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A B S T R A C T

The evolution of interfaces is intrinsic to many physical processes ranging from cavitation in fluids to
recrystallization in solids. Computational modeling of interface motion entails a number of challenges, many
of which are related to the range of topological transitions that can occur over the course of the simulation.
Microstructure evolution in a polycrystalline material that involves grain boundary motion is a particularly
complex example due to the extreme variety, heterogeneity, and anisotropy of grain boundary properties.
Accurately modeling this process is essential to determining processing-structure–property relationships in
polycrystalline materials though. Simulations of microstructure evolution in such materials often use diffuse
interface methods like the phase field method that are advantageous for their versatility and ease of handling
complex geometries but can be prohibitively expensive due to the need for high interface resolution. Discrete
interface methods require fewer grid points and can consequently exhibit better performance but have
received comparatively little attention, perhaps due to the difficulties of maintaining the mesh and consistently
implementing topological transitions on the grain boundary network. This work explicitly compares a recently-
developed discrete interface method to a multiphase field method on several classical problems relating
to microstructure evolution in polycrystalline materials: a shrinking spherical grain, the steady-state triple
junction dihedral angle, and the steady-state quadruple point dihedral angle. In each case, the discrete method
is found to meet or outperform the multiphase field method with respect to accuracy for comparable levels
of refinement, demonstrating its potential efficacy as a numerical approach for microstructure evolution in
polycrystalline materials.

1. Introduction

The simulation of physical systems often requires the modeling of
moving interfaces. This could involve interfaces at the boundaries be-
tween different phases of matter including liquid/gas (e.g. cavitation),
gas/solid (e.g. deflagration, sublimation, deposition), and solid/liquid
(e.g. melting, solidification), or within a single solid phase. The grain
structure of polycrystalline materials in particular contains an extensive
network of interfaces known as grain boundaries that separate grains
(contiguous regions with a given crystallographic orientation). The
interfacial dynamics governing this grain boundary network are often
complex, leading to topological transitions and rapidly changing grain
morphologies that pose a unique type of modeling challenge.

A material’s grain structure is essential to its macroscopic proper-
ties. For example, solute segregation to grain boundaries can change the
grain boundary cohesive energy [1,2], or the material’s susceptibility
to hydrogen embrittlement [3,4] and stress corrosion cracking [5,6].
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Grain boundaries can provide preferential sites for the precipitation

of a second phase, increasing or decreasing the plasticity of the poly-

crystal [7,8]. They provide obstructions to the propagation of slip,

with implications for the strength of the material as evidenced by

the Hall–Petch equation [9,10]. Given such consequences of the grain

structure, it is not surprising that a variety of methods to simulate

grain boundary motion and the evolution of the grain structure have

been proposed in the literature [11–16]. Many of these represent the

grain boundaries implicitly, as the locus of points where an indicator

function abruptly changes value; such methods are referred to as diffuse

interface methods below. While this has the advantage of not requiring

that changes to the grain boundary topology be handled explicitly,

the implicit representation complicates simulations of grain boundaries

whose properties depend on their crystallography. This is not an issue

when investigating the properties of generic grain boundary networks

since a microstructure with constant and isotropic grain boundary
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properties is regarded as the canonical model system [17]. It does
limit the possibility of predicting the properties of physical materials
though, and therefore is a significant obstacle to realizing the vision of
integrated computational materials design.

Methods that simulate the evolution of three-dimensional grain
structures explicitly [18–21] are referred to as discrete boundary meth-
ods below. One of the main difficulties faced by such methods is with
maintaining a consistent mesh of the grain boundary surfaces during
a topological transition. Indeed, there did not even appear to be a
way to enumerate a broad class of possible topological transitions in a
general grain boundary network until quite recently [22], and it is not
at all obvious how to explicitly implement such transitions without at
least knowing what they are. Nevertheless, discrete boundary methods
do offer several distinct advantages with respect to microstructure
modeling. They often require far fewer mesh points than their diffuse
counterparts, offering a dramatic reduction in runtime computational
cost. They also allow various defect properties, including grain bound-
ary energies and triple line energies, to be explicitly defined in a
way that is difficult with diffuse boundary methods. Along these lines,
Kuprat previously developed GRAIN3D to simulate grain growth [19]
on a volumetric mesh with the gradient weighted moving finite element
(GWFE) method, though the proposed topological transitions were not
necessarily physical and could substantially affect the microstructure
trajectory. Shya and Weygand instead proposed a method to simulate
grain growth on a surface mesh and handled topological transitions
by decomposing them into sequences of elementary operations [20],
but did not offer any assurance that such decompositions would not
change the microstructure trajectory. Lazar et al. [21] proposed a
discretized formulation of the MacPherson–Srolovitz relation [23] to
simulate ideal grain growth on a surface mesh. While this only required
that a small number of topological transitions be implemented, the
explicit assumption of isotropic grain boundary properties precluded
simulations of more general systems.

Two of the authors recently proposed a discrete interface method
that addresses several of the computational challenges associated with
explicit microstructure meshing, including a way to construct all pos-
sible topological transitions around a junction point and an energetic
criterion to select one to apply [22]. The implementation [24] is
based on SCOREC [25] and uses a volumetric microstructure mesh,
potentially allowing the addition of other necessary physics to build a
general framework for realistic simulations of microstructure evolution.
SCOREC is an open source, massively parallelizable finite element
framework with the adaptive meshing capabilities that are necessary
to reach representative material volumes and to efficiently maintain
the mesh element quality and desired degree of refinement. SCOREC
is specifically able to improve the quality of low-quality elements
by local remeshing operations that minimally disturb the embedded
surface mesh and make the computational expense of many operations,
e.g., collapsing an individual grain, constant with respect to the system
size. The remeshing operations can also be used to refine a microstruc-
ture mesh. For example, a polycrystalline microstructure consisting of
Voronoi polyhedra can be converted into a microstructure mesh by
initially placing a single vertex on the interior of each boundary line,
boundary surface, and grain volume, and subsequently refining using
the mesh adaptation capabilities of SCOREC. This work offers an initial
comparison between this discrete interface method (detailed further in
Ref. [22]) and a more well-established phase field approach.

This paper introduces a set of three test cases to evaluate the
relative accuracy and numerical cost of simulations of grain boundary
motion, and uses this set to compare the discrete interface and phase
field methods. The three cases correspond to several of the simplest
configurations involving the motion of a grain boundary surface, a
triple junction (TJ), and a quadruple point (QP). The grain boundary
properties are assumed to be isotropic; a coarsening grain structure
with isotropic grain boundary properties is said to be the ideal grain
growth system, and provides a basis for the comparison of all other

evolving grain structures. Analytical forms for the evolving geometries
are known for the spherical surface and TJ cases [26,27], and the
TJ and QP configurations have well-defined steady-state geometries.
It is also of interest whether the two methods converge to the same
geometries in situations for which analytical solutions are not known,
since there is likely no other way to verify the simulations in such
cases. While several of these configurations have been studied before,
they are not usually considered in conjunction despite the benefits of
doing so. Namely, the increasing complexity of the grain boundary
configurations among the three test cases introduces different sources
of systematic error to the grain boundary motion, and these errors can
be more easily identified by comparing the test cases to one another.

It is desirable to establish the nature of any systematic errors and the
accuracy of the simulation methods for a system with isotropic grain
boundary properties before attempting to do so with more general grain
boundary energy and mobility functions. The two methods considered
in the present work will be capable of simulating the motion of grain
boundaries with anisotropic properties when such functions become
available. The discrete boundary method uses equations of motion
that allow for general grain boundary properties and grain boundary
lines that join an arbitrary number of grain boundaries [28]. The
multiphase field model was developed to simulate the faceting of grain
boundaries with energies that depend on boundary plane orientation,
though this requires calculating a fourth-order derivative of the order
parameters [29].

This paper is structured as follows. We begin with a discussion of
the discrete interface method and its implementation, followed by an
analogous discussion for the phase field/diffuse interface counterpart.
We then apply both methods to a set of three test cases: a two grain
system (shrinking sphere), a three grain system (triple junction), and a
five grain system (quadruple point). The behavior of the discrete and
diffuse models is compared for each of the examples vis-à-vis analytic
predictions and the models’ internal length scales. The performance of
the discrete interface model is briefly discussed, and then we conclude
with a general discussion of the behaviors of the two models and a
summary of recommendations for best practice in discrete interface
modeling.

2. Methods

Assuming that grain boundary properties are independent of grain
boundary crystallography implies that the grain boundary network
evolves along the negative gradient of the total boundary area. This
is usually expressed by means of the Turnbull equation [30]

v = m
Kn̂ (1)

governing the motion of each boundary patch where v is the velocity,
m and 
 are the mobility and energy per unit area, K is the mean
curvature (the sum of the principle curvatures), and n̂ is the unit normal
vector.

While this is sufficient to determine the time evolution of a closed
surface, the Turnbull equation does not specify what happens at the TJs
or QPs of the grain boundary network. One of the essential differences
between discrete and diffuse interface models is the governing equa-
tions for precisely these locations. Discrete interface models generally
represent the TJs and QPs as distinct entities with explicit geometries,
and sometimes provide additional governing equations specific to these
locations [21]. This is in contrast to the implicit approach of most
diffuse interface methods which do not track TJs or QPs explicitly
(while some diffuse interface methods do include higher order terms to
account for the distinct behavior of line or point defects, these can come
at extreme computational cost). Each surface instead evolves according
to the Turnbull equation with the geometric singularities at the TJs and
QPs regularized by the diffuse interfaces. This difference in the han-
dling of TJs is significant since the TJs define the geometric conditions
at a grain boundary’s edges, thereby constraining the evolution of the
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Fig. 1. Vectors describing the geometry around a vertex of the surface mesh. The
central vertex is connected to five edges ti and five triangles with unit normal vectors
n̂ij . The TJ along the edges t1 and t4 is shown in bold.

grain boundary surface and likely the overall microstructure trajectory.
It is for this reason that the angles between adjoining grain boundary
surfaces are often used as simple scalar measures of the simulation
accuracy in Section 3 below.

2.1. Discrete interface model

As implied by the name, every discrete interface model uses a
discrete representation of the grain boundary network. A discrete rep-
resentation entails that the grain boundary network geometry is rep-
resented by a collection of simple geometric objects, or elements,
along with a description of how to join those elements together. The
result is known as a surface mesh in three dimensions, and can be
advantageously extended to a volumetric mesh to provide a discrete
representation of the grain interiors as well. VDlib [22,24] is a C++ li-
brary based on SCOREC [25] that represents a grain structure by
means of a volumetric mesh containing tetrahedra, triangles, edges, and
vertices.

There are two operations involved in updating the mesh to evolve
the microstructure. The first moves the vertices of the mesh according
to established equations of motion [28] that allow for anisotropic
surface energies and arbitrary drag coefficients (the counterpart to the
usual grain boundary mobility). The idea is that the velocity v of any
given vertex should be such that the driving force F on the vertex is
precisely balanced by the sum of drag forces Dv resulting from the
motion of the adjoining grain boundary elements, where D is the drag
tensor and v is the grain boundary velocity. The capillary force acting
on the vertex is given by

F =
∑

i

t̂i�l(t̂i) +
1

2
‖ti‖

∑

j∶{i,j}∈�

(n̂ij × t̂i)
(n̂ij ) + n̂ij
)


)�i

||||n̂ij
, (2)

where �l and 
 are the line and surface energy functions, ti is the
vector along edge i starting at the vertex and t̂i is the corresponding
unit vector, n̂ij is the normal of the triangle formed by edges i and j,
j ∶ {i, j} ∈ � indicates an edge j starting at the vertex such that edges
i and j span a triangle �, and � defines the surface orientation around
edge i; Fig. 1 shows several of these quantities for a generic vertex of
a surface mesh. At force equilibrium the capillary forces are balanced
by the drag forces Dv of the moving boundaries with

D = �0I +
1

2

∑

i

�1(t̂i)‖ti‖(I − t̂i⊗ t̂i)+
1

6

∑

i,j∈�

�2(n̂ij )‖ti × tj‖(n̂ij ⊗ n̂ij ) (3)

where �k is the drag term associated with the k-dimensional simplicial
boundary element. The resulting boundary vertex velocity v is given by

v = D−1F . (4)

One advantage of this formulation is that the motion of every bound-
ary vertex is governed by the same equation, including those on the
interiors of surfaces, along TJs, and at QPs. If the point and line drag
terms are zero, Dv reduces to the sum of the drag forces exerted by the
neighboring triangles along the triangle normal directions for a given
velocity v. Moreover, if the grain boundary properties are constant,
then �2 = 3∕m and this further reduces to a discrete version of Eq. (1)
with an accuracy that depends on the product of the edge length and
the mean curvature of the surface.

Apart from the motion of the mesh vertices, the accuracy of the
discrete interface model is highly dependent on the element quality,
where low-quality elements do not resemble equilateral triangles or
tetrahedra [31,32]. Without regular intervention and adaptation of the
mesh, the quality of mesh elements generically degrades with grain
boundary motion, even to the point of elements inverting. The discrete
interface method handles this by using MeshAdapt [33] to locally
remesh where the element quality falls below a threshold value, and
coarsening or refining edges with lengths below or above threshold
values. The target edge length le is constant in time and space for
any given simulation, and an edge is coarsened or refined if the edge
length l is outside the interval 0.7le ≤ l ≤ 1.5le. These operations
are used sparingly though, since apart from the computational expense
local remeshing can perturb the grain boundary geometry. Specifically,
these operations are the source of the discontinuous jumps observed in
the discrete interface model results in Section 3.

2.2. Diffuse interface model

Comparison to a standardized diffuse interface model provides ver-
ification of the discrete interface model. In this work we apply the
multiphase field model implemented following the presentation in
Refs. [34,35] which are general references for this section. A brief
overview is provided here. For a system in a region 
 ⊂ R

3 with N

grains, N order parameters (denoted as the vector of functions � =

{�1,… , �N} ⊂ C2(
)) are defined such that the region occupied by the
ith grain is precisely the support of �i. The free energy of the system is
then defined to be

W [�] = ∫

(
w(�) +

1

2

∑

n

k |∇�n|2
)
dx, (5)

where w is the chemical potential and k is a model parameter to
be discussed subsequently (the use of functional brackets should be
understood to indicate dependence on the argument and any temporal
or spatial derivatives). The following polynomial form is used for the
chemical potential:

w(�) = �
∑

n

(
1

4
�4
n
−

1

2
�2
n
+

3

4

∑

m>n

�2
m
�2
n

)
, � = 3.26. (6)

The coefficient for the boundary term is related to the grain boundary
energy 
 by

k =
3lGB

4

, (7)

where lGB is the diffuse boundary width. The evolution of �, which
determines the overall evolution of the microstructure, follows an L2

gradient descent to minimize Eq. (5). The resulting kinetic evolution
equation, expressed in terms of the variational derivative, is

)�n

)t
= −L

�W

��n
, (8)

where the rate coefficient L is related to the traditional boundary
mobility m by

L =
4

3

m

lGB

. (9)

Phase field simulations are often computationally costly, and this
has led to a variety of methods to accelerate them. Spectral methods can
result in a substantial performance increase [36–38], though this comes
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at the cost of limited resolution of fine features and the restrictive
requirement that the computational domain be periodic. Real-space
(non-spectral) methods instead require strategic meshing techniques,
such as adaptive mesh refinement (AMR) [38], to avoid prohibitively
excessive mesh size. However, as with the discrete interface method,
they can be easily implemented in non-periodic systems and systems
with complex geometry. Therefore, real-space methods with adaptive
mesh refinement are the most appropriate benchmark against which to
compare the present discrete interface method.

In this work, all diffuse boundary calculations are performed us-
ing Alamo, a high performance multiphysics code that uses block-
structured adaptive mesh refinement (BSAMR) with a strong-form elas-
ticity solver to perform diffuse interface calculations [39]. Alamo is
built on the AMReX package, developed by Lawrence Berkeley National
Laboratory [40]. All of the results presented here were run on a desktop
computer and generally completed in less than an hour depending on
the chosen parameters. Of particular interest is the convergence of the
solution with respect to the boundary width, lGB , which determines
the diffuse boundary length scale. The exact solution is recovered as
lGB → 0, but this comes at the expense of increased computational cost.
In this work we are particularly interested in the relationship between
lGB and the discrete interface model counterpart.

2.3. Topological transitions

As stated in the introduction, one motivation for using diffuse in-
terface methods for microstructure evolution is that the implicit nature
of the grain boundaries allows topological transitions to occur without
requiring that all possible transitions be explicitly enumerated. The
purpose of this section is to show that the challenge of enumerating
and implementing such topological transitions for a discrete interface
method is in fact surmountable [22]. This is accomplished by simu-
lating the evolution of a non-generic grain structure that, despite the
grain boundary properties being uniform and isotropic, involves topo-
logical transitions that are not generally handled by discrete interface
methods [19,21]. The initial grain structure in Fig. 2 contains a central
rectangular prismatic grain surrounded by six other grains, the top one
being removed for visual clarity.

For the discrete interface model on the top row, the initial topolog-
ical transitions involve four triple lines collapsing into four triangular
faces in Fig. 2(b); this is a standard topological transition implemented
in nearly all discrete interface methods. The high symmetry of the
initial condition subsequently results in the central grain detaching
from the four side grains in Fig. 2(c), with the four triangular faces that
were previously introduced merging into an annulus around the central
grain. Such transitions and the resulting configurations would be dif-
ficult for other existing discrete interface methods. While the method
proposed by Syha and Weygand [20] could in principle handle such
transitions, their assumption that junction lines are always bounded by
junction points would be invalidated after the transition in Fig. 2(c).
The central grain shrinks to the point of vanishing in Fig. 2(d), and the
structure has reached an effectively stable configuration in Fig. 2(e).
Note that due to the anisotropy of the mesh and the adaptive remeshing
perturbing the mesh slightly, the symmetrical transitions (e.g. collapse
of the vertical triple lines just before Fig. 2(b)) did not occur exactly
simultaneously.

The evolution of the same configuration in the diffuse interface
model is quite different. Each grain’s boundaries were constructed as
the surfaces where the value of the corresponding order parameter
reached 0.5 (the interaction of the underlying grid with the initial
conditions produced the ridges visible in Fig. 2(f)). The central grain
shrinks preferentially in the out-of-plane direction in Fig. 2(g), with
four triangular faces appearing at the corners of the central grain
shortly before the central grain completely separates from the adjacent
grains in the horizontal direction. That the geometric and topological
evolution of the central grain should be different than in the discrete

interface method is expected given the finite width of the diffuse
boundaries. Specifically, whenever two approaching boundaries are
separated by a distance on the order of the boundary width, the gradi-
ents in the order parameter representing the two boundary interact,
changing the effective boundary energy and mobility. This effect is
more than a postprocessing artifact of the surface reconstruction, and
can change the microstructure trajectory in ways that resemble the
differences in behavior between wet and dry foams [41].

While the discrete and diffuse interface methods converge to ef-
fectively the same configurations in this case (Figs. 2(e) and 2(j)),
microstructure trajectories are often unstable with respect to such
perturbations in the proximity of a topological transition. This phe-
nomenon is beyond the scope of the current paper though, a detailed
study of the evolution of surfaces, triple, points, and quadruple points in
the absence of topological transitions (and as is performed here) being
a necessary preliminary.

3. Results and discussion

Three cases are considered in this section to quantify the systematic
error of the discrete interface and phase field methods of simulating
grain boundary motion. The first is a spherical grain which evolves in a
self-similar way; this is a standard configuration that is often used in the
literature to verify that the Turnbull equation is obeyed in the absence
of complicating factors [16,19,42–44]. The second is a TJ that migrates
along a semi-infinite grain boundary [16,45–47], eventually reaching
a steady state configuration with a known profile and velocity [26].
The quantity considered below is the angle of the grain boundaries at
the TJ, though in principle a stricter validation scheme could involve
evaluating the simulation’s ability to precisely reproduce the expected
grain boundary geometry. The third is a columnar hexagonal grain
configuration that migrates along semi-infinite grain boundaries to
allow a study of the steady state evolution of a QP [16,48]. Perhaps the
reason this case appears less often in the literature is that an analytical
solution for the boundary profile is not known; instead, the angles
between grain boundary traces on two cross-sections are evaluated for
convergence and used to compare the two simulation methods. The
grain boundary geometries for the three test cases are described in
their respective sections, have Neumann boundary conditions, and are
constructed to make the grain boundary curvatures comparable.

It is expected that the accuracy of both the discrete and diffuse
interface models will increase with decreasing internal length scale l,
denoted as l = le for the discrete model and l = lGB for the diffuse.
However, the accuracy cannot depend on any absolute length scale
since then the accuracy could be improved simply by uniformly scaling
the grain structure. The accuracy therefore depends on l relative to a
second length scale that is characteristic of the evolving interface. Since
the accuracy should be invariant to the isometries of Euclidean space,
the inverse of the interface’s mean curvature is the natural candidate
for the second length scale, and the accuracy of both models is expected
to depend on the dimensionless product of l and interface’s mean
curvature. More precisely, all of the errors reported in this section are
expected to be power laws in l, with the prefactor depending on the
mean curvature and implementation details in a way that is difficult to
parameterize (only the spherical grain has the same mean curvature
everywhere). For this reason, only the exponent of l is generally
reported in the following.

Many of the quantities reported below are nondimensionalized
following the procedure in Appendix A to facilitate the comparison
of the discrete interface and phase field methods. A tilde indicates a
nondimensionalized variable (with the exception of le and lGB which
are always nondimensionalized) and an analytical prediction is denoted
by the subscript t, e.g., r̃t(t̃) is the analytical prediction for the nondi-
mensionalized radius of the sphere as a function of nondimensionalized
time. The equations of motion of the discrete interface method were
integrated using a second order Runge–Kutta scheme with a maximum
nondimensionalized time step of 1.2500 × 10−5.
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Fig. 2. Geometric and topological changes in a structure where the central grain is initially a rectangular prism surrounded by six grains. (a)–(e) and (f)–(j) show the structure
after corresponding elapsed times in the discrete and diffuse interface models, respectively.

Fig. 3. Initial geometries of the shrinking spherical grain within another grain for the
(a) discrete and (b) diffuse interface methods.

3.1. Spherical grain

The spherical grain case is intended to reveal the error when mod-
eling surface motion in the absence of confounding effects from other
grain boundary network components. One advantage of this particular
choice is that, provided the grain boundary properties are constant and
isotropic, the evolution of a spherical grain is known analytically. As
derived in Appendix B, the sphere shrinks uniformly with radius

rt(t) =

√
r2
0
− 4 m
t (10)

as a function of time. Nondimensionalizing this equation reveals that a
sphere starting with a radius of r̃t(t̃) = 1 vanishes at t̃ = 0.25. The actual
simulations deviate from Eq. (10) both because the initial geometries
shown in Fig. 3 are not precisely spheres and because the Turnbull
equation in Eq. (1) is not precisely followed, though these sources of
error are reduced as the l are made smaller. Since the diffuse interface
model does not perform well when the radius of the sphere approaches
the grain boundary width, the magnitude of the error for the shrinking
grain is quantified by the deviation of the sphere half-life tℎalf from the
analytical prediction tℎalf ,t = 3r2

0
∕(16 m
). When nondimensionalized,

this reduces to t̃ℎalf ,t = 3∕16.
Fig. 4 shows the performance of the two models, with the discrete

interface model on the left and the diffuse interface model on the right.
The top row shows the radius of the sphere as a function of time, where
the color indicates the internal length scale and the exact solution is
in black. The roughness of the curves for the discrete interface model
is due to remeshing to preserve the element quality, and the velocity

in the diffuse interface model falls as the radius approaches the grain
boundary width. The magnitude of the relative error in the radius
as a function of time is shown in the middle row. The error for the
discrete interface model is caused by the magnitudes of the surface
vertex velocities being larger than predicted by the analytical solution,
perhaps as a consequence of the equations of motion being explicit and
uncoupled. That the accumulation of error accelerates with decreasing
radius supports the hypothesis that the error generally depends on the
product of le and the mean curvature. Meanwhile, there are likely two
sources of error that contribute to the results for the diffuse interface
model. The error at early times is a postprocessing artifact that occurs
when constructing isocontours to identify the location of the grain
boundary, effectively resulting in an offset to the sphere radius. The
other source of error relates to the order parameter gradient at a grain
boundary patch being affected by the presence of nearby patches. This
is most visible when the grain is about to collapse and grain boundary
patches on opposite sides of the grain interact, reducing the gradient
magnitude and the grain boundary velocity. Conversely, the mean
curvature of the surface causes neighboring grain boundary patches
to interact, increasing the gradient magnitude and the grain boundary
velocity at earlier times. As with the discrete interface model, the
magnitude of this effect at earlier times is proportional to the product
of lGB and the mean curvature.

The bottom row of Fig. 4 shows the half-life error |t̃ℎalf − t̃ℎalf ,t| as a
function of the internal length scale. A conjugate gradient minimization
algorithm and bootstrapping were used to fit |t̃ℎalf − t̃ℎalf ,t| to a power
law in the internal length scale l. This gives an exponent of 1.37±0.21

for the discrete interface model and 0.678±0.085 for the diffuse interface
model, where the values are the medians and the uncertainties are
half the interquartile range. While the exponents could suggest that
the error of the diffuse interface model decays slower than that of
the discrete interface model with decreasing internal length scale, the
errors in the apparent grain radius due to isocontour construction
during postprocessing do not actually affect the microstructure tra-
jectory. This could motivate using the two-grain configuration with
self-similar evolution analyzed by Mullins [26] in the future since such
postprocessing errors would likely not affect the long-time behavior.

3.2. Triple junction

The purpose of the TJ case is to include a TJ in the moving boundary
while keeping the grain configuration as simple as possible, ideally
allowing the error of the equations of motion for the TJ to be identified
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Fig. 4. Comparison of shrinking spherical grain results for the discrete model (left) and the diffuse model (right); all quantities are nondimensionalized. (Top row) Plot of radius
vs time, with color indicating the length scale and the exact solution in black. (Middle row) Plot of relative error in the radius vs time, with color indicating the length scale.
(Bottom row) Plot of half-life error magnitude as a function of length scale.

Fig. 5. Initial geometries of the TJs for the (a) discrete and (b) diffuse interface methods. The structures have mirror boundary conditions in the lateral directions.

by comparing the results to those for the spherical grain. The initial

geometries of the grain configuration are shown in Fig. 5, are constant

in the out-of-plane direction, and have mirror boundary conditions in

the lateral directions. The rate of volume change of the top grain can

be derived by applying the von Neumann–Mullins equation [26,49] to

the two-dimensional grain configuration in a plane perpendicular to

the TJ. Since there is one triple point per simulation cell in this plane,

the rate of cross-sectional area change of the top grain per simulation

cell width L is �m
∕3, and the rate of volume change of the top grain

can be found by multiplying by the TJ length. Mullins actually went

further and solved for the steady-state profile of the moving boundary

assuming constant and isotropic grain boundary properties [26]. If x

is distance from the left edge of the simulation cell and y is height

from the top of the red grain, then the steady-state profile of the grain

boundary between the red and blue grains is

y(x) = − ln[cos(�x)]∕�. (11)

The width of the simulation cell as defined by the above equation would
be L = 1∕3, and is appropriately scaled to the actual dimensions of the
simulation cell.

The dihedral angle �TJ between the two boundaries of the blue
grain is perhaps the simplest way to evaluate the accuracy of the
geometry of the moving boundary in the vicinity of the TJ. A force
balance argument for constant and isotropic grain boundary properties
(and in the absence of any TJ drag) leads to the condition �TJ ,t = 2�∕3.
Moelans et al. [45] provides equations for the expected rate of area
change and equilibrium junction angle for the more general situation
where the grain boundary energies depend on misorientation, and uses
these to evaluate the relative accuracy of two different diffuse interface
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Fig. 6. Comparison of �TJ for discrete model (left) and diffuse model (right); all quantities are nondimensionalized. (Top row) Plot of �TJ vs time, with color indicating the length
scale and the exact solution in black. (Bottom row) Plot of the relative error vs length scale.

methods, but does not perform a scaling analysis as is done below. The
expected equilibrium junction angle for the constant and isotropic grain
boundary case is roughly enforced in the initial conditions by defining
the two parts of the moving boundary to be the appropriate sections of
cylinders; while this is not the steady-state profile given by Mullins, it
is sufficiently close for a short initial transient and rapid convergence
to the steady-state condition as is visible in Fig. 6.

As before, results for the discrete interface model are on the left and
those for the diffuse interface model are on the right. The top row shows
�TJ as a function of time, where the color indicates the internal length
scale and the exact solution 2�∕3 is in black. The roughness of the
curves for the discrete interface model is due to the remeshing required
to maintain element quality, and the periodic spikes that appear for the
diffuse interface model are due to the interaction of the adaptive mesh
refinement and the construction of the isocontours. The error in �TJ
(measured as the median of the second half of the time series) is shown
in the bottom row, with the dependence of the steady-state angle on
le for the discrete interface model being a consequence of the linear
elements forcing the grain boundary curvature to be concentrated at
the vertices and edges of the mesh. Specifically, the grain boundary
curvature that is distributed to the TJ edges causes the deviation of
�TJ from the expected value, with the magnitude of the deviation
depending on the product of le and the mean curvature of the adjoining
grain boundary. Identifying the precise location of the TJ and the value
of �TJ is more difficult for the diffuse interface model since the grain
boundary geometry is implicit. The procedure followed here involves
fitting third- and fourth-order polynomial approximations to each side
of the isocontour where the order parameter for the top grain is 0.5.
The triple point location in the plane is then defined to be the point
of intersection of the polynomials, and �TJ is the angle between the
tangent vectors at the point of intersection. This process works well in
the sharp interface limit, but is very sensitive to perturbations in the
solution for larger lGB since there is substantially more error in the
predicted location of the TJ with respect to the simulation size. The
occasional deviations that are observed in the steady-state correspond
to BSAMR re-gridding events.

Fitting a power law in the internal length scale l to |�TJ − �TJ ,t|∕�
gives an exponent of 0.91 ± 0.20 for the discrete interface model and
1.45 ± 0.13 for the diffuse interface model, where the values are the
medians and the uncertainties are half the interquartile range. The
additive offset of (−0.005 ± 0.011)� to the expected value of �TJ for

the discrete interface model is entirely consistent with the TJ angle
converging to the equilibrium angle in the le → 0 limit, though at
a lower rate than the half-life error magnitude in Fig. 4. This is not
unexpected though, since the TJ can be thought of as a jump condition
in the tangent plane to the grain boundary that is both difficult to
accurately reproduce with a finite element mesh and is not present
in the spherical grain case. While the exponent for the diffuse case is
nominally higher, this is not reflective of the trend observed for small
lGB where the saturation in the error is likely the result of inaccuracy in
the postprocess calculation of the angle. The higher exponent therefore
does not necessarily indicate better convergence.

3.3. Quadruple point

As with the TJ case, the grain structure for the QP case consists
of a top grain above several columnar grains. The grain boundaries
of the top grain migrate down the simulation cell, consuming the
columnar grains and eventually reaching a steady-state profile, though
an analytical solution for this profile is not known. The configurations
of columnar grains for the discrete and diffuse interface models are
shown in Figs. 7(a) and 7(b) respectively, with the hexagonal cross-
sections of the columnar grains clearest for the discrete interface model;
the BSAMR mesh makes simulations of rectilinear domains like the one
in the figure strongly preferable for the diffuse interface model.

Following the initial transient, the steady-state profile is examined
on the two planes indicated in Fig. 7(c), one along a minor diameter of
the central grain and bisecting a TJ, the other along a major diameter
of the central hexagonal grain and containing a QP. The angles along
these profiles at the intersections with the TJ and the QP are reported in
Figs. 8 and 9. While the equilibrium angle at the TJ should be 2�∕3 (the
same as for the TJ in Section 3.2), the curvature of the grain boundaries
in both principal directions could change the rate of convergence to
2�∕3 with decreasing l compared to the TJ case. As for the equilib-
rium angle at the QP, an infinitesimal neighborhood of the QP will
contain triple junction lines in a tetrahedral configuration connected
by flat grain boundary surfaces provided the principal curvatures of
the grain boundaries are finite. This allows the equilibrium angle of
cos−1(−1∕

√
3) ≈ 0.696� at the QP along the major diameter to be found

by geometrical considerations.
Starting with the TJ angle, observe that the data points for the TJ

angle error along the minor axis in the bottom row of Fig. 8 closely
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Fig. 7. QP mesh configurations and schematic. (a) Hexagonal columnar grain mesh for the discrete interface model. (b) Hexagonal columnar grain BSAMR mesh in a rectilinear
domain for the diffuse interface model. (c) Locations of QP and TJ along major and minor lines.

Fig. 8. Comparison of minor axis results for the QP case for the discrete model (left) and diffuse model (right); all quantities are nondimensionalized. (Top row) Plot of the
measured TJ (minor diameter) angle, with color indicating the length scale and the exact solution in black. (Bottom row) Plot of the relative error in the TJ angle with respect
to length scale.

resemble those for the TJ angle error in the bottom row of Fig. 6.
This indicates that the nonzero second principal curvature of the grain
boundaries along the TJ lines in the QP case does not have a significant
effect on the error in the equations of motion, and is consistent with the
expectation that the error should scale with the mean curvature (the
sum of the principal curvatures). Fitting a power law in the internal
length scale l to |�TJ − �TJ ,t|∕� gives an exponent of 0.927 ± 0.223 for
the discrete interface model and 0.85 ± 0.50 for the diffuse interface
model, with both models converging to the expected value. While the
exponent for the discrete interface model is nearly identical to that for
the TJ case, the lower exponent for the diffuse interface model is likely
a consequence of a power law fitting the data relatively poorly; observe
that the TJ angle error for the diffuse interface model does not fall on
a line on a log–log plot, and instead seems to saturate at a lower bound
set by the angle estimation procedure in postprocessing.

For the QP angle, the final values for the discrete interface model
follow a power law in l that converges to an angle of (0.694 ± 0.001)�

with an exponent of 0.958±0.026, whereas the respective values for the
diffuse interface model are (0.707±0.011)� and 0.85±0.45; the limiting
values for both the discrete and diffuse interface models effectively
coincide with the exact value. It is significant that the errors for all
of the discrete interface results in Sections 3.2 and 3.3 decay with
exponents that are close to one. The discrete interface method uses
linear elements that approximate the grain boundary geometry with
first-order accuracy, meaning that an exponent of one is the best possi-
ble result. It is likely that higher-order elements would need to be used

to substantially increase the rate of error decay with le. The irregularity
in the exponents for the diffuse interface model in Sections 3.2 and 3.3
is attributed to the error in the polynomial algorithm used to extract the
grain boundary profile. Examination of Figs. 6 and 8 indicates that this
functions as a source of random error that is larger for highly diffuse
boundaries but vanishes in the sharp boundary limit.

4. Performance

When selecting a numerical method in practice, computational cost
is often nearly as much a concern as the accuracy of the simulated
behavior. This section specifically considers the dependence of the
discrete interface method’s computational cost on the internal length
scale le; given that the diffuse interface method’s implementation [39,
40] is considerably more mature than that of the discrete interface
method [22,24], and our concern is with asymptotic behavior rather
than implementation specifics, a comparison with the diffuse interface
method is omitted. Suppose that the main contribution to the com-
putational cost is evaluating the equations of motion for the grain
boundary vertices. The number of such vertices is expected to depend
on the internal length scale as l

−2
e
. If the velocity of the vertices is

independent of le, then the time step length should decrease as le

to keep the vertex displacement shorter than the characteristic edge
length and prevent mesh element inversion. This would imply that the
overall computational cost should scale with l

−3
e
, or as the product of
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Fig. 9. Comparison of major axis results for the QP case for the discrete model (left) and diffuse model (right); all quantities are nondimensionalized. (Top row) Plot of the
measured QP (major diameter) angle, with color indicating the length scale and the exact solution in black. (Bottom row) Plot of the relative error in the QP angle with respect
to length scale.

Fig. 10. The scaling of the normalized runtime and the normalized number of grain
boundary vertex calculations for the spherical grain case as a function of le.

the number of grain boundary mesh vertices and the number of time

steps for a given overall simulation time.

Fig. 10 shows the scaling of the normalized runtime cost and nor-

malized number of grain boundary vertex calculations ncalc =
∑

j nvb ,j
,

where nvb ,j
is the number of grain boundary vertices at time step j,

for the discrete interface method. These scale as l
−4.088
e

and l
−4.081
e

,

respectively, for small le where the computational cost of the vertex

calculations is expected to dominate. This confirms that the overhead of

the discrete interface method (mesh management, enumeration of topo-

logical transitions, etc.) is relatively small compared to the evaluation

of the equations of motion. This overhead includes the local remeshing

operations that are used to maintain the mesh quality and that occur

at a frequency proportional to the time required for the interface to

travel a distance le. Further evidence that the computational cost of

the remeshing operations is small relative to that of evaluating the

equations of motion is given in Ref. [22], which also reports results for

the evolution of a more extensive grain structure. The scaling of the

normalized runtime cost observed here is not consistent with the l
−3
e

scaling expected in the previous paragraph though. This discrepancy is

a result of the length of the median time step scaling as l1.916
e

instead of

linearly; the underlying cause for this time step scaling is investigated

further in Appendix C.

5. Conclusion

The purpose of this work has been to establish the validity and
performance of a recently-developed discrete interface method by com-
parison to analytic solutions and a well-established multiphase field
method. More specifically, the evolution of the simplest configurations
involving surfaces, triple lines, and quadruple points with self-similar
behavior given constant and isotropic grain boundary properties are
used to quantify the error in position and junction angles as a function
of the degree of refinement. The boundary types are simple enough
to be amenable to analysis, yet complex enough to introduce differ-
ent systematic errors over the course of their evolution. Despite the
approaches for simulating boundary motion being distinctly different,
our results indicate that both methods converge to the same junction
angles with similar rates. The most significant difference is that when
predicting the half life of the shrinking sphere, the convergence rate
of the diffuse interface method appears to be about half of that of the
discrete interface method.

Although this work assumes constant and isotropic grain bound-
ary properties, both methods were developed with the intention of
performing simulations for anisotropic grain boundary properties. The
integration of an accurate grain boundary energy for arbitrary ori-
entation relationships and interface orientations is a current chal-
lenge in microstructure modeling. Morawiec [50] suggested that the
grain boundary energy could be experimentally obtained as a func-
tion of the grain boundary crystallography by applying the Herring
condition [51,52] to triple junctions imaged by three-dimensional mi-
croscopy techniques [53,54]. Alternatively, molecular dynamics simu-
lations allow direct evaluation of grain boundary properties in bicrys-
tals for a large but not exhaustive subset of the five-dimensional grain
boundary space [55] . While the excessive number of points required
to adequately sample this space of has precluded the availability of
general grain boundary energy and mobility functions in the literature,
there has been progress for particular subsets of grain boundaries [56].
Models have also been presented that can accurately predict grain
boundary energy for most known orientations [57], and have been
used in combination with phase field to predict such behavior as
faceting and disconnection migration [58]. However, in addition to
the general problem of obtaining accurate grain boundary energy, the
nonconvexity of this function induces numerical issues that must be
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handled explicitly [58]. The extension of this present framework in that
direction shall therefore constitute future work.

The performance of the discrete interface model lends confidence in
its ability to yield accurate results for more general and complex mi-
crostructures for which there is no known analytic solution. Moreover,
the performance with unoptimized code indicates reasonable scaling
behavior that is close to the ideal scaling and comparable to that of
alternative methods.
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Appendix A. Nondimensionalization

Define the variable L to be the characteristic length scale of the
grain structure defined in Section 3. For a sphere it is the sphere radius,
for the TJ it is the length of the simulation cell in the direction normal
to the consumed grain boundary, and for the QP it is the hexagonal
grains’s minor diameter. The Turnbull equation in Eq. (1) suggests that
there is a characteristic time scale � = L2∕(m
). The simulations are
performed with nondimensionalized time t̃ = t∕�, nondimensionalized
space x̃ = x∕L, nondimensionalized rate of volume change dṼ ∕dt̃ =

(�∕L3)dV ∕dt, etc.
With respect to the quantities defined in Section 2.1, suppose that

�l(t̂i) = 0, �0 = 0, �1(t̂i) = 0, and that 
(n̂ij ) and �2(n̂ij ) are constants.
The governing equations of the discrete interface model then reduce to:

F =



2

∑

i

‖ti‖
∑

j∶{i,j}∈�

n̂ij × t̂i, (A.1)

D =
�2

6

∑

i,j∈�

‖ti × tj‖(n̂ij ⊗ n̂ij ), (A.2)

v = D−1F . (A.3)

The nondimensionalized versions of these equations are

F̃ =
F

L

=

1

2

∑

i

‖t̃i‖
∑

j∶{i,j}∈�

n̂ij × t̂i, (A.4)

D̃ =
D

L2�2
=

1

6

∑

i,j∈�

‖t̃i × t̃j‖(n̂ij ⊗ n̂ij ), (A.5)

ṽ =
�

L
v =

�


L2�2
D̃

−1
F̃ , (A.6)

where �2 = 3∕m when the triple line and quadruple point drags vanish;
this can be derived by requiring that the limiting behavior of a small
spherical cap coincides with the predictions of Eq. (1).

The corresponding nondimensionalization of the multiphase field
governing equations in Section 2.2 yields

)�

)t̃
= −�L

�W

��n
=

)w̃

)�n
+ k�̃�n, w̃ = w� L, �̃ = �Lk�. (A.7)

In this work, all multiphase field calculations are performed with
dimensional values and then nondimensionalized for comparison to
discrete interface simulations.

Appendix B. Spherical grain

If grain boundary properties are constant and isotropic, then the
evolution of a spherical grain is self-similar and can be completely
described by the radius rt(t) as a function of time. Since the mean
curvature is K = 2∕rt, Eq. (1) implies that

drt∕dt = −2 m
∕rt. (B.1)

Setting t0 = 0 and rt(0) = r0 and integrating gives

rt(t) =

√
r2
0
− 4 m
t (B.2)

as the solution to this differential equation. Since the characteristic
length scale for a sphere is r0, nondimensionalizing reduces this to

r̃t(t̃) =
√
1 − 4t̃ (B.3)

for the black curve in Fig. 4.

Appendix C. Scaling analysis

As described in Section 4, while the computational cost of the
discrete interface method is expected to scale as l−3

e
, the actual scaling

is instead l
−4.089
e

. Closer investigation revealed that the time step could
decrease or increase by multiple orders of magnitude depending on
the presence of various local mesh configurations. The boundary trian-
gles exert capillary forces only in the boundary plane, yet contribute
drag forces only in the out-of-plane direction. This allows vertices
on nearly-flat grain boundary sections to experience arbitrarily large
lateral velocities, slowing the simulation down as the time step is
reduced to prevent element inversion. The discrete method simulations
in Section 3.1 include an isotropic contribution DI,d = A2

m
∕(md)I to the

drag tensor such that v = (D+DI,d )
−1F , where A2

m
is the mean triangle

area over the whole simulation, m is the mobility, and d = 1000 is a
drag ratio. Decreasing the drag ratio reduces the lateral velocities, but
also slows down the actual motion of the boundary and introduces a
systematic error.

As an alternative, a contribution to the drag tensor that only acts in
the in-plane directions could be constructed as follows. For simplicity,
consider a closed disk of coplanar triangles around a vertex. Iterating
over each grain boundary triangle �ij adjacent to the central vertex,
find the relative positions of the other vertices from the central vertex
pi and pj and construct the outer product of the difference pi − pj
with itself. Let �max be the largest eigenvalue of the sum of the
outer products, and define the matrix C =

∑
i,j∈�(pi − pj ) ⊗ (pi −

pj )∕�max. The anisotropic drag tensor contribution Da,d = A2
m
∕(md)C

by construction has no effect on the grain boundary motion in the
plane normal direction. This should allow the lateral velocities of
boundary vertices to be reduced while introducing less systematic error
in the motion of non-planar boundaries than for an isotropic drag. An
example triple junction mesh configuration is shown in Fig. C.11 to
qualitatively demonstrate the effect of different drag tensor correction



E. Eren et al.

Fig. C.11. The effect of different drag tensor correction terms on the resulting velocity.
The capillary force is colored black and the velocities corresponding to different
correction terms are differentiated by color. Each vector is scaled relative to the
maximum magnitude among the velocities.

Fig. C.12. The scaling of the median time step with le for the three drag tensor
correction terms.

terms. Although the velocity associated with DI,d aligns with the force
direction faster with increasing d, the velocity term in the vertical
direction is also attenuated more compared to Da,d .

The difference in the expected and the actual scaling of the cost
can largely be attributed to the non-linear scaling of the median time
step dtmed shown in Fig. C.12. It scales as l

2.010
e

for Da,10 and l
1.916
e

for DI,1000 and DI,10. Overall, Da,10 allows larger time steps and has a
better accuracy, though the improvement is not significant.
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