

Title: The role of continental shelf bathymetry in shaping marine range shifts in the face of climate change

Running Head: Bathymetric limits on range shifts

Authors:

Zoë J. Kitchel¹* 0000-0002-1588-3470
Corresponding author: zoe.kitchel@rutgers.edu

Hailey M. Conrad²

Rebecca L. Selden³ 0000-0001-7956-5984

Malin L. Pinsky⁴ 0000-0002-8523-8952

Affiliations:

¹Ecology and Evolution Graduate Program, Rutgers University, New Brunswick, NJ

²Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA

³Biological Sciences, Wellesley College, Wellesley, MA

⁴Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ

*Corresponding author address: Department of Ecology, Evolution & Natural Resources, 14 College Farm Road, Rutgers University, New Brunswick, NJ, USA, 08901
P: 848-932-9631 F: 732-932-2587

Keywords: continental shelf, depth, latitude, species distributions, species area relationship, habitat loss, habitat gain

Statement of authorship: MLP and RLS conceptualized study; ZJK and HMC wrote the code and analyzed the data; ZJK and HMC wrote the first draft of the manuscript, and all authors contributed substantially to revisions.

Data accessibility statement: All data used in the following analyses are available publicly. ETOPO2 bathymetric data are available from NOAA, <https://www.ngdc.noaa.gov/mgg/global/etopo2.html>. Continental shelf delineation is available from Blue Habitats, https://www.bluehabitats.org/?page_id=58. Large Marine Ecosystem shapefiles are available from the USGS <https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244>. FAO Major Fishing Areas are available from the FAO, <http://www.fao.org/geonetwork/srv/en/main.home?uuid=ac02a460-da52-11dc-9d70-0017f293bd28>. Code and aggregated data are available on the public GitHub repository, https://github.com/zoekitchel/shelf_habitat_distribution.

105 references, 6 figures, 1 tables, 0 text boxes

Words: 193 Abstract, 4537 Main Text

1 Abstract

2 As a consequence of anthropogenic climate change, marine species on continental shelves around
3 the world are rapidly shifting deeper and poleward. However, whether these shifts deeper and poleward
4 will allow species to access more, less, or equivalent amounts of critical habitats remains unclear. By
5 examining the proportion of seabed area at a range of depths for each Large Marine Ecosystem (LME),
6 we found that shelf area declined monotonically for 22% of LMEs examined. However, the majority
7 exhibited a greater proportion of shelf area in mid-depths or across several depth ranges. By comparing
8 continental shelf area within 2° latitudinal bands, we found that all coastlines exhibit multiple instances of
9 shelf expansion and contraction, which have the potential to promote or restrict poleward movement of
10 marine species. Along most coastlines, overall shelf habitat increases or exhibits no significant change
11 moving towards the poles. The exception is the Southern West Pacific which experiences overall habitat
12 loss with increasing latitude. These changes in shelf habitat availability are likely to affect the number of
13 species these ecosystems are able to support. These geometric analyses help identify conservation
14 priorities and ecological communities most likely to face attrition or expansion.

15
16
17
18
19
20
21
22
23

24

25

26

27

28

29

30

31 **Introduction**

32 Many species in terrestrial and aquatic systems are shifting where they live in response to climate
33 change (Lenoir & Svenning, 2015). Marine species are particularly sensitive to temperature changes
34 associated with climate change, in part because they have evolved in the relatively stable thermal
35 conditions characteristic of the ocean (Pinsky et al., 2019). This high sensitivity, coupled with higher
36 dispersal potential and limited biogeographical barriers have led marine species to track isotherms
37 poleward six times faster than their terrestrial counterparts (Lenoir et al., 2020). In addition, there is
38 evidence that marine species are moving deeper to maintain their thermal niche (Dulvy et al., 2012; Perry
39 et al., 2005; Pinsky et al., 2013; Poloczanska et al., 2016).

40 As species undergo range shifts, they also experience changes in the availability and quality of
41 habitat (Platts et al., 2019). Sufficient habitat area is critical for population viability, and subsequently, for
42 successful range shifts (Opdam & Wascher, 2004). The number of individuals a habitat can support often
43 scales with the size of the habitat (Alzate et al., 2019; Halpern et al., 2005). Larger habitats provide more
44 opportunities for establishment and growth in the case of sessile individuals, and more opportunities for
45 foraging for more mobile individuals (Bender et al., 1998; Griffen & Drake, 2008; MacArthur & Wilson,
46 1967). Many species rely on metapopulation structure across space in order to maintain populations large
47 enough to avoid inbreeding depression and buffer against the risk of extinction due to demographic
48 stochasticity and disturbances (Hanski et al., 1996; Kuparinen et al., 2014). Larger habitats also tend to
49 support higher overall species richness because of increased habitat heterogeneity and reduced likelihood
50 of extinction (Cornell & Karlson, 2000; MacArthur & Wilson, 1967).

51 Continental shelves support productive, complex, and economically and culturally important
52 marine ecosystems (Amoroso et al., 2018; Bell, 2009; Buhl-Mortensen et al., 2012; Gomes et al., 2018;
53 Smith & Brown, 2002). These essential habitats exhibit high nutrient availability due to upwelling and
54 freshwater inputs (X. Chen et al., 2000; García-Reyes et al., 2015). The relatively shallow waters
55 (typically less than 200 m) permit light to penetrate the water column to the substrate, promoting primary
56 production in the form of plant and algal growth (Duarte, 1991; Kahng et al., 2019). On the continental
57 shelf, depth and seafloor area are key components of suitable habitat. Unique biogenic and geologic
58 structures that provide habitat and refuge supporting diverse and productive ecosystems are limited to the
59 continental shelf (Buhl-Mortensen et al., 2012; Malatesta & Auster, 1999; Nagelkerken et al., 2000;
60 Townsend et al., 2004). Many marine species are restricted to living on the continental shelf due to
61 metabolic tolerances, and their reliance on the primary production occurring within the photic zone
62 (Brown & Thatje, 2015; Mestre et al., 2013; Smith & Brown, 2002). It is unlikely that marine species will

63 successfully establish off of the continental shelf even as species make range shifts into deeper waters
64 (Dulvy et al., 2012). In support of this limitation on range shifts, studies have revealed distinct shelf,
65 slope, and abyssal plain species assemblages, and even distinctive clustering within these larger ocean
66 zones (Brandt et al., 2007; Fujita et al., 1995; Pearcy et al., 1982; Rocha et al., 2018).

67 Marine species face heterogeneity in shelf area as they move poleward and deeper to track
68 temperature isotherms. The width of the continental shelf ranges from over 1000 km off the northern
69 coasts of Russia to less than one kilometer off the coast of the southeastern United States (Emery, 1966;
70 Kang et al., 2017). The shelves exhibit high variability in structure across latitudes and depths, often
71 bisected by deep canyons and channels (Heezen et al., 1964; Lastras et al., 2011). How shelf availability
72 will change as species shift due to climate change, however, has yet to be examined. The late Ordovician
73 extinctions provide evidence that lack of shelf habitat due to changes in global climatic conditions can
74 drive global losses in species richness (Finnegan et al., 2016; Sheehan, 2001). Similar barriers are faced
75 by terrestrial species as they shift in latitude and elevation. In some cases, corridors such as latitudinally
76 oriented protected areas can facilitate poleward movement, while in other cases, obstacles such as rivers
77 or human altered landscapes can restrict movement (Beier, 2012; Jha & Kremen, 2013; Thomas, 2010).
78 Shifts of marine species into deeper habitat have been mirrored by terrestrial species shifting to higher
79 elevations (Freeman, Lee-Yaw, et al., 2018; Freeman, Scholer, et al., 2018; Vitasse et al., 2021). Despite
80 the prevailing assumption that montane surface area decreases with elevation and therefore that species
81 will lose habitat as they track temperature upslope, topographic analyses revealed that the relationship
82 between habitat area and elevation differs by mountain range (Elsen & Tingley, 2015). For the majority of
83 mountain ranges, surface area does not decrease monotonically as species move upslope, and in a few
84 select ranges, species will find the largest areas of suitable habitat at the highest elevations (Elsen &
85 Tingley, 2015). However, no comparable analysis has yet been conducted on continental shelf area as a
86 function of ocean depth or latitude. Unlike for terrestrial systems, there is not a dominant expectation in
87 marine ecology for how habitat availability may vary across these axes.

88 The goal of this study is to assess changes in continental shelf area that species will face as they
89 make range shifts into deeper depths or higher latitudes. We evaluate the regional changes in shelf area
90 availability across depths and latitudes in the Pacific, Atlantic, and Indian Oceans. These bathymetric
91 analyses highlight key areas where populations and communities may be enhanced or constrained by
92 continental shelf area.

94 **Methods**95 *Habitat area by depth within LMEs*

96 First, we assessed how continental shelf availability varies across depth at the scale of Large
97 Marine Ecosystems (LME). Because of their distinct bathymetry, hydrology, productivity, and trophic
98 interactions, LMEs are a useful regional unit to assess the extent and impact of depth shifts (Sherman &
99 Alexander, 1986; Sherman & Duda, 1999). We obtained LME delimitations from the ScienceBase Catalog
100 of the United States Geological Survey (*Large Marine Ecosystem Spatial Features*, 2017). We used the
101 continental shelf definition from the Blue Habitats web portal (Harris et al., 2014a, 2014b), which
102 included all submerged area adjacent to land and islands from the low water mark to the point where the
103 slope increased markedly beyond a slope of 1:2000 and towards ocean depths (IHO, 2008). We note that
104 LMEs contain areas deeper than the continental shelf, which is on average ~200m. Conversely, not all
105 continental shelf regions are included by LMEs. Therefore, the LME shapefiles were trimmed to the
106 continental shelf area to focus on continental shelf habitat within LMEs for the depth analyses.
107 Continental shelf areas excluded from LME designation are left out of the depth analyses.

108 We used the ETOPO2 two arc-minute global digital elevation model (DEM) dataset to extract
109 bathymetry for the continental shelf regions within LMEs (NOAA National Geophysical Data Center.,
110 2006). The Blue Habitat shelf delineation primarily includes shallow shelf regions, but we excluded any
111 areas with depths below 2000 meters to eliminate any misclassifications (0.01% of grid cells). We
112 characterized the distribution of shelf area at depth by plotting hypsometric curves for each LME.
113 Because of the deep bathymetry of the Central Arctic (LME 64) and the unique isolation of the Antarctic
114 (LME 61), both polar LMEs were excluded from the analyses. Area in km² at each one meter depth bin
115 was calculated using the area function of the raster package implemented in R (Hijmans, 2020; R Core
116 Team, 2021). We verified that calculating area from projected polygons did not meaningfully change
117 results (comparison in Supplementary Information).

118 We classified the depth distribution of LMEs into five categories based on the skew, modality,
119 and uniformity of the hypsometric curve: Shallow-Dominant, Mid-Dominant, Deep-Dominant, Uniform,
120 and Multimodal (Figure 1). Curves for which we were unable to reject the null hypothesis of a uniform
121 distribution using the Kolmogorov–Smirnov test (p-value > 0.05) were classified as uniform
122 (Kolmogorov, 1933; Smirnov, 1939). When uniformity was rejected, Hartigan's Dip Test was
123 implemented in R to assess modality (Hartigan & Hartigan, 1985; Michaele, 2016). Curves with a Dip
124 Test statistic greater than 0.01 and p-value < 0.05 were categorized as Multimodal. All curves that did not

125 meet the criteria for Multimodal or Uniform were categorized based on skew. Curves with skew values
126 less than -1 were assigned to Deep Dominant, between -1 and 1 to Mid-Dominant, and greater than 1 to
127 Shallow-Dominant.

128 *Habitat area across latitude*

129 To analyze the changes in seafloor area experienced by species shifting poleward, we joined
130 together the continental shelf components of LMEs along each continental boundary. We analyzed
131 changes in habitat availability from low to high latitudes for the West Pacific, East Pacific, West Atlantic,
132 East Atlantic, West Indian, and East Indian continental shelves. For coastlines not contained within LMEs
133 (i.e., southern coast of Sumatra and Papua New Guinea), we supplemented the LME-restricted ETOPO2
134 bathymetric rasters with ETOPO2 bathymetric rasters trimmed to continental shelf areas within FAO
135 major marine fishing areas (FAO, 2019; Area 57 assigned to East Indian and Area 71 assigned to West
136 Pacific). Large islands were kept in the analysis if they were a part of a mainland LME (e.g. Madagascar),
137 but excluded if they were an individual LME (e.g. New Zealand). For reasons described in the previous
138 section, the Central Arctic and Antarctic LMEs were again excluded from these analyses. Again, we used
139 the Blue Habitat shelf delineation to restrict analyses to the continental shelf. We calculated area in km²
140 of the continental shelf for 2° latitudinal bins using the area function of the raster package implemented in
141 R (Hijmans, 2020; R Core Team, 2021). We again verified that calculating area from projected polygons
142 did not meaningfully change results (comparison in Supplementary Information). Additionally, we
143 calculated the percent change in seafloor area from each bin to the next poleward bin. The 2° latitudinal
144 bin size is representative of the average range shift for marine species over a forty year period (Lenoir
145 2020). The International Union for the Conservation of Nature classifies species that have experienced a
146 50% loss in habitat or population as Vulnerable to Extinction (IUCN Standards and Petitions Committee,
147 2019), therefore we identified locations where there was either doubling (Expansion) or halving
148 (Contraction) in seafloor area from one 2° latitudinal bin to the next poleward bin. Finally, to assess the
149 overall pattern in habitat availability over latitude, we regressed the continental shelf areas of each bin
150 against the bin mid-latitudes and extracted the slope and the p-value of the resulting linear model.

151 *Estimating changes in species richness using species area curves*

152 To calculate the potential change in species richness associated with a given change in continental
153 shelf area, we used the species area relationship (SAR) developed for fishes along the Northeast Pacific
154 coast: $S = 16.18 * A^{0.226}$ (Levin et al., 2009). Assuming all species underwent a latitudinal shift of 2° (the
155 approximate expected latitudinal shift over four decades; Lenoir et al., 2020) or a depth shift of 15 meters

156 (the approximate expected depth shift over four decades; Dulvy et al., 2012), we calculated the
157 anticipated the change in species richness communities will experience as they move into the neighboring
158 poleward latitudinal bin or the next depth bin in each LME.

159 **Results**

160 *Available habitat across depth within LMEs*

161 Overall, 22% of LMEs were classified as Shallow-Dominant, 9% were classified as Mid-
162 Dominant, and 69% were classified as Multimodal (Figure 1, Figure 2). No LMEs were classified as
163 Deep-Dominant or Uniform. In response to a 15 m shift deeper, individual assemblages (defined as 15 m
164 depth bins) experience a change in shelf area ranging from an increase of 114,000 km² within the East
165 Siberian Sea (LME 56) to a decrease of 240,000 km² within the Northern Bering - Chukchi Seas (LME
166 54; Supplementary Figure 2).

167 *Available habitat across latitude*

168 Continental shelf availability varied with latitude across all six contiguous coastlines (Figures 3-
169 5). Each coastline exhibited multiple instances of contraction (halving of shelf area) and expansion
170 (doubling of shelf area) associated with 2° poleward shifts (Figures 3-5). Contractions were proportionally
171 most common along the Southern East Indian coastline (29% of poleward shifts), and least common in
172 the Northern West Indian coastline (no contractions; Figure 6). Expansions were proportionally most
173 common along the Northern West Indian coastline (36% of poleward shifts), and least common along the
174 Northern West Atlantic coastline (2.4% of poleward shifts; Table 1 and Figure 6).

175 Most regions exhibited significant relationships between continental shelf area and latitude (Table
176 1; Figs. 3-5). On average, shelf area decreased towards the poles along the coastline of the Southern West
177 Pacific. In contrast, shelf area increased towards the poles along coastlines of the Northern West Pacific,
178 the Northern East Pacific, the Southern West Atlantic, the Northern West Indian, the Northern East
179 Atlantic, the Northern West Atlantic, and the Southern East Atlantic. No significant relationship between
180 latitude and continental shelf area was found along the coastlines of the Southern West Indian, Southern
181 East Indian, Northern East Indian, or Southern East Pacific (Table 1).

182 *Expected change in species richness*

183 Defining an assemblage as the species within a 2° latitudinal band that then shifts 2° poleward,
184 species area relationships predicted changes ranging from a gain of 91 in part of the Southern East Indian

185 to a loss of 116 in part of the Northern East Pacific (Figs. 3 & 5). Proportionally, part of the Southern
186 West Pacific experienced the largest decline in richness (54% loss) and part of the Northern East Pacific
187 experienced the largest increase in richness (67% gain) (Fig. 3). On average across all ocean coastlines,
188 communities gained one species with the change in area expected with a 2 latitudinal shift (Figs. 3-5).

189 Defining an assemblage as the species within a 15m depth band that then shifts 15 deeper, species
190 area relationships predicted changes ranging from a gain of 67 in a depth band of the East China Sea
191 (LME 47) to a loss of 89 in a depth band of the Yellow Sea (LME 48) (Supplementary Figure 3).
192 Proportionally, part of the Scotian Shelf (LME 8) experienced the largest decline in richness (57% loss),
193 and part of the Somali Coastal Current (LME 31) experienced the largest increase in richness (69% gain)
194 (Supplementary Figure 3). On average across all ocean coastlines, communities within 15 m depth bins
195 lost three species with a 15 m deeper depth shift (Figure 1, Supplementary Figure 3).

196

197 **Discussion**

198 Continental shelf area is a limiting resource for a diverse array of marine organisms that depend
199 on shallow and structured zones with high productivity and biodiversity (Buhl-Mortensen et al., 2012;
200 García-Reyes et al., 2015; Townsend et al., 2004). As species shift deeper and poleward in response to
201 climate change, we expect the continental shelf available to them to change depending on local
202 bathymetry. Shelf area serves as a first degree constraint on successful range shifts, but to our knowledge,
203 this is the first assessment of continental shelf area variation by depth and latitude. Similar to terrestrial
204 mountain ranges (Elsen & Tingley, 2015), the majority of marine ecosystems do not exhibit a monotonic
205 decrease in continental shelf area as species move deeper. Additionally, there is tremendous variation in
206 how shelf habitat availability varies by latitude. Whether range shifts across and down the continental
207 shelf will lead to an opportunity for growth or decline at the level of the species and the community
208 depends on regional bathymetry.

209 *Habitat availability across depths and latitudes*

210 Movement deeper onto the continental shelf does not always coincide with a loss in shelf area.
211 For most LMEs, shelf area is either most abundant at moderate depths or there are multiple depths at
212 which shelf area is most readily available. As a result, the change in habitat availability as species shift
213 deeper will be regionally specific due to differing geomorphology. Similar results were found to be true
214 when assessing how continental shelf area will change with projected sea level rise (Holland, 2012). This
215 pattern of regional variability also matches those for habitat at elevation across terrestrial mountain ranges

216 (Elsen & Tingley, 2015). The lack of LME's exhibiting Deep Dominant distributions reveals that while
217 regions exhibiting monotonic decreases in habitat with depth are uncommon, regions exhibiting
218 monotonic increases in habitat with depth are nonexistent. In some regions, species shifting deeper will
219 experience increased shelf availability, but if species are forced to move past a certain depth threshold,
220 shelf availability will decline precipitously.

221 Across latitudes, species are likely to encounter substantially different changes in habitat
222 availability, including expansions in the Northern West Indian Ocean and contractions along the Southern
223 East Indian Ocean. Larger shelf areas have the potential to support larger population sizes of individual
224 species, in addition to higher overall species richness (Chisholm et al., 2018; MacArthur & Wilson, 1967;
225 Melbourne & Hastings, 2008; Shaffer, 1981). The most notable contrast between continental shelf
226 distribution in the Northern versus the Southern Hemisphere is apparent in the transition from temperate
227 to polar regions. For species in the Northern Hemisphere, nearly continuous shelf habitat between the
228 equator and the poles serves as a corridor for species to move into the continental shelf habitats of the
229 Arctic Ocean. In contrast, species in the Southern Hemisphere face 100s of kilometers of deep ocean
230 between the most southern points of Oceania, Africa, and South America and the deep and narrow shelves
231 of Antarctica. Habitat continuity for species in the southern hemisphere is truncated at 55°S, while the
232 complementary pathway for species in the northern hemisphere to latitudes above 80°N. This break in
233 habitat continuity, in tandem with the Antarctic Polar Front and the Antarctic Circumpolar Current, has
234 limited poleward range expansion of species through evolutionary time (Rogers, 2007; Wilson et al.,
235 2016). However, evidence is accumulating for some dispersal of plant and invertebrate species across the
236 Antarctic Polar Front through rafting and rare long distance dispersal events which may facilitate some
237 range shifts of a diverse array of species despite the lack of contiguous continental shelf area (Bernardes
238 Batista et al., 2018; Fraser et al., 2017).

239 Shifts in climate regime through the geologic record and subsequent changes in species
240 distributions and richness provide context for the role of continental shelf area in shaping modern range
241 shifts in the ocean. The Late Ordovician greenhouse–icehouse transition led to a mass extinction of an
242 estimated 85% of marine species (Sheehan, 2001). Similar greenhouse–icehouse transitions occurred later
243 in the Cenozoic, but did not lead to the same magnitude of loss in species globally. This inconsistency can
244 be partially explained by differences in the continental configurations. The Late Ordovician planet was
245 characterized by isolated island continents which would have limited the capacity for species to shift their
246 ranges into more suitable habitat. In contrast, the latitudinally oriented coastlines present today were also
247 largely formed by the Cenozoic, allowing for poleward shifts in distributions and therefore reducing
248 overall extinction risk (Finnegan et al., 2016).

249 *Impacts of shelf habitat availability on populations and species richness*

250 Population sizes vary with habitat availability (Alzate et al., 2019; Halpern et al., 2005). Larger
251 habitats provide more resources for individuals, supporting a larger population. Small populations run the
252 risk of stochastic extinction and restricted growth due to Allee effects (Aalto et al., 2019; Hanski et al.,
253 1996; Kuparinen et al., 2014; Opdam & Wascher, 2004; White et al., 2021). Range shifts into depths or
254 latitudes of reduced shelf habitat availability may lead to local extinction or the inability to establish. In
255 contrast, shifts into depths or latitudes of increased shelf habitat may lead to increased population growth
256 rates as individuals of a species take advantage of increased space and foraging opportunities.

257 Given that species area relationships suggest that the number of species scales with habitat size,
258 we expect latitudes and depths of greater continental shelf area to support a larger number of species as
259 niche space, resource availability, and likelihood of species arrival increase (Chisholm et al., 2018;
260 MacArthur & Wilson, 1967; Rosenzweig, 1995). Shifts in latitude and depths have the potential to impact
261 regional species richness as the number of species able to successfully shift is limited by continental shelf
262 area. The anticipated changes in species richness due to variations in shelf area are tightly linked to
263 geographic features at the local and regional scale. For one, because of the non-linearity in species area
264 relationships, we predict much more dramatic shifts in richness across latitudes and depths in areas of
265 overall limited shelf habitat in comparison to areas defined by wide continental shelves. For example,
266 changes in species richness as a result of equatorward shifts along the tropical and temperate regions of
267 the East Pacific will reflect changes from a baseline narrow shelf area. In contrast, changes in richness
268 along the Northern Atlantic coasts will likely be muted due to the wide shelf habitats in these regions.
269 Using species area curves ignores the complexities of endemic versus cosmopolitan distributions and
270 assumes species are randomly distributed (He & Hubbell, 2011) and our calculations must therefore be
271 viewed cautiously. However, our analyses identify regions at a higher risk of species loss and regions that
272 may serve as biodiversity refuges.

273 *Other barriers to successful range shifts*

274 Availability of continental shelf habitat acts as a first-order constraint on movement poleward and
275 deeper. However, other constraints will likely be important for particular species, including availability of
276 biogenic habitat, prey, or mutualists (Brooker et al., 2007; Urban et al., 2019) and the presence of
277 predators or competitors (Bates et al., 2014; Gilman et al., 2010; McIntosh et al., 2018; Spence &
278 Tingley, 2020). Changes in habitat area offers a proxy for expected trends in richness and population
279 sizes, but these patterns can be complicated by species interactions. Movement into depths or latitudes

280 with more shelf habitat may actually lead to a decline in population growth for some low trophic species
281 due to an increased risk of predation (McIntosh et al., 2018). In the case of depth shifts, many species of
282 plants and algae that form the foundation for many types of marine structures only grow in the photic
283 zone. The intensity of light decreases exponentially with depth and can restrict the productivity of
284 photosynthetic organisms like seagrasses and coral symbionts (Duarte, 1991; Kahng et al., 2019; Lesser et
285 al., 2021). Light can also constrain latitudinal shifts because highly seasonal diel cycles lead to reduced
286 nutrient availability and limited opportunities for visual foraging in the winter (G. Chen & Wang, 2016;
287 Last et al., 2020; Ljungström et al., 2021).

288 Range shifts are also limited by abiotic habitat. The distribution of abiotic habitat is determined
289 by geologic history, and therefore stationary in ecological time (Ford & HilleRisLambers, 2020; Spence
290 & Tingley, 2020). Marine species highly dependent on a particular substrate, rugosity, or geologic feature
291 will be limited in their ability to track temperature isotherms poleward or deeper (Champion & Coleman,
292 2021; Harman et al., 2003; McHenry et al., 2019), similar to plant communities limited by soils (Carteron
293 et al., 2020; Smithers & North, 2020). The potential for marine species to occupy thermally suitable
294 continental shelf habitat may also be limited by water characteristics as ideal temperature conditions do
295 not guarantee tolerable pressure, oxygen, or pH conditions. A number of LMEs, including the California
296 Current, Benguela Current, the Arabian Sea, and the Bay of Bengal have Oxygen Minimum Zones
297 (OMZ) that span from roughly 200m to 1000m in depth (Al Azhar et al., 2017; Bograd et al., 2008;
298 Zettler et al., 2009). Marine ectotherms have specific oxygen requirements to maintain effective
299 metabolism, and therefore most are limited to depths above the OMZ (Stramma et al., 2012). Latitudinal
300 variation in pH can also limit successful poleward range shifts. Because of the tilt of the earth on its axis
301 and circulation patterns in the ocean, the most acidic waters are found in polar regions. These same
302 regions are also experiencing the fastest rates of ocean acidification, posing a challenge for growth and
303 reproduction for a wide array of marine ectotherms, most notably calcifying species (Fabry et al., 2009;
304 Qi et al., 2017; Yara et al., 2012). Even when continental shelf habitat is available, range shifts may be
305 restricted due to both biotic and abiotic factors.

306 *Regions of opportunity, and regions of concern*

307 We have highlighted areas with reductions in continental shelf habitat where shifting species may
308 face challenges. These areas include Shallow-Dominant LMEs and areas of coastline where substantial
309 contractions in continental shelf habitat occur. Species that experience warming and are living in regions
310 with limited shelf area in adjacent regions are most at risk. For example, the Arabian Sea exhibits a
311 Shallow-Dominant shelf bathymetry and its semi-enclosed basin limits latitudinal movement (Ben-Hasan

312 & Christensen, 2019). Warming, coupled with declining oxygen concentrations has already led to a rise in
313 Harmful Algal Blooms and resultant fish kills in this relatively understudied region (Al Azhar et al.,
314 2017; Ben-Hasan & Christensen, 2019; Harrison et al., 2017). Other regions pose risks to resident species
315 due to less conspicuous latitudinal restrictions. One example is the East Japan Sea, which has experienced
316 consistent warming of up to 0.5°C since the 1960s and shoaling of the OMZ (Kim et al., 2001). On top of
317 rising temperatures and declining access to oxygenated waters, continental shelf habitat in this region is
318 limited. Shelf area contracts 77% as species shift from 38° to 40° N, and remains limited until 56° N when
319 the wide shelf of the Bering Sea becomes accessible.

320 We have also highlighted regions where species may benefit from continental shelf expansions as
321 a result of tracking temperature isotherms deeper and poleward. LMEs across the globe exhibit
322 opportunities for range expansion into deeper continental shelf habitat, if light and other factors are not
323 limiting. The rapidly warming North Sea's (LME 22) Multimodal depth distribution may partially explain
324 why many species have successfully shifted deeper in this region (Dulvy et al., 2012). Additionally,
325 species moving poleward along each coastline will have opportunities to take advantage of expansions in
326 shelf area. For example, species shifting from Brazil south towards the coasts of Uruguay and Argentina
327 will gain access to wider continental shelves. Similarly, species shifting poleward along the eastern coast
328 of Australia will gain access to more shelf habitat as they move with the Leeuwin Current into the Great
329 Australian Bight along the continent's southern coast.

330 This information can be used to prioritize conservation efforts at a broad scale, focusing on
331 regions where species will experience the greatest reductions in seafloor area following predicted range
332 shifts. Designation of protected areas that include latitudinal corridors and implementation of climate-
333 ready management in high risk regions to limit habitat degradation, pollution, and resource extraction
334 may help facilitate successful range shifts despite limited continental shelf availability (Frazão Santos et
335 al., 2020; Meyer-Gutbrod et al., 2018; Mills et al., 2013).

336

337

338

339

340

341 Acknowledgements

342 We acknowledge support from US National Science Foundation #OCE-1426891 and #DEB-1616821 to
343 MLP, #OCE-1521565 to RLS, the Nippon Foundation–University of British Columbia Nereus Program
344 to MLP and RLS, the Rutgers Aresty Research Center to HMC, the Rutgers School of Environmental and
345 Biological Sciences to ZJK, the Rutgers Institute of Earth, Ocean, and Atmospheric Sciences to ZJK, and
346 the Rutgers Ecology and Evolution Graduate Program to ZJK. Thank you to the Pinsky Lab for consistent
347 guidance and feedback on this project.

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363 **References**

364 Aalto, E. A., Micheli, F., Boch, C. A., Espinoza Montes, J. A., Woodson, C. B., & De Leo, G. A. (2019).
365 Catastrophic Mortality, Allee Effects, and Marine Protected Areas. *The American Naturalist*,
366 193(3), 391–408. <https://doi.org/10.1086/701781>

367 Al Azhar, M., Lachkar, Z., Lévy, M., & Smith, S. (2017). Oxygen Minimum Zone Contrasts Between the
368 Arabian Sea and the Bay of Bengal Implied by Differences in Remineralization Depth.
369 *Geophysical Research Letters*, 44(21). <https://doi.org/10.1002/2017GL075157>

370 Alzate, A., Etienne, R. S., & Bonte, D. (2019). Experimental island biogeography demonstrates the
371 importance of island size and dispersal for the adaptation to novel habitats. *Global Ecology and*
372 *Biogeography*, 28(2), 238–247. <https://doi.org/10.1111/geb.12846>

373 Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConaughey, R. A., Parma, A. M., Suuronen, P.,
374 Eigaard, O. R., Bastardie, F., Hintzen, N. T., Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen,
375 L., Campbell, A. B., Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N., ...
376 Jennings, S. (2018). Bottom trawl fishing footprints on the world's continental shelves.
377 *Proceedings of the National Academy of Sciences*, 115(43), E10275–E10282.
378 <https://doi.org/10.1073/pnas.1802379115>

379 Bates, A. E., Barrett, N. S., Stuart-Smith, R. D., Holbrook, N. J., Thompson, P. A., & Edgar, G. J. (2014).
380 Resilience and signatures of tropicalization in protected reef fish communities. *Nature Climate*
381 *Change*, 4(1), 62–67. <https://doi.org/10.1038/nclimate2062>

382 Beier, P. (2012). Conceptualizing and Designing Corridors for Climate Change. *Ecological Restoration*,
383 30(4), 312–319.

384 Bell, E. L. (2009). Cultural Resources on the New England Coast and Continental Shelf: Research,
385 Regulatory, and Ethical Considerations from a Massachusetts Perspective. *Coastal Management*,
386 37(1), 17–53. <https://doi.org/10.1080/08920750802475434>

387 Bender, D., Contreras, T., & Fahrig, L. (1998). Habitat Loss and Population Decline: A Meta-Analysis of

388 the Patch Size Effect. *Ecology*, 79, 517–533. <https://doi.org/10.2307/176950>

389 Ben-Hasan, A., & Christensen, V. (2019). Vulnerability of the marine ecosystem to climate change

390 impacts in the Arabian Gulf—An urgent need for more research. *Global Ecology and*

391 *Conservation*, 17, e00556. <https://doi.org/10.1016/j.gecco.2019.e00556>

392 Bernardes Batista, M., Batista Anderson, A., Franzan Sanches, P., Simionatto Polito, P., Lima Silveira,

393 T., Velez-Rubio, G., Scarabino, F., Camacho, O., Schmitz, C., Martinez, A., Ortega, L., Fabiano,

394 G., Rothman, M., Liu, G., Ojeda, J., Mansilla, A., Barreto, L., Assis, J., Serrão, E., ... Antunes

395 Horta, P. (2018). Kelps' Long-Distance Dispersal: Role of Ecological/Oceanographic Processes

396 and Implications to Marine Forest Conservation. *Diversity*, 10(1), 11.

397 <https://doi.org/10.3390/d10010011>

398 Bograd, S. J., Castro, C. G., Lorenzo, E. D., Palacios, D. M., Bailey, H., Gilly, W., & Chavez, F. P.

399 (2008). Oxygen declines and the shoaling of the hypoxic boundary in the California Current.

400 *Geophysical Research Letters*, 35(12). <https://doi.org/10.1029/2008GL034185>

401 Brandt, A., Gooday, A. J., Brandão, S. N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M.,

402 Cornelius, N., Danis, B., De Mesel, I., Diaz, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen,

403 D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., ... Vanreusel, A. (2007). First insights

404 into the biodiversity and biogeography of the Southern Ocean deep sea. *Nature*, 447(7142), 307–

405 311. <https://doi.org/10.1038/nature05827>

406 Brooker, R. W., Travis, J. M. J., Clark, E. J., & Dytham, C. (2007). Modelling species' range shifts in a

407 changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate

408 change. *Journal of Theoretical Biology*, 245(1), 59–65. <https://doi.org/10.1016/j.jtbi.2006.09.033>

409 Brown, A., & Thatje, S. (2015). The effects of changing climate on faunal depth distributions determine

410 winners and losers. *Global Change Biology*, 21(1), 173–180. <https://doi.org/10.1111/gcb.12680>

411 Buhl-Mortensen, L., Buhl-Mortensen, P., Dolan, M. F. J., Dannheim, J., Bellec, V., & Holte, B. (2012).

412 Habitat complexity and bottom fauna composition at different scales on the continental shelf and

413 slope of northern Norway. *Hydrobiologia*, 685(1). <https://doi.org/10.1007/s10750-011-0988-6>

414 Carteron, A., Parasquive, V., Blanchard, F., Guilbeault-Mayers, X., Turner, B. L., Vellend, M., &
415 Laliberté, E. (2020). Soil abiotic and biotic properties constrain the establishment of a dominant
416 temperate tree into boreal forests. *Journal of Ecology*, 108(3), 931–944.
417 <https://doi.org/10.1111/1365-2745.13326>

418 Champion, C., & Coleman, M. A. (2021). Seascape topography slows predicted range shifts in fish under
419 climate change. *Limnology and Oceanography Letters*, 6(3), 143–153.
420 <https://doi.org/10.1002/lol2.10185>

421 Chen, G., & Wang, X. (2016). Vertical Structure of Upper-Ocean Seasonality: Annual and Semiannual
422 Cycles with Oceanographic Implications. *Journal of Climate*, 29(1), 37–59.
423 <https://doi.org/10.1175/JCLI-D-14-00855.1>

424 Chen, X., Lohrenz, S. E., & Wiesenburg, D. A. (2000). Distribution and controlling mechanisms of
425 primary production on the Louisiana–Texas continental shelf. *Journal of Marine Systems*, 25(2),
426 179–207. [https://doi.org/10.1016/S0924-7963\(00\)00014-2](https://doi.org/10.1016/S0924-7963(00)00014-2)

427 Chisholm, R. A., Lim, F., Yeoh, Y. S., Seah, W. W., Condit, R., & Rosindell, J. (2018). Species–area
428 relationships and biodiversity loss in fragmented landscapes. *Ecology Letters*, 21(6), 804–813.
429 <https://doi.org/10.1111/ele.12943>

430 Cornell, H. V., & Karlson, R. H. (2000). Coral species richness: Ecological versus biogeographical
431 influences. *Coral Reefs*, 19(1), 37–49. <https://doi.org/10.1007/s003380050224>

432 Duarte, C. (1991). Seagrass depth limits. *Aquatic Botany*, 40(4), 363–377. [https://doi.org/10.1016/0304-3770\(91\)90081-F](https://doi.org/10.1016/0304-3770(91)90081-F)

433 Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., & Skjoldal, H. R. (2012). Climate
435 change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas.
436 *Journal of Applied Ecology*, 1029–1039. <https://doi.org/10.1111/j.1365-2664.2008.01488.x> @10.1111/(ISSN)1365-2664.CLIMATE_JPE

437 Elsen, P. R., & Tingley, M. W. (2015). Global mountain topography and the fate of montane species
439 under climate change. *Nature Climate Change*, 5(8), 772–776.

440 <https://doi.org/10.1038/nclimate2656>

441 Emery, K. O. (1966). *Atlantic continental shelf and slope of US: Geologic Background* (Professional

442 Paper No. 529-A). US Department of the Interior.

443 Fabry, V., McClintock, J., Mathis, J., & Grebmeier, J. (2009). Ocean Acidification at High Latitudes: The

444 Bellwether. *Oceanography*, 22. <https://doi.org/10.5670/oceanog.2009.105>

445 FAO. (2019). *FAO Statistical Areas for Fishery Purposes*. FAO Fisheries and Aquaculture Department.

446 <http://www.fao.org/fishery/area/>

447 Finnegan, S., Rasmussen, C. M. Ø., & Harper, D. A. T. (2016). Biogeographic and bathymetric

448 determinants of brachiopod extinction and survival during the Late Ordovician mass extinction.

449 *Proceedings of the Royal Society B: Biological Sciences*, 283(1829), 20160007.

450 <https://doi.org/10.1098/rspb.2016.0007>

451 Ford, K. R., & HilleRisLambers, J. (2020). Soil alters seedling establishment responses to climate.

452 *Ecology Letters*, 23(1), 140–148. <https://doi.org/10.1111/ele.13416>

453 Fraser, C. I., Kay, G. M., Plessis, M. du, & Ryan, P. G. (2017). Breaking down the barrier: Dispersal

454 across the Antarctic Polar Front. *Ecography*, 40(1), 235–237. <https://doi.org/10.1111/ecog.02449>

455 Frazão Santos, C., Agardy, T., Andrade, F., Calado, H., Crowder, L. B., Ehler, C. N., García-Morales, S.,

456 Gissi, E., Halpern, B. S., Orbach, M. K., Pörtner, H.-O., & Rosa, R. (2020). Integrating climate

457 change in ocean planning. *Nature Sustainability*, 3(7), 505–516. <https://doi.org/10.1038/s41893-020-0513-x>

458

459 Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M., & Hargreaves, A. L. (2018). Expanding, shifting and

460 shrinking: The impact of global warming on species' elevational distributions. *Global Ecology*

461 and Biogeography

462 Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V., & Fitzpatrick, J. W. (2018). Climate change causes

463 upslope shifts and mountaintop extirpations in a tropical bird community. *Proceedings of the*

464 *National Academy of Sciences*, 115(47), 11982–11987. <https://doi.org/10.1073/pnas.1804224115>

465 Fujita, Inada, & Ishito. (1995). Depth-gradient structure of the demersal fish community on the

466 continental shelf and upper slope off Sendai Bay, Japan. *Marine Ecology Progress Series*, 118,
467 13–23. <https://doi.org/10.3354/meps118013>

468 García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit, A. J., &
469 Bograd, S. J. (2015). Under Pressure: Climate Change, Upwelling, and Eastern Boundary
470 Upwelling Ecosystems. *Frontiers in Marine Science*, 2. <https://doi.org/10.3389/fmars.2015.00109>

471 Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., & Holt, R. D. (2010). A framework for
472 community interactions under climate change. *Trends in Ecology & Evolution*, 25(6), 325–331.
473 <https://doi.org/10.1016/j.tree.2010.03.002>

474 Gomes, I., Pérez-Jorge, S., Peteiro, L., Andrade, J., Bueno-Pardo, J., Quintino, V., Rodrigues, A. M.,
475 Azevedo, M., Vanreusel, A., Queiroga, H., & Deneudt, K. (2018). Marine biological value along
476 the Portuguese continental shelf; insights into current conservation and management tools.
477 *Ecological Indicators*, 93, 533–546. <https://doi.org/10.1016/j.ecolind.2018.05.040>

478 Griffen, B. D., & Drake, J. M. (2008). Effects of habitat quality and size on extinction in experimental
479 populations. *Proceedings of the Royal Society B: Biological Sciences*, 275(1648), 2251–2256.
480 <https://doi.org/10.1098/rspb.2008.0518>

481 Halpern, B. S., Gaines, S. D., & Warner, R. R. (2005). Habitat Size, Recruitment, and Longevity as
482 Factors Limiting Population Size in Stage-Structured Species. *The American Naturalist*, 165(1),
483 82–94. <https://doi.org/10.1086/426672>

484 Hanski, I., Moilanen, A., & Gyllenberg, M. (1996). Minimum Viable Metapopulation Size. *The American
485 Naturalist*, 147(4), 527–541. <https://doi.org/10.1086/285864>

486 Harman, N., Harvey, E. S., & Kendrick, G. A. (2003). Differences in fish assemblages from different reef
487 habitats at Hamelin Bay, south-western Australia. *Marine and Freshwater Research*, 54(2), 177.
488 <https://doi.org/10.1071/MF02040>

489 Harris, P. T., Macmillan-Lawler, M., Rupp, J., & Baker, E. K. (2014a). *Blue Habitats*. Seafloor
490 Geomorphic Features Map. <https://www.bluehabitats.org/>

491 Harris, P. T., Macmillan-Lawler, M., Rupp, J., & Baker, E. K. (2014b). Geomorphology of the oceans.

492 *Marine Geology*, 352, 4–24. <https://doi.org/10.1016/j.margeo.2014.01.011>

493 Harrison, P. J., Piontkovski, S., & Al-Hashmi, K. (2017). Understanding how physical-biological
494 coupling influences harmful algal blooms, low oxygen and fish kills in the Sea of Oman and the
495 Western Arabian Sea. *Marine Pollution Bulletin*, 114(1), 25–34.

496 <https://doi.org/10.1016/j.marpolbul.2016.11.008>

497 Hartigan, J. A., & Hartigan, P. M. (1985). The Dip Test of Unimodality. *The Annals of Statistics*, 13(1),
498 70–84. <https://doi.org/10.1214/aos/1176346577>

499 He, F., & Hubbell, S. P. (2011). Species-area relationships always overestimate extinction rates from
500 habitat loss. *Nature*, 473(7347), 368–371. <https://doi.org/10.1038/nature09985>

501 Heezen, B. C., Menzies, R. J., Schneider, R. J., Ewing, W. M., & Granelli, N. C. L. (1964). Congo
502 Submarine Canyon. *AAPG Bulletin*, 48(7), 1126–1149. <https://doi.org/10.1306/BC743D7F-16BE-11D7-8645000102C1865D>

503 Hijmans, R. J. (2020). *raster: Geographic Data Analysis and Modeling* (3.4-5) [R].

504 Holland, S. M. (2012). Sea level change and the area of shallow-marine habitat: Implications for marine
505 biodiversity. *Paleobiology*, 38(2), 205–217. <https://doi.org/10.1666/11030.1>

506 IHO. (2008). *Standardization of Undersea Feature Names: Guidelines Proposal for Terminology* (No.
507 4; p. 32). International Hydrographic Organisation and Intergovernmental Oceanographic
508 Commission.

509 IUCN Standards and Petitions Committee. (2019). *Guidelines for Using the IUCN Red List Categories
510 and Criteria*. 14. <http://www.iucnredlist.org/documents/RedListGuidelines.pdf>

511 Jha, S., & Kremen, C. (2013). Urban land use limits regional bumble bee gene flow. *Molecular Ecology*,
512 22(9), 2483–2495. <https://doi.org/10.1111/mec.12275>

513 Kahng, S. E., Akkaynak, D., Shlesinger, T., Hochberg, E. J., Wiedenmann, J., Tamir, R., & Tchernov, D.
514 (2019). Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of
515 Mesophotic Coral Ecosystems. In Y. Loya, K. A. Puglise, & T. C. L. Bridge (Eds.), *Mesophotic
516 Coral Ecosystems* (pp. 801–828). Springer International Publishing. <https://doi.org/10.1007/978-517>

518 3-319-92735-0_42

519 Kang, S. G., Hong, J. K., Jin, Y. K., Jang, U., Niessen, F., & Baranov, B. (2017). P-wave velocity models
520 of continental shelf of East Siberian Sea using the Laplace-domain full waveform inversion. *AGU*
521 *Fall Meeting Abstracts*, 13. <http://adsabs.harvard.edu/abs/2017AGUFM.T13B0522K>

522 Kim, K., Kim, K.-R., Min, D.-H., Volkov, Y., Yoon, J.-H., & Takematsu, M. (2001). Warming and
523 structural changes in the east (Japan) Sea: A clue to future changes in global oceans? *Geophysical*
524 *Research Letters*, 28(17), 3293–3296. <https://doi.org/10.1029/2001GL013078>

525 Kolmogorov, A. N. (1933). Sulla Determinazione Empirica di Una Legge di Distribuzione. *Giornale*
526 *Dell'Istituto Italiano Degli Attuari*, 4, 83–91.

527 Kuparinen, A., Keith, D. M., & Hutchings, J. A. (2014). Allee Effect and the Uncertainty of Population
528 Recovery. *Conservation Biology*, 28(3), 790–798. <https://doi.org/10.1111/cobi.12216>

529 Large Marine Ecosystem Spatial Features. (2017, April). [Catalog]. Science Base.
530 <https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244>

531 Last, K. S., Häfker, N. S., Hendrick, V. J., Meyer, B., Tran, D., & Piccolin, F. (2020). Biological Clocks
532 and Rhythms in Polar Organisms. In J. Berge, G. Johnsen, & J. H. Cohen (Eds.), *POLAR NIGHT*
533 *Marine Ecology: Life and Light in the Dead of Night* (pp. 217–240). Springer International
534 Publishing. https://doi.org/10.1007/978-3-030-33208-2_8

535 Lastras, G., Acosta, J., Muñoz, A., & Canals, M. (2011). Submarine canyon formation and evolution in
536 the Argentine Continental Margin between 44°30'S and 48°S. *Geomorphology*, 128(3), 116–136.
537 <https://doi.org/10.1016/j.geomorph.2010.12.027>

538 Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, J., & Grenouillet, G. (2020).
539 Species better track climate warming in the oceans than on land. *Nature Ecology & Evolution*,
540 4(8), 1044–1059. <https://doi.org/10.1038/s41559-020-1198-2>

541 Lenoir, J., & Svenning, J.-C. (2015). Climate-related range shifts – a global multidimensional synthesis
542 and new research directions. *Ecography*, 38(1), 15–28. <https://doi.org/10.1111/ecog.00967>

543 Lesser, M. P., Slattery, M., & Mobley, C. D. (2021). Incident light and morphology determine coral

544 productivity along a shallow to mesophotic depth gradient. *Ecology and Evolution*, 11(19),
545 13445–13454. <https://doi.org/10.1002/ece3.8066>

546 Levin, P. S., Kaplan, I., Grober-Dunsmore, R., Chittaro, P. M., Oyamada, S., Andrews, K., & Mangel, M.
547 (2009). A framework for assessing the biodiversity and fishery aspects of marine reserves.
548 *Journal of Applied Ecology*, 46(4), 735–742. <https://doi.org/10.1111/j.1365-2664.2009.01667.x>

549 Ljungström, G., Langbehn, T. J., & Jørgensen, C. (2021). Light and energetics at seasonal extremes limit
550 poleward range shifts. *Nature Climate Change*, 1–7. <https://doi.org/10.1038/s41558-021-01045-2>

551 MacArthur, R. H., & Wilson, E. O. (1967). *The Theory of Island Biogeography*. Princeton University
552 Press.

553 Malatesta, R. J., & Auster, P. J. (1999). The importance of habitat features in low-relief continental shelf
554 environments. *Oceanologica Acta*, 22(6), 623–626. [https://doi.org/10.1016/S0399-1784\(00\)88953-7](https://doi.org/10.1016/S0399-1784(00)88953-7)

555 McHenry, J., Welch, H., Lester, S. E., & Saba, V. (2019). Projecting marine species range shifts from
556 only temperature can mask climate vulnerability. *Global Change Biology*, 25(12), 4208–4221.
557 <https://doi.org/10.1111/gcb.14828>

558 McIntosh, A. R., McHugh, P. A., Plank, M. J., Jellyman, P. G., Warburton, H. J., & Greig, H. S. (2018).
559 Capacity to support predators scales with habitat size. *Science Advances*, 4(7), eaap7523.
560 <https://doi.org/10.1126/sciadv.aap7523>

561 Melbourne, B. A., & Hastings, A. (2008). Extinction risk depends strongly on factors contributing to
562 stochasticity. *Nature*, 454(7200), 100–103. <https://doi.org/10.1038/nature06922>

563 Mestre, N. C., Brown, A., & Thatje, S. (2013). Temperature and pressure tolerance of larvae of *Crepidula*
564 *fornicata* suggest thermal limitation of bathymetric range. *Marine Biology*, 160(4), 743–750.
565 <https://doi.org/10.1007/s00227-012-2128-x>

566 Meyer-Gutbrod, E. L., Greene, C. H., & Davies, K. T. A. (2018). Marine Species Range Shifts
567 Necessitate Advanced Policy Planning: THE CASE OF THE NORTH ATLANTIC RIGHT
568 WHALE. *Oceanography*, 31(2), 19–23.

570 Michaeler, M. (2016). *Hartigan's Dip Test Statistic for Unimodality* (0.75-7) [R].

571 Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F.-S., Holland, D. S., Lehuta, S., Nye, J. A.,
572 Sun, J. C., Thomas, A. C., & Wahle, R. A. (2013). Fisheries Management in a Changing Climate:
573 Lessons from the 2012 Ocean Heat Wave in the Northwest Atlantic. *Oceanography*, 26(2), 191–
574 195.

575 Nagelkerken, I., van der Velde, G., Gorissen, M. W., Meijer, G. J., Van't Hof, T., & den Hartog, C.
576 (2000). Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for
577 Important Coral Reef Fishes, Using a Visual Census Technique. *Estuarine, Coastal and Shelf
578 Science*, 51(1), 31–44. <https://doi.org/10.1006/ecss.2000.0617>

579 NOAA National Geophysical Data Center. (2006). *2-minute Gridded Global Relief Data (ETOPO2) v2*.
580 NOAA National Centers for Environmental Information. <https://doi.org/10.7289/V5J1012Q>

581 Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: Linking landscape and
582 biogeographical scale levels in research and conservation. *Biological Conservation*, 117(3), 285–
583 297. <https://doi.org/10.1016/j.biocon.2003.12.008>

584 Pearcy, W. G., Stein, D. L., & Carney, R. S. (1982). The Deep-Sea Benthic Fish Fauna of the
585 Northeastern Pacific Ocean on Cascadia and Tufts Abyssal Plains and Adjoining Continental
586 Slopes. *Biological Oceanography*, 1(4), 375–428.
587 <https://doi.org/10.1080/01965581.1982.10749448>

588 Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate Change and Distribution Shifts in
589 Marine Fishes. *Science*, 308(5730), 1912–1915. <https://doi.org/10.1126/science.1111322>

590 Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. (2019). Greater
591 vulnerability to warming of marine versus terrestrial ectotherms. *Nature*, 569(7754), 108.
592 <https://doi.org/10.1038/s41586-019-1132-4>

593 Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine Taxa Track
594 Local Climate Velocities. *Science*, 341(6151), 1239–1242.
595 <https://doi.org/10.1126/science.1239352>

596 Platts, P. J., Mason, S. C., Palmer, G., Hill, J. K., Oliver, T. H., Powney, G. D., Fox, R., & Thomas, C. D.

597 (2019). Habitat availability explains variation in climate-driven range shifts across multiple

598 taxonomic groups. *Scientific Reports*, 9(1), 15039. <https://doi.org/10.1038/s41598-019-51582-2>

599 Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-Guldberg,

600 O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., & Sydeman, W. J. (2016).

601 Responses of Marine Organisms to Climate Change across Oceans. *Frontiers in Marine Science*,

602 3. <https://doi.org/10.3389/fmars.2016.00062>

603 Qi, D., Chen, L., Chen, B., Gao, Z., Zhong, W., Feely, R. A., Anderson, L. G., Sun, H., Chen, J., Chen,

604 M., Zhan, L., Zhang, Y., & Cai, W.-J. (2017). Increase in acidifying water in the western Arctic

605 Ocean. *Nature Climate Change*, 7(3), 195–199. <https://doi.org/10.1038/nclimate3228>

606 R Core Team. (2021). *R: A language and environment for statistical computing*. R Foundation for

607 Statistical Computing. <https://www.R-project.org/>

608 Rocha, L. A., Pinheiro, H. T., Shepherd, B., Papastamatiou, Y. P., Luiz, O. J., Pyle, R. L., & Bongaerts,

609 P. (2018). Mesophotic coral ecosystems are threatened and ecologically distinct from shallow

610 water reefs. *Science*, 361(6399), 281–284. <https://doi.org/10.1126/science.aaq1614>

611 Rogers, A. D. (2007). Evolution and biodiversity of Antarctic organisms: A molecular perspective.

612 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 362(1488), 2191–2214.

613 <https://doi.org/10.1098/rstb.2006.1948>

614 Rosenzweig, M. L. (1995). *Species Diversity in Space and Time*. Cambridge University Press.

615 Shaffer, M. L. (1981). Minimum Population Sizes for Species Conservation. *BioScience*, 31(2), 131–134.

616 <https://doi.org/10.2307/1308256>

617 Sheehan, P. M. (2001). The Late Ordovician Mass Extinction. *Annual Review of Earth and Planetary*

618 *Sciences*, 29(1), 331–364. <https://doi.org/10.1146/annurev.earth.29.1.331>

619 Sherman, K., & Alexander, L. (1986). *Variability and management of large marine ecosystems*.

620 <https://www.osti.gov/biblio/6958679>

621 Sherman, K., & Duda, A. M. (1999). Large Marine Ecosystems: An Emerging Paradigm for Fishery

622 Sustainability. *Fisheries*, 24(12), 15–26. [https://doi.org/10.1577/1548-8446\(1999\)024<0015:LME>2.0.CO;2](https://doi.org/10.1577/1548-8446(1999)024<0015:LME>2.0.CO;2)

623

624 Smirnov, N. V. (1939). Estimate of deviation between empirical distribution functions in two independent

625 samples. *Bulletin Moscow University*, 2(2), 3–16.

626 Smith, K. F., & Brown, J. H. (2002). Patterns of Diversity, Depth Range and Body Size among Pelagic

627 Fishes along a Gradient of Depth. *Global Ecology and Biogeography*, 11(4), 313–322.

628 Smithers, B. V., & North, M. P. (2020). Mechanisms of species range shift: Germination and early

629 survival of Great Basin bristlecone pine and limber pine. *Plant and Soil*, 457(1), 167–183.

630 <https://doi.org/10.1007/s11104-020-04732-9>

631 Spence, A. R., & Tingley, M. W. (2020). The challenge of novel abiotic conditions for species

632 undergoing climate-induced range shifts. *Ecography*. <https://doi.org/10.1111/ecog.05170>

633 Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W. R.,

634 Brandt, P., & Körtzinger, A. (2012). Expansion of oxygen minimum zones may reduce available

635 habitat for tropical pelagic fishes. *Nature Climate Change*, 2(1), 33–37.

636 <https://doi.org/10.1038/nclimate1304>

637 Thomas, C. D. (2010). Climate, climate change and range boundaries. *Diversity and Distributions*, 16(3),

638 488–495. <https://doi.org/10.1111/j.1472-4642.2010.00642.x>

639 Townsend, D. W., Thomas, A. C., Mayer, L. M., Thomas, M. A., & Quinlan, J. A. (2004). Oceanography

640 of the Northwest Atlantic Continental Shelf (1,W). In A. R. Robinson & K. H. Brink (Eds.), *The*

641 *Sea: The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses* (p. 57).

642 Harvard University Press.

643 Urban, M. C., Scarpa, A., Travis, J. M. J., & Bocedi, G. (2019). Maladapted Prey Subsidize Predators and

644 Facilitate Range Expansion. *The American Naturalist*, 194(4), 590–612.

645 <https://doi.org/10.1086/704780>

646 Vitassee, Y., Ursenbacher, S., Klein, G., Bohnenstengel, T., Chittaro, Y., Delestrade, A., Monnerat, C.,

647 Rebetez, M., Rixen, C., Strelbel, N., Schmidt, B. R., Wipf, S., Wohlgemuth, T., Yoccoz, N. G., &

648 Lenoir, J. (2021). Phenological and elevational shifts of plants, animals and fungi under climate
649 change in the European Alps. *Biological Reviews*. <https://doi.org/10.1111/brv.12727>

650 White, E. R., Baskett, M. L., & Hastings, A. (2021). Catastrophes, connectivity and Allee effects in the
651 design of marine reserve networks. *Oikos*, 130(3), 366–376. <https://doi.org/10.1111/oik.07770>

652 Wilson, L. J., Fulton, C. J., Hogg, A. M., Joyce, K. E., Radford, B. T. M., & Fraser, C. I. (2016). Climate-
653 driven changes to ocean circulation and their inferred impacts on marine dispersal patterns.
654 *Global Ecology and Biogeography*, 25(8), 923–939. <https://doi.org/10.1111/geb.12456>

655 Yara, Y., Vogt, M., Fujii, M., Yamano, H., Hauri, C., Steinacher, M., Gruber, N., & Yamanaka, Y.
656 (2012). Ocean acidification limits temperature-induced poleward expansion of coral habitats
657 around Japan. *Biogeosciences*, 9(12), 4955–4968. <https://doi.org/10.5194/bg-9-4955-2012>

658 Zettler, M. L., Bochert, R., & Pollehne, F. (2009). Macrozoobenthos diversity in an oxygen minimum
659 zone off northern Namibia. *Marine Biology*, 156(9), 1949–1961. <https://doi.org/10.1007/s00227-009-1227-9>

Figures and Tables

Table 1. Percent of total 2° latitudinal bin shifts that experienced a doubling (expansion) or halving (contraction) in habitat area. Coefficient and p-value of linear model for area versus latitude is also reported for each hemisphere-region combination.

Coastline	Hemisphere	% of 2° Shifts Contractions	% of 2° Shifts Expansions	Coefficient km ² /1° Latitude	P-value
West Pacific	Northern	5.0	5.0	5094	0.00038
West Pacific	Southern	17	8.7	-6999	3.4 x 10 ⁻⁶
East Pacific	Northern	13	16	2327	3.2 x 10 ⁵
East Pacific	Southern	11	25	131	0.19
West Atlantic	Northern	9.8	2.4	1135	0.0059
West Atlantic	Southern	11	7.4	1974	2.8 x 10 ⁶
West Indian	Northern	0.0	36	3768	0.00016
West Indian	Southern	22	33	701	0.10
East Atlantic	Northern	10	13	6586	4.8 x 10 ⁻⁸
East Atlantic	Southern	11	11	615	0.013
East Indian	Northern	10	10	1238	0.34
East Indian	Southern	29	21	-410	0.49

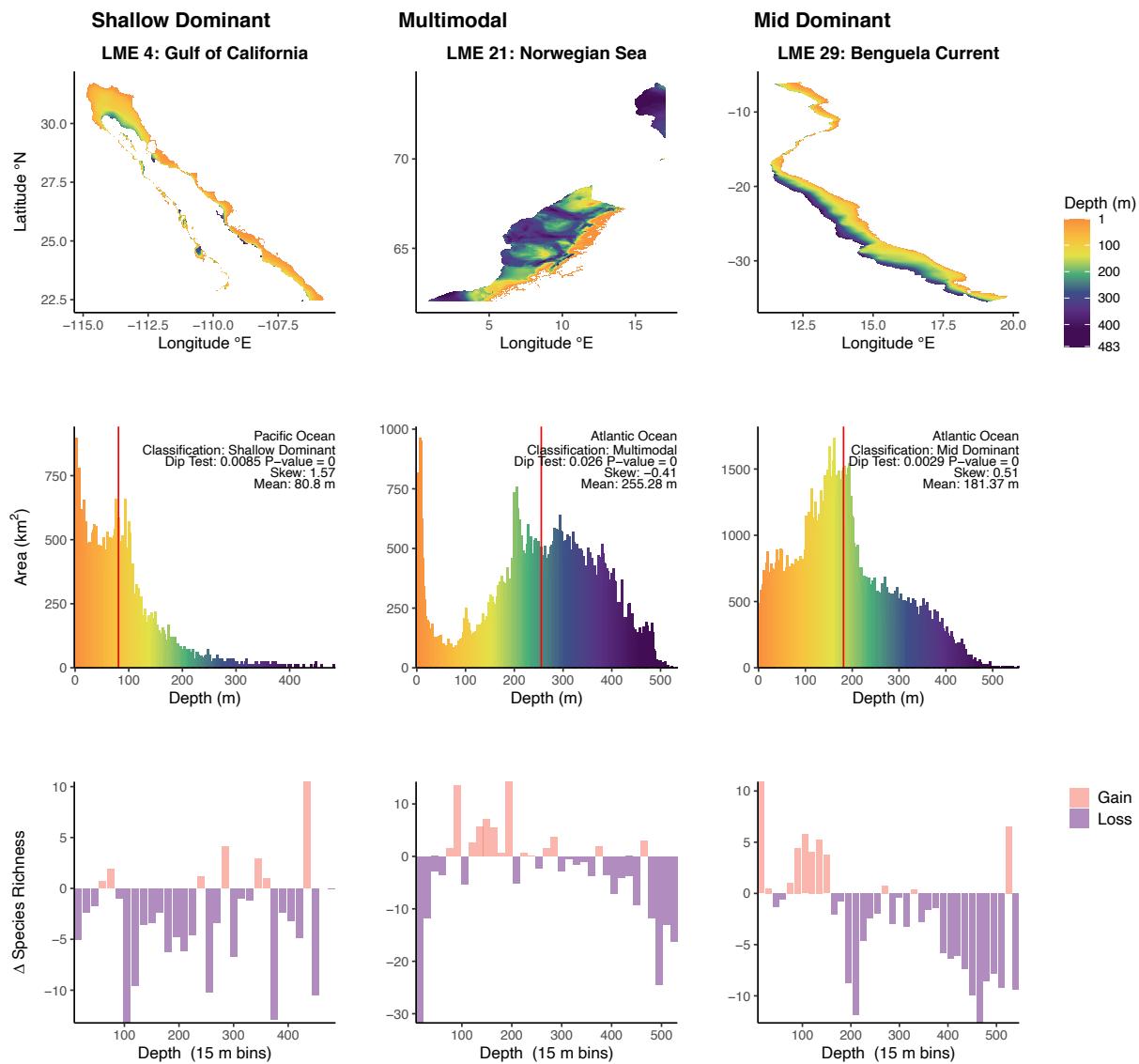


Figure 1. Example classifications for how habitat availability changes with depth within a LME. Depth distribution map (above), hypsometric curve (middle), and species area relationship richness predictions (bottom). Deep Dominant and Uniform are not shown as no LMEs were assigned to these types. Color represents depth (above, middle), and the vertical red bar on the hypsometric curves (middle) indicate mean depth for the LME. Predicted change in species richness was calculated for a 15 meter depth shift using a species area relationship (bottom). See Supplementary Figures 1-3 for depth maps, hypsometric curves and change in species richness for all 64 LMEs.

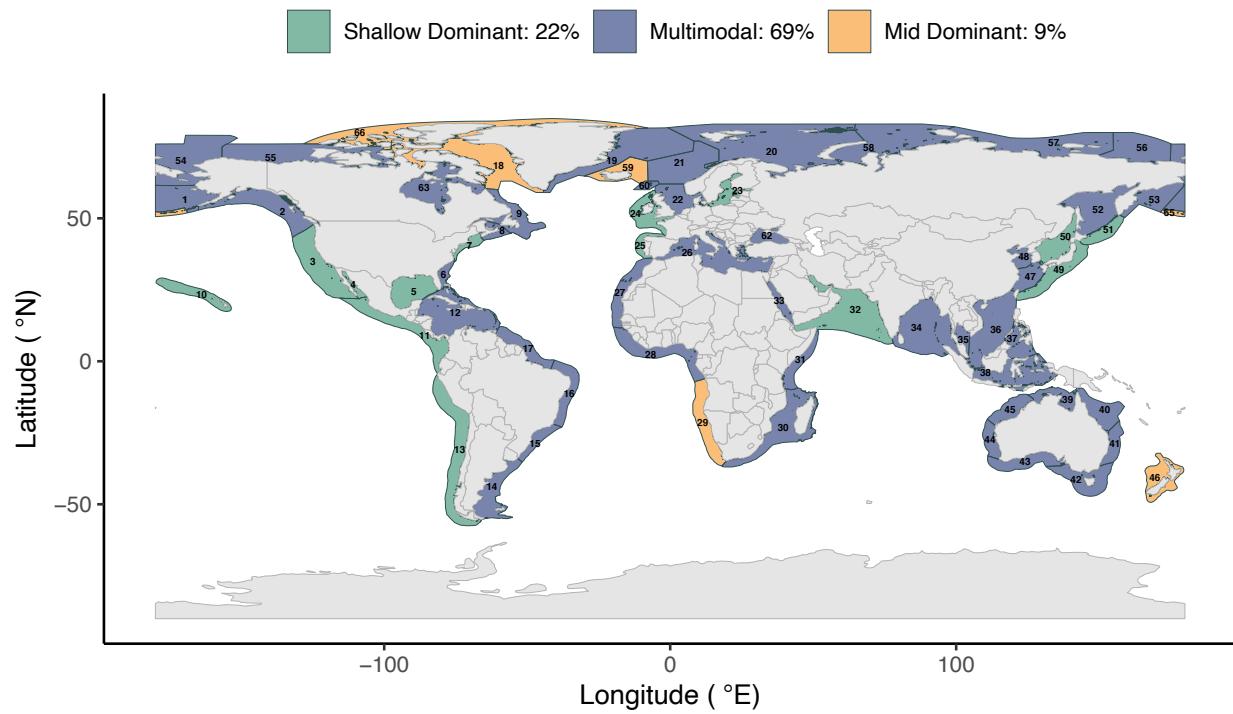


Figure 2. World map with 64 LMEs colored by depth distribution classification. No LMEs were classified as Deep Dominant or Uniform.

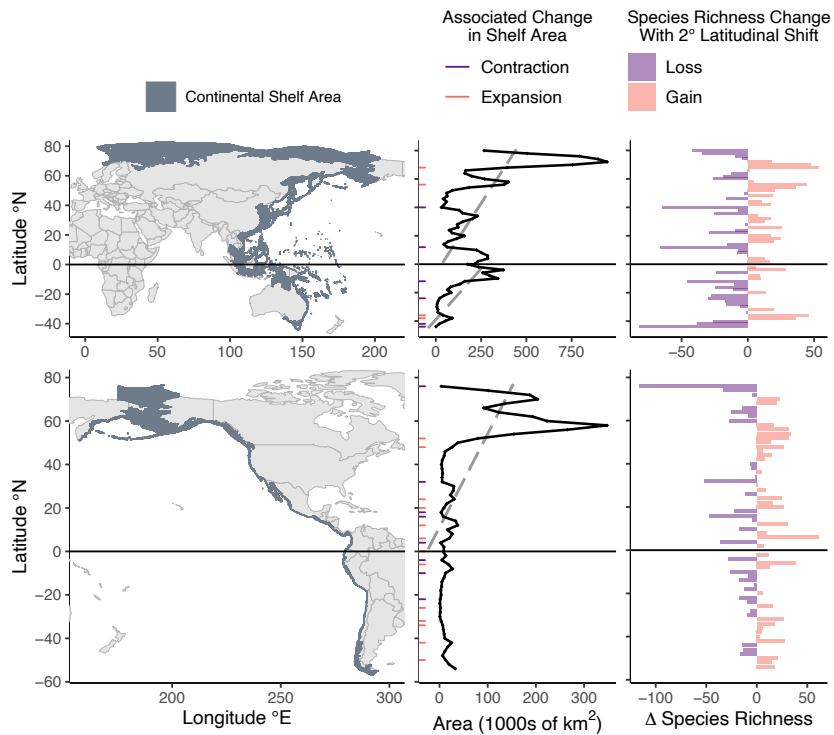


Figure 3. Continental shelf habitat availability by latitude along the western (upper) and eastern (lower) Pacific Ocean basin. Left panels show distribution of shelf habitat along coastlines of the Pacific. Middle panels show shelf habitat availability within 2° latitudinal bins in 1000s of km². Poleward shifts that involve at least a halving of area (contraction) or a doubling of area (expansion) of continental shelf habitat area are highlighted in purple and orange, respectively. Grey dashed line represents the best fit linear model for area versus latitude where the coefficient is significant ($p < 0.05$). Right panels show the predicted losses (purple) and gains (orange) in species richness from a 2° latitudinal shift using a species area relationship.

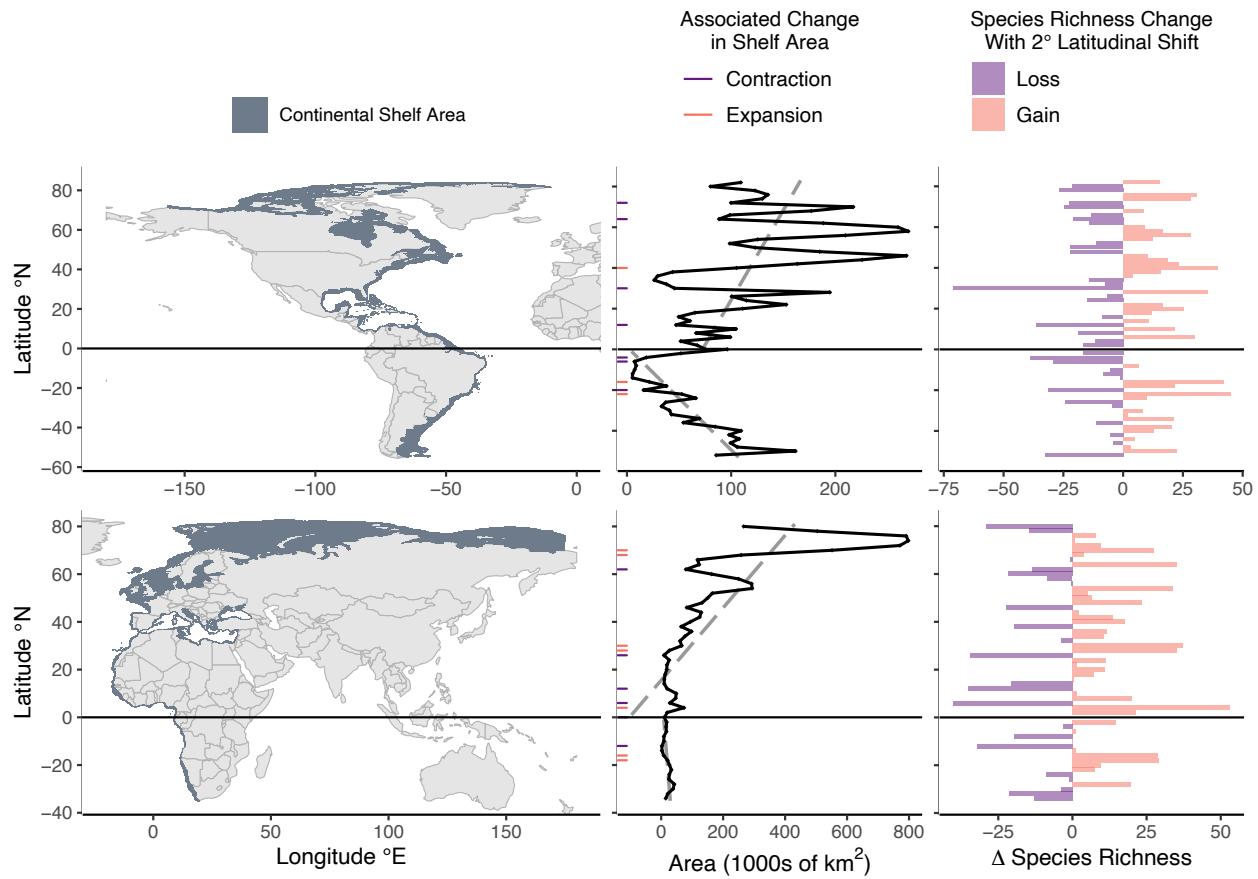


Figure 4. Continental shelf habitat availability by latitude along the western (upper) and eastern (lower) Atlantic Ocean basin. Otherwise, see legend for Fig. 3.

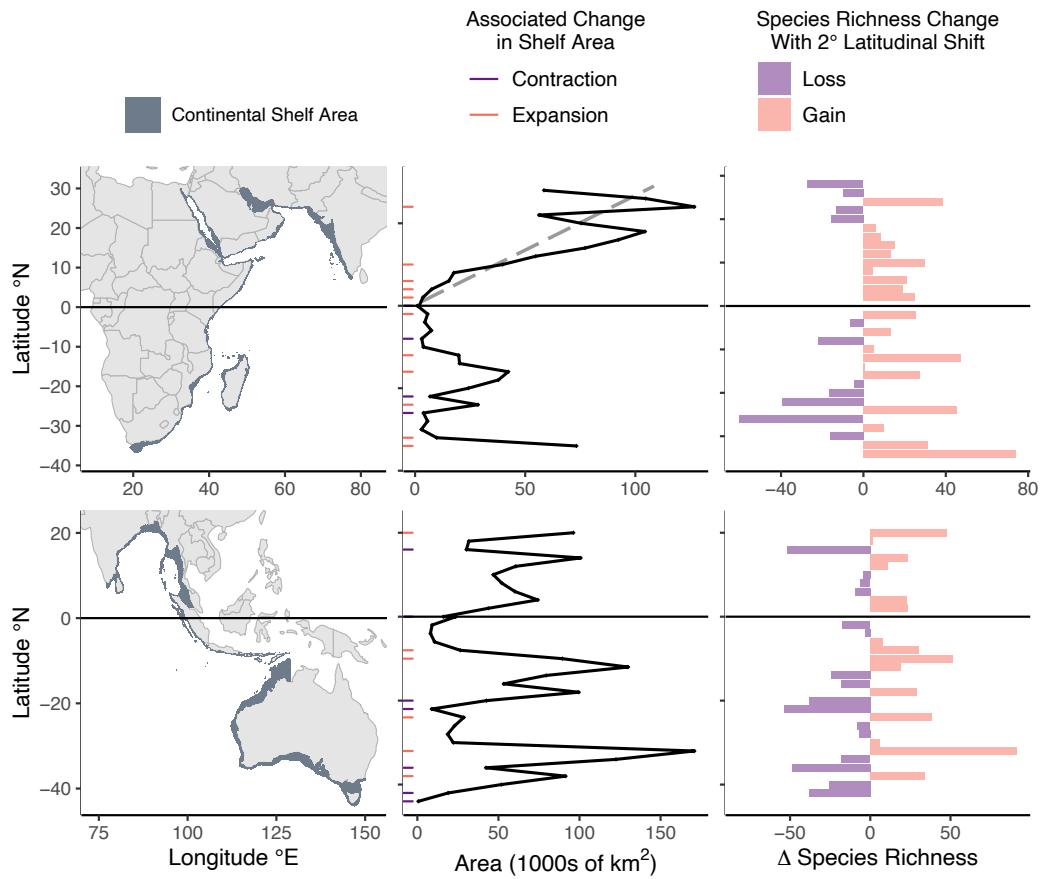


Figure 5. Continental shelf habitat availability by latitude along the western (upper) and eastern (lower) Indian Ocean basin. Otherwise see legend for Fig. 3.

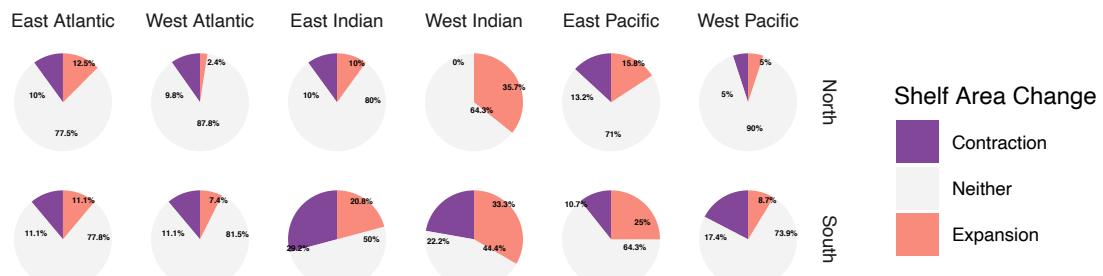


Figure 6. Proportion of 2° poleward shifts associated with a substantial contraction (purple) or expansion (orange) of continental shelf habitat for east and west coastlines of the three focal ocean basins. Poleward shifts that would experience between a halving or doubling of area are shown in grey.