∗(H − L)) = µ(v∗) is between −2 and −1. A stable bundle with

slope between −2 and −1 has neither sections nor H2, so we find χ(v∗) ≤ 0.

Suppose instead that X = Fe, and let P be the Hilbert polynomial of OX . We claim that
P (ν(v∗(H −L))) ≤ 0, and therefore that χ(v∗(H −L))) ≤ 0 by Riemann-Roch and the Bogomolov
inequality. Write ν(v∗(H − L)) = xE + yF . Since 1 < ν(v) · L ≤ 2 and ν(v) · E ≥ 1, we have
−1 ≤ x < 0 and y − ex ≤ −1. Recall that

P (xE + yF ) = (x+ 1)

(

y + 1−
1

2
ex

)

.

Then the first factor x + 1 is nonnegative and the second factor y + 1 − 1
2ex ≤ y + 1 − ex ≤ 0 is

nonpositive. Therefore P (xE + yF ) ≤ 0.

Step 5: Construction of V . Let φ : U → OX(H)nr+s be a general map. Since Hom(U,OX(H)) is
globally generated, a Bertini-type theorem [Hui16, Proposition 2.6] shows the cokernel V is a vector
bundle of character nv.

Step 6: V is L-prioritary. To complete the proof, we need to show that V is L-prioritary. Since
V is a vector bundle, this amounts to showing that Ext2(V, V (−L)) = 0. Twisting the defining
sequence of V by OX(−L) and applying Hom(V,−) gives a surjection

Ext2(V,OX(H − L))nr+s → Ext2(V, V (−L)) → 0,

so it is enough to show that Ext2(V,OX(H−L)) = 0. Applying Hom(−,OX(H−L)) to the defining
sequence of V yields the exact sequence

Ext1(U,OX(H − L)) → Ext2(V,OX(H − L)) → Ext2(OX(H)nr+s,OX(H − L)),

and since

Ext2(OX(H),OX(H − L)) = H2(OX(−L)) = 0,

it is enough to show that

H1(U∗(H − L)) = Ext1(U,OX(H − L)) = 0.

We have already seen χ(U∗(H − L)) ≥ 0, so it suffices to show that U∗(H − L) satisfies the weak
Brill-Noether theorem. Since ν(U∗(H)) was shown to be nef, it is easy to see that the hypotheses
of Theorems 2.4 and 2.5 are satisfied. �

Remark 4.3. The bound on n in Theorem 4.1 can easily be made effective. Taking s = 2 and
explicitly solving ∆(u) ≥ 0 for n in Step 3, we see that it is enough to have

n ≥
4∆(v)

rB2
−

2

r

where B = ν(v)−H and v is normalized as in Step 1.
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Example 4.4. We consider again the example of Gieseker, where a bundle Vd is defined as a general
cokernel

0 → OP2(−d)2 → OP2(−1)4 → Vd → 0.

The character vd = ch(Vd) is given by (rk(vd), c1(vd), ch2(vd)) = (2, 2d − 4, 2 − d2). If d ≥ 4, then
we can analyze the characters nvd as in the theorem. In fact, we can often write ample bundles of
character nvd as quotients of OP2(1)2n+2. To make this effective, write an exact sequence

0 → U → OP2(1)2n+2 → V → 0.

Assuming ch(V ) = nvd, if we can show that χ(V ∗) ≤ 0 and ∆(U) ≥ 0, then the argument in the
theorem says that V is locally free and prioritary. Computing Euler characteristics, we have

χ(V ∗) = n(10− 3d− d2) < 0.

Again arguing as in Step 3 of the theorem, we need n large enough that ∆(U) ≥ 0. Calculating as
in Remark 4.3, it suffices to have

n >
2(d− 1)2

(d− 3)2
− 1.

In particular, for d ≥ 12, we may take n = 2.

5. Ample globally generated bundles

Let X = P
2 or Fe and let v ∈ K(X) be a Chern character with r(v) ≥ 2 such that the general

sheaf V ∈ M(v) is a globally generated vector bundle. In this section we show that if the necessary
inequalities of Proposition 3.1 are satisfied, then V is ample. Note that TP2 is both globally generated
and ample, so we omit this case from the discussion.

Theorem 5.1. Let X = P
2 or Fe and let v ∈ K(X) be a Chern character such that the general

sheaf V ∈ M(v) is a globally generated vector bundle. Suppose either

(1) X = P
2 and µ(v) > 1 + 1

r(v) , or

(2) X = F0 and ν(v) · F > 1 and ν(v) · E > 1, or
(3) X = Fe with e ≥ 1 and ν(v) · F > 1 and ν(v) · E ≥ 1.

Then V is ample.

Throughout the section, we let v be a character satisfying the assumptions of Theorem 5.1, and
we take V ∈ M(v) to be a general globally generated vector bundle. By Gieseker’s Lemma, to show
that V is ample, we must show that for every irreducible curve D ⊂ X, the bundle V |D admits no
trivial quotient. Since V is globally generated, this is equivalent to the vanishing Hom(V,OD) = 0.
Applying Hom(V,−) to the restriction sequence

0 → O(−D) → O → OD → 0,

stability shows Hom(V,O) = 0, and so there is an exact sequence

0 → Hom(V,OD) → Ext1(V,O(−D)).

We consider Ext1(V,O(−D)). By Serre duality,

ext1(V,O(−D)) = h1(V (KX +D)),

and we need to understand the cohomology of V (KX + D). Our first result in this section shows
that if V ∈ M(v) is general, then this cohomology is determined by the Euler characteristic.

Lemma 5.2. Let v satisfy the assumptions of Theorem 5.1.

(1) If D ⊂ X is an irreducible curve class and V ∈ M(v) is general (depending on D), then
V (KX +D) has nonspecial cohomology.



12 J. HUIZENGA AND J. KOPPER

(2) If V ∈ M(v) is general, then for any irreducible curve class D ⊂ X, the bundle V (KX +D)
has nonspecial cohomology.

Proof. (1) The first part of the lemma is a direct application of the Weak Brill-Noether theorems
for P2 and Fe. Since V is general in M(v), the bundle V (KX +D) is general in M(v(KX +D)).

If X = P
2, then the conclusion comes from Theorem 2.4.

If X = Fe, then we need to verify the slope assumptions in Theorem 2.5. Since D is irreducible,
we have D · F ≥ 0 and D · E ≥ −e. Then

ν(V (KX +D)) · F = ν(V ) · F +KX · F +D · F > 1− 2 + 0 = −1

and

ν(V (KX +D)) · E = ν(V ) · E +KX · E +D · E ≥ 1 + (e− 2)− e = −1.

Thus the hypotheses of Theorem 2.5 are satisfied.

(2) By (1), it is clear that for a very general V ∈ M(v) the bundle V (KX +D) has nonspecial
cohomology for every irreducible curve class D. But in fact, we will show that there is a finite
list D1, . . . , Dk of irreducible curve classes such that if V ∈ M(v) is general and V (KX +Di) has
nonspecial cohomology for all i then V (KX +D) has nonspecial cohomology for all irreducible curve
classes D.

Case 1: X = P
2. In this case, we take our list to be H, 2H, . . . , kH, where k ≥ 1 is chosen such

that χ(V (KP2 + kH)) ≥ 0. We assume V ∈ M(v) is general enough that its splitting type on a line
H is balanced. Suppose V (KP2 + kH) has no higher cohomology. We have

µ(V (KP2 + (k + 1)H)) = µ(V )− 3 + k + 1 ≥ 0,

so V (KP2 + (k + 1)H)|H has no higher cohomology. Then from the restriction sequence

0 → V (KP2 + kH) → V (KP2 + (k + 1)H) → V (KP2 + (k + 1)H)|H → 0,

we see that V (KP2 + (k + 1)H) has no higher cohomology. Continuing inductively completes the
argument.

Case 2: X = Fe. We assume throughout that e ≥ 1; a similar argument can be given when e = 0.
In case X = Fe, write ν(V ) = xE+ yF . Let D = aE+ bF be an irreducible divisor class other than
E, so 0 ≤ ae ≤ b. Then

χ(V (KFe
+D))

rk(V )
= (x− 2 + a+ 1)(y − (e+ 2) + b+ 1−

1

2
e(x− 2 + a))−∆(V )

≥ (x− 1)(y − (e+ 2) +
b

2
+ 1−

1

2
e(x− 2))−∆(V ).

Here x = ν(V ) · F > 1, so there is an integer B ≥ 1 such that if b ≥ B, then χ(V (KFE
+D)) ≥ 0.

For our list of divisors, take the list of all irreducible divisors of the form aE + bF with b ≤ B.
Then any irreducible divisor not in this list can be obtained from a divisor of the form aE+BF by
repeatedly adding copies of F or E+eF . Let C be one of the curve classes F or E+eF . Then curves
of class C are rational. Furthermore, −(KX +C) is the class of a curve, so stable vector bundles are
automatically C-prioritary. Therefore a general V ∈ M(v) has balanced splitting type on a general
curve of class C. Let D = aE+bF be an irreducible curve class with b ≥ B, and inductively assume
we know that V (KFe

+ D) has no higher cohomology. By adjunction, (KFe
+ C) · C = −2, and

D2 ≥ 0, so

ν(V (KFe
+D + C)) · C = ν(V ) · C +D · C − 2 ≥ −1.

Therefore V (KFe
+D + C)|C has no higher cohomology. The restriction sequence

0 → V (KFe
+D) → V (KFe

+D + C) → V (KFe
+D + C)|C → 0

then shows that V (KFe
+D + C) has no higher cohomology. �
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The following immediate corollary shows that the vast majority of curve classes cannot provide
an obstruction to ampleness.

Corollary 5.3. Let v satisfy the assumptions of Theorem 5.1, and let V ∈ M(v) be general. If D
is an irreducible curve such that

χ(V (KX +D)) ≥ 0,

then V |D admits no trivial quotient.

Proof. The bundle V (KX + D) has no H1 by Lemma 5.2. Following the discussion preceding the
proof of Lemma 5.2, we see that Hom(V,OD) = 0. �

Conversely, if the assumptions of Corollary 5.3 are not satisfied, then families of stable sheaves
on X restrict to curves of class D as nicely as possible.

Corollary 5.4. Let v satisfy the assumptions of Theorem 5.1, and let V ∈ M(v) be general. If D
is an irreducible curve such that

χ(V (KX +D)) < 0,

then V is D-prioritary.

Proof. By Lemma 5.2,

ext2(V,O(−D)) = h0(V (KX +D)) = 0.

Since V is globally generated, it fits into an exact sequence of the form

0 → M → Oa → V → 0.

Twisting by O(−D) and applying Hom(V,−) shows that Ext2(V, V (−D)) is a quotient of
Hom(V,O(−D)) = 0. Therefore V is D-prioritary. �

We now determine the possible curve classes D where Corollary 5.3 does not apply.

Lemma 5.5. Let v satisfy the assumptions of Theorem 5.1. There are only finitely many irreducible
curve classes D with

χ(v(KX +D)) < 0.

Furthermore, any such D must have one of the following forms.

(1) If X = P
2, then D = H or D = 2H.

(2) If X = F0, then D is of the form bE + F or E + bF for some b ≥ 0.
(3) If X = F1, then D is of the form F , 2E + 2F , or E + bF for some b ≥ 0.
(4) If X = Fe with e ≥ 2, then D is of the form F , E, or E + bF for some b ≥ e.

In every case, D is a smooth rational curve.

Proof. Let V ∈ M(v) be general. We saw in the proof of Lemma 5.2 (2) that there are only finitely
many irreducible curve classes D with χ(v(KX +D)) < 0. If KX +D is an effective divisor, then
since V is globally generated the bundle V (KX + D) has a section. By Lemma 5.2 this implies
χ(V (KX +D)) ≥ 0. Thus it suffices to list the irreducible curve classes D such that KX +D is not
effective. These classes are of the above listed forms. �

For each of the curve classes D in Lemma 5.5, we need to show that a general V ∈ M(v) does
not admit a trivial quotient OC for any irreducible curve C ∈ |D|. The key step is to compute the
codimension of the locus of sheaves admitting a trivial quotient on a single curve.
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Lemma 5.6. Let V/S be a complete family of globally generated vector bundles on P
1 of slope µ ≥ 1

and rank r, parameterized by a smooth irreducible base S. Let Z ⊂ S be the subset

Z = {s ∈ S : hom(Vs,OP1) > 0}.

Then every component of Z has codimension at least

rµ− r + 1.

Proof. We follow the notation from [LeP97, §15.4]. Let Zk ⊂ Z be the locus where hom(Vs,OP1) = k,
and let s ∈ Zk be any point. Since Vs is globally generated, there is a unique filtration

0 → F1 → Vs → Ok
P1 → 0.

Let Yk = Flag(V/S;P1, P2)
π
→ S be the relative flag scheme parameterizing filtrations of Vs with

these numerical invariants. Since we are working on a curve and the family V/S is complete, Yk is
smooth and the natural map TsS → Ext1+(Vs,Vs) surjects. Let t ∈ Yk be the point corresponding
to the above exact sequence. Near t, the map π maps Yk isomorphically onto Zk. We have an exact
sequence

TtYk → TsS → Ext1+(Vs,Vs) → 0.

The tangent space TsZk ⊂ TsS is the image of TtYk, so the normal space to Zk at s is identified
with

Ext1+(Vs,Vs) ∼= Ext1(F1,O
k
P1).

Since Hom(F1,OP2) = 0, we conclude that Zk has codimension

−χ(F1,O
k
P2) = k(rµ− r + k).

This is clearly minimized for k = 1. �

Finally we show that the curve classes in Lemma 5.5 do not obstruct ampleness to complete the
proof of Theorem 5.1.

Conclusion of the proof of Theorem 5.1. Let D be one of the finitely many curve classes in Lemma
5.5. By Corollary 5.4, we may assume that a general V ∈ M(v) is D-prioritary. Let V/S be a com-
plete family of globally generated, D-prioritary, stable bundles on X of character v, parameterized
by a smooth variety S. Then for any irreducible C ∈ |D|, the family V|C/S is a complete family of
globally generated bundles on C ∼= P

1. For a fixed irreducible C ∈ |D|, the locus of s ∈ S such that
Vs has OC as a quotient has codimension at least

c := rν(V ) · C − r + 1.

As C varies in the family |D| of dimension d := h0(OX(D)) − 1, the general Vs will not admit a
quotient of the form OC if d < c. We compute d and estimate c case-by-case to verify this.

Case 1: X = P
2. If D = H, we get

c = rµ(V )− r + 1 > r

(

1 +
1

r

)

− r + 1 = 2

so c ≥ 3, but d = 2. If instead D = 2H then d = 5 and

c = 2rµ(V )− r + 1 > 2r

(

1 +
1

r

)

− r + 1 = r + 3,

so c ≥ 6 since r ≥ 2.

Case 2: X = Fe and D = F . We have d = 1 and

c = rν(V ) · F − r + 1 > r − r + 1 = 1.

Case 3: X = Fe with e ≥ 1 and D = E. This time, d = 0 and

c = rν(V ) · E − r + 1 ≥ r − r + 1 = 1.
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Case 4: X = Fe and D = E + bF with b ≥ e. By Riemann-Roch,

d = 2b− e+ 1.

We have

c = rν(V ) · (E + bF )− r + 1 > r + rb− r + 1 = rb+ 1 ≥ 2b+ 1,

where to see the strict inequality we consider the cases e = 0 and e ≥ 1 separately. The case of
X = F0 and D = bE + F holds by symmetry.

Case 5: X = F1 and D = 2E + 2F . We get d = 5 and

c = rν(V ) · (2E + 2F )− r + 1 > 3r + 1 ≥ 7,

so again d < c. �
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