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Abstract 

Understanding recent population trends is critical to quantifying species vulnerability and 
implementing effective management strategies. To evaluate the accuracy of genomic methods 
for quantifying recent declines (beginning <120 generations ago), we simulated genomic data 
using forward-time methods (SLiM) coupled with coalescent simulations (msprime) under a 
number of demographic scenarios. We evaluated both site frequency spectrum (SFS)-based 
methods (momi2, Stairway Plot) and methods that employ linkage disequilibrium 
information (NeEstimator, GONE) with a range of sampling schemes (contemporary-only 
samples, sampling two time points, and serial sampling) and data types (RAD-like data and 
whole-genome sequencing). GONE and momi2 performed best overall, with >80% power to 
detect severe declines with large sample sizes. Two-sample and serial sampling schemes 
could accurately reconstruct changes in population size, and serial sampling was particularly 
valuable for making accurate inference when genotyping errors or minor allele frequency 
cutoffs distort the SFS or under model mis-specification. However, sampling only 
contemporary individuals provided reliable inferences about contemporary size and size 
change using either site frequency or linkage-based methods, especially when large sample 
sizes or whole genomes from contemporary populations were available. These findings 
provide a guide for researchers designing genomics studies to evaluate recent demographic 
declines. 

Introduction 
Human impacts on wild populations have steadily intensified over the course of the 
Holocene, and multiple lines of evidence suggest the current era is heading towards a mass 
extinction event (Ceballos et al. 2015). For species of conservation concern, understanding 
recent population trends (on the scale of the past several decades or centuries) is critical to 
quantifying species vulnerability and implementing effective management strategies. Rapidly 
decreasing population sizes increase the risk of local extirpation or complete extinction in the 
near future (Caughley 1994). Populations with small population sizes are also at risk of losing 
genetic diversity and adaptive potential due to genetic drift (Franklin 1980, Lande & 
Barrowclough1987) and can experience declining average fitness due to inbreeding 
depression (Hedrick & Kalinowski 2000, Keller and Waller 2002). Accurately estimating 
current and past population size is therefore a priority for conservation biologists and 
managers. Unfortunately, baseline data on census population sizes (Nc) over the past few 
centuries are often missing or unreliable for species of conservation concern (Alagona et al. 
2012, McClenachan et al. 2012). 

Genomic methods offer a promising alternative to direct census data for inferring effective 
population size (Ne) over time. Ne determines the rate of inbreeding and genetic drift over 
time, and although it is not directly substitutable for Nc (usually, Ne is smaller than Nc, 
sometimes by several orders of magnitude), it is an important determinant of the rate of 



evolutionary change (Waples 2022). Changes in Ne leave an imprint on genomic diversity 
within a population in two important ways. First, the demographic history of a population 
influences the distribution of allele frequencies in that population, also known as the site 
frequency spectrum (SFS). A population undergoing a demographic expansion, for example, 
will contain more rare alleles relative to a population with a constant size, while a population 
undergoing a demographic decline will contain fewer rare alleles (Griffiths and Tavaré 1998, 
Beichman et al. 2018). Because of this connection between the distribution of allele 
frequencies and demographic history, the expected SFS can be constructed for a given 
population history using coalescent simulations in which the probability of sampled 
individuals sharing a common ancestor is determined by the population size over time 
(Excoffier et al. 2013). Computationally efficient approximations of coalescent expectations 
can be obtained using diffusion models (Gutenkunst et al. 2009) or stochastic models (Kamm 
et al. 2019) which use continuous time rather than discrete generations, and population 
parameters can be estimated based on the observed SFS using likelihood methods. The effect 
of demographic change on the SFS accumulates over time and is dependent on both the 
mutation rate and the coalescence rate. This means that the signal of ancient demographic 
processes is easier to detect than the signal of recent change, especially in large populations 
where coalescence is less frequent, and larger sample sizes will be necessary to detect recent 
changes (Beichman et al. 2018). 

Importantly, SFS methods assume that the loci used to construct the SFS are independent and 
unlinked. Nonrandom associations between loci can occur for multiple reasons, including 
physical linkage among loci on the same chromosome and genetic drift in finite populations 
(Hill 1981). The latter means that patterns of linkage disequilibrium (LD) across loci will also 
be shaped by demographic history. Multiple methods have been developed to infer 
population size from patterns of LD. For a sample of physically unlinked loci, LD should be 
close to zero in an infinite population, and the amount of “excess” LD can be used to estimate 
Ne at a particular time point. This method is most accurate when the population size is small 
and the sample size is large (close to the true Ne; Waples 2006). For loci inherited on the 
same chromosome, the frequency of recombination and thus the amount of LD depends both 
on cumulative genetic drift and the frequency of recombination between the two loci, 
meaning that LD for loci with different linkage distances will reflect population size at 
different points in that population’s history. Recombination frequency will usually increase 
with increasing physical distance on the chromosome, although recombination rate can vary 
throughout the genome (Peñalba & Wolf 2020). Thus, the pattern of linkage disequilibrium 
across the genome, combined with a linkage map of known recombination rates, can be used 
to infer changes in Ne over time (Hayes et al. 2003). Recombination events are more frequent 
for loci with weaker physical linkage, and since recombination rates for weakly linked loci 
can be much higher than mutation or coalescence rates, LD data potentially contain more 
information for inferring recent changes in population size than SFS data alone (Hayes et al. 
2003, Santiago et al. 2020). Critically, obtaining detailed linkage information requires the 
existence of an accurate reference genome for the organism of interest, which may not be 
available in many cases. 

One promising avenue for inferring recent changes in Ne is by comparing genetic patterns in 
historical and modern samples. Advances in obtaining genetic material from museum 
specimens or other historical samples has made the acquisition of both baseline and 
contemporary genetic data (henceforth “temporal data”) a possibility (Nielsen and Hansen 
2008, Bi et al. 2013, Habel et al. 2014, Walender et al. 2017, Diez-del-Molino et al. 2018, 
Oosting et al. 2019). For example, temporal RADseq data from salamanders has been used to 



accurately reconstruct known recent declines and expansions (Nunziata et al. 2017). In 
widespread species, such as Atlantic salmon, genomic signatures of population decline from 
targeted sequencing of historical and contemporary samples have also been used to identify 
which populations have recently declined and to infer the drivers of these declines (Lehnert et 
al., 2019).  

In addition to temporal sampling, the type of genomic data and the availability of reference 
genomes can also influence the quality of inference for Ne. Conservation genomics 
practitioners often use techniques that sample a moderate number of loci across the genome 
such as RADseq (Andrews et al. 2016) or targeted sequencing (Meek and Larson 2019). 
Without a reference genome, these data can provide information on the SFS but are 
anonymous with regard to linkage information. Whole-genome sequencing is now within 
reach as well and can greatly increase the scope and precision of inference possible from 
conservation genomic studies (Brandies et al. 2019). Chromosome-level assemblies are the 
gold standard for providing linkage information; however, draft genomes with incomplete 
linkage information may be sufficient for making demographic inferences with some 
methods (Patton et al. 2019). 

While several recent studies have used simulations to compare performance of methods for 
inferring recent population history under a given sampling scheme for either RADseq 
(Nunziata and Weisrock 2018) or whole-genome data (Patton et al. 2019), the amount of 
precision gained by adding historical genomic data compared to using only contemporary 
data remains unclear. The existing simulation studies have also examined performance under 
somewhat limited ranges of past and present population sizes, timings of population decline, 
and generation times. Failure to account for ancient population events, such as Pleistocene 
expansion or contraction, may also affect inferences made under SFS methods (Momigliano 
et al. 2021, Hoey et al. in press). The lingering uncertainty from all of these potential sources 
can make it difficult for researchers to make objective decisions regarding how to best spend 
limited research funds to generate data that will yield the highest-quality inferences regarding 
recent demographic history. 

To help guide study design for researchers interested in recent demographic inference using 
genomic data, we compare here the performance of four inference methods and three 
temporal sampling schemes across simulated reduced-representation and whole-genome 
datasets representing scenarios of recent population stability or decline. We aim to answer the 
following primary questions: (1) Which methods provide the most accuracy and precision for 
identifying population declines using contemporary data?; and (2) How do historical genomic 
data alter the accuracy of demographic inference? By evaluating the accuracy of different 
study designs and inference methods, we provide concrete recommendations for conservation 
biologists interested in reconstructing the recent demographic history of a diverse array of 
potential study organisms. 



Methods 

Study outline 

To evaluate different methods for estimating contemporary changes in population size, we 
simulated whole genomes from populations with known histories representing either stability 
or decline over the past 200 years. We then subsampled these genomes to generate a number 
of reduced datasets incorporating a smaller number of individuals and/or a random subset of 
loci distributed throughout the genome. Finally, we applied four estimation methods that have 
been developed to infer recent declines. Each estimation method can accommodate different 
data types and temporal schemes and takes different inputs (Table 1). We compared power to 
detect declines as well as the accuracy and precision for each method. 

Simulation scope and approach 

We consider a single panmictic population of diploid, dioecious organisms sampled at a 
contemporary time point—or zero years before present (ybp)—and at several time points in 
the recent past (t=120, 90, 60, and 30 ybp) corresponding to samples that could be 
represented in natural history collections or genetic monitoring programs. We express time in 
years rather than generations so that we can examine more complex demographic scenarios, 
such as overlapping generations. We do not consider “paleogenomes” from the more distant 
past in this paper.  

We simulate data from this population in two distinct stages (Figure 1). The first stage uses 
demographically realistic forward-time simulations to generate a set of recent genealogies. 
The sex of each individual in the population was randomly determined (50/50 chance of 
being male or female, expected sex ratio = 0.5). Population size in forward simulations was 
regulated by controlling the number of offspring (NO) generated in each time step. At each 
time step, NO offspring were generated by randomly selecting one male and one female 
parent with replacement from all breeding-age individuals for each offspring.  

We considered two different life history patterns in these simulations. The first pattern (G1) 
represented an annual organism with a generation time of one year and no overlapping 
generations (all individuals in the population can breed and all die upon reaching an age of 
one year). The second (G3) pattern represented an organism with overlapping generations, 
with age at first breeding equal to one year, an age-specific mortality probability, and a 
maximum age equal to 8 years. The mortality probabilities and age at first breeding were set 
such that the mean age of a breeding individual (and thus the mean generation time) was 
approximately 3 years and the expected number of breeding-age individuals (NB) was equal 
to NO in a stable population. Since for each simulated situation the number of offspring in a 
given time step equaled the number of breeding age individuals, regardless of population 
size, the distribution of reproductive success approximately followed a Poisson distribution as 
expected in an ideal population with random mating, with each parent contributing genes to a 
mean of two offspring and the expected variance in offspring NO being approximately two. 
NO in each generation should therefore be roughly equivalent to Ne for both life history 
patterns (Hill 1972). 

The forward simulations began 100 years before the first historical sampling time point (i.e., 
220 ybp). For the baseline simulations, we set the initial population size (Ne,H) to either 1000 



or 10000. NO in each subsequent generation either remained stable or began an exponential 
decline (with  λ = NO in the current year / NO in the following year) at a time point directly 
after one of the historical sampling points (Tdec= 120, 90, 60, or 30 ybp), eventually reaching 
a contemporary effective population size (Ne,C) at the final time point (zero ybp). For all 
declining populations we conducted a set of simulations with λ = 0.99, resulting in Ne,C/Ne,H 
of 0.74, 0.55, 0.40, and 0.30 respectively for each decline scenario. We also conducted one 
simulation with a recent decline (Tdec = 30) with λ= 0.95 and Ne,C/Ne,H = 0.21. This higher λ 
value was only paired with a recent decline because rapid declines beginning earlier resulted 
in extremely small population sizes. 

We conducted 5 iterations of each forward demographic simulation using SLiM v.3.3.2 
(Haller and Messer 2019) and recorded the full pedigree as well as the number of breeders of 
each sex for each iteration. We then simulated 25 “chromosomes” for each demographic 
iteration by conducting an independent simulation (with the pedigree fixed to the recorded 
pedigree) of a single sequence of length 30 Mb and a per-generation recombination rate of 
10-8 per base per generation (or 1 cM/Mb, which is within the range of recombination rates
observed for plants and animals; Stapley et al. 2017). To decrease the computational intensity
of chromosome simulations, we did not simulate mutations in SLiM, instead using tree
sequence recording and coalescent simulations (see below) for generating polymorphisms
(Haller et al. 2019). For tree sequence recording, we recorded 200 individuals at each
potential Tdec as well as all individuals at 0 ybp.

The second stage of simulations involved simulating genetic data for these genealogies using 
reverse-time coalescent methods. Simulations were performed using msprime v.0.7.4 
(Kelleher & Lohse 2020) in the python package pyslim v.0.501, and populations were 
projected backward for a number of generations sufficient for all sampled individuals to 
reach a common ancestor using a coalescent process (i.e. without incorporating the complex 
life history used in forward-time simulations for G3). The effective population size at the 
initiation of the simulation was set to the number of breeding-age individuals in the first 
generation of the forward-time simulation (Ne,H). Populations in the coalescent simulations 
either remained stable over time or experienced a 10-fold size change (representing either an 
ancestral expansion or an ancestral bottleneck) at 10000 generations before present, and they 
remained at this ancestral population size (Ne,A) for the remainder of the simulation (until all 
loci reached coalescence). Ancestral bottlenecks and expansions were only simulated for 
populations with a larger historic population size (Ne,H = 10000), for the G1 life history 
pattern, and for a restricted set of recent demographic scenarios (constant population size, a 
rapid decline starting 30 ybp, and a slow decline starting 120 ybp). Eighteen demographic 
scenarios in total were simulated. We simulated data with a recombination rate of 10-8 as used 
in the forward simulations, and we added mutations to simulated chromosomes using a per-
generation, per-base mutation rate of 10-8 (within the range of mutation rates observed for 
plants and animals; Lynch 2007). From these two simulation stages, we generated VCF files 
containing all variable sites for each simulated chromosome from 200 randomly selected 
individuals at each time point. 



Sampling designs 

We subsampled from these full datasets to represent realistic constraints of study design 
choices. We generated datasets with total sample sizes n of 20, 50, 100, and 200 individuals. 
Temporal sampling schemes can range from a single comparison between a historic baseline 
and a contemporary sample to a number of samples collected over several time points, as in 
fisheries monitoring (Hutchinson et al. 2003) and repeated museum collections (Gauthier et 
al. 2020). As such, for each dataset samples were either all collected from the contemporary 
timepoint (n samples at 0 ybp; contemporary-only dataset), split evenly between a 
contemporary and a baseline timepoint (n/2 samples at 0 ybp and n/2 samples at 120 ybp; 
two-sample dataset), or split between five serial timepoints (n/5 samples at 0, 30, 60, 90, and 
120 ybp respectively; serial dataset). For whole-genome datasets we used the three smaller 
sample sizes (total n = 20, 50, or 100). To create RADseq-like datasets, we used the three 
larger sample sizes (total n = 50, 100, or 200) and applied an additional filter to keep only 
SNPs found within a set of randomly placed 150bp loci on each of the 25 chromosomes. For 
RADseq-like datasets, we used either 400 RADseq loci per chromosome (10,000 total loci) 
or 2000 loci per chromosome (50,000 total loci). We generated and conducted inference on 
2,430 simulated datasets in total. 

Inference on simulated datasets 

We applied four different inference methods to the simulated datasets. The methods chosen 
represent commonly used software packages that use either the SFS or LD to infer current 
and past population sizes and can incorporate either temporal data, whole-genome data, or 
both. For conducting inference with temporal data using the SFS, we used the program 
momi2 (Kamm et al. 2020), a model-based method for demographic inference that can 
incorporate whole-genome or RAD data. We used pyslim to compute allele counts for each 
chromosome at each time point, and we combined these counts into aggregate folded SFS for 
each time point. momi2 assumes a branching tree-like population structure, and to 
accommodate sampling multiple time points from a single continuous population in momi2, 
we specified that each SFS was sampled as a “leaf” from a branch at its corresponding 
sampling time, after which all lineages from that population were shifted to a new branch 
from which the next sample was taken. For whole genome data, the total number of sites was 
set to the genome size (750Mb), while for RADlike data the total number of sites was set to 
150 times the number of loci (1.5 Mb or 6 Mb) to represent 150 bp RAD loci. For each 
simulated dataset we fit four different demographic models: (1) a model with a single 
constant population size parameter, Nconstant; (2) a model with two population size parameters 
(size at 0 ybp, Ncontemp, and at 120 ybp, Nhistoric) and a time parameter specifying the time at 
which the population began an exponential size change (Trc); (3) a model with an 
instantaneous ancient size change 𝑁෡ancient occurring at Tac; and (4) a model including both the 
ancestral and recent size changes. Potential ranges for Nconstant, Ncontemp, 𝑁historic, and Nancient 
were set to 10 – 500,000 individuals (the size change was not assumed to be a decline). The 
range for Trc was set to between 10-120 ybp and the range for Tac was set to 1,000 and 
100,000 ybp. The rate of exponential size change was fully determined by the time of decline 
and the two population size parameters. We did not constrain recent size changes to be 
declines, and as such we evaluated whether momi2 inferred the population to be either stable, 
declining, or expanding. We fit all models to each simulated dataset using the Truncated 
Newton (TNC) optimizer, and we recorded all parameter estimates as well as the likelihood 



and AIC for each model. We retained parameter estimates for population size at 0 ybp 𝑁෡E,H 
and 120 ybp 𝑁෡E,C for the model with the lowest AIC for each dataset. 

For conducting inference using the SFS with whole-genome data, we used Stairway Plot 2 
(Liu and Fu 2020). We used the vcf2sfs script (https://github.com/shenglin-liu/vcf2sfs) to 
compute the folded SFS input. We set the total number of sites (including monomorphic 
sites) to 750Mb, the number of random breakpoints for each iteration to {7,15,22,28}, the 
mutation rate per generation to 1x10-8, and the generation time to 1 year, and we used 67% of 
the sites for training. We retained the most recent median estimate of population size as 𝑁෡e,C. 
As the time bins for stairway plot estimates can be somewhat irregularly spaced, we used the 
median population size estimate for the time bin closest to 120 ybp that was closest to this 
time point a 𝑁෡e,H, and we used the 2.5% and 97.5% estimates as confidence intervals. 

For conducting inference based on excess LD using RAD-like data, we used NeEstimator2 
(Do et al. 2014). The LD method outperformed two other methods implemented in 
NeEstimator in a previous study (Gilbert and Whitlock 2015). We only used the two-sample 
scheme for assessing performance of NeEstimator since contemporary-only sampling does 
not allow for inference of historic size with this method. Before running, we converted vcf 
files to genepop files using the vcf2genepop.pl script 
(https://github.com/z0on/2bRAD_denovo/blob/master/vcf2genepop.pl). We used an allele 
frequency of 0.05 and assumed random mating. We used the point estimates and the used 
jackknife 95% confidence intervals for population size at 0 ybp and 120 ybp as 𝑁෡e,C and 𝑁෡e,H, 
respectively.  

For conducting inference using LD with whole-genome data, we used GONE (Santiago et al. 
2020). We used plink (Purcell et al. 2007) to convert the vcf file to ped/map format. We ran 
GONE using the default parameters (unknown phase, 1 cM/Mb, Haldane correction, 2000 
generations, 400 bins, MAF=0, allowing SNPs with zeroes, using all chromosomes, 50000 
SNPs/ chromosome, hc = 0.05, 40 reps, 20 threads). We used the estimates for population 
size at 0 ybp and 120 ybp as 𝑁෡e,C and 𝑁෡e,H, respectively. After Santiago et al. 2020, we 
performed resampling to estimate a confidence interval for 𝑁෡e,C and 𝑁෡e,H. Since some datasets 
contained a relatively small number of SNPs ) <300,000 SNPs compared to the datasets in 
Santiago et al. (2020), we took a random sample of 50,000 SNPs forty times and re-ran the 
program to generate 95% confidence intervals.  

Effects of genotyping errors and allele frequency filters 

Some demographic inference methods (including momi2) assume no errors in genotyping 
and no filtering of genotypes based on allele frequency. Since these conditions are rarely met 
in practice for non-model species, we performed additional inferences using modified 
datasets to explore the effects of some potential violations of these assumptions on inference 
accuracy. 

Genotyping errors are more likely to occur for historical samples due to lower coverage and 
postmortem DNA damage in older samples. For example, Bi et al. (2013) found error rates 
that were almost fivefold higher (0.19%) in historical samples compared to contemporary 
error rates (0.04%). Genotyping errors are most likely to create singleton SNP genotypes that 
would potentially impact site frequency spectrum-based analyses. Minor allele frequency 
filters are commonly applied to SNP datasets; while this may improve inference for some 
applications, such as assessing population structure using STRUCTURE-like methods (Linck 



and Battey 2019), distorting the site frequency spectrum by removing low-frequency alleles 
could also negatively impact other analyses (Lou et al. 2021). To assess the potential effect of 
errors in historical genotypes, we added singletons to the site frequency spectrum in momi2 
at three different rates (1e-3, 1e-4, or 1e-5 singletons per site) for RAD-like datasets and re-ran 
the momi2 inferences. We also applied a minor allele frequency filter of 0.01 to the data and 
re-ran momi2 inferences as well. 

Evaluating methods 

For datasets simulated with a recent decline, we considered the decline to be correctly 
inferred when a model including a recent decline had the lowest AIC and 𝑁෡e,C < 𝑁෡e,H (for 
momi2) or when the upper 95% confidence interval for 𝑁෡e,C was lower than the lower 95% 
confidence interval for 𝑁෡e,H (for the other methods). For datasets simulated with constant 
population size, we considered the demographic history to be correctly inferred when a model 
including a constant recent population size had the lowest AIC and 𝑁෡e,C < 𝑁෡e,H (for momi2), 
or when the 95% confidence intervals for 𝑁෡e,C  and 𝑁෡e,H overlapped. Because StairwayPlot 
and NeEstimator provide  95% confidence intervals for the contemporary and historic 
population sizes themselves, rather than the difference in population sizes, this test for a 
decline is somewhat overly conservative (Cumming and Finch 2005). 

We evaluated and visualized error using two different approaches. For each method, we 
calculated mean absolute percentage error for 𝑁෡e,C and 𝑁෡e,H for each simulated dataset i over 
n total datasets using the following equation: 
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We calculated mean error on an aggregated subset of scenarios, including three demographic 
scenarios (constant population size, a rapid decline starting 30 ybp, and a slow decline 
starting 120 ybp), a generation time of 1, and both initial population sizes. We calculated 
mean error separately for the WGS and 50K RAD loci datasets. 

Since this metric uses absolute value and does not convey potential directional biases, we 
also visualized concordance between true and simulated values by plotting the log10 ratio of 
the inferred to the simulated value across all simulated demographic scenarios. 

For two methods, we assessed alternate metrics of accuracy. Since we fit multiple alternate 
models in momi2, we evaluated how often the correct model (constant population size for 
data generated under the constant demographic model, or size change for data generated 
under the size change model) had the best support (defined as the model with the lowest 
AICc). Since NeEstimator can return estimates of “infinity” in some situations, we also 
identified the proportion of simulations for which this occurred for 𝑁෡e,H and 𝑁෡e,C. Due to a 
large number of “infinite” estimates from NeEstimator at n=50 (Supplemental Figure 1), we 
excluded this sample size from mean error calculations. 



Results 

Power to detect declines 

Overall, momi2 and GONE exhibited the highest power to correctly detect or reject recent 
declines. With large sample sizes (n = 200) and RAD-like data, momi2 correctly identified 
declines for ≥80% of simulated datasets and only performed poorly when declines were 
recent (30 generation ago) and slow (λ = 0.99) (Figure 2a). momi2 did not perform as well 
using WGS data, although it was still ≥80% accurate for detecting slow declines ≥ 90 
generations (Figure 2b). Decreasing samples sizes for momi2 generally decreased the power 
to detect declines (Figure 2, Supplemental Table 1, Supplemental Table 2). GONE exhibited 
≥ 90% accuracy for detecting more severe declines (λ = 0.99 for 120 generations or λ = 0.95 
for 30 generations) with large samples sizes (n = 100). Power to detect declines with GONE 
decreased for lower sample sizes and for less severe declines (Figure 2b). The other methods 
(Stairway plot and NeEstimator) generally had lower power compared to momi2 and GONE 
for similar sample sizes (Figure 2, Supplemental Table 1, Supplemental Table 2). 

Accuracy and bias for estimating Ne,H and Ne,C 

Mean absolute error for estimating Ne,H was lowest for the SFS-based methods (momi2 and 
the stairway plot; Figure 2a). Mean error for estimating Ne,H was somewhat higher for 
GONE, an LD-based method, than for the SFS-based methods, and the other LD-based 
method (NeEstimator) displayed substantially higher error for estimating Ne,H than any of the 
other methods (Figure 2a). Mean absolute error tended to be substantially higher overall for 
estimating Ne,C (Figure 2b) than for Ne,H across methods. GONE tended to have lower error 
for estimating Ne,C than SFS-based methods, while NeEstimator had comparable or higher 
error compared to momi2. 

Mean absolute error for estimating Ne,H did not strongly depend on sample size for SFS-based 
methods (Figure 2a). Mean error for estimating Ne,H decreased with sample size for GONE 
and actually increased for NeEstimator. For Ne,C, on the other hand, mean error did tend to 
decrease with increasing sample sizes across methods (Figure 2b). 

Whole-genome and RAD data performed comparably for estimating Ne,H with SFS-based 
methods (Figure 2a). There was no clear difference between the two data types for estimating 
Ne,C as well, and the most accurate estimates were produced by a WGS data (GONE with 
sample sizes 50-100) and an SFS method (momi2 with sample size of 200).    

In general there were no strong directional biases in estimating Ne,H except for NeEstimator 
with a sample size of 100, which produced downward-biased estimates (Supplemental Figure 
2a, Supplemental Figure 3). Estimates of Ne,C tended to be biased upward when using a serial 
sampling scheme in momi2, for the rapid decline scenario in momi2, and for some scenarios 
for the stairway plot, but were otherwise fairly unbiased (Supplemental Figure 2b, 
Supplemental Figure 4). 



Generation time and accuracy 

Accuracy of inferences for Ne,H based on simulations conducted using a generation time of 3 
exhibited similar accuracy for momi2 and GONE overall compared to simulations conducted 
using a generation time of 1 (Figure 4, Supplemental Figure 6). For the stairway plot, 
however, Ne,H estimates for the longer generation time were less accurate and were biased 
upward. Estimates for Ne,C were biased slightly lower for a generation time of 3 but were 
otherwise fairly accurate for GONE between the two generation times. However, increasing 
generation time greatly reduced accuracy for the stairway plot and for momi2 when using 
contemporary-only data (Figure 4, Supplemental Figure 7).  

Effects of ancestral expansions and bottlenecks on accuracy and model selection 

Ancestral bottlenecks or expansions did not seem to strongly affect inferences of either Ne,H 
or Ne,C made with GONE (Figure 5). For the SFS-based methods, ancestral bottlenecks did 
not affect estimates of Ne,H, but ancestral expansions resulted in an upward bias for estimates 
of NE,H for the stairway plot and in some iterations for momi2. Estimates of Ne,C made using 
whole-genome data with momi2 were somewhat more accurate when an ancestral bottleneck 
had occurred compared to the constant ancestral size scenario or ancestral expansion 
scenarios.      For RAD data, accuracy for Ne,C was highest for the constant size scenario and 
lowest when an ancestral expansion had occurred. Model selection in momi2 using RAD data 
was most accurate for the ancestral bottleneck scenario and least accurate for the expansion 
scenario (Supplemental Figure 8). For WGS data, momi2 again often selected the wrong 
model for the constant-size scenario with ancestral expansions or bottlenecks (Supplemental 
Figure 8).  

To explore the effects of model misspecification, we also used momi2 to fit models without 
ancestral size changes to data that did have these changes. In these cases, estimates of Ne,H 
were consistently biased either low (for the ancestral bottleneck scenario) or high (for the 
ancestral expansion scenario; Supplementary Figure 9). For Ne,C, accuracy was also reduced 
somewhat (particularly for the two-sample scenario) and resulted in a slight upward bias for 
the ancestral bottleneck scenario. In the case of the ancestral expansion scenario, model mis-
specification did not affect inferences for serial sampling but did result in biases for the other 
scenarios, particularly the two-sample scenario (Supplementary Figure 9). 

Effect of minor allele filtering and singleton errors on momi2 

When using contemporary-only data in momi2, minor allele filtering introduced small 
upward biases in estimated Ne,H, but a strong downward bias for Ne,C (Figure 6). Adding 
singleton errors also introduced a small upward bias in Ne,H but had a much larger effect on 
Ne,C, driving a strong downward bias at higher error rates (Figure 6). Adding singleton errors 
to the contemporary-only dataset at the same rate as the two-sample dataset caused an 
extremely strong upward bias in estimates of both  Ne,H and Ne,C (Supplementary Figure 10). 

Performance of temporal sampling relative to contemporary-only sampling 

Two-sample and serial sampling schemes did not show a consistent benefit over 
contemporary-only sampling in momi2, although these schemes did outperform 



contemporary-only sampling in certain cases. When using WGS data, serial and two-sample 
schemes performed better at identifying more recent slow declines than contemporary-only 
data (Figure 2b). The two-sample scheme also performed better than the contemporary-only 
scheme when the generation time was 3 years (Supplementary Figure 6). Finally, the bias 
produced by minor allele filtering was less pronounced for two-sample data and absent for 
serially sampled data (Supplementary Figure 11). 

Discussion 

Researchers interested in estimating population size change over recent time scales now have 
a larger selection of methodological tools and types of data available to them than ever 
before. Combined with limited resources, this can lead to difficult choices between 
generating more data from many contemporary individuals, obtaining historical and modern 
genomic data to provide a temporal comparison from fewer individuals, or generating whole-
genome data and, potentially, a reference genome for their species of interest. While the suite 
of tools available is constantly expanding, the simulation-based analyses presented here 
provides guidance for such researchers regarding how certain types of data and analyses 
perform relative to others and which analyses may be most robust to potential confounding 
factors. 

Inferring recent versus historical population sizes 
Inferring historical changes in population size using modern methodologies has generally 
been considered an easier task than inferring recent changes, with the former possible based 
on a single whole genome (Li and Durbin 2011) or a reduced-representation data from a 
small number (>10) of individuals (Beichman et al. 2018). Our results supported this 
generalization for SFS-based methods. Inference using momi2 and the stairway plot both 
resulted in extremely low error rates regardless of sample size or data type (whole genome vs 
reduced representation), though with some caveats that incorrect model specification 
introduces biases with momi2. Among the linkage-based methods, GONE performed 
somewhat worse than either SFS-based method for inferring historic size, although 
performance improved at higher sample sizes and error was still fairly low (usually <25%).  

In contrast to inference of historical population dynamics, Beichman et al. (2018) 
recommended avoiding inference regarding recent demographic events (within the last 
hundred generations) using whole-genome data for fewer than 10 individuals or reduced-
representation data for fewer than 100 individuals. The greater difficulty involved in inferring 
contemporary population size was reflected in generally much higher error rates for recent 
population sizes compared to historical sizes for most methods. In line with Beichman et al.’s 
recommendations, we observed the lowest error rates for the whole-genome data linkage 
method GONE, particularly when sample sizes were larger than 25, and for momi2 and 
NeEstimator when using sample sizes greater than 100. The stairway plot generally 
performed worse than momi2 for inferring recent size except when sample sizes were large 
(100). However, the stairway plot did outperform a number of other whole genome methods 
and accurately reconstructed an approximately 100-fold decline over the past hundred years 
in Tasmanian devils (Patton et al. 2019). 

The utility of temporal versus contemporary data 
Temporal sampling schemes contain specific information that contemporary-only schemes 
lack, in the form of both direct information on the genetic composition of past populations 
(which is leveraged by methods that provide point estimates of population size, such as the 



LD method implemented in NeEstimator) as well as information on the magnitude of genetic 
drift over time (used by the Jorde-Ryman method, Jorde & Ryman 2007). Our results, 
however, demonstrate that contemporary-only samples contain a substantial amount of 
information on changes in size over time as well, and it may not be necessary or sufficient to 
incorporate temporal data in order to accurately infer population sizes. This may be 
somewhat counterintuitive, as temporal data have been used extensively in the past for 
inferring population size changes (e.g. Ramakrishnan et al. 2005, Skoglund et al. 2014, 
Nunziata et al. 2017). Critically, however, when testing a method that can incorporate either 
contemporary or temporal schemes (momi2), we found that temporal data did not perform 
noticeably better compared to contemporary-only data when keeping the total number of 
samples constant and assuming the model was appropriately specified. A possible 
explanation of this pattern is that the additional information on rare alleles gained from 
sequencing twice the number of individuals in a contemporary-only sample. These alleles can 
be particularly informative for inferring recent changes in population size; rare alleles will be 
lost quickly in a bottleneck (Allendorf 1986). 

NeEstimator using temporal data performed noticeably worse than other methods, and 
performance did not seem to be increased by increasing sample size. In contrast to our 
results, Nunziata and Weisrock (2017) found NeEstimator to be more accurate for detecting 
recent size changes, although they only assessed scenarios where the starting population size 
was on the smaller end of the range used here. The performance of this method is dependent 
on population size, and as most of our scenarios involved population declines the higher 
historic population sizes may have affected both. NeEstimator in particular requires a small 
but substantial proportion of the population to be sampled (~1%; Marandel et al. 2019), and 
in cases where the population size is on the order of 10,000, our simulated datasets would not 
have had sufficient numbers of individuals. Sufficient historic sample sizes may be possible 
to obtain sometimes, but in many cases would be difficult to obtain for many species. It may 
thus be difficult to use NeEstimator to accurately infer historic population sizes for most 
populations, unless they were historically very small and isolated. 

Confounding factors 
Both MAF filtering and the presence of singletons associated with sequencing error can cause 
extreme biases in estimates of contemporary population size for SFS-based methods. The loss 
of rare alleles is characteristic of a bottleneck (Allendorf 1986, Garza & Williamson 2001), 
and the application of a minor allele filter can create the illusion of a severe, recent 
bottleneck. An excess of rare alleles, on the other hand, is characteristic of a recent expansion 
(Keinan and Clark 2012), and the introduction of singleton errors could therefore lead to 
erroneous inference of an expansion. Interestingly, temporal sampling did seem to reduce the 
bias associated with minor allele filtering in our analyses, possibly because temporal data 
contain more explicit information on drift. Another explanation for this observation may be 
that, with smaller sample sizes per time point, applying a dataset-wide MAF cutoff will be 
less likely to remove truly rare alleles as the observed population allele frequencies are more 
affected by sampling variation and smaller sample sizes at each time point. We note that 
although we did not consider other sequencing artifacts that can have a substantial effect on 
the SFS (i.e. allelic dropout for RAD data; Heller et al. 2021), researchers should be aware of 
these as additional confounding factors in demographic inference. We also did not examine 
the effects of singletons on WGS methods. Singletons can be masked in Stairway Plot 2 (Liu 
and Fu 2020) and for GONE MAF has little effect on estimated population size (Novo et al. 
2022), and as such these methods should be less sensitive to singletons and minor allele 
filtering, respectively. However, future work examining the effect of genotyping error could 



be worthwhile, especially since WGS studies in non-model species often use low-coverage 
WGS for which accurate genotype calling is difficult (Lou et al. 2021). 

Historic population sizes are rarely stable over deeper time scales, and as such it is important 
for demographic inference methods to be robust to these more ancient changes. We simulated 
a 10-fold expansion or decline similar to a demographic change experienced by many 
organisms at the time of the last glacial maximum (Hewitt 2004). Encouragingly, the 
methods we examined seemed to be fairly robust to more ancient changes when inferring 
recent or historic sizes. Demographic reconstruction methods such as the stairway plot or 
GONE possess a built-in ability to infer these changes as they attempt to infer the entire 
demographic history of the population. Care must be taken with methods in which the user 
specifies the demographic model to fit, such as momi2, since these methods will only include 
ancient declines if the user includes them in the set of models to assess. If they are not 
included, then inferences of historic and recent size may be severely biased, as seen in our 
results. We also note that while we did not include recent population expansion in our set 
simulated scenarios, the signatures of expansion and decline are opposite (Beichman et al. 
2018), and power to distinguish expanding populations from declining populations should be 
at least as high as power to distinguish expanding populations from stable populations. 
Accurately detecting recent expansions (in, for example, invasive species) is also highly 
relevant to conservation and would be a worthwhile avenue for future research. 

The genetic signal of demographic change accumulates on the scale of generations, and as 
such longer generation times (and therefore fewer generations elapsed) could severely reduce 
accuracy for inferring recent change. We did find lower accuracy for SFS-based methods 
when we increased generation time to 3 years. Organisms of conservation concern may have 
much longer generation times, and care should be taken to consider the number of 
generations since suspected declines. Nunziata and Weisrock (2017) found that declines were 
detectable when 10-20 generations had elapsed since the start of a decline. GONE seemed to 
perform fairly well even when only 10 generations had elapsed since the start of a decline, 
suggesting that using this method with whole genome data may be the best for inferring 
recent declines when generation times are longer. Before choosing a data type and method, 
researchers should consider the generation time of their study organisms and the number of 
generations that have elapsed since suspected changes in population size. If generation time is 
unknown (as it may be for some non-model species), researchers can attempt to estimate 
generation time for closely related species. Since the timing of estimated declines is scaled to 
generation time, uncertainty in generation time will mainly result in uncertainty in the timing 
of the change rather than the magnitude of change. 

A number of factors that we did not examine here could potentially confound the inference of 
population size. We considered only a single panmictic population for simplicity. Inferring 
population size is less straightforward in structured populations and populations receiving 
migration (Orozco-terWengel 2016, Mazet et al. 2016). Model-based analyses can potentially 
include migration and population structure in their framework, although it would be 
important to sample all populations in that case. GONE seems to be robust to high levels of 
gene flow (in which case it infers a metapopulation-level estimate of size), but low levels of 
migration can distort estimates (Santiago et al. 2020). Researchers should be aware of any 
potential population structure when applying these methods. 

The time scale on which whole genome data are informative for inferring recent change will 
depend on the frequency of recombination - specifically, recent recombination events are 



more likely to occur between alleles that are less tightly linked (McVean 2002). As such, 
long-range linkage data are necessary for inferring recent demography. While a reference 
genome is needed for providing the linkage information, our investigations suggest that the 
reference genome used does not need to be chromosome-scale. Specifically, reducing the size 
of known linkage groups to 5 centiMorgans did not seem to meaningly affect inference with 
GONE, suggesting that even when using an incomplete draft genome, this method can 
provide reliable inference (Supplemental Figure 12). Recombination rate variation could also 
potentially influence inferences of population size made using GONE. While recombination 
rate was fully determined by physical distance for out simulated datasets, recombination rate 
can vary substantially across the genome in real populations (Peñalba & Wolf 2020). When it 
is possible to construct accurate linkage maps, incorporating these maps in GONE and similar 
analyses would improve inference of recent population size.  

In a recent review, Marchi et al. (2021) noted that whole genome data may not always be 
ideal for demographic inferences compared to reduced-representation data, since patterns of 
variation in whole genome data will be more influenced by non-stationary processes such as 
variation in recombination rates and selection across the genome that are difficult to model. It 
will be important to detect and account for these processes whenever possible when using 
whole genome data. GONE seems to be robust to selection (Novo et al. 2022) and can 
incorporate observed recombination rates across the genome rather than use a uniform rate 
(Santiago et  al. 2020), meaning that this method could potentially surmount these obstacles 
presented by genome-scale data. 

Recommendations and future directions 

Based on our results, we recommend different methods for inferring recent changes in 
population size depending on the samples and resources available. When contemporary 
whole-genome sequencing data can be collected from at least 50 samples and a reasonably 
complete draft genome is available, we recommend the linkage-based methods implemented 
in GONE. These methods appear powerful and accurate across a wide range of demographic 
scenarios . In contrast, we recommend the SFS-based momi2 when linkage information and 
whole-genome data are not available. In particular, we recommend serial sampling with 
momi2 to help reduce the impacts of model misspecification or genotyping error, both of 
which are difficult to fully avoid. Care must be taken, however, to ensure that the SFS used 
for inference with momi2 accurately represents the full SFS (including rare alleles) in the 
population of interest. While NeEstimator performed relatively poorly in our tests, it could be 
useful when historical and contemporary samples are available and when an appreciable 
fraction of the population (1%) has been sampled at each time point. 

There are currently gaps in methods that can incorporate whole-genome data with historical 
samples and in methods that can combine SFS and linkage information. ABC and machine 
learning methods could bridge this gap (Beichman et al. 2018, Schrider and Kern 2018, 
Sanchez et al. 2021), and they represent promising approaches for integrating multiple data 
types. Moving forward, it will be important to evaluate these new methods under a wide 
range of scenarios and data types to determine how useful they are for inferring recent size 
changes. 
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Table 1 

Software 
Inference 
Method 

Data 
Type Temporal Scheme Input Format Additional inputs 

momi2 SFS 
WGS or 
RAD 

Contemporary or 
Temporal SFS/VCF* 

Mutation rate, 
generation time 

Stairway Plot SFS WGS 
Contemporary 
Only SFS/VCF* 

Mutation rate, 
generation time 

NeEstimator LD RAD Temporal Genepop 
Chromosome 
locations (optional) 

GONE LD WGS 
Contemporary 
Only PLINK 

Recombination map 
(optional) 
















