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Summary

As climate change accelerates, species are shifting poleward and subtropical and tropical
species are appearing in temperate environments'=. A popular approach for characterizing such
responses is the community temperature index (CTI), which tracks the mean thermal affinity of
a community. Studies in marine*, freshwater®, and terrestrial® ecosystems have documented
increasing CTI under global warming. However, most studies have only linked increasing CTI
to increases in warm-affinity species. Here, using long-term monitoring of marine fishes across
the Northern Hemisphere, we decomposed CTI changes into four underlying processes —
tropicalization (increasing warm-affinity), deborealization (decreasing cold-affinity),
borealization (increasing cold-affinity), and detropicalization (decreasing warm-affinity) — for
which we examined spatial variability and drivers. CTI closely tracked changes in sea surface
temperature, increasing in 72% of locations. However, 31% of these increases were primarily
attributable to decreases in cold-affinity species, i.e., deborealization. Thus, increases in warm-
affinity species were prevalent, but not ubiquitous. Tropicalization was stronger in areas that
were initially warmer, experienced greater warming, or were deeper, while deborealization was
stronger in areas that were closer to human population centers or that had higher community
thermal diversity. When CTI (and temperature) increased, species that decreased were more
likely to be living closer to their upper thermal limits or to be commercially fished.
Additionally, warm-affinity species that increased had smaller body sizes than those that
decreased. Our results show that CTI changes arise from a variety of underlying community
responses that are linked to environmental conditions, human impacts, community structure,

and species characteristics.

Results and Discussion
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Fish communities worldwide are responding to global warming through shifts in mean thermal
affinity, which can be represented by the community temperature index (CTI)*’~°. An increase
in CTI necessarily implies an increase in the relative abundance of warm-affinity species.
However, a key question is whether this is primarily due to increases in the total abundance of
warm-affinity species or to decreases in the total abundance of cold-affinity species. To resolve

this, we decomposed CTI changes into four underlying processes:

e ‘tropicalization’ (increasing abundance of warm-affinity species)
e ‘deborealization’ (decreasing abundance of cold-affinity species)
e ‘borealization’ (increasing abundance of cold-affinity species)

e ‘detropicalization’ (decreasing abundance of warm-affinity species)

Here, we define warm-affinity and cold-affinity species locally within each community: warm-
affinity species are those whose thermal affinity is higher than the mean of the community and
cold-affinity species are those whose thermal affinity is lower than the mean. Additionally,
whereas past literature has used the term ‘tropicalization’ to describe increasing CTI” or

poleward distribution shifts*!*1

, we explicitly use this term to refer to an increase in warm-
affinity species. We applied this approach to fish communities using scientific monitoring data
from 558 grid cells covering 12 marine regions across the Northern Hemisphere that showed
contrasting changes in sea surface temperatures (SST) over the period 1990 to 2015. We
calculated the relative strength of each underlying processes in each grid cell and identified
which process was strongest when CTI increased or decreased. Finally, we examined the
potential influences of environmental conditions, human impacts, and community structure on

differences in the strength of the underlying processes and examined differences between

species contributing to opposite processes (e.g., borealization vs. deborealization).
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Mean-annual SST increased in 72.4% (404) of grid cells between 1990 and 2015 with
amean of 0.23 + 0.007°C decade™! (mean + standard error), while it decreased in 27.6% of cells
(154) with a mean of -0.10 + 0.008°C decade™! (Figure 2A). CTI closely mirrored SST
(Pearson’s correlation: 0.47), increasing in 71.3% (398) of cells, with a mean of 0.28 £ 0.013°C
decade™! (Figure 2B), and decreasing in 28.7% (160), with a mean of -0.14 + 0.014°C decade!
(Figure 2B). Increases in CTI occurred primarily along the northeast coast of the United States,
in the Scottish Seas, the North Sea, the Baltic Sea, the Barents Sea, and around the Aleutian
Islands, while decreases were more prominent along the west and southeast coasts of the United

States and in the Bering Sea (Figure 2B).

We next decomposed changes in CTI and quantified the strength of each underlying
processes within each grid cell. Across all grid cells, tropicalization was the strongest process
on average being dominant in 47% of cells, while detropicalization was the weakest, being
dominant in only 7% of cells (Figure S1). Among the grid cells where CTI increased,
tropicalization was stronger than deborealization in 68.6% (while deborealization was stronger
in 31.4%) (Figure 2C). Hence, while past literature has focused extensively on increases in

3TILE - gver one third of CTI increases

warm-affinity species and poleward distribution shifts
were attributable to decreases in cold-affinity species. Among the grid cells where CTI
decreased, borealization was stronger than detropicalization in 75% (Figure 2D). These patterns
were clearly spatially structured, as tropicalization was stronger than deborealization along the
east coast of the United States, in the Scottish Seas, the North Sea, the Baltic Sea, along the
west coast of Norway, in the western Barents Sea, and around the Aleutian Islands.
Deborealization was stronger in the Bering Sea, the Gulf of Mexico, and the eastern Barents
Sea (Figure 2C). Borealization was stronger than detropicalization in nearly every region where

CTI decreased, especially in the Bering Sea and along the west coast of the United States

(Figure 2D).



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

To identify the biotic or abiotic conditions associated with each process, we next
modelled the difference in the strength of (i) tropicalization vs. deborealization when CTI
increased, and (ii) borealization vs. detropicalization when CTI decreased. Thus, the difference
in the strength of the processes was the response variable (i.e., tropicalization minus
deborealization; borealization minus deborealization). Explanatory variables were the rate of
change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, distance to the
nearest human population center, mean maximum body size, community thermal diversity
(CTDIV), and community thermal range (CTR) (see STAR methods and Table S2 for details).
We used linear mixed effects models with Gaussian likelihood distributions where grid cells
were the unit of observation and survey campaign was included as a random effect (i.e., varying
intercept). When CTI increased, tropicalization was stronger than deborealization in cells that
were initially warmer (effect size = 0.16 [0.07, 0.24; 95% CI]), experienced greater warming
(effect size = 0.07 [0.02, 0.13]) or were deeper (effect size = 0.07 [0.02, 0.11]; Figure 3A).
Deborealization was stronger than tropicalization in cells that were closer to human population
centers (effect size = 0.07 [0.02, 0.11]) or that had greater community thermal diversity (effect
size = -0.05 [-0.10,-0.01]; Figure 3A). When CTI decreased, borealization was stronger than
detropicalization in cells that were initially warmer (effect size = 0.13 [0.01, 0.25]), had greater
temperature increases (effect size = 0.07 [0.01, 0.12]) (or lower temperature decreases since
CTI decreases are mostly associated with cooling), or were deeper (effect size = 0.06 [0.01,

0.11]; Figure 3B).

Theoretically, ignoring all factors other than temperature, when temperature and CTI
are increasing, borealization and detropicalization should not occur, and when temperature and
CTI are decreasing, tropicalization and deborealization should not occur. However, all four
processes occurred to some extent in nearly every grid cell (Figure S1). We therefore

hypothesized that there were mechanistic differences between species that explained this
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anomaly. For instance, when CTI is increasing, species that contribute to borealization likely
differ in some key features from species that contribute to deborealization. We identified
differences between species contributing to (i) borealization vs. deborealization, and (ii)
tropicalization vs. detropicalization, using linear mixed effects models with binomial likelihood
distributions where species were the unit of observation and grid cell nested in survey campaign
were included as random effects (see STAR methods and Table S3 for details). Thus, the binary
response variable was whether a species was contributing to i) deborealization (0) or
borealization (1), or to ii) detropicalization (0) or tropicalization (1). In grid cells where CTI
increased, explanatory variables included maximum thermal limit, thermal range, maximum
body size, and whether species are commercially fished. In grid cells where CTI decreased, the
same explanatory variables were used except that minimum thermal limit was used in place of
maximum thermal limit. When CTI increased, species contributing to borealization had higher
maximum thermal limits (i.e., more tolerant of warming) (effect size = 0.72 [0.53, 0.91]) while
species contributing to deborealization were more likely to be commercially fished (effect size
=-0.34 [-0.49, -0.19]) and had wider thermal ranges (effect size = -0.16 [-0.28, -0.04]; Figure
4A). Similarly, species contributing to tropicalization had higher maximum thermal limits
(effect size = 0.57 [0.38, 0.76]) and smaller body sizes (effect size = -0.17 [-0.24, -0.10]) and
species contributing to detropicalization had wider thermal ranges (effect size = -0.15 [-0.27, -
0.03]; Figure 4A). When CTI decreased, species contributing to borealization had wider thermal
ranges than those contributing to deborealization (effect size = 0.17 [0.04, 0.29]). Species
contributing to detropicalization had higher minimum thermal limits (effect size = -0.35 [-0.52,
-0.17]), were more likely to be commercially fished (effect size =-0.26 [-0.44, -0.08]), and had
smaller body sizes (effect size = 0.09 [0.01, 0.18]; Figure 4B) than those contributing to

tropicalization.
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Previous studies have documented large-scale changes in CTI but have not identified the
underlying processes of these community thermal shifts**®. Unraveling these processes has
clear implications for predicting future biodiversity responses under global warming, as well as

potential impacts on community trait composition'*!3

and their consequences for ecosystem
structure and functioning!®'®. For example, communities increasing in CTI due to emigration
or mortality of cold-affinity species (i.e., deborealization) could experience population crashes
or local extinctions under future warming and could be considered conservation priorities'=!.
In contrast, communities increasing in CTI due to immigration or population growth of warm-
affinity species (i.e., tropicalization) may have increased abundance and productivity despite

8,22,23

changing composition , and could be resilient to well-managed fishing pressure.

While increases in CTI have been frequently linked to immigration or poleward

31013 we observed that over one third of CTI

distribution shifts by warm-affinity species
increases were primarily explained by decreases in cold-affinity species (i.e., deborealization).
This result has major implications for understanding climate change impacts on community
structure, particularly as tropicalization and deborealization were spatially non-random and
associated with environmental variation and human impacts. Tropicalization was stronger than
deborealization in areas with warmer initial temperatures and areas with greater overall
warming. This is consistent with previous studies showing that community thermal shifts
depend not only on the rate of warming, but also baseline climate. For instance, Antio et al.>*
showed that in marine communities exposed to warming, species gains outpaced species losses
under warmer initial conditions, and Lenoir et al.>> showed that marine species track isotherms
more rapidly in initially warm waters. These results are consistent with faster colonization and
range edge expansion and slower extirpation and range edge contraction'!"*, These results may

also be explained by more rapid dispersal and population growth in warmer environments. In

marine organisms, the speed of metabolic and demographic processes increases with
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temperature’’, and both range expansion by new species and population growth of existing
species should occur more rapidly under warmer conditions. Warm species gains may also
dominate in warmer environments due to the latitudinal gradient in species richness, as greater

numbers and proportions of warm-affinity species are expected in warm, species-rich areas?®.

Tropicalization was generally stronger than deborealization in deeper areas, likely owing
to greater vertical temperature refuge for cold-affinity species’. For instance, tropicalization
was particularly strong along the east coast of the United States, in the Scottish Seas, and in the
western Barents Sea. These regions are situated along deep, open shelves, which could enable
cold-affinity species to temporarily seek refuge in cooler, deeper waters during warming
episodes, preventing their loss locally?®. This is consistent with previous studies showing that
relatively small shifts in depth may allow species to remain within their thermal niches®*° In
the North Sea, a system primarily characterized by tropicalization, many species have shifted
to cooler, deeper waters over the last few decades’’. However, the North Sea is a relatively
shallow, semi-enclosed ecosystem and Rutterford et al.! showed that North Sea fishes will
eventually be constrained by depth limitations, compressing habitat suitability and potentially
driving local extinction. Thus, the increase or immigration of warm-affinity species could be
currently out-pacing the decline or emigration of cold-affinity species, but this trend could

reverse in the future if cold-affinity species are unable to find thermal refuge.

Areas characterized by deborealization or detropicalization, i.e., decreasing abundance,
had greater community thermal diversity than areas characterized by tropicalization or
borealization. One hypothesis could be that communities with higher thermal diversity have
fewer vacant niches (i.e., niche saturation) and therefore fewer opportunities for immigration
and establishment by new species®>*. Communities with greater thermal diversity may also
contain more species living closer to their thermal limits, and thus have greater potential for

species losses or population declines due to temperature rises’. For instance, Burrows et al.’
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showed that communities with greater thermal diversity may have higher sensitivity to

temperature changes, as species near their thermal limits can be rapidly lost or gained?®,

Tropicalization and borealization were more common than deborealization or
detropicalization. This suggests that habitat suitability is expanding for warm-affinity species
faster than it is retracting for cold-affinity species?®. Hence, many cold-affinity species may be
tolerant of current warming, yet future warming could trigger major losses, potentially shifting
the balance between tropicalization and deborealization. Even when CTI decreased,
detropicalization was rarely dominant, as warm-affinity species rarely showed strong decreases.
While some areas did experience cooling during the study period, the average rate of cooling
was roughly half of the rate of warming, and all regions have experienced long-term
temperature rises. Thus, warm-affinity species appear to be less impacted by periods of mild

cooling, and detropicalization should become increasingly rare under future warming.

Interestingly, we found that when CTI increased, some cold-affinity species increased
and some warm-affinity species decreased, counter to expectation. This was primarily
explained by thermal limits and apparent fishing pressure. Cold-affinity species that increased
had higher maximum thermal limits than those that decreased, and those that decreased were
more likely to be commercially fished. Because species were compared within the same grid
cells, species with lower thermal maxima were living closer to their upper limits. Species
decreases can therefore be attributed to temperature rises surpassing thermal tolerances as well
as potential overfishing. Hence, both thermal tolerance and fishing pressure are shaping long-
term changes in marine fish communities, and future community responses will be driven by
the cumulative impacts of climate change and human pressure™?>34, The potential impacts of
fishing were also highlighted by the finding that deborealization (i.e., decreasing abundance)

was stronger in areas closer to human population centers.
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When CTI increased, warm-affinity species that increased had smaller body sizes than
those that decreased. Smaller-bodied species generally have faster growth rates, shorter
generation times, and less parental investment, enabling populations to rapidly track
environmental changes'#3>3¢. Thus, small-bodied species whose upper thermal limits were not
surpassed by temperature rises could rapidly increase in abundance following warming,
particularly as warming elevates metabolic and demographic rates. In contrast, large-bodied
species have slower growth rates and reproduce later in life, leading to slower population
turnover and environmental tracking®>*. Large-bodied species are also more susceptible to
human impacts®’. Hence, even large-bodied species that are favored by temperature rises might
be decreasing in abundance faster than they can reproduce, leading to population declines

despite warm-water affinities.

While limited to fish communities from 12 marine regions over a 26-year period, our
approach is applicable to other ecosystems and taxa and may help unravel the underlying
processes of community thermal shifts at a global scale®®. Identifying how changes in species’
distributions and abundances are impacting overall diversity and community dynamics will be
key for planning future conservation and management efforts**~*?. Areas with net losses of cold-
affinity species may require careful fisheries regulation, whereas areas gaining warm-affinity
species may have increased productivity and exploitation opportunities®?>**4, Overall, we
found that over one third of CTI increases were more strongly explained by decreases in cold-
affinity species than by increases in warm-affinity species, with significant roles of
environmental conditions, human impacts, and community structure. Additionally, we found
that species tendencies to increase or decrease in response to temperature changes were dictated
by thermal limits and commercial fishing status. Future studies should link spatial patterns in
the underlying processes of CTI to changes in seasonality, ocean currents, and other abiotic

factors likely to be modified by climate change, as well as changes in fishing pressure and
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human impacts. While past studies have documented extensive shifts in CTI, ours is the first to
decompose CTI into underlying processes at a multi-continental scale, which could help in
anticipating future changes in biodiversity under climate change and implementing adapted

management strategies.
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Figure legends

Figure 1. The four underlying processes contributing to changes in CTI. Increases in CTI
occur when the combination of tropicalization (red) and deborealization (orange) is stronger
than the combination of borealization (blue) and detropicalization (purple). CTI increases can
therefore be attributed to either topicalization or deborealization, whichever process is stronger,
and CTI decreases can be attributed to either borealization or detropicalization, whichever
process is stronger.

Figure 2. Maps showing the rate of change in SST and CTI along with differences in the
strength of the underlying processes. Rate of change in SST (A) and CTI (B) across the 558
spatial sampling grid cells for the period 1990 — 2015. Differences in the strength of
tropicalization and deborealization in grid cells where CTI increased (C), and differences in the
strength of borealization and detropicalization in grid cells where CTI decreased (D). See also
Figure S1, which shows average relative strength of each underlying process, Figure S2, which
shows the area covered by each monitoring survey, Table S1, which provides details on the
monitoring surveys, Figure S3, which shows the method for calculating the strength of each
underlying process, and Figure S4, which compares the rate of change in CTI vs. (topicalization
+ deborealization) — (borealization + detropicalization).

Figure 3. Results of linear mixed effects models of differences in the strength of
tropicalization and deborealization in grid cells where CTI increased (A), and of
differences in the strength of borealization and detropicalization in grid cells where CTI
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars
represent 95% confidence intervals. In panel A, positive effects are associated with stronger
tropicalization, and negative effects are associated with stronger deborealization. In panel B,
positive effects area associated with stronger borealization, and negative effects are associated
with stronger detropicalization. See also Table S2, which shows the output summary for each
model.

Figure 4. Results of linear mixed effects models of i) the probability that a species
contributed to borealization or deborealization, and ii) the probability that species
contributed to topicalization or detropicalization when CTI increased (A) and when CTI
decreased (B). Grey circles represent standardized effect sizes and black horizontal bars
represent 95% confidence intervals. Positive effects are associated with species that contributed
to borealization or tropicalization, and negative effects are associated with species that
contributed to deborealization or detropicalization. See also Table S3, which shows the output
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summary for each model, and Table S4, which compares model results using different subsets
of species based on quantiles of abundance changes.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact

Further information and requests should be directed to and will be fulfilled by the lead contact,

Matthew McLean (mcleamj@gmail.com).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

This paper analyzes existing, publicly available data. Links for the datasets are provided in the
key resources table. This paper does not report original code. Any additional information
required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All fish monitoring data used in this study are freely available and open access; references and

links are provided in the Key resources table and Supplemental information. No experimental



337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

14

models (animals, human subjects, plants, microbe strains, cell lines, primary cell cultures) were

used in the study.

METHOD DETAILS

Fish community data

Thirteen bottom-trawl surveys from 12 marine regions across the northern hemisphere were
used to examine changes in the community temperature index (CTI) in fish communities over
a large geographic scale with substantial longitudinal, latitudinal, and depth gradients. All
surveys used similar sampling protocols, where bottom trawls were towed for an average of 30
minutes and the species composition and abundances of all captured fishes were identified and
recorded (see Table S1). Spatial coverage and resolution differed across surveys, and we
therefore aggregated trawl surveys to 1° longitude x 1° latitude spatial grid cells. A 1° longitude
x 1° latitude resolution was chosen to adequately capture both inter and intra-survey variation,
to reveal gradients in community responses, to maximize data availability, and to match with
the spatial resolution of the HadISST database (see ‘Sea surface temperature’ below). The
length of time series also differed between surveys, and we therefore examined the period 1990
— 2015, which maximized temporal overlap between surveys. Following Burrows et al.?, along
the US West Coast, two surveys with overlapping spatial coverage but adjacent temporal
periods were combined (see Figure S1 and Table S1). The combined data were inspected for
discontinuities, and we verified that our main results and conclusions were robust to removing
these data from the analyses. Because some surveys are conducted in multiple seasons, for each
grid cell, we only used data for the quarter with the greatest number of years surveyed. Lastly,
because of spatial and temporal heterogeneity in sampling effort both between and within grid

cells, we performed a bootstrap sampling procedure. We randomly selected four trawl surveys
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per grid cell, per year (four was the median number of trawls per cell, per year), recorded the
resulting species’ abundances, repeated this procedure 99 times, and calculated species’ mean
abundances across the 99 permutations. Only grid cells with with maximum sampling gaps of
five years or less were considered (some surveys are only conducted every 3-5 years), resulting
in a total of 558 cells. All survey abundance data were then logio(x+1) transformed before
analyses. While we recognize that aggregating bottom trawl data to a 1° longitude x 1° latitude
scale creates species assemblages that are not true locally interacting biological communities,
we use the term ‘community’ for consistency with existing literature on concepts such as the

community temperature index and community thermal diversity.

Sea surface temperature (SST)

For each grid cell, we extracted mean-annual sea surface temperature (SST) and annual SST
variation. Minimum and maximum SST were also initially considered, but later dropped
because they were highly correlated with mean SST, but much less informative (i.e., never had
discernable effects in statistical models). SST data for each grid cell were derived from the
Hadley Centre for Climate Prediction and Research’s freely available HadISST1 database®.
The HadISST1 database provides global monthly SST on a 1° longitude X% 1° latitude spatial
grid and is available for all years since 1870. These data were used to examine temperature

changes during the study period and to model the underlying processes of CTL

Calculating community temperature index (CTI)

Community temperature index (CTI) is the abundance-weighted mean thermal affinity of a

community or assemblage, which reflects the relative abundance of warm-affinity or cold-
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affinity species’. The inferred thermal affinity for each fish species in this study (1091 species
total) was first calculated as the median temperature of each species' occurrences across its'
global range of observations for which data were available (Figure S2). Rather than surface
temperature or bottom temperature, we used mid-water-column temperature (i.e., from the
surface to 200 meters depth) because the surveys included a mixture of demersal (bottom-
living) and pelagic species. We used temperature climatologies from the global database WOD
2013 V2 (https://www.nodc.noaa.gov/cgi-bin/OC5/woal3/woal3.pl?parameter=t) with a
spatial resolution of ’4°. These climatologies represent average decadal temperatures for 1955-
1964, 1965-1974, 1975-1984, 1985-1994, 1995-2004 and 2005-2012 on 40 depth layers. These
data were aggregated vertically by calculating average temperature of the first 200 m depth.
Species' occurrences were extracted from several databases including OBIS (https://obis.org/),
GBIF (https://www.gbif.org/), VertNet (http://vertnet.org/) and ecoengine
(https://ecoengine.berkeley.edu/). After removing duplicate occurrence records, we made a
spatiotemporal match-up between temperature climatologies and species occurrences,
considering both the geographic coordinates of occurrences, as well as their corresponding
decade (to control for climate trends over the past 58 years). We then took the median value of
temperature from these records for each species. Although we included both demersal and
pelagic species and used mid-water-column temperature to infer thermal affinities in our
analyses, we tested the sensitivity of our results to these choices by recalculating thermal
affinities using surface temperature and bottom temperature, both with and without pelagic
species (see Supplementary Material). Separate data sources were used to calculate species’
thermal affinities and to model the underlying processes of CTI because estimating species’
thermal affinities required matching species’ occurrences with mid-water column temperatures,
whereas modelling the underlying processes required a standardized, continuous, temporally

resolved database. Mid-water-column data were only available as decadal averages and did not
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cover the entire study period. Lastly, for each grid cell, we calculated the rate of change in SST

and CTI as the slope of simple linear regressions of SST and CTI vs. time.

Comparison of thermal affinities with Cheung et al. 2013*

While a variety of past studies have quantified species’ thermal affinities using species’
distribution models®’ or the midpoint of species minimum and maximum temperature
observations®®, here we inferred thermal affinities as the median temperature value across a
species’ range of observations. To determine the accuracy of this approach, we compared our
data with those of Cheung et al. 2013* for 252 overlapping species. We found an 83%
correlation between our data and those of Cheung et al. 2013%, indicating high consistency
between the two studies. This provides strong support for our approach because Cheung et al.
2013*is a landmark study investigating changes in the community temperature index in marine

fishes.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data handling and quantitative analyses were performed using R* version 4.0.0.

Decomposing CTI into the four underlying processes

CTI is a community weighted mean and therefore reflects changes in the relative abundances
of warm-affinity and cold-affinity species. CTI will increase when species with thermal
affinities greater than the mean of the community increase and when species with thermal

affinities lower than the mean of the community decrease. Conversely, CTI will decrease when
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species with thermal affinities greater than the mean of the community decrease and when
species with thermal affinities lower than the mean of the community increase. Hence, CTI
changes can be decomposed into four underlying process — tropicalization (increasing warm-
affinity species), deborealization (decreasing cold-affinity species), borealization (increasing
cold-affinity species), and detropicalization (decreasing warm-affinity species). The overall
change in CTI reflects the relative strength of these processes. For instance, CTI will increase
when the strength of tropicalization + deborealization is greater than the strength of
borealization + detropicalization. To determine the strength of each underlying process, species
within each grid cell must first be classified as either warm-affinity or cold-affinity. Because
CTI (the mean thermal affinity of the community) changes every year, species may be warm-
affinity one year (i.e., having a thermal affinity higher than the community mean) and cold-
affinity the next (i.e., having a thermal affinity lower than the community mean). Therefore, to
classify species as either warm or cold affinity within each grid cell, we used the mean CTI
value across all years in the time series (i.e., mean of CTI values for 1990 to 2015 for each grid
cell). We then separated warm and cold-affinity species into those that increased in abundance
and those that decreased (Figure 1). Because CTI will shift up or down based on the amount of
increase or decrease in species abundances along the thermal affinity axis (i.e., Figure 1), the
strength of each process can be thought of as the amount of “pull” that each process exhibits on
the overall community mean. This is determined by the degree to which species contributing to
each process influence the overall community mean. Species that have thermal affinities much
greater or much lower than the community mean will exhibit more influence than those with
thermal affinities very similar to the mean. Additionally, species with large abundance changes
will exhibit more influence than those with small abundance changes. Hence, each species
contribution to the change in CTI is a combination of the difference between its individual

thermal affinity (STI) and that of the community (CTI) and its change in abundance. We
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therefore calculated the strength of each processes by (i) calculating the difference between
each species’ thermal affinity and the mean of the community, (ii) multiplying this value by
each species’ change in abundance, and (iii) taking the sum of the resulting values for all species
within each process (Figure S3). We assessed the accuracy of this approach by comparing the
value of (tropicalization + deborealization) — (borealization + detropicalization) to the rate of
change in CTI for each grid cell. Note, these two values will never be a perfect match because,
as mentioned above, some species fluctuate between warm and cold-affinity over time,
especially in grid cells where CTI is highly variable across years. However, we found a
correlation of 0.85 between the two values, indicating that our metric for estimating the strength

of the underlying processes accurately captured changes in CTI (Figure S4).

Conditions associated with the underlying processes

To identify the biotic and abiotic conditions associated with each underlying process, we
modelled the difference in the strength of tropicalization vs. deborealization (i.e., tropicalization
minus deborealization) when CTI increased, and the difference in the strength of borealization
vs. detropicalization (i.e., borealization minus detropicalization) when CTI decreased. We used
linear mixed effects models with Gaussian likelihood distributions and included survey
campaign as a random effect (i.e., varying intercept). Explanatory variables were the rate of
change in SST, initial (i.e., baseline) SST, mean-annual SST variation, depth, distance to the
nearest human population center, mean maximum body size, community thermal diversity
(CTDI1V), and community thermal range (CTR). Initial SST was defined as the mean-annual
SST for each grid cell for the period 1980-1989, the ten years prior to the study period. Depth
was recorded during each trawl survey, and we calculated mean depth per grid cell. Distance to

the nearest human population center came from Yeager at al.*’, which is calculated as the
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straight-line distance to the nearest provincial capital as defined by the ESRI World Cities data
set. Body size data came from the open-access trait database of Beukhof et al.*s, CTDIV was
defined as the variation in thermal affinities in the community and was calculated as the
abundance-weighted standard deviation of species’ thermal affinities’. CTR describes whether
species in the community have narrow or wide thermal ranges and was calculated as the
abundance-weighted mean of species’ thermal ranges’. Thermal ranges were defined as the
difference between the 90™ and 10™ percentiles of species thermal affinity observations. For
CTDIV, CTR, and mean body size, we took the mean across the first 10 years of the study
period for each grid cell to define baseline conditions in community structure that may have
shaped community responses to warming. All metrics were calculated for the entire community
sampled in each grid cell. Hence, identical predictors were used for both models, rather than
sub-setting predictors to only species contributing to tropicalization and deborealization or to

borealization and detropicalization.

Species contributing to opposite processes

To identify differences between species contributing to borealization vs. deborealization, and
between species contributing to tropicalization vs. detropicalization, we used linear mixed
effects models with binomial likelihood distributions and grid cell nested in survey campaign
as random effects (i.e., varying intercepts). In grid cells where CTI increased, explanatory
variables included maximum thermal limit, thermal range, maximum body size, and whether
species are commercially fished. In grid cells where CTI decreased, the same explanatory
variables were used except that minimum thermal limit was used in place of maximum thermal
limit. Maximum and minimum thermal limits were defined as the 90" and 10" percentiles of

species thermal affinity observations, respectively, and species thermal ranges were defined as
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the difference between the 90™ and 10" percentiles. Body size again came from Beukhof et
al.*®. We defined whether a species was commercially fished according to categories of
commercial importance available from FishBase®’. Species listed as ‘highly commercial’,
‘commercial’, or ‘minor commercial’, were considered commercially fished, and species listed
as ‘of no interest’, ‘of potential interest’, ‘subsistence fisheries’, or ‘unknown’ were considered
not commercially fished. All models were performed using the R package Ime4°2. Model
quality and assumptions were verified using the R packages performance®® and MuMin®>* (see
Supplementary Material). Initial model inspection revealed low predictive accuracy and
explained variation for the binomial models. This was likely because all species were initially
included in this analysis whether they showed very slight or very large changes in abundance,
i.e., any cold-affinity species whose change in abundance was greater than 0 was classified as
contributing to borealization. All species populations fluctuate naturally, and so small increases
or decreases in abundance are expected that may be independent of thermal affinity. Hence,
including all species in this analysis could potentially blur patterns. We therefore reran models
using i) all species, ii) species whose abundance changes were in the top 75%, iii) species whose
abundance changes were in the top 50%, and iv) species whose abundance changes were in the
top 25%. All approaches yielded very similar results, but with predictive accuracy and
explained variation increasing with stricter species subsets. We therefore selected the model
using species whose abundance changes were in the top 50% as a compromise between data
deletion and model quality (at least 2000 observations per model and predictive accuracy over

70%), however, all model results are reported in Table S4.

Model performance
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We assessed the performance of all models using the R package performance. For the two
Gaussian models, we assessed linearity (i.e., residuals vs fitted values), homogeneity of
variance, collinearity, the potential influence of high leverage observations, normality of
residuals, and normality of random effects. This was accomplished with the function
check _model. We also assessed predictive accuracy via the correlation between fitted values
and observed values and via k-fold cross validation using the function performance accuracy.
Because cross validation results vary between iterations, we ran the performancy accuracy
function 99 times and recorded the average score. Both models satisfied all assumptions,
including no high leverage observations and Variance Inflation Factors under 2.5 for all
variables. For the model of differences between the strength of tropicalization and
deborealization, the correlation between fitted values and observed values was 62% and the
average cross validation accuracy was 57%. For the model of differences between the strength
of borealization and deborealization, the correlation between fitted values and observed values

was 79% and the average cross validation accuracy was 71%.

For the four binomial models, we assessed binned residuals and predictive accuracy
using the functions binned residuals and performance accuracy. Binned residuals are assessed
by first ordering predicted probabilities from smallest to largest and calculating raw residuals.
Data are then split into bins of equal numbers of observations and the average residual is plotted
against the average predicted probability for each bin. The quality of the model is then evaluated
based on the percentage of binned residuals that lie within confidence limits/error bounds.
Predictive accuracy was assessed as the area under the receiver operating characteristic curve
(AUC - ROC), which evaluates how accurately a binomial model predicts group classification.
AUC —ROC is bounded between 0 and 1, with 0 indicating 0% accuracy and 1 indicating 100%
accuracy. For sites where CTI increased, the model of differences between species contributing

to borealization and deborealization had 85% of residuals within error bounds and a predictive
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accuracy of 73%, while the model of differences between species contributing to tropicalization
and detropicalization had 84% of residuals within error bounds and a predictive accuracy of
73%. For sites where CTI decreased, the model of differences between species contributing to
borealization and deborealization had 83% of residuals within error bounds and a predictive
accuracy of 71%, while the model of differences between species contributing to tropicalization
and detropicalization had 86% of residuals within error bounds and a predictive accuracy of

70%.

Altogether, these results show that our models did not violate assumptions, but that
predictive accuracy was less than desirable. This likely indicates that other drivers that we were
unable to assess are important in explaining variation in the strength of processes and in
differences between species contributing to opposite processes. Further exploration showed that
poor predictive accuracy may have also resulted from inconsistent relationships between
surveys (i.e., regions). For example, including a random slope term for survey in the binomial
models showed that, in sites where CTI decreased, upper thermal maximum was a strong
predictor of whether species underwent borealization or derealization for all surveys except the
Gulf of Alaska, Gulf of Mexico, and Baltic Sea. Additionally, commercially fished status was
a strong predictor of whether species underwent borealization or deborealization in regions that
were closer to human population centers, but not those that were further from population
centers. However, models that included random slope terms did not have greater predictive
accuracy, indicating that improving model accuracy ultimately hangs on uncovering other

important drivers of process strength and species differences.

Sensitivity to pelagic species and temperature zone
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To determine how including or excluding pelagic species influenced our results, we
recalculated 1) the rate of change in CTI, ii) the difference in the strength of tropicalization and
deborealization, and ii) the difference in the strength of borealization and detropicalization after
removing pelagic species. Additionally, to examine the impact of calculating thermal affinities
with different water column zones (i.e., bottom temperature, mid-water-column temperature,
and sea surface temperature) we recalculated the above three metrics using all three temperature
zones. We did this for all possible scenarios, hence for all species using bottom, mid-water-
column, and surface temperature, and for demersal species only using bottom, mid-water-
column, and surface temperature. We then examined the correlation in metrics across all six
scenarios. Across the six scenarios, correlation values for the rate of change in CTI ranged from
0.666 to 0.996 with a mean of 0.83, correlation values for the difference in the strength of
tropicalization and deborealization ranged from 0.776 to 0.997 with a mean of 0.873, and
correlation values for the difference in the strength of borealization and detropicalization ranged
from 0.816 to 0.997 with a mean of 0.894, altogether indicating that results were robust to

including or excluding pelagic species and to potential choices in thermal affinity calculation.
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KRT

KEY RESOURCES TABLE
REAGENT
or SOURCE [IDENTIFIER
RESOURCE
Software and algorithms
The R
Project for . .
R 4.0.0 Statistical https://cran.r-project.org/

Computing*®

Deposited Data

status data

Fish OceanAdapt|https://oceanadapt.rutgers.edu/
monitoring [NOAA?
data
Fish DATRAS https://datras.ices.dk/Data_products/Download/Download_Data_public.aspx
monitoring |ICES
data
Fish IMR https://www.hi.no/en/hi/forskning/research-data-1
monitoring
data
Sea surface [Hadley https://www.metoffice.gov.uk/hadobs/hadisst/
temperature (Centre for
data Climate
Prediction
and
Research?6
Species OBIS https://obis.org
occurrence
data
Species GBIF https://lwww.gbif.org
occurrence
data
Species VertNet http://vertnet.org
occurrence
data
Species ecoengine |https://ecoengine.berkeley.edu
occurrence
data
Mid-water- [NOAA WOA |https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl?parameter=t
column 2013 V2
temperature |Database
data
Distance to [V https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.1884#support-
human information-section
population
center data
Body size  [*# https://doi.pangaea.de/10.1594/PANGAEA.900866
data
Commercial [FishBase® |http://www.fishbase.org
fishing
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Supplemental Data
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Figure S1. Boxplots of the strength of each of the underlying processes of CTI changes for
all sites pooled (A), only sites where CTI increased over time (B), and only sites where CTI
decreased over time (C), Related to Figure 2.
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Figure S2. Map showing the spatial locations of the bottom trawl surveys used in the
study, Related to Figure 2. Acronyms are defined in Table S1.
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Figure S3. Method for calculating the strength of the underlying processes (tropicalization
shown here), Related to Figure 2. First, the difference between each species individual
thermal affinity (STI) and the mean thermal affinity of the community (mean CTI of all years
for each site) is calculated (i.e., STI — CTI). Secondly, the resulting value is multiplied by
species’ individual changes in abundance (i.e., rate of change in abundance over time). Third,
the sum of all resulting values is taken across all species.
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Figure S4. Maps of the rate of change in CTI (A) and the value of warm processes — cold
processes, i.e., (topicalization + deborealization) — (borealization + detropicalization) (B),

Related to Figure 2. The rate of change in CTI (A) and the value of warm processes — cold
processes (B) had a correlation coefficient of 0.85.




Survey

Area

Years

Months

Source

Reference
. OceanAdapt
Al Aleutian Islands 1991-2014 May — Sep NOAAS!
. DATRAS
BITS Baltic Sea 1991-2015 Jan. — Dec ICESS?
_ OceanAdapt
EBS East Bering Sea Shelf 1990-2015 | May — Aug NOAAS!
FR-CGFS East English Channel 1990-2015 Sep — Dec ]I)C/E"QEAS
. OceanAdapt
GMEX Gulf of Mexico 1990-2015 May — Oct NOAAS!
OceanAdapt
GOA Gulf of Alaska 1990-2015 May — Sep NOAAS!
OceanAdapt
NEUS Northeast US 1990-2015 Feb — Dec NOAAS!
NorBTS Norwegian Sea, Barents Sea 1990-2015 Jan — Dec IMRS3
NS-IBTS North Sea 1990-2015 Jan — Dec E:I?ETSI;AS
OceanAdapt
SEUS Southeast US shelf 1990-2015 | Apr—Nov NOAAS!
SWC-IBTS | Scotland Shelf Sea 1990-2015 Feb — Dec %?ETSI;AS
WCANN West US Coast annual 2003-2015 May — Oct OceanASflapt
NOAA
WCTRI West US Coast Tri-annual 1992-2004 May — Oct I(\)IcoeznAAsfiapt

Table S1. Metadata and sources for the thirteen bottom trawl survey campaigns used in

this study, Related to Figure 2.




trop_minus_deb bor_minus_detrop

Predictors Estimates Cl p  Estimates o/ p
Intercept 0.08 -0.06-0.22 0.271 0.14 -0.04-032 0.121
SST Variation 0.03 -0.03-0.08 0.351 -0.04 -0.12-0.03 0.238
SST Initial 0.16 0.09-0.23 <0.001 0.13 0.01-0.25 0.035
SST Change 0.07 0.02-0.12  0.005 0.07 0.01-0.12 0.031
Depth 0.07 0.02-0.12  0.003 0.06  0.01-0.11 0.024
Distance to Market 0.07 0.02-0.11  0.004 0.03 -0.03-0.08 0.326
CTDIV -0.05 -0.10--0.01 0.022 -0.07 -0.14—0.01 0.069
CTR -0.01  -0.09-0.06 0.749 -0.07 -0.16—0.03 0.159

Random Effects

. 0.05 0.03

T00 0.05 survey 0.09 survey
ICC 0.51 0.72

N 12 survey 12 survey
Observations 398 160
Marginal R2 / Conditional RZ  0.100/0.559 0.135/0.761

Table S2. Summary tables for models of differences in the strength of the underlying
processes, Related to Figure 3.



deb_vs_bor_warming
Log-

trop_vs_detrop_warming

Log- c

deb_vs_bor_cooling

Log- cl

trop_vs_detrop_cooling

Log-

Predictors odds ¢ P Odds ! P Odds P odis ¢ P
Tntercept 0.02 -0.44 - 0934  0.72 0.12 - 0019 066 0.38-  <0.001 029 0.05 - 0.016
0.48 1:33 0.94 0.52
Commerically Fished -0.34 -0.49 — <0.001 0.10 -0.07 - 0256  -0.06 -0.27 - 0.543  -0.26 -0.44 — 0.005
-0.19 0.26 0.14 -0.08
Body Size 0.05 -0.02 - 0.164  -0.17 -0.24 - <0.001 0.04 -0.06 — 0.422 0.09 0.01 - 0.035
0.12 -0.10 0.14 0.18
Thermal Range -0.16 -0.28 — 0.007  -0.15 -0.27 - 0016 0.17 0.04 - 0.010 -0.02 -0.14-  0.670
-0.04 -0.03 0.29 0.09
Max Thermal Limit 0.72 0.53 - <0.001 0.57 0.38 - <0.001
0.91 0.76
Min Thermal Limit -0.12 -0.33 - 0231  -035 -0.52—- <0.001
0.08 -0.17
Random Effects
o2 3.29 3.29 3.29 3.29
o0 0.19 site:survey 0.18 site:survey 0.27 siteisurvey 0.23 site:survey
0.58 survey 1.05 survey 0.10 survey 0.03 survey
1cc 0.19 0.27 0.10 0.07
N 398 e 398 e 160 G 160 gite
12 survey 12 survey 12 survey 12 survey
Observations 4583 4670 2181 2615
0.084 /0.258 0.063/0.317 0.011/0.109 0.038/0.107

Marginal R2/
Conditional R?

Table S3. Summary tables for models of differences between species contributing to
opposite processes, Related to Figure 4.



Increasin

CTI: Deborealization vs. Borealization

. Max . 2 . o e
Species Thermal Thermal Body size Fished Marg.lrfal R*/ , Bm.ned Predictive Observations
subset limit range Conditional R residuals accuracy
-0.13 [- -0.39 [-
‘s"lcies 8‘221[0'40’ 0.21, - 8'(1);][0'02’ 0.50, - 0.054/0.156 86% 66.5% 8691
P : 0.05] : 0.29]
-0.16 [- -0.33 [
;;’,}} 8'221[0'5 L1 0.6, - g.(l)(s)][-o.m, 0.45, - 0.076/0.215 84% 68.7% 6639
° : 0.07] : 0.20]
-0.16 [- -0.34 [-
;‘]’,}} 8'3][0'53’ 0.28, - 8'(1)31['0'02’ 049,- | 0.084/0.258 85% 72.6% 4583
° : 0.04] : 0.19]
-0.30 [- -0.48 [-
;;’,}} ?‘gz][o'ﬁg’ 0.49, - 8'(1)3]['0'06’ 0.72, - 0.114/0.406 75% 79.8% 2351
° ) 0.11] : 0.25]
Increasing CTI: Detropicalization vs. Tropicalization
. Max . 2 . I
Species Thermal Thermal Body size Fished Marg.n}al R*/ , Bm.ned Predictive Observations
subset limit range Conditional R residuals accuracy
-0.07 [- -0.08 [-
A e 82;][0'1 Lolos, - DBk o |, 0.015/0.117 90% 65.6% 10406
P : 0.01] e 0.01]
Top 0.26 [0.13, | -0.06 [- 015 [- 2)02(19 - 0.021/0.186 85% 68.5% 7277
75% 0.39] 0.15,003] | 0.20,-0.10] | o' 43 : : :
-0.15 [- 0.09 [-
oy 8'%][0'3 8 1 027,- ok o | 097 0.063/0.317 84% 72.6% 4670
° : 0.03] oh 0.26]
-0.29 [- 0.17 [-
;;5 }';2][0'76’ 0.50, - 502%9 (5'0 g | oo 0.118/0.565 72% 81.2% 2222
° ) 0.09] e 0.45]
Decreasing CTI: Deborealization vs. Borealization
. Min . ) . e
Species Thermal Thermal Body size Fished Marg.n}al R*/ , Bm.ned Predictive Observations
subset limit range Conditional R residuals accuracy
All 011 [- 0.11[0.02, 1 0.06 [-0.01, E)Oi(ié - 0.007/0.073 83% 66.8% 3970
species | 0.26,0.04] | 0.20] 0.13] 0'091 : : :
-0.01 [-
Top -0.08 [- 0.15[0.04, | 0.05[-0.03, o .
5% 026.010] | 025] 013] 8.}23 0.008/0.093 86% 68.6% 3188
Top 012 0.17[0.04, 1 0.04 [-0.06, E)Oio76 - 0.011/0.109 83% 71.0% 2181
50% 0.33,0.08] | 0.29] 0.14] 0.1 43 : : :
Top 0.17[- 0.220.04, | 0.15[0.01, 2)0424 - 0.025/0.141 79% 73.4% 1169
25% 0.43,0.10] | 0.40] 0.30] 01 63 : : ° A
Decreasing CTI: Detropicalization vs. Tropicalization
. Min . 2 . ..
Species Thermal Thermal Body size Fished Marg.lrfal R/ , Bm.ned Predictive Observations
subset limit range Conditional R residuals accuracy
All 023 [- -0.01 [- 0.04[-0.02, 6051)8 k 0.017/0.066 86% 65.6% 5129
species | 0.35,-0.10] | 0.09,0.06] | 0.10] 0.0 61 : : :
Top 022 0.01 - 0.04 [-0.03, E)Oézsl g 0.18/0.075 86% 67.1% 3959
75% 0.38,-0.07] | 0.07,0.10] | 0.10] 007] o ’ e
Top 0351 “0.02[- 0.09 [0.01, 604%16 g 0.038/0.107 86% 70.2% 2615
50% 0.52,-0.17] | 0.14,0.09] | 0.18] 0'081 ) : : 0 e
-0.43 [-
Top -0.78 [- -0.10 [- 0.08 [- . .
25% 120,-0.36] | 0.31,0.11] | 0.04,0.21] gzg] - | 013000315 5% 78.5% 1301

Table S4. Model coefficients and explained variation for i) all species, ii) species whose

abundance changes were in the top 75%,

m

) species whose abundance changes were in

the top 50%, and iv) species whose abundances changes were in the top 25%, Related to
Figure 4. Values shown for predictor variables are standardized effect sizes and 95%
confidence intervals.
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S1.  https://oceanadapt.rutgers.edu/SS5.
S2. https://datras.ices.dk/Data_products/Download/Download Data public.aspx
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