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Summary 35 

As climate change accelerates, species are shifting poleward and subtropical and tropical 36 

species are appearing in temperate environments1 3. A popular approach for characterizing such 37 

responses is the community temperature index (CTI), which tracks the mean thermal affinity of 38 

a community. Studies in marine4, freshwater5, and terrestrial6 ecosystems have documented 39 

increasing CTI under global warming. However, most studies have only linked increasing CTI 40 

to increases in warm-affinity species. Here, using long-term monitoring of marine fishes across 41 

the Northern Hemisphere, we decomposed CTI changes into four underlying processes  42 

tropicalization (increasing warm-affinity), deborealization (decreasing cold-affinity), 43 

borealization (increasing cold-affinity), and detropicalization (decreasing warm-affinity)  for 44 

which we examined spatial variability and drivers. CTI closely tracked changes in sea surface 45 

temperature, increasing in 72% of locations. However, 31% of these increases were primarily 46 

attributable to decreases in cold-affinity species, i.e., deborealization. Thus, increases in warm-47 

affinity species were prevalent, but not ubiquitous. Tropicalization was stronger in areas that 48 

were initially warmer, experienced greater warming, or were deeper, while deborealization was 49 

stronger in areas that were closer to human population centers or that had higher community 50 

thermal diversity. When CTI (and temperature) increased, species that decreased were more 51 

likely to be living closer to their upper thermal limits or to be commercially fished. 52 

Additionally, warm-affinity species that increased had smaller body sizes than those that 53 

decreased. Our results show that CTI changes arise from a variety of underlying community 54 

responses that are linked to environmental conditions, human impacts, community structure, 55 

and species characteristics.  56 

 57 

Results and Discussion 58 
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Fish communities worldwide are responding to global warming through shifts in mean thermal 59 

affinity, which can be represented by the community temperature index (CTI)4,7 9. An increase 60 

in CTI necessarily implies an increase in the relative abundance of warm-affinity species. 61 

However, a key question is whether this is primarily due to increases in the total abundance of 62 

warm-affinity species or to decreases in the total abundance of cold-affinity species. To resolve 63 

this, we decomposed CTI changes into four underlying processes:  64 

 -affinity species)  65 

 -affinity species) 66 

 -affinity species) 67 

  (decreasing abundance of warm-affinity species) 68 

Here, we define warm-affinity and cold-affinity species locally within each community: warm-69 

affinity species are those whose thermal affinity is higher than the mean of the community and 70 

cold-affinity species are those whose thermal affinity is lower than the mean. Additionally, 71 

w 7 or 72 

poleward distribution shifts3,10 12, we explicitly use this term to refer to an increase in warm-73 

affinity species. We applied this approach to fish communities using scientific monitoring data 74 

from 558 grid cells covering 12 marine regions across the Northern Hemisphere that showed 75 

contrasting changes in sea surface temperatures (SST) over the period 1990 to 2015. We 76 

calculated the relative strength of each underlying processes in each grid cell and identified 77 

which process was strongest when CTI increased or decreased. Finally, we examined the 78 

potential influences of environmental conditions, human impacts, and community structure on 79 

differences in the strength of the underlying processes and examined differences between 80 

species contributing to opposite processes (e.g., borealization vs. deborealization).  81 
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 Mean-annual SST increased in 72.4% (404) of grid cells between 1990 and 2015 with 82 

a mean of 0.23 ± 0.007°C decade-1 (mean ± standard error), while it decreased in 27.6% of cells 83 

(154) with a mean of -0.10 ± 0.008°C decade-1 (Figure 2A). CTI closely mirrored SST 84 

, increasing in 71.3% (398) of cells, with a mean of 0.28 ± 0.013°C 85 

decade-1 (Figure 2B), and decreasing in 28.7% (160), with a mean of -0.14 ± 0.014°C decade-1 86 

(Figure 2B). Increases in CTI occurred primarily along the northeast coast of the United States, 87 

in the Scottish Seas, the North Sea, the Baltic Sea, the Barents Sea, and around the Aleutian 88 

Islands, while decreases were more prominent along the west and southeast coasts of the United 89 

States and in the Bering Sea (Figure 2B).  90 

 We next decomposed changes in CTI and quantified the strength of each underlying 91 

processes within each grid cell. Across all grid cells, tropicalization was the strongest process 92 

on average being dominant in 47% of cells, while detropicalization was the weakest, being 93 

dominant in only 7% of cells (Figure S1). Among the grid cells where CTI increased, 94 

tropicalization was stronger than deborealization in 68.6% (while deborealization was stronger 95 

in 31.4%) (Figure 2C). Hence, while past literature has focused extensively on increases in 96 

warm-affinity species and poleward distribution shifts3,7,11,13, over one third of CTI increases 97 

were attributable to decreases in cold-affinity species. Among the grid cells where CTI 98 

decreased, borealization was stronger than detropicalization in 75% (Figure 2D). These patterns 99 

were clearly spatially structured, as tropicalization was stronger than deborealization along the 100 

east coast of the United States, in the Scottish Seas, the North Sea, the Baltic Sea, along the 101 

west coast of Norway, in the western Barents Sea, and around the Aleutian Islands. 102 

Deborealization was stronger in the Bering Sea, the Gulf of Mexico, and the eastern Barents 103 

Sea (Figure 2C). Borealization was stronger than detropicalization in nearly every region where 104 

CTI decreased, especially in the Bering Sea and along the west coast of the United States 105 

(Figure 2D). 106 
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 To identify the biotic or abiotic conditions associated with each process, we next 107 

modelled the difference in the strength of (i) tropicalization vs. deborealization when CTI 108 

increased, and (ii) borealization vs. detropicalization when CTI decreased. Thus, the difference 109 

in the strength of the processes was the response variable (i.e., tropicalization minus 110 

deborealization; borealization minus deborealization). Explanatory variables were the rate of 111 

change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, distance to the 112 

nearest human population center, mean maximum body size, community thermal diversity 113 

(CTDIV), and community thermal range (CTR) (see STAR methods and Table S2 for details). 114 

We used linear mixed effects models with Gaussian likelihood distributions where grid cells 115 

were the unit of observation and survey campaign was included as a random effect (i.e., varying 116 

intercept). When CTI increased, tropicalization was stronger than deborealization in cells that 117 

were initially warmer (effect size = 0.16 [0.07, 0.24; 95% CI]), experienced greater warming 118 

(effect size = 0.07 [0.02, 0.13]) or were deeper (effect size = 0.07 [0.02, 0.11];  Figure 3A). 119 

Deborealization was stronger than tropicalization in cells that were closer to human population 120 

centers (effect size = 0.07 [0.02, 0.11]) or that had greater community thermal diversity (effect 121 

size = -0.05 [-0.10,-0.01]; Figure 3A). When CTI decreased, borealization was stronger than 122 

detropicalization in cells that were initially warmer (effect size = 0.13 [0.01, 0.25]), had greater 123 

temperature increases (effect size = 0.07 [0.01, 0.12]) (or lower temperature decreases since 124 

CTI decreases are mostly associated with cooling), or were deeper (effect size = 0.06 [0.01, 125 

0.11]; Figure 3B). 126 

 Theoretically, ignoring all factors other than temperature, when temperature and CTI 127 

are increasing, borealization and detropicalization should not occur, and when temperature and 128 

CTI are decreasing, tropicalization and deborealization should not occur. However, all four 129 

processes occurred to some extent in nearly every grid cell (Figure S1). We therefore 130 

hypothesized that there were mechanistic differences between species that explained this 131 
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anomaly. For instance, when CTI is increasing, species that contribute to borealization likely 132 

differ in some key features from species that contribute to deborealization. We identified 133 

differences between species contributing to (i) borealization vs. deborealization, and (ii) 134 

tropicalization vs. detropicalization, using linear mixed effects models with binomial likelihood 135 

distributions where species were the unit of observation and grid cell nested in survey campaign 136 

were included as random effects (see STAR methods and Table S3 for details). Thus, the binary 137 

response variable was whether a species was contributing to i) deborealization (0) or 138 

borealization (1), or to ii) detropicalization (0) or tropicalization (1). In grid cells where CTI 139 

increased, explanatory variables included maximum thermal limit, thermal range, maximum 140 

body size, and whether species are commercially fished. In grid cells where CTI decreased, the 141 

same explanatory variables were used except that minimum thermal limit was used in place of 142 

maximum thermal limit. When CTI increased, species contributing to borealization had higher 143 

maximum thermal limits (i.e., more tolerant of warming) (effect size = 0.72 [0.53, 0.91]) while 144 

species contributing to deborealization were more likely to be commercially fished (effect size 145 

= -0.34 [-0.49, -0.19]) and had wider thermal ranges (effect size = -0.16 [-0.28, -0.04]; Figure 146 

4A). Similarly, species contributing to tropicalization had higher maximum thermal limits 147 

(effect size = 0.57 [0.38, 0.76]) and smaller body sizes (effect size = -0.17 [-0.24, -0.10]) and 148 

species contributing to detropicalization had wider thermal ranges (effect size = -0.15 [-0.27, -149 

0.03]; Figure 4A). When CTI decreased, species contributing to borealization had wider thermal 150 

ranges than those contributing to deborealization (effect size = 0.17 [0.04, 0.29]). Species 151 

contributing to detropicalization had higher minimum thermal limits (effect size = -0.35 [-0.52, 152 

-0.17]), were more likely to be commercially fished (effect size = -0.26 [-0.44, -0.08]), and had 153 

smaller body sizes (effect size = 0.09 [0.01, 0.18]; Figure 4B) than those contributing to 154 

tropicalization. 155 
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 Previous studies have documented large-scale changes in CTI but have not identified the 156 

underlying processes of these community thermal shifts3,4,6. Unraveling these processes has 157 

clear implications for predicting future biodiversity responses under global warming, as well as 158 

potential impacts on community trait composition14,15 and their consequences for ecosystem 159 

structure and functioning16 18. For example, communities increasing in CTI due to emigration 160 

or mortality of cold-affinity species (i.e., deborealization) could experience population crashes 161 

or local extinctions under future warming and could be considered conservation priorities19 21. 162 

In contrast, communities increasing in CTI due to immigration or population growth of warm-163 

affinity species (i.e., tropicalization) may have increased abundance and productivity despite 164 

changing composition8,22,23, and could be resilient to well-managed fishing pressure.  165 

 While increases in CTI have been frequently linked to immigration or poleward 166 

distribution shifts by warm-affinity species3,10,13, we observed that over one third of CTI 167 

increases were primarily explained by decreases in cold-affinity species (i.e., deborealization). 168 

This result has major implications for understanding climate change impacts on community 169 

structure, particularly as tropicalization and deborealization were spatially non-random and 170 

associated with environmental variation and human impacts. Tropicalization was stronger than 171 

deborealization in areas with warmer initial temperatures and areas with greater overall 172 

warming. This is consistent with previous studies showing that community thermal shifts 173 

depend not only on the rate of warming, but also baseline climate. For instance, Antão et al.24 174 

showed that in marine communities exposed to warming, species gains outpaced species losses 175 

under warmer initial conditions, and Lenoir et al.25 showed that marine species track isotherms 176 

more rapidly in initially warm waters. These results are consistent with faster colonization and 177 

range edge expansion and slower extirpation and range edge contraction11,26. These results may 178 

also be explained by more rapid dispersal and population growth in warmer environments. In 179 

marine organisms, the speed of metabolic and demographic processes increases with 180 
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temperature27, and both range expansion by new species and population growth of existing 181 

species should occur more rapidly under warmer conditions. Warm species gains may also 182 

dominate in warmer environments due to the latitudinal gradient in species richness, as greater 183 

numbers and proportions of warm-affinity species are expected in warm, species-rich areas28. 184 

 Tropicalization was generally stronger than deborealization in deeper areas, likely owing 185 

to greater vertical temperature refuge for cold-affinity species9. For instance, tropicalization 186 

was particularly strong along the east coast of the United States, in the Scottish Seas, and in the 187 

western Barents Sea. These regions are situated along deep, open shelves, which could enable 188 

cold-affinity species to temporarily seek refuge in cooler, deeper waters during warming 189 

episodes, preventing their loss locally29. This is consistent with previous studies showing that 190 

relatively small shifts in depth may allow species to remain within their thermal niches9,30 In 191 

the North Sea, a system primarily characterized by tropicalization, many species have shifted 192 

to cooler, deeper waters over the last few decades30. However, the North Sea is a relatively 193 

shallow, semi-enclosed ecosystem and Rutterford et al.31 showed that North Sea fishes will 194 

eventually be constrained by depth limitations, compressing habitat suitability and potentially 195 

driving local extinction. Thus, the increase or immigration of warm-affinity species could be 196 

currently out-pacing the decline or emigration of cold-affinity species, but this trend could 197 

reverse in the future if cold-affinity species are unable to find thermal refuge.  198 

 Areas characterized by deborealization or detropicalization, i.e., decreasing abundance, 199 

had greater community thermal diversity than areas characterized by tropicalization or 200 

borealization. One hypothesis could be that communities with higher thermal diversity have 201 

fewer vacant niches (i.e., niche saturation) and therefore fewer opportunities for immigration 202 

and establishment by new species32,33. Communities with greater thermal diversity may also 203 

contain more species living closer to their thermal limits, and thus have greater potential for 204 

species losses or population declines due to temperature rises9. For instance, Burrows et al.9 205 
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showed that communities with greater thermal diversity may have higher sensitivity to 206 

temperature changes, as species near their thermal limits can be rapidly lost or gained28. 207 

 Tropicalization and borealization were more common than deborealization or 208 

detropicalization. This suggests that habitat suitability is expanding for warm-affinity species 209 

faster than it is retracting for cold-affinity species26. Hence, many cold-affinity species may be 210 

tolerant of current warming, yet future warming could trigger major losses, potentially shifting 211 

the balance between tropicalization and deborealization. Even when CTI decreased, 212 

detropicalization was rarely dominant, as warm-affinity species rarely showed strong decreases. 213 

While some areas did experience cooling during the study period, the average rate of cooling 214 

was roughly half of the rate of warming, and all regions have experienced long-term 215 

temperature rises. Thus, warm-affinity species appear to be less impacted by periods of mild 216 

cooling, and detropicalization should become increasingly rare under future warming.  217 

 Interestingly, we found that when CTI increased, some cold-affinity species increased 218 

and some warm-affinity species decreased, counter to expectation. This was primarily 219 

explained by thermal limits and apparent fishing pressure. Cold-affinity species that increased 220 

had higher maximum thermal limits than those that decreased, and those that decreased were 221 

more likely to be commercially fished. Because species were compared within the same grid 222 

cells, species with lower thermal maxima were living closer to their upper limits. Species 223 

decreases can therefore be attributed to temperature rises surpassing thermal tolerances as well 224 

as  potential overfishing.  Hence, both thermal tolerance and fishing pressure are shaping long-225 

term changes in marine fish communities, and future community responses will be driven by 226 

the cumulative impacts of climate change and human pressure5,25,34. The potential impacts of 227 

fishing were also highlighted by the finding that deborealization (i.e., decreasing abundance) 228 

was stronger in areas closer to human population centers. 229 
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 When CTI increased, warm-affinity species that increased had smaller body sizes than 230 

those that decreased. Smaller-bodied species generally have faster growth rates, shorter 231 

generation times, and less parental investment, enabling populations to rapidly track 232 

environmental changes14,35,36. Thus, small-bodied species whose upper thermal limits were not 233 

surpassed by temperature rises could rapidly increase in abundance following warming, 234 

particularly as warming elevates metabolic and demographic rates. In contrast, large-bodied 235 

species have slower growth rates and reproduce later in life, leading to slower population 236 

turnover and environmental tracking35,36. Large-bodied species are also more susceptible to 237 

human impacts37. Hence, even large-bodied species that are favored by temperature rises might 238 

be decreasing in abundance faster than they can reproduce, leading to population declines 239 

despite warm-water affinities. 240 

 While limited to fish communities from 12 marine regions over a 26-year period, our 241 

approach is applicable to other ecosystems and taxa and may help unravel the underlying 242 

processes of community thermal shifts at a global scale38243 

distributions and abundances are impacting overall diversity and community dynamics will be 244 

key for planning future conservation and management efforts39 42. Areas with net losses of cold-245 

affinity species may require careful fisheries regulation, whereas areas gaining warm-affinity 246 

species may have increased productivity and exploitation opportunities8,23,43,44. Overall, we 247 

found that over one third of CTI increases were more strongly explained by decreases in cold-248 

affinity species than by increases in warm-affinity species, with significant roles of 249 

environmental conditions, human impacts, and community structure. Additionally, we found 250 

that species tendencies to increase or decrease in response to temperature changes were dictated 251 

by thermal limits and commercial fishing status. Future studies should link spatial patterns in 252 

the underlying processes of CTI to changes in seasonality, ocean currents, and other abiotic 253 

factors likely to be modified by climate change, as well as changes in fishing pressure and 254 
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human impacts. While past studies have documented extensive shifts in CTI, ours is the first to 255 

decompose CTI into underlying processes at a multi-continental scale, which could help in 256 

anticipating future changes in biodiversity under climate change and implementing adapted 257 

management strategies. 258 
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Figure legends 282 

Figure 1. The four underlying processes contributing to changes in CTI. Increases in CTI 283 
occur when the combination of tropicalization (red) and deborealization (orange) is stronger 284 
than the combination of borealization (blue) and detropicalization (purple). CTI increases can 285 
therefore be attributed to either topicalization or deborealization, whichever process is stronger, 286 
and CTI decreases can be attributed to either borealization or detropicalization, whichever 287 
process is stronger. 288 

Figure 2. Maps showing the rate of change in SST and CTI along with differences in the 289 
strength of the underlying processes. Rate of change in SST (A) and CTI (B) across the 558 290 
spatial sampling grid cells for the period 1990  2015. Differences in the strength of 291 
tropicalization and deborealization in grid cells where CTI increased (C), and differences in the 292 
strength of borealization and detropicalization in grid cells where CTI decreased (D). See also 293 
Figure S1, which shows average relative strength of each underlying process, Figure S2, which 294 
shows the area covered by each monitoring survey, Table S1, which provides details on the 295 
monitoring surveys, Figure S3, which shows the method for calculating the strength of each 296 
underlying process, and Figure S4, which compares the rate of change in CTI vs. (topicalization 297 
+ deborealization)  (borealization + detropicalization). 298 

Figure 3. Results of linear mixed effects models of differences in the strength of 299 
tropicalization and deborealization in grid cells where CTI increased (A), and of 300 
differences in the strength of borealization and detropicalization in grid cells where CTI 301 
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars 302 
represent 95% confidence intervals. In panel A, positive effects are associated with stronger 303 
tropicalization, and negative effects are associated with stronger deborealization. In panel B, 304 
positive effects area associated with stronger borealization, and negative effects are associated 305 
with stronger detropicalization. See also Table S2, which shows the output summary for each 306 
model. 307 

Figure 4. Results of linear mixed effects models of i) the probability that a species 308 
contributed to borealization or deborealization, and ii) the probability that species 309 
contributed to topicalization or detropicalization when CTI increased (A) and when CTI 310 
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars 311 
represent 95% confidence intervals. Positive effects are associated with species that contributed 312 
to borealization or tropicalization, and negative effects are associated with species that 313 
contributed to deborealization or detropicalization. See also Table S3, which shows the output 314 
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summary for each model, and Table S4, which compares model results using different subsets 315 
of species based on quantiles of abundance changes. 316 

 317 

STAR METHODS 318 

 319 

RESOURCE AVAILABILITY 320 

Lead Contact 321 

Further information and requests should be directed to and will be fulfilled by the lead contact, 322 

Matthew McLean (mcleamj@gmail.com). 323 

 324 

Materials Availability 325 

This study did not generate new unique reagents. 326 

 327 

Data and Code Availability 328 

This paper analyzes existing, publicly available data. Links for the datasets are provided in the 329 

key resources table. This paper does not report original code. Any additional information 330 

required to reanalyze the data reported in this paper is available from the lead contact upon 331 

request. 332 

 333 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 334 

All fish monitoring data used in this study are freely available and open access; references and 335 

links are provided in the Key resources table and Supplemental information. No experimental 336 
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models (animals, human subjects, plants, microbe strains, cell lines, primary cell cultures) were 337 

used in the study. 338 

 339 

METHOD DETAILS 340 

Fish community data 341 

Thirteen bottom-trawl surveys from 12 marine regions across the northern hemisphere were 342 

used to examine changes in the community temperature index (CTI) in fish communities over 343 

a large geographic scale with substantial longitudinal, latitudinal, and depth gradients. All 344 

surveys used similar sampling protocols, where bottom trawls were towed for an average of 30 345 

minutes and the species composition and abundances of all captured fishes were identified and 346 

recorded (see Table S1). Spatial coverage and resolution differed across surveys, and we 347 

therefore aggregated trawl surveys to 1° longitude × 1° latitude spatial grid cells. A 1° longitude 348 

× 1° latitude resolution was chosen to adequately capture both inter and intra-survey variation, 349 

to reveal gradients in community responses, to maximize data availability, and to match with 350 

351 

length of time series also differed between surveys, and we therefore examined the period 1990 352 

 2015, which maximized temporal overlap between surveys. Following Burrows et al.9, along 353 

the US West Coast, two surveys with overlapping spatial coverage but adjacent temporal 354 

periods were combined (see Figure S1 and Table S1). The combined data were inspected for 355 

discontinuities, and we verified that our main results and conclusions were robust to removing 356 

these data from the analyses. Because some surveys are conducted in multiple seasons, for each 357 

grid cell, we only used data for the quarter with the greatest number of years surveyed. Lastly, 358 

because of spatial and temporal heterogeneity in sampling effort both between and within grid 359 

cells, we performed a bootstrap sampling procedure. We randomly selected four trawl surveys 360 
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per grid cell, per year (four was the median number of trawls per cell, per year), recorded the 361 

362 

abundances across the 99 permutations. Only grid cells with with maximum sampling gaps of 363 

five years or less were considered (some surveys are only conducted every 3-5 years), resulting 364 

in a total of 558 cells. All survey abundance data were then log10(x+1) transformed before 365 

analyses. While we recognize that aggregating bottom trawl data to a 1° longitude × 1° latitude 366 

scale creates species assemblages that are not true locally interacting biological communities, 367 

368 

community temperature index and community thermal diversity. 369 

 370 

Sea surface temperature (SST) 371 

For each grid cell, we extracted mean-annual sea surface temperature (SST) and annual SST 372 

variation. Minimum and maximum SST were also initially considered, but later dropped 373 

because they were highly correlated with mean SST, but much less informative (i.e., never had 374 

discernable effects in statistical models). SST data for each grid cell were derived from the 375 

46. 376 

The HadISST1 database provides global monthly SST on a 1° longitude × 1° latitude spatial 377 

grid and is available for all years since 1870. These data were used to examine temperature 378 

changes during the study period and to model the underlying processes of CTI. 379 

 380 

Calculating community temperature index (CTI) 381 

Community temperature index (CTI) is the abundance-weighted mean thermal affinity of a 382 

community or assemblage, which reflects the relative abundance of warm-affinity or cold-383 
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affinity species50. The inferred thermal affinity for each fish species in this study (1091 species 384 

total) was first calculated as the median temperature of each species' occurrences across its' 385 

global range of observations for which data were available (Figure S2). Rather than surface 386 

temperature or bottom temperature, we used mid-water-column temperature (i.e., from the 387 

surface to 200 meters depth) because the surveys included a mixture of demersal (bottom-388 

living) and pelagic species. We used temperature climatologies from the global database WOD 389 

2013 V2 (https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl?parameter=t) with a 390 

spatial resolution of ¼°. These climatologies represent average decadal temperatures for 1955-391 

1964, 1965-1974, 1975-1984, 1985-1994, 1995-2004 and 2005-2012 on 40 depth layers. These 392 

data were aggregated vertically by calculating average temperature of the first 200 m depth.  393 

Species' occurrences were extracted from several databases including OBIS (https://obis.org/), 394 

GBIF (https://www.gbif.org/), VertNet (http://vertnet.org/) and ecoengine 395 

(https://ecoengine.berkeley.edu/). After removing duplicate occurrence records, we made a 396 

spatiotemporal match-up between temperature climatologies and species occurrences, 397 

considering both the geographic coordinates of occurrences, as well as their corresponding 398 

decade (to control for climate trends over the past 58 years). We then took the median value of 399 

temperature from these records for each species. Although we included both demersal and 400 

pelagic species and used mid-water-column temperature to infer thermal affinities in our 401 

analyses, we tested the sensitivity of our results to these choices by recalculating thermal 402 

affinities using surface temperature and bottom temperature, both with and without pelagic 403 

specie404 

405 

-water column temperatures, 406 

whereas modelling the underlying processes required a standardized, continuous, temporally 407 

resolved database. Mid-water-column data were only available as decadal averages and did not 408 
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cover the entire study period. Lastly, for each grid cell, we calculated the rate of change in SST 409 

and CTI as the slope of simple linear regressions of SST and CTI vs. time. 410 

 411 

Comparison of thermal affinities with Cheung et al. 20134 412 

413 

distribution models51 or the midpoint of species minimum and maximum temperature 414 

observations28, here we inferred thermal affinities as the median temperature value across a 415 

oach, we compared our 416 

data with those of Cheung et al. 20134 for 252 overlapping species. We found an 83% 417 

correlation between our data and those of Cheung et al. 20134, indicating high consistency 418 

between the two studies. This provides strong support for our approach because Cheung et al. 419 

20134 is a landmark study investigating changes in the community temperature index in marine 420 

fishes. 421 

 422 

QUANTIFICATION AND STATISTICAL ANALYSIS 423 

All data handling and quantitative analyses were performed using R45 version 4.0.0. 424 

 425 

Decomposing CTI into the four underlying processes 426 

CTI is a community weighted mean and therefore reflects changes in the relative abundances 427 

of warm-affinity and cold-affinity species. CTI will increase when species with thermal 428 

affinities greater than the mean of the community increase and when species with thermal 429 

affinities lower than the mean of the community decrease. Conversely, CTI will decrease when 430 
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species with thermal affinities greater than the mean of the community decrease and when 431 

species with thermal affinities lower than the mean of the community increase. Hence, CTI 432 

changes can be decomposed into four underlying process  tropicalization (increasing warm-433 

affinity species), deborealization (decreasing cold-affinity species), borealization (increasing 434 

cold-affinity species), and detropicalization (decreasing warm-affinity species). The overall 435 

change in CTI reflects the relative strength of these processes. For instance, CTI will increase 436 

when the strength of tropicalization + deborealization is greater than the strength of 437 

borealization + detropicalization. To determine the strength of each underlying process, species 438 

within each grid cell must first be classified as either warm-affinity or cold-affinity. Because 439 

CTI (the mean thermal affinity of the community) changes every year, species may be warm-440 

affinity one year (i.e., having a thermal affinity higher than the community mean) and cold-441 

affinity the next (i.e., having a thermal affinity lower than the community mean). Therefore, to 442 

classify species as either warm or cold affinity within each grid cell, we used the mean CTI 443 

value across all years in the time series (i.e., mean of CTI values for 1990 to 2015 for each grid 444 

cell). We then separated warm and cold-affinity species into those that increased in abundance 445 

and those that decreased (Figure 1). Because CTI will shift up or down based on the amount of 446 

increase or decrease in species abundances along the thermal affinity axis (i.e., Figure 1), the 447 

 on 448 

the overall community mean. This is determined by the degree to which species contributing to 449 

each process influence the overall community mean. Species that have thermal affinities much 450 

greater or much lower than the community mean will exhibit more influence than those with 451 

thermal affinities very similar to the mean. Additionally, species with large abundance changes 452 

will exhibit more influence than those with small abundance changes. Hence, each species 453 

contribution to the change in CTI is a combination of the difference between its individual 454 

thermal affinity (STI) and that of the community (CTI) and its change in abundance. We 455 
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therefore calculated the strength of each processes by (i) calculating the difference between 456 

y and the mean of the community, (ii) multiplying this value by 457 

for all species 458 

within each process (Figure S3). We assessed the accuracy of this approach by comparing the 459 

value of (tropicalization + deborealization)  (borealization + detropicalization) to the rate of 460 

change in CTI for each grid cell. Note, these two values will never be a perfect match because, 461 

as mentioned above, some species fluctuate between warm and cold-affinity over time, 462 

especially in grid cells where CTI is highly variable across years. However, we found a 463 

correlation of 0.85 between the two values, indicating that our metric for estimating the strength 464 

of the underlying processes accurately captured changes in CTI (Figure S4). 465 

 466 

Conditions associated with the underlying processes 467 

To identify the biotic and abiotic conditions associated with each underlying process, we 468 

modelled the difference in the strength of tropicalization vs. deborealization (i.e., tropicalization 469 

minus deborealization) when CTI increased, and the difference in the strength of borealization 470 

vs. detropicalization (i.e., borealization minus detropicalization) when CTI decreased. We used 471 

linear mixed effects models with Gaussian likelihood distributions and included survey 472 

campaign as a random effect (i.e., varying intercept). Explanatory variables were the rate of 473 

change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, distance to the 474 

nearest human population center, mean maximum body size, community thermal diversity 475 

(CTDIV), and community thermal range (CTR). Initial SST was defined as the mean-annual 476 

SST for each grid cell for the period 1980-1989, the ten years prior to the study period. Depth 477 

was recorded during each trawl survey, and we calculated mean depth per grid cell. Distance to 478 

the nearest human population center came from Yeager at al.47, which is calculated as the 479 



20 
 

straight-line distance to the nearest provincial capital as defined by the ESRI World Cities data 480 

set. Body size data came from the open-access trait database of Beukhof et al.48. CTDIV was 481 

defined as the variation in thermal affinities in the community and was calculated as the 482 

abundance-weighted standard deviation of 9. CTR describes whether 483 

species in the community have narrow or wide thermal ranges and was calculated as the 484 

abundance- 9. Thermal ranges were defined as the 485 

difference between the 90th and 10th percentiles of species thermal affinity observations. For 486 

CTDIV, CTR, and mean body size, we took the mean across the first 10 years of the study 487 

period for each grid cell to define baseline conditions in community structure that may have 488 

shaped community responses to warming. All metrics were calculated for the entire community 489 

sampled in each grid cell. Hence, identical predictors were used for both models, rather than 490 

sub-setting predictors to only species contributing to tropicalization and deborealization or to 491 

borealization and detropicalization.  492 

 493 

Species contributing to opposite processes 494 

To identify differences between species contributing to borealization vs. deborealization, and 495 

between species contributing to tropicalization vs. detropicalization, we used linear mixed 496 

effects models with binomial likelihood distributions and grid cell nested in survey campaign 497 

as random effects (i.e., varying intercepts). In grid cells where CTI increased, explanatory 498 

variables included maximum thermal limit, thermal range, maximum body size, and whether 499 

species are commercially fished. In grid cells where CTI decreased, the same explanatory 500 

variables were used except that minimum thermal limit was used in place of maximum thermal 501 

limit. Maximum and minimum thermal limits were defined as the 90th and 10th percentiles of 502 

species thermal affinity observations, respectively, and species thermal ranges were defined as 503 
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the difference between the 90th and 10th percentiles. Body size again came from Beukhof et 504 

al.48. We defined whether a species was commercially fished according to categories of 505 

commercial importance available from FishBase49506 

cially fished, and species listed 507 

considered 508 

not commercially fished. All models were performed using the R package lme452. Model 509 

quality and assumptions were verified using the R packages performance53 and MuMin54 (see 510 

Supplementary Material). Initial model inspection revealed low predictive accuracy and 511 

explained variation for the binomial models. This was likely because all species were initially 512 

included in this analysis whether they showed very slight or very large changes in abundance, 513 

i.e., any cold-affinity species whose change in abundance was greater than 0 was classified as 514 

contributing to borealization. All species populations fluctuate naturally, and so small increases 515 

or decreases in abundance are expected that may be independent of thermal affinity. Hence, 516 

including all species in this analysis could potentially blur patterns. We therefore reran models 517 

using i) all species, ii) species whose abundance changes were in the top 75%, iii) species whose 518 

abundance changes were in the top 50%, and iv) species whose abundance changes were in the 519 

top 25%. All approaches yielded very similar results, but with predictive accuracy and 520 

explained variation increasing with stricter species subsets. We therefore selected the model 521 

using species whose abundance changes were in the top 50% as a compromise between data 522 

deletion and model quality (at least 2000 observations per model and predictive accuracy over 523 

70%), however, all model results are reported in Table S4.  524 

 525 

Model performance 526 
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We assessed the performance of all models using the R package performance. For the two 527 

Gaussian models, we assessed linearity (i.e., residuals vs fitted values), homogeneity of 528 

variance, collinearity, the potential influence of high leverage observations, normality of 529 

residuals, and normality of random effects. This was accomplished with the function 530 

check_model. We also assessed predictive accuracy via the correlation between fitted values 531 

and observed values and via k-fold cross validation using the function performance_accuracy. 532 

Because cross validation results vary between iterations, we ran the performancy_accuracy 533 

function 99 times and recorded the average score. Both models satisfied all assumptions, 534 

including no high leverage observations and Variance Inflation Factors under 2.5 for all 535 

variables. For the model of differences between the strength of tropicalization and 536 

deborealization, the correlation between fitted values and observed values was 62% and the 537 

average cross validation accuracy was 57%. For the model of differences between the strength 538 

of borealization and deborealization, the correlation between fitted values and observed values 539 

was 79% and the average cross validation accuracy was 71%.  540 

 For the four binomial models, we assessed binned residuals and predictive accuracy 541 

using the functions binned_residuals and performance_accuracy. Binned residuals are assessed 542 

by first ordering predicted probabilities from smallest to largest and calculating raw residuals. 543 

Data are then split into bins of equal numbers of observations and the average residual is plotted 544 

against the average predicted probability for each bin. The quality of the model is then evaluated 545 

based on the percentage of binned residuals that lie within confidence limits/error bounds. 546 

Predictive accuracy was assessed as the area under the receiver operating characteristic curve 547 

(AUC  ROC), which evaluates how accurately a binomial model predicts group classification. 548 

AUC  ROC is bounded between 0 and 1, with 0 indicating 0% accuracy and 1 indicating 100% 549 

accuracy. For sites where CTI increased, the model of differences between species contributing 550 

to borealization and deborealization had 85% of residuals within error bounds and a predictive 551 
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accuracy of 73%, while the model of differences between species contributing to tropicalization 552 

and detropicalization had 84% of residuals within error bounds and a predictive accuracy of 553 

73%. For sites where CTI decreased, the model of differences between species contributing to 554 

borealization and deborealization had 83% of residuals within error bounds and a predictive 555 

accuracy of 71%, while the model of differences between species contributing to tropicalization 556 

and detropicalization had 86% of residuals within error bounds and a predictive accuracy of 557 

70%. 558 

 Altogether, these results show that our models did not violate assumptions, but that 559 

predictive accuracy was less than desirable. This likely indicates that other drivers that we were 560 

unable to assess are important in explaining variation in the strength of processes and in 561 

differences between species contributing to opposite processes. Further exploration showed that 562 

poor predictive accuracy may have also resulted from inconsistent relationships between 563 

surveys (i.e., regions). For example, including a random slope term for survey in the binomial 564 

models showed that, in sites where CTI decreased, upper thermal maximum was a strong 565 

predictor of whether species underwent borealization or derealization for all surveys except the 566 

Gulf of Alaska, Gulf of Mexico, and Baltic Sea. Additionally, commercially fished status was 567 

a strong predictor of whether species underwent borealization or deborealization in regions that 568 

were closer to human population centers, but not those that were further from population 569 

centers. However, models that included random slope terms did not have greater predictive 570 

accuracy, indicating that improving model accuracy ultimately hangs on uncovering other 571 

important drivers of process strength and species differences. 572 

 573 

Sensitivity to pelagic species and temperature zone 574 
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To determine how including or excluding pelagic species influenced our results, we 575 

recalculated i) the rate of change in CTI, ii) the difference in the strength of tropicalization and 576 

deborealization, and ii) the difference in the strength of borealization and detropicalization after 577 

removing pelagic species. Additionally, to examine the impact of calculating thermal affinities 578 

with different water column zones (i.e., bottom temperature, mid-water-column temperature, 579 

and sea surface temperature) we recalculated the above three metrics using all three temperature 580 

zones. We did this for all possible scenarios, hence for all species using bottom, mid-water-581 

column, and surface temperature, and for demersal species only using bottom, mid-water-582 

column, and surface temperature. We then examined the correlation in metrics across all six 583 

scenarios. Across the six scenarios, correlation values for the rate of change in CTI ranged from 584 

0.666 to 0.996 with a mean of 0.83, correlation values for the difference in the strength of 585 

tropicalization and deborealization ranged from 0.776 to 0.997 with a mean of 0.873, and 586 

correlation values for the difference in the strength of borealization and detropicalization ranged 587 

from 0.816 to 0.997 with a mean of  0.894, altogether indicating that results were robust to 588 

including or excluding pelagic species and to potential choices in thermal affinity calculation. 589 
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KEY RESOURCES TABLE 

REAGENT 
or 
RESOURCE 

SOURCE IDENTIFIER 

Software and algorithms 

R 4.0.0 

The R 
Project for 
Statistical 
Computing45 

https://cran.r-project.org/ 

Deposited Data 

Fish 
monitoring 
data 

OceanAdapt 
NOAA2 

https://oceanadapt.rutgers.edu/ 

Fish 
monitoring 
data 

DATRAS 
ICES 

https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx 

Fish 
monitoring 
data 

IMR https://www.hi.no/en/hi/forskning/research-data-1 

Sea surface 
temperature 
data 

Hadley 
Centre for 
Climate 
Prediction 
and 
Research46 

https://www.metoffice.gov.uk/hadobs/hadisst/ 

Species 
occurrence 
data 

OBIS https://obis.org 

Species 
occurrence 
data 

GBIF https://www.gbif.org 

Species 
occurrence 
data 

VertNet http://vertnet.org 

Species 
occurrence 
data 

ecoengine https://ecoengine.berkeley.edu 

Mid-water-
column 
temperature 
data 

NOAA WOA 
2013 V2 
Database 

https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl?parameter=t 

Distance to 
human 
population 
center data 

47 https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.1884#support-
information-section 

Body size 
data 

48 https://doi.pangaea.de/10.1594/PANGAEA.900866 

Commercial 
fishing 
status data 

FishBase49 http://www.fishbase.org 
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Figure S1. Boxplots of the strength of each of the underlying processes of CTI changes for 
all sites pooled (A), only sites where CTI increased over time (B), and only sites where CTI 
decreased over time (C), Related to Figure 2. 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S2. Map showing the spatial locations of the bottom trawl surveys used in the 
study, Related to Figure 2. Acronyms are defined in Table S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S3. Method for calculating the strength of the underlying processes (tropicalization 
shown here), Related to Figure 2. First, the difference between each species individual 
thermal affinity (STI) and the mean thermal affinity of the community (mean CTI of all years 
for each site) is calculated (i.e., STI  CTI). Secondly, the resulting value is multiplied by 

idual changes in abundance (i.e., rate of change in abundance over time). Third, 
the sum of all resulting values is taken across all species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S4. Maps of the rate of change in CTI (A) and the value of warm processes  cold 
processes, i.e., (topicalization + deborealization)  (borealization + detropicalization) (B), 
Related to Figure 2. The rate of change in CTI (A) and the value of warm processes  cold 
processes (B) had a correlation coefficient of 0.85.  

 

 

 

 

 

 

 

 

 

 

 



 
 

Survey Area Years Months 
Source 
Reference 

AI Aleutian Islands 1991-2014 May  Sep 
OceanAdapt 
NOAAS1 

BITS Baltic Sea 1991-2015 Jan.  Dec 
DATRAS 
ICESS2 

EBS East Bering Sea Shelf 1990-2015 May  Aug 
OceanAdapt 
NOAAS1 

FR-CGFS East English Channel 1990-2015 Sep  Dec 
DATRAS 
ICESS2 

GMEX Gulf of Mexico 1990-2015 May  Oct 
OceanAdapt 
NOAAS1 

GOA Gulf of Alaska 1990-2015 May  Sep 
OceanAdapt 
NOAAS1 

NEUS Northeast US 1990-2015 Feb  Dec 
OceanAdapt 
NOAAS1 

NorBTS Norwegian Sea, Barents Sea 1990-2015 Jan  Dec IMRS3 

NS-IBTS North Sea 1990-2015 Jan  Dec 
DATRAS 
ICESS2 

SEUS Southeast US shelf 1990-2015 Apr  Nov 
OceanAdapt 
NOAAS1 

SWC-IBTS Scotland Shelf Sea 1990-2015 Feb  Dec 
DATRAS 
ICESS2 

WCANN West US Coast annual 2003-2015 May  Oct 
OceanAdapt 
NOAAS1 

WCTRI West US Coast Tri-annual 1992-2004 May  Oct 
OceanAdapt 
NOAAS1 

 
Table S1. Metadata and sources for the thirteen bottom trawl survey campaigns used in 
this study, Related to Figure 2. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Table S2. Summary tables for models of differences in the strength of the underlying 
processes, Related to Figure 3. 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Table S3. Summary tables for models of differences between species contributing to 
opposite processes, Related to Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Table S4. Model coefficients and explained variation for i) all species, ii) species whose 
abundance changes were in the top 75%, iii) species whose abundance changes were in 
the top 50%, and iv) species whose abundances changes were in the top 25%, Related to 
Figure 4. Values shown for predictor variables are standardized effect sizes and 95% 
confidence intervals. 

Increasing CTI: Deborealization vs. Borealization 

Species 
subset 

Max 
Thermal 
limit 

Thermal 
range 

Body size Fished 
Marginal R2 / 
Conditional R2 

Binned 
residuals 

Predictive 
accuracy 

Observations 

All 
species 

0.52 [0.40, 
0.65] 

-0.13 [-
0.21, -
0.05] 

0.07 [0.02, 
0.12] 

-0.39 [-
0.50, -
0.29] 

0.054/0.156 86% 66.5% 8691 

Top 
75% 

0.66 [0.51, 
0.82] 

-0.16 [-
0.26, -
0.07] 

0.05 [-0.01, 
0.10] 

-0.33 [-
0.45, -
0.20] 

0.076/0.215 84% 68.7% 6639 

Top 
50% 

0.72 [0.53, 
0.91] 

-0.16 [-
0.28, -
0.04] 

0.05 [-0.02, 
0.12] 

-0.34 [-
0.49, -
0.19] 

0.084/0.258 85% 72.6% 4583 

Top 
25% 

0.99 [0.69, 
1.28] 

-0.30 [-
0.49, -
0.11] 

0.04 [-0.06, 
0.14] 

-0.48 [-
0.72, -
0.25] 

0.114/0.406 75% 79.8% 2351 

Increasing CTI: Detropicalization vs. Tropicalization 

Species 
subset 

Max 
Thermal 
limit 

Thermal 
range 

Body size Fished 
Marginal R2 / 
Conditional R2 

Binned 
residuals 

Predictive 
accuracy 

Observations 

All 
species 

0.21 [0.11, 
0.32] 

-0.07 [-
0.15, -
0.01] 

-0.13 [-
0.17, -0.09 

-0.08 [-
0.18, 
0.01] 

0.015/0.117 90% 65.6% 10406 

Top 
75% 

0.26 [0.13, 
0.39] 

-0.06 [-
0.15, 0.03] 

-0.15 [-
0.20, -0.10] 

-0.09 [-
0.21, 
0.04] 

0.021/0.186 85% 68.5% 7277 

Top 
50% 

0.57 [0.38, 
0.76] 

-0.15 [-
0.27, -
0.03] 

-0.17 [-
0.24, -0.10] 

0.09 [-
0.07, 
0.26] 

0.063/0.317 84% 72.6% 4670 

Top 
25% 

1.10 [0.76, 
1.39] 

-0.29 [-
0.50, -
0.09] 

-0.09 [-
0.20, 0.01] 

0.17 [-
0.10, 
0.45] 

0.118/0.565 72% 81.2% 2222 

Decreasing CTI: Deborealization vs. Borealization 

Species 
subset 

Min 
Thermal 
limit 

Thermal 
range 

Body size Fished 
Marginal R2 / 
Conditional R2 

Binned 
residuals 

Predictive 
accuracy 

Observations 

All 
species 

-0.11 [-
0.26, 0.04] 

0.11 [0.02, 
0.20] 

0.06 [-0.01, 
0.13] 

-0.06 [-
0.21, 
0.09] 

0.007/0.073 83% 66.8% 3970 

Top 
75% 

-0.08 [-
0.26, 0.10] 

0.15 [0.04, 
0.25] 

0.05 [-0.03, 
0.13] 

-0.01 [-
0.18, 
0.16] 

0.008/0.093 86% 68.6% 3188 

Top 
50% 

-0.12 [-
0.33, 0.08] 

0.17 [0.04, 
0.29] 

0.04 [-0.06, 
0.14] 

-0.06 [-
0.27, 
0.14] 

0.011/0.109 83% 71.0% 2181 

Top 
25% 

-0.17 [-
0.43, 0.10] 

0.22 [0.04, 
0.40] 

0.15 [0.01, 
0.30] 

-0.14 [-
0.44, 
0.16] 

0.025/0.141 79% 73.4% 1169 

Decreasing CTI: Detropicalization vs. Tropicalization 

Species 
subset 

Min 
Thermal 
limit 

Thermal 
range 

Body size Fished 
Marginal R2 / 
Conditional R2 

Binned 
residuals 

Predictive 
accuracy 

Observations 

All 
species 

-0.23 [-
0.35, -0.10] 

-0.01 [-
0.09, 0.06] 

0.04 [-0.02, 
0.10] 

-0.18 [-
0.30, -
0.06] 

0.017/0.066 86% 65.6% 5129 

Top 
75% 

-0.22 [-
0.38, -0.07] 

0.01 [-
0.07, 0.10] 

0.04 [-0.03, 
0.10] 

-0.21 [-
0.35, -
0.07] 

0.18/0.075 86% 67.1% 3959 

Top 
50% 

-0.35 [-
0.52, -0.17] 

-0.02 [-
0.14, 0.09] 

0.09 [0.01, 
0.18] 

-0.26 [-
0.44, -
0.08] 

0.038/0.107 86% 70.2% 2615 

Top 
25% 

-0.78 [-
1.20, -0.36] 

-0.10 [-
0.31, 0.11] 

0.08 [-
0.04,0.21] 

-0.43 [-
0.70, -
0.16] 

0.130/0.315 75% 78.5% 1301 



 
 

Supplemental References 

S1. https://oceanadapt.rutgers.edu/S5.  

S2. https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx 

S3. https://www.hi.no/en/hi/forskning/research-data-1 

 

 
 
 

 




