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Abstract 11 

Species ranges are shifting in response to climate change, but most predictions disregard 12 
food-web interactions and, in particular, if and how such interactions change through time. 13 
Predator-prey interactions could speed up species range shifts through enemy release or create 14 
lags through biotic resistance. Here, we developed a spatially explicit model of interacting 15 
species, each with a thermal niche and embedded in a size-structured food-web across a 16 
temperature gradient that was then exposed to warming. We also created counterfactual single 17 
species models to contrast and highlight the effect of trophic interactions on range shifts. We 18 
found that dynamic trophic interactions hampered species range shifts across 450 simulated food 19 
webs with up to 200 species each over 200 years of warming. All species experiencing dynamic 20 
trophic interactions shifted more slowly than single-species models would predict. In addition, 21 
the trailing edges of larger-bodied species ranges shifted especially slowly because of ecological 22 
subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally 23 
novel species, novel interactions, and productive species, thus maintaining historical community 24 
compositions for longer. Current forecasts ignoring dynamic food-web interactions and 25 
allometry may overestimate species’ tendency to track climate change. 26 
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Introduction 31 

Species ranges are shifting in response to climate change and variability [1–3]. These 32 
spatial shifts in species ranges are having an impact on ecosystem functions [4,5] and the 33 
provision of ecosystem services with subsequent impacts on local economies [6]. Most efforts to 34 
project how and why species ranges are shifting have focused on the direct impacts of climate 35 
change on individual species [7–9]. These “one at a time” species projections reveal substantial 36 
potential for reoganized and novel community compositions [10,11]. However, food-web 37 
interactions among species can also affect the rate and direction of species range shifts [12–14]. 38 
A key lesson so far is that competition can keep species from shifting with warming [12], a 39 
prediction recently corroborated experimentally [15]. However, much less is known about how 40 
the combination of trophic interactions and warming simultaneously affect geographic shifts in 41 
species ranges, despite their anticipated importance [16]. To date, most spatially explicit studies 42 
of species range shifts have not accounted for changes in trophic interations in a warming world 43 
[17–19]. 44 

Several food-webs characteristics are likely to be important for species range shift under 45 
warming. Empirical evidence suggests that many food-webs are strongly organized by body size 46 
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as well as by temperature, particularly those in marine environments [20,21]. Body size and 47 
temperature both mediate organismal metabolic rates and trophic interactions [22]. In these 48 
communities, mortality imposed by predators [23] and competition for prey may prevent novel 49 
species from invading, processes that fall under the term biotic resistance [24–26]. Alternatively, 50 
small prey that escape traditional predators—either because predators are specialists or are the 51 
first to decline [27]—may accelerate prey leading edge shifts more than larger predators, which 52 
has been termed enemy or predator release [28]. Large-scale comparative studies show 53 
ambiguous patterns regarding size or trophic differences in species range-shifts, potentially 54 
because hypotheses have been vague and challenging to test [29,2]. Developing clear 55 
expectations for the influence of food-web interactions on species range shifts will help with the 56 
specification of more precise and testable hypotheses. 57 

Here, we have developed a dynamic and spatially explicit food-web model that is based 58 
on allometric and metabolic relationships. We use this model to develop new theory and insight 59 
into how trophic interactions, and their re-organization through time and space, affect species 60 
range shifts under warming. Multi-species food webs (not just food chains [30]) of multiple 61 
trophic levels can emerge in this model from dispersal and the differences among species in body 62 
sizes and thermal preferences (see [10]). To complement this model, we also created a set of 63 
single-species counterfactual models to clarify expectations in the absence of dynamic trophic 64 
interactions. Our results reveal that trophic interactions slow down the rate of species range 65 
shifts, suggesting that most studies of future range shifts overestimate how well species will 66 
track changing climates. 67 
 68 
Methods 69 
 To explore the influence of species interactions on species range shifts, we developed a 70 
discrete-time and discrete-space food-web model (Eq. 1). This food-web model was initialized 71 
with a basal resource with body size 10-2 g and N=200 heterotroph species distributed across 21 72 
spatial patches x. Temperature across patches at time t=0 spanned 4 to 24 °C (1 °C per patch) to 73 
roughly represent a transect from pole to equator (Figure 1A). Each patch was a square with 74 
sides measuring 471 km. Each species was assigned a body size si (log10-uniformly random 75 
between 100 and 106 g) and optimal temperature for searching prey Ti,opt (uniformly random 76 
between 0 and 34 ºC). Heterotrophs from species i in patch x of biomass Bix consumed the basal 77 
resource (which is described in more detail below) and other species with efficiency l and at rate 78 
fijx that depended on relative predator (i) – prey (j) body sizes [31] while also experiencing a 79 
body-size- and temperature-dependent metabolic cost Dix [32] and while dispersing to each 80 
adjacent patch at a rate 𝜅 day-1 (or fraction of biomass dispersed per day). The cross-patch 81 
dispersal rate 𝜅 was related to the diffusion coefficient m (Table 1:T3), which was varied at the 82 
same levels across all species for the simulation experiments (Table 2). Empirical observation 83 
support no or even negative relationships between body size and dispersal or correlates of 84 
dispersal [33,34], including no correlation between offspring size and pelagic larval duration 85 
[35]. Even though swim speed increases with size [36], it remains unclear how linear speed 86 
translates into dispersal because species have different tendencies to return home. Nevertheless, 87 
we also relaxed the assumption of size-independent dispersal in a sensitivity test (see Eq. A2 in 88 
Supplementary Appendix A). For the main results, we used 𝜅 values of 0, 4.5x10-12, 4. 5x10-9, 89 
4.5x10-6, 4. 5x10-5, and 4.5x10-4 day-1. Dispersal rates above these generated unrealistic results. 90 
For simplicity, we labelled dispersal rates in figures only by magnitudes (omitting the 4.5 91 
multiplier). 𝜅 was set to zero at both ends of the patch array. 92 
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 96 
The basal resource grew chemostatically without temperature dependence (Table 1:T1) 97 

and an initial biomass equal to the maximum biomass of 5 gm-3, which is around the upper 98 
bound of global mesozooplankton estimates (after wet weight conversion) [37]. It may be 99 
reasonable to assume that basal growth and maximum biomass are relatively temperature 100 
independent compared to individual heterotrophs (fish), since organisms of around 10-2 g in size 101 
have similar biomass across latitude [37]. We do not address complexity at or below the basal 102 
level; instead we aim for a stable representation of this food web component. Heterotroph 103 
species consumed according to a Type III functional response (fijx) (Table 1:T2) with search rate 104 
vijx and handling time 𝜏ix [38] (Table 1:T6 and T7). We chose a Type III because of its stabilizing 105 
properties that generate realistic food web complexity and species richness [39]. The search rate 106 
vijx of predator i on prey j was a skew normal function of temperature Tx (Table 1:T15) such that 107 
consumers could not feed if they were far from their optimal temperature. Production of a 108 
species was defined as consumption minus predation across all patches, which equaled the rate 109 
of biomass loss to predation (see Eq. A3 in Supplementary Appendix A). Table 1 contains the 110 
detailed equations and Table 2 provides definitions, values, and references for parameters 111 
corresponding to a typical ectotherm marine food-web. A detailed explanation of the equations in 112 
Table 1 is provided in the Supplementary Appendix A. In summary, metabolic cost rises with 113 
size and temperature, handling time decreases with predator size and temperature, and search 114 
rate decreases with predator size and is maximized at preferred prey size and temperature (Figure 115 
1A). 116 
 The model was run forward at daily timesteps for 1600 to 2400 years (varied randomly to 117 
avoid phase effects of any potential cycles) with stationary temperatures. This “spin-up” phase 118 
was used so that population dynamics settled into a quasi-equilbrium, similarly to how Earth 119 
System Models are initialized [40]. The daily timesteps are comparable to other large marine 120 
ecosystem models [41], which not only accounts for the short generation time of smaller 121 
organisms, but also describes feeding and metabolism dynamics. After this spin-up period, which 122 
was observed to maintain stable biomass trajectories across a reasonably high species diversity 123 
of three trophic levels, gradual warming was imposed as a 3 °C warming over 200 years at all 124 
patches (Figure 1B&C). The warming scenario was in line with current ocean warming 125 
projections [42]. We replicated these simulations 40 times with independent log-uniformly 126 
random initial biomass for each species and patch between 2.2x10-15 and 2.2x10-10 gm-3. 127 

During the simulations, we recorded shifts in the centroid of each species’ range (a 128 
species’ average location weighted by biomass), leading range edge (2.5th quantile of biomass 129 
starting from the coldest patch), trailing range edge (97.5th quantile biomass), and range size 130 
(patches from leading to trailing edge). Given the spatial gradient in temperatures, isotherms 131 
shifted three patches towards the cold region, so a 100% range shift corresponded to a three-132 
patch shift. We also recorded the percentage of the local species and species pairs that were 133 
novel or that were extirpated after warming, with presence meaning a local biomass above the 134 
floating-point error (2.2x10-16 gm-3 in Matlab). The percentage of novel species pairs was 100 135 
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times the global number of species pairs that were found together in any patch after but not 136 
before warming, divided by the sum of coexisting pairs after warming. The percentage of 137 
extirpated species pairs was 100 times the global number of species pairs that were found 138 
together in any patch before warming but lost after warming, divided by the sum of coexisting 139 
pairs before warming. For size-specific analyses, we divided the results into small species (102 to 140 
103 g body-weight) and large species (105 to 106 g body-weight). Species with leading edges in 141 
the coldest three patches before warming were omitted from the analyses to avoid edge effects, 142 
since these species would run out of room to track a 3 ºC warming. 143 

For comparison, we fit counterfactual single-species models to species biomass outcomes 144 
during the no-warming spin-up period in the food-web models, except that dynamic trophic 145 
interactions were removed (Eq. 2). These models capture the single-species equivalent of 146 
dynamics in food webs, which can then be used to project what is expected if only species 147 
characteristics and not food web interactions respond dynamically to warming. Each species 148 
experienced metabolic costs and relative intrinsic growth just as specified in the food-web 149 
models. However, temporally constant maximum (intrinsic) growth rates (ri) and self-150 
competition (ai) rates were specified instead of dynamic consumption and predation terms, 151 
consistent with a single species model:  152 

 153 
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Biomass was labelled with tilde to distinguish the counterfactual projections from the 156 

food web outcomes. We included a skew normal function 𝜔!" of temperature Tx (Table 1:T15) so 157 
that realized growth rate declined to zero if species were far from their optimal temperature. To 158 
estimate the two parameters ri and ai that best matched the species in the food-web models, we 159 
needed to match long-run production in addition to biomass (two equations to solve for two 160 
parameters). We defined production 𝑃%!" in the model as growth minus metabolic cost and a 161 
portion (1/c) of intraspecific competition. We partitioned intraspecific competition this way 162 
because, by definition, competition can come from either suppressed birth and growth or 163 
increased mortality, the latter being interpreted here as production through a loss effect attributed 164 
to conspecifics. 165 
 166 
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 168 
In this formulation, c controls whether competition results in production due to increased 169 

mortality (c=∞), no production due to suppressed birth (c=1, which also implies no net 170 
production in Eq. 3), or somewhere in between. For each species i from the food-web 171 
simulations, we recorded the average biomass and average production (consumption minus 172 
metabolism) from the transient no-warming period of the food-web simulation. We then fit the 173 
model’s equilibrium biomass (from solving Eq. 2) and production (Eq. 3) against these modeled 174 
data after fixing c for all species. We repeated this across a range of c to find the value that 175 
produced the closest match between the aggregate community biomass and production and the 176 
food-web’s total biomass and production (minimum sum of squares divided by each variable’s 177 
magnitude) (Table S1). This phenomenological single-species model resembles what a scientist 178 
might do with historical data if trying to project single species shifts during the warming period. 179 
This model can also be understood as a counterfactual to the food-web model, one with similar 180 
species biomasses and productions but with dynamic trophic interactions taken out (Figure S2). 181 
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The sensitivity of the single-species projections to parameterization was tested using two 182 
alternative values of c that underestimated and overestimated production (Table S1), which 183 
should respectively understimate and overestimate intrinsic growth rate, a key parameter that 184 
could influence shifting rates.  185 

We explored the sensitivity of our food-web results by also using alternative values for 186 
the reference predator-prey mass ratio ⍺R, the activation energy Ea, the fraction of time hunting 187 
Fh, the consumption efficiency l (see Table 2), and the size dependence of dispersal rate 𝜅. 188 
These alternative values included, respectively, the lower end of ⍺R [31], the Ea corresponding to 189 
all organisms rather than ectotherms only [32], half of the original Fh [43], half of the original l 190 
[44], and a 𝜅 that increased with size based on swim speed [36] (Supplementary Appendix A). 191 
We also explored randomly defining PN=10 to 50% of all prey as inedible independently for each 192 
predator, which increased specialization and the potential for enemy release of prey (Table 2). 193 
Higher specialization led to food web collapse. Finally, we conducted fine-resolution sensitivity 194 
analyses on ⍺R, Ea, and 𝜅 (Table 2). For each alternative parameter value, 10 replicates were run 195 
at the mean dispersal rate of 10-12 day-1. In sum, 21x10 food webs were simulated for sensitivity 196 
tests, bring the total simulations including those in the main analysis to 450 food webs. 197 

 198 
Results 199 
 Under warming, the food-web model revealed aggregate biomass shifting toward the 200 
colder regions, as expected (Figure 1B & D). Snapshots of food web structure (mapped by the 201 
two traits of body size and optimal search temperature) over space and time revealed that some 202 
part of the original local communities (blue in Figure 1H) shifted together (shown as red in 203 
Figure 1E), while other species shifted less or even stayed in their original patches to rewire 204 
incoming communities (overlapping blue and red species in Figure 1E). There is also evidence of 205 
enemy release, as one species moved from low biomass in its original patch (sp.1 in Figure 1H) 206 
to high biomass (Figure 1F&G). Even though larger predators of sp. 1 were present in its new 207 
thermally optimal patch (Figure 1E), they were saturated by the availability of other prey that 208 
were at a more optimal size for foraging.  209 

Range sizes before warming averaged from 1.4 to 5.2 patches as dispersal rate increased 210 
from 0 to 10-4 (with larger increase for larger species, Figure S1), corresponding to distances of 211 
1000 to 4000 km that are typical for marine species [45]. On average, species’ centroids, leading 212 
edges, and trailing edges tracked thermal shifts more closely at higher dispersal rates (Figure 2A, 213 
C, D, solid blue curves). Species range sizes, on the other hand, on average contracted for slow 214 
dispersal rates and expanded for rapid dispersal rates (Fig. 2B, solid blue curve).  215 

Across body sizes, all species exhibited similar leading edge shifts (Figure 2C solid 216 
curves), but centroids and trailing edges shifted much more for small (102 to 103 g body-weight) 217 
than large (105 to 106 g body-weight) sized species (Figure 2A, D solid cyan vs. red curves). 218 
These differences in trailing edge dynamics for large and small species meant that ranges among 219 
small species contracted at slow dispersal rates, while large species ranges expanded at all but 220 
zero dispersal rates. 221 
 In the food-web model, locally novel species and novel species pairs (pairs that coexist in 222 
any patch) were more common at intermediate dispersal rates (Figure 2E, F solid blue curves). In 223 
contrast, the highest percentage of species experienced local extirpation and the highest 224 
percentage of historical species-pairs were lost at low dispersal rates (Figure 2G, H solid blue 225 
curves). Large species were more likely to begin coexisting with novel species than were small 226 
species (Figure 2F solid cyan vs. red curves), consistent with the lag in trailing edge range shifts 227 
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among large species. Small species were more likely to be locally extirpated than were large 228 
species, also consistent with lags in large species’ trailing edges (Figure 2G solid cyan vs. red 229 
curves). Similarly, historical pairs of coexisting small species were more likely to be lost than 230 
pairs of large species at low dispersal rates (Figure 2H solid cyan vs. red curves).  231 
 The single-species counterfactual models suggested that, in the absence of dynamic 232 
predator-prey interactions, all species would closely match the thermal shift even at the lowest 233 
non-zero dispersal rate (Figure 2A, C, D dashed curves). In addition, single-species models only 234 
predicted substantial range contractions for a zero dispersal rate (Figure 2B dashed curves). 235 
Compared to the food-web model, single-species models over-predicted the distance that species 236 
shifted (Figure 2E, G, H) and under-predicted changes in range size (Figure 2F). Single species 237 
models also over-predicted the percentage of locally novel species and of novel species pairs as 238 
compared to the full food-web dynamics (Figure 2E, G). Finally, single-species models failed to 239 
resolve the large differences among body sizes in distance shifted, unlike for the food-web 240 
models in which larger species tended to shift their trailing edge less and expand range size more 241 
(Figure 2). The lack of body-size differences in range shifts appeared even though the single-242 
species model assumed that intrinsic growth rate ri was a decreasing function of size across all 243 
simulations (Eq. 2), consistent with metabolic theory that was also embedded in the food-web 244 
model. 245 
 Community aggregate statistics showed differences in overall stock, flow, and diversity 246 
metrics between food-web and single-species projections under warming. Community biomass 247 
and production increased in the food-web model after warming at dispersal rates higher than 10-248 
12 day-1 (Figure S3A & B). In contrast, the single species model projected on average little to no 249 
changes to biomass and production after warming, along with large differences in production 250 
changes across replicates. However, these food-web changes were accompanied by a greater 251 
number of species that became unproductive (production<0) after warming, whereas the single-252 
species model showed no increase in unproductive species at all non-zero dispersal rates (Figure 253 
S3C). Since production is consumption minus metabolic cost, and all other terms (not counting 254 
migration since production here is computed globally) contributed negatively to net growth in 255 
Eq. 1, any existing unproductive species were on extinction trajectories – although they may 256 
have had non-extinction equilibria, especially if temperatures stabilized again during the 257 
protracted transient periods [46]. In any case, the modeled food-webs had a longer transient 258 
approach to equilibrium than single species projections. Community composition was also 259 
impacted by food webs, which showed a decline in mean body size not predicted by single-260 
species projections (Figure S3D). In term of biodiversity metrics, both food-web and single-261 
species projections agreed only a few global extinctions would occur at non-zero dispersal rates 262 
(Figure S3E). Average alpha diversity, or local richness, showed an increase at intermediate 263 
dispersal rates and a decrease otherwise (Figure S3F). 264 
 Metrics of trophic level in conjunction with diversity suggest that the model generated 265 
qualitatively realistic food webs. At all non-zero dispersal rates, local richness was much higher 266 
than mean and maximum trophic levels of 2.6 and 3 with 1 being the basal level, which remained 267 
similar before and after warming (Figure S3G&H). This result meant that multiple species shared 268 
similar trophic levels and formed food webs rather than food chains. With no dispersal, simple 269 
food webs of about 5 species spanning two heterotrophic levels still emerged initially, but after 270 
warming they approached food chains (two species). These results gave confidence that our 271 
model effectively captured known features of natural food webs. 272 
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 The single-species shift projections were insensitive to alternative values of the parameter 273 
c that controlled production (see Table S1; results indistinguishible from Figure 1). Sensitivity 274 
analyses that changed the portion of potential prey being inedible PN for each species (i.e., more 275 
specialists when PN>0), the activation energy Ea, the reference predator-prey mass ratio ⍺R, the 276 
fraction of time hunting Fh, the consumption efficiency l (Table 2), and size-dependent dispersal 277 
rate 𝜅 (Supplementary Appendix A) affected the magnitude of shifts and assemblage changes, 278 
but they had little to no impact on the ordering of the changes by body size or food-web vs. 279 
single-species models (Figure S4-S8). The notable exceptions were in leading edge shifts, for 280 
which low activation energy, low or high predator-prey mass ratios, and high levels of inedible 281 
prey reversed the trends from being slightly lower to slightly higher for smaller species relative 282 
to larger species (Figures S5C, S6C, S7C). In term of magnitude of shifts, the results were most 283 
sensitive to activation energy, with values lower than expected for marine ecosystems creating 284 
species shifts that were quite similar to single-species projections (Figure S4F). The sensitivity 285 
tests suggested that food-web interactions generally impede species range shifts under warming, 286 
and more so for large predatory species, across plausible assumptions about food-web structure 287 
and dispersal rates. 288 
 289 
Discussion 290 
 We developed a spatially explicit food-web model and a set of single-species 291 
counterfactual models to explore the role of species interactions in either facilitating or hindering 292 
species range shifts in a warming world. The results of the food-web model revealed that 293 
dynamic trophic interactions overall hamper species’ abilities to shift their spatial distributions in 294 
response to warming temperatures at both leading and trailing range edges. In addition, trophic 295 
interactions created differences among species of different trophic levels, with larger-bodied top 296 
predators persisting longer than smaller prey in historical habitats. These delayed extirpations 297 
created a lag in the trailing edge shift and an overall range expansion for these large species. In 298 
contrast, smaller bodied species experienced a contraction in their spatial distributions. Diversity, 299 
range size, trophic level outcomes, and snapshots of species relationships all resembled 300 
qualitative features of real food webs. These results highlight the importance of accounting for 301 
both spatial dispersal and trophic interactions when considering the impact of climate change on 302 
species ranges and assemblages.  303 

Dynamic trophic interactions slowed species’ range shifts compared to expectations from 304 
single-species models. This result complements previous theoretical studies showing that 305 
competition can limit range shifts [23,12] and suggests that biotic resistance processes [25,26] 306 
are likely to be stronger than enemy release effects on range shifts [28]. We found this pattern 307 
even when a high portion of potential prey were inedible, a scenario that allowed for more 308 
opportunities to escape enemies. High levels of inedible prey did lead to greater leading edge 309 
shifts among smaller as compared to larger species, as expected from enemy release, but this did 310 
not alter the overall shift lags imposed by food webs. Our results also complement models 311 
suggesting that competition among predators for prey will slow down range shifts [47]. In nature, 312 
it is difficult to isolate food-web effects, but one approach is to compare communities in 313 
protected area with those not in such areas, with protection generally preserving stronger 314 
predation processes. In temperate reef communities protected from fishing, for example, high-315 
trophic-level species are more abundant than in unprotected communities [25]. Despite warming 316 
water, these protected communities had fewer biodiversity changes and fewer colonizations by 317 
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novel species, as compared to unprotected communities [25]. The example appears to support the 318 
theoretical prediction that natural food-web interactions would slow range shifts. 319 

Smaller species shifted more than larger species in terms of centroids and trailing edges, 320 
resulting in range contraction across a wide range of dispersal rates that contrasted with range 321 
expansion for larger species. This difference could occur because smaller species have higher 322 
metabolic rates, faster generation times, and therefore faster extirpation from patches that are no 323 
longer suitable due to warming. However, our counterfactual single-species model that also 324 
incorporated higher metabolic rate in smaller species did not show a large difference in shift 325 
patterns across size, suggesting that a size-metabolism explanation is not sufficient.  326 

Instead, food-web interactions are a stronger explanation for the lag among larger bodied 327 
species. Smaller species preyed to a greater extent upon a basal resource that was not 328 
temperature sensitive. Consequently, the primary limit on small heterotrophs’ growth was their 329 
own temperature-sensitive search rate. In nature, small marine organisms that heterotrophs 330 
depend on may indeed be relatively temperature insensitive due to high species diversity [48] 331 
and genetic diversity [49] that assist in adaptation to changing conditions. However, nutrient and 332 
ecosystem dynamics also modulate small organisms in nature, which we did not examine in our 333 
model [50]. In contrast, larger species near their trailing range edge were subsidized by novel 334 
prey that expanded into new habitat (despite also facing the same temperature-dependent feeding 335 
limitations that smaller species experienced). The increase that we observed in community 336 
biomass and production in food-webs after warming likely reflects the same process. Since large 337 
species had no production (they were not consumed), the increase in community production can 338 
be attributed to smaller species. This influx of smaller species as prey at the trailing edges of 339 
large species would have helped prevent predator extirpation. This phenomenon may be further 340 
amplified if prey defense evolution is also considered, since prey are likely to be naïve to novel 341 
predators [51].  342 

The ecological subsidy from colonizing species that benefits top predators would not 343 
appear in closed food-webs without the possibility of colonization. Closed food webs generally 344 
suggest that top predators are the most vulnerable to changing climate [27]. The persistence of 345 
large predators in their historically occupied patches, in turn, imposed a top-down control that 346 
slowed the rate of colonization by small prey relative to models without food-web interactions. 347 
This effect is consistent with previous findings that predators have larger effects near species 348 
range edges [52]. These predicted differences among species also align with empirical studies 349 
that find faster shifts in species centroids among small species [2,53].  350 

Although warming led to novel local assemblages (coexisting species-pairs) in both the 351 
trophic and single-species models, the presence of dynamic trophic interactions led to fewer 352 
ecologically novel species assemblages. This finding is contrary to effects from competitive 353 
interactions, which predicted more novel assemblages [12]. Changes in local and global richness 354 
were generally small and similar between food web and single-species projections. The 355 
extinction pattern differs from previous theoretical works, which found extinction to be 356 
exacerbated by competitive species interactions [54]. These results highlight important 357 
differences in the ecological consequences of competitive versus trophic interactions for range 358 
shifts and future communities. 359 

Even though lags in range shifts persisted over 200 years of warming in our simulations, 360 
the increase in non-productive species among warming food-webs suggested that some species, 361 
particularly large species, may eventually have experienced more rapid extirpation at their 362 
trailing edges. Compared to the single-species model, the food-web model suggested longer 363 
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transient dynamics [46] and extinction debt [55], making non-equilibrium phenomena more 364 
important than in hypothetical non-trophic communities. 365 

We modelled food webs across a size range that corresponds to heterotrophic, size-366 
structured food webs characteristic of marine fish communities, which have been a common 367 
focus in ecological modelling [56]. However, size and temperature depedent metabolic theory 368 
can be extended to smaller sizes, including the basal planktonic class [57]. Future research 369 
incorporating a larger size range in food web models would introduce both computational and 370 
theoretical challenges because of different generation times and error propagation from low to 371 
high trophic levels. However, proper inclusion of smaller organisms would also clarify the role 372 
of bottom-up contributions to geographic shifts [58]. While we saw that size dependence of 373 
dispersal across species did not appreciably affect range shift patterns, differences across life 374 
stages may mediate trophic interactions, which can be addressed through individual based or 375 
age-structured modelling. Moving forward, range shift projections will be more informative 376 
when human action [59] and genetic evolution [54] are coupled with ecological dynamics. 377 

Our results show that projecting species range shifts based on single-species distribution 378 
models [9] will likely overestimate any given species’ tendency to keep track with climate 379 
change. Thus, dynamic trophic interactions and body size are important factors for ecological 380 
projections under changing environments. 381 
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Figures 575 
 576 

 577 
Figure 1. Spatial food-web model. A. The heterotrophic consumer i feeds on other heterotrophs 578 
of smaller sizes and, for some consumers, on the basal resource (0.01 g). The rate of biomass 579 
flow from one species (j) to another (i) is determined by search rate (vijx) and handling time (𝜏ix), 580 
which are functions of local temperature Tx, species-specific optimal search temperature Ti,opt 581 
(see example curve), and predator and prey body sizes (si, sj). Metabolic cost (Dix) is dependent 582 
on temperature and body size. The food-web is spatially coupled across 21 patches with an initial 583 
temperature gradient of 4 to 24 °C. B. A snapshot of individual species biomass distributions 584 
across patches before warming (dispersal rate 𝜅 = 4.5x10-9 day-1). C. Time series of species 585 
biomass at patch 11, which is at 14 ºC until year 800 (vertical black line) and warms to 17 ºC by 586 
year 1000. D. A snapshot of individual species biomass distributions across patches after 587 
warming. E-H. Food webs in four patches (patches 8 to 11) from colder to warmer temperatures 588 
along the gradient. Within-patch species are plotted by optimal search temperature (x) and body 589 
size (y) traits, with circle area representing biomass (see legend in H) and lines representing 590 
consumptions above 10-5 gm-3day-1 (line width scaled to log of consumption). Species before 591 
warming are shown in blue, and species after warming are shown in red. The blue species in H 592 
are expected to shift and become the red species in E if they keep up with the thermal shift. 593 
Overlapping blue and red species with identical centers within patch are those that remain in the 594 
original patch after warming. One species (sp.1) is labelled for reference across patches and 595 
temperature change. 596 
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 597 
Figure 2. Range shifts and assemblage changes. Solid lines indicate averages across 40 598 
replicates from the food-web model after warming, while dashed lines indicate corresponding 599 
counterfactual single-species projections. Shades are 95% confidence bounds assuming normal 600 
error. Dots show individual simulations and are jittered on the x-axis to improve readability. Red 601 
indicates species of size 105 to 106 g, cyan indicates species of size 102 to 103 g, and blue 602 
indicates all sizes. For coexisting pairs, magenta indicates pairs that contain one small (102 to 103 603 
g) and one large (105 to 106 g) species. A. Centroid shift measured as the percentage of the 604 
distance that isotherms shifted. B. Range contraction. C. Leading-edge range-shift measured 605 
relative to isotherm shifts. D. Trailing-edge range-shift measured relative to isotherm shifts. E. 606 
Percentage of species locally novel, with 100% corresponding to all species after warming being 607 
absent in each patch initially. F. Percentage of coexisting pairs novel, with 100% corresponding 608 
to all species pairs after warming being unpaired initially. G. Percentage of species locally 609 
extirpated, with 100% corresponding to all species initially in each patch being absent after 610 
warming. H. Percentage of coexisting pairs lost, with 100% corresponding to all initial species 611 
pairs being absent after warming. 612 
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Tables 614 
Table 1. Food-web model equations. Bold symbols are parameters that we vary in this study. 615 
See Table 2 for additional definitions. References for each equation are shown in the first 616 
column. Indices i, j, and k refer to species identity, and x refers to patch location. The 617 
Supplementary Appendix A provides further explanations to the model specifications and 618 
choices. 619 

 620 
  621 

Definition Equation Units 
(T1) change in basal resource [61] ∆"#"
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Table 2. Parameter definitions. Bold symbols are parameters that we vary in our analyses. 622 
Values in parentheses are the alternative parameter values, with † to indicate the value used in 623 
Figure S4 (other alternative values are shown in Figures S5-S7). See Supplementary Appendix 624 
A. 625 

Symbol Definition Value 
A patch area [m2] 471,4292 
⍺D	 body size to metabolic rate power-law constant 18.47 [32] 
⍺l	 body length-mass power-law constant 0.012 [64] 
⍺P body size to biomass production power-law constant 10.85 [62] 
⍺R body size to predator-prey mass ratio power-law 

constant 
2.66 (2.08†, 2.37, 2.95, 
3.24) [31] 

βD body size to metabolic rate scaling exponent 0.71 [32] 
β𝛾 body size-swim speed scaling exponent 0.13 [36] 
βl body length-mass scaling exponent 3 [64] 
βP body size to biomass production scaling exponent 0.761 [62] 
βR body size-predator-prey mass ratio scaling exponent 0.24 [31] 
B0max maximum basal biomass [g m-3] 5 [37] 
Br reference prey biomass [g m-3] 1  
Cd→s conversion factor from days to seconds [s/day] 86400 
Ea activation energy [eV] 0.63 (0.57, 0.6, 0.66, 

0.69†) [32] 
Ec energetic content of organisms [Jg-1] 7000 [56] 
F basal chemostatic dilution rate [day-1] 0.0075 [65] 
Fh fraction of time hunting 0.26 (0.13†) [43] 
k Boltzmann’s constant [eV°C-1] 8.62x10-5 
l consumption efficiency 0.4 (0.2†) [44] 
m diffusion coefficient [m2 day-1] 0, 1, 103, 106, 107, 108 
N number of heterotroph species 200 
𝜎 width of feeding kernel 0.569 [63] 
PN percent of prey inedible 0 (10, 20†, 30, 40, 50) 
Res coefficient for swimming cost [day/m] 3.47x10-5 [36] 
s body mass [g] 0.01, 101-106 
Tx local temperature [°C] 4 – 24 (+3) 
Ti,opt optimal search temperature [°C] for species i 0 – 34 
Toset optimal search temperature offset to align the skew 

normal mode with Ti,opt [°C] 
0.435 

wT search performance standard deviation [°C] 0.884 [66] 
q search rate scaling factor so that skew normal function is 

1 at Ti,opt 
0.622 

𝝃  thermal performance skew -2.7 [12] 
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