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Abstract

Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic
variation across a species’ range is of great interest in ecology and evolution, especially in an era
of global change. While theory predicts how and when populations at range margins are likely to
undergo local adaptation, empirical evidence testing these models remains sparse. Here, we
address this knowledge gap by investigating the relationship between selection, gene flow, and
genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern
periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow
from the core to the edge, and genomic signatures of local adaptation at 56 Single Nucleotide
Polymorphisms (SNPs) in 25 candidate genes, most of which are significantly correlated with
minimum annual sea surface temperature. Several of these candidate genes play a role in functions
that are up-regulated during cold stress, including protein turnover, metabolism, and translation.
Our results illustrate how spatially divergent selection spanning the range core to the periphery
can occur despite the potential for strong genetic drift at the range edge and moderate gene flow

from the core populations.

Keywords: spatially divergent selection; range margin; clownfish; local adaptation
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1. Introduction

Understanding how environmental heterogeneity drives patterns of selection and partitions
adaptive variation into discrete populations is increasingly important in today’s changing world.
Species with large geographic ranges often span a similarly wide array of environmental
conditions, which may result in natural selection favoring distinct sets of alleles across the species
range [1]. Such a process is commonly referred to as spatially divergent selection and can shape
the evolutionary trajectory of a population by causing allele frequencies at select loci to move
away from a global mean and towards local optima [2]. While there exists a large body of work
investigating spatially divergent selection, the scale at which such patterns can manifest, and the
extent to which populations may become locally adapted, remains an area of intense debate [3,4].

Selection, however, is only one of several evolutionary processes operating in a natural
system and rarely acts in isolation. Gene flow and drift also shape the distribution of genetic
variation, and the interplay of these forces can influence population dynamics, patterns of range
expansion, and evolutionary trajectories [5,6]. Gene flow is commonly thought to decrease the
fitness of edge populations through gene swamping, as immigrants from the range core may be
sub-optimally adapted to edge environments [7,8]. Alternatively, gene flow can increase adaptive
potential at the edge by transporting in novel genetic variation and replenishing genetic diversity

that is otherwise depleted due to drift and serial founder events [9,10].

Empirical evidence detailing how migration-selection balance affects adaptation in
peripheral populations is rare, especially in marine taxa [11; although see 12]. Many marine
species are historically thought to have large, well-mixed populations due to a lack of geographic
barriers and high dispersal capabilities [13,14]. Such conditions would tip migration-selection

balance away from local adaptation and towards range-wide adaptation to a global trait mean.
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However, recent studies have found that adaptive and neutral genetic variation can be differentially
distributed within marine populations, suggesting that selection may be strong enough to cause
differentiation even in the face of heavy gene flow [15,16] and across pronounced environmental

gradients [17,18].

Despite such evidence, it is still unclear how selection and gene flow interact to shape
adaptation at range peripheries. Populations near the range center are thought to maintain high
enough densities to withstand an influx of maladaptive alleles from elsewhere in the range [7].
Less dense populations at the range edge may not benefit from the same demographic processes,
however, [6]. Nevertheless, directional selection at the edge may be strong enough to overcome
asymmetrical migration rates, especially as peripheral populations tend to inhabit novel
environments [6,8]. Thus, our understanding of how evolutionary forces interact to either suppress

or replenish genetic diversity at marine range peripheries remains lacking.

At the same time, it is these edge populations that play a critical role in enabling species to
adapt to changing environments [19]. Species shift their ranges to track environmental conditions,
and it is often individuals at the edge that first colonize novel habitats [20]. The oceans are
predicted to warm by 1-3°C over the coming century, presenting serious challenges for marine
taxa [21]. Many biological pathways are sensitive to temperature change [22], and water
temperature has been shown to influence development, reproduction, and survival in many
ectotherms [23]. Thus, adaptation to thermal regimes often provides a large fitness advantage [24]
and shifting thermal environments may impose strong selective pressures on populations as they
respond in situ. Such responses may vary across a species range, as adaptive potential is unlikely

to be uniform from the core to the periphery. Thus, understanding the roles that evolutionary forces
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play in partitioning genetic variation among populations is important when trying to predict how

species will fare in the coming years.

The yellowtail clownfish, Amphiprion clarkii, provides an ideal system for investigating
how different evolutionary processes interact to shape genetic diversity and adaptive potential
across a species range. A. clarkii occupies one of the broadest latitudinal ranges of all anemonefish
species, with populations from the Indo-Pacific tropics to the subtropics (Figure 1) [25].
Anemonefish are philopatric, remaining on the same anemone for the duration of their adult lives
[25]; as such, populations are only connected by pelagic larval dispersal (PLD). However, with a
PLD of ~2 weeks [26], the larval duration of 4. clarkii is relatively limited, and few larvae

regularly disperse farther than 27 km, although rare long-distance migration is possible [27].

Here, we explore the relationship between gene flow, selection, and drift across the
northern half of the species range of Amphiprion clarkii to determine if edge populations have
responded to spatially divergent selection despite (or perhaps because of) gene flow from the core
and the potential for stronger genetic drift at the edge. Specifically, we address three questions: (1)
how 1is genetic diversity, both adaptive and neutral, partitioned across the northern extent of A.
clarkii’s range, (i1) are there signatures of selection in edge and core populations, and (ii1) what

are the underlying biological or molecular processes targeted by such selection?

2. Materials & Methods

(a) Study species and sample collection
We sampled a total of 25 Amphiprion clarkii individuals (4-11 cm fork length) from three

locations. These locations represent the core of the species distribution (near the equator), part-
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way to the northern edge, and near the northern edge of the species range. We collected seven
individuals from Sulawesi Tengeh, Indonesia (six from 0.652217 °S, 119.739 °E and one from
0.65695 °S, 119.741 °E), ten from Leyte, Philippines (10.87304 °N, 124.7122 °E), and eight from
Shikoku Island, Japan (33.005133 °N, 132.5047 °E) (Figure 1). All sampling took place in 2012
(May-August). Upon capture, a sample of heart tissue was taken and immediately preserved in
RNAlater. The heart was chosen as it plays an important role in determining thermal sensitivity
through oxygen transport and aerobic capacity [28]. As taking heart tissue is lethal, we designed
our sampling scheme to capture the largest sample possible while minimizing cost and population
impact.

We extracted total RNA using a Qiagen RNAeasy spin column (Qiagen, Hilden, Germany)
following manufacturer recommendations and made cDNA libraries with Illumina TruSeq v2 kit
(Illumina, San Diego, CA, USA) at half reaction volumes. We assessed concentrations with a
Qubit dsDNA HS assay (ThermoFisher Scientific, Waltham, MA, USA), quality with a NanoDrop
spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA), and fragment length with an
Agilent 2100 BioAnalyzer and a DNA 1000 kit (Agilent, Santa Clara, CA, USA). We sequenced
the libraries on an Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) with 140 bp and 187 bp
single-end reads at Princeton University's Lewis-Sigler Institute Genomics Core Facility.

(b) Read mapping and variant calling

We demultiplexed the sequenced reads by Illumina index using a Python script adapted
from FASTX Barcode Splitter [29], trimmed to bases with a quality score >20 with the
TQSfastq.py from the SSAKE assembly pipeline [30], and removed reads <30 bases long after
trimming. Reads from individual N3 were assembled into a de novo reference transcriptome using

Trinity v.2.2.0 [31] (details in Supplement). The final reference transcript contained 103,518
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transcripts, varying in length from 201-7,323 nucleotides. We mapped reads to the reference
transcriptome using Stampy v.1.0.28 [32], filtered for mapping quality 220 using SAMtools v.1.3.0
[33], marked read duplicates using the MarkDuplicates function in Picard Tools v.1.119

(https://broadinstitute.github.io/picard/), and realigned indels using IndelRealigner in GATK

v.3.8.1 [34]. Variants were called with HaplotypeCaller in GATK. We removed all variants except
biallelic SNPs genotyped in at least 24 samples. Additional filtering with VCFtools v.1.16 [35]
removed SNPs with a minor allele count <2. After filtering, we had 4,212 SNPs, distributed across
1,002 transcripts.
(c) Genetic diversity

We assessed two measures of genetic diversity and one measure of relatedness. We
calculated per-site nucleotide diversity () for each sampling site using VCFtools. The mean
inbreeding coefficient (Fs) was estimated from observed heterozygosity and expected gene
diversity with the hierfstat package in R v.3.4.4 [36,37]. We assessed the mean within-population
pairwise relatedness using the relatedness R package [38] and the Wang relatedness estimator [39]
that has reduced bias with small sample sizes [40]. We calculated 95% confidence intervals for all
metrics by bootstrapping with replacement across individuals 1000x in R. Tajima’s D was
calculated across each transcript using VCFtools. To include rare variants and avoid potential
biases from purifying selection, Tajima’s D was calculated using only synonymous sites from a
SNP dataset unfiltered for minor allele count (1,453 SNPs). Synonymous sites were identified
using SnpEff [41] (see annotation section for details).
(d) Outlier test and environmental association analyses

To identify candidate SNPs under selection, we used an outlier test and two environmental

association analyses (EAA). For the outlier analysis, we ran the core model implemented in the
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program BAYPASS v.2.1.1 [42] using default parameters and all 4,212 SNPs. This model
generates an XtX statistic [43], which is an Fsr-type measurement that considers population
structure. We determined a threshold XtX value for outliers by creating pseudo-observed data sets
under a null model and analyzed them with the core model [42]. We used the 99% quantile of this
empirical XtX distribution under no selection as the selection/neutrality threshold.

For the EAAs, we utilized two methods. First, we ran the standard covariate model
implemented in BAYPASS which tests for associations between allele frequencies and
environmental covariables while accounting for the neutral covariance among localities. We used
annual mean sea surface temperature (SST mean), minimum SST (SST min), maximum SST (SST
max), latitude, and mean sea surface salinity (SSS mean) (Table S2) from the MARSPEC database
[44]. For every variable, we ran a burn-in of 5,000 iterations and then 25,000 MCMC steps thinned
to every 25. We used the full dataset of 4,212 SNPs. Bayes Factors (BFs) in deciban (dB) units
were used to determine whether a SNP was associated with an environmental variable. As
recommended in [42], we considered SNPs with a BF greater than 20 dB to be strongly associated.
To assess these associations, we randomly reassigned individuals among locations to create
permuted datasets that we then analyzed in BAYPASS (details in Supplement).

Our second EAA was a redundancy analysis (RDA). We used the vegan v.2.4.1 R package
[45] to perform RDA with the same environmental variables as in BAYPASS and a centered allele
frequency dataset with all 4,212 SNPs. We used two methods to identified potential outlier SNPs:
(1) those with a g-value >0.1 [46] and (2) those with scores =+ 3 SDs from the mean axis score for
each of the first two constrained axes that also had a p < 0.0001 when regressed against an
environmental variable [47]. Both methods identified similar sets of outlier SNPs. However, the

second method was more stringent, so we used only those SNPs for downstream analyses. Mean



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

outlier allele frequencies were calculated for each sampling site, polarized so that the Japanese
allele frequency was highest. Since one pair of individuals appeared highly related, we also
conducted all outlier analyses without one of the highly-related individuals (N4).
(e) Population structure

We analyzed population structure with principal component analysis (PCA) and
STRUCTURE [48]. PCA was performed with all 4,212 SNPs using Plink v.1.9 [49]. In addition,
SNPs out of Hardy-Weinberg Proportions (HWP) were identified using VCFtools and PCA was
redone without these SNPs. We also performed PCAs with only outlier SNPs and with all outlier
SNPs removed. STRUCTURE v.2.3.4 was run assuming admixture and correlated allele
frequencies. We ran five replicates of each K (number of populations) from 1 to 5 with a burn-in
of 100,000 followed by an additional 10,000 MCMC steps. STRUCTURE was run on the same
four datasets as PCA. The optimal value of K was identified using the Evanno method [50]. Results
were visualized with CLUMPP [51] and the pophelper v.2.3.0 package in R [52]. Finally, pairwise
Fsr estimates calculated with all 4,212 SNPs and 95% confidence intervals were evaluated using
the hierfstat package in R [36]. We also conducted all analyses without one of the highly-related
individuals (N4), though we note that removing related individuals can bias inference [53].
(f) Demographic analyses

We estimated dispersal rates and long-term effective population sizes (N.) with
fastsimcoal? [54] by fitting a model of population splits and ongoing migration against the
multidimensional site frequency spectrum (details in Supplement). We also ran Stairway Plot v.2
[55] to estimate changes in abundance in each location from the folded site frequency spectrum
(see Supplement), though we acknowledge challenges with inference based on <10° SNPs [56].

(g) Functional and structural annotation
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The de novo transcriptome assembly was mapped to Amphiprion frenatus with BLASTn
searches against 4. fienatus with an E-value cutoff of 10 [57,58]. Structural annotation was
performed on these mapped SNPs with SnpEft [41]. A. frenatus is one of the most closely related
and completely annotated transcriptomes available [59]. Gene ontology (GO) terms were

annotated to predicted proteins from the best BLASTn match against the SwissProt database.

3. Results
(a) Genetic diversity & relatedness

Per-site nucleotide diversity and the inbreeding coefficient (Fjs) were both lowest in Japan
and highest in the Philippines (Table 1). Mean within-site Tajima’s D ranged from -0.29 + 0.046
in the Philippines to -0.166 + 0.05 in Indonesia and was -0.355 + 0.041 with all individuals pooled
together (Table 1, Figure S1). Mean pairwise relatedness () varied as well, from »=0.222 in Japan
to »=-0.011 and » = 0.018 in the Philippines and Indonesia, respectively (Table 1).
(b) Spatially divergent selection

BAYPASS identified 93 highly diverged SNPs with an XtX value 26.03, the 99%
significance threshold. BAYPASS also revealed 192 SNPs with a strong association with at least
one environmental variable (BF >20 dB). Most SNPs were associated with SST mean. Of those
108 SNPs, 81% were also associated with SST min and latitude. Most of these latter SNPs were
more strongly associated with either SST variable than with latitude (Figure S2). The empirical
cumulative distribution of BFs for each environmental covariate was significantly different from
the permuted distribution (Mann-Whitney U-test; p < 0.001; Figure S3). RDA identified 67 SNPs
with a significant association with at least one environmental variable (p < 0.0001) (Figure S4).

Of these, most were associated with SST min (Table S3).
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Across all analyses, 56 SNPs had an XtX greater than the 99% threshold and a significant
association with at least one environmental variable according to both EAAs (Figure 2). Of these,
most were associated with SST mean (54 SNPs), SST min (52 SNPs), or latitude (49 SNPs) (Table
S3). Again, most of these SNPs (80%) were more strongly associated with either temperature
variable than with latitude (Table S3). The mean polarized outlier allele frequency was 0.847 in
Japan, 0.179 in the Philippines, and 0.162 in Indonesia (Figure S5). When within-site Tajima’s D
was calculated for only the outlier sequences (transcripts that contained at least one outlier SNP),
the mean estimate trended slightly positive (Table 1, Figure S1). However, the difference between
the outlier-only and overall Tajima’s D distributions was not significant for any combination of
individuals (Figure S6). The outlier analyses after removing related individual N4 did not differ
substantially from the findings with all individuals included (Table S4).

(c) Population structure

PCA revealed that individuals from Japan clustered more tightly relative to the Philippines
or Indonesia (Figures 3A, S7A). PC 1 explained 11% of the total variance, while PC 2 explained
7%. However, the PCA with only outlier SNPs revealed that Japanese individuals were much more
diverged from an Indonesian and Philippines cluster (Figure 3B). PC 1 explained 73% of the
variance in this latter case, while PC 2 explained 7%. STRUCTURE analyses also revealed
population clustering. The Evanno method suggested three clusters (K = 3), regardless of whether
the full dataset was used, only SNPs in HWP, or only non-outlier SNPs (Figures 3C, S7C, S7D).
However, with only outlier SNPs, only two clusters were suggested (K = 2), one for Japan and one
for the Philippines and Indonesia combined (Figure 3D). Pairwise Fsr ranged from 0.0247 to

0.0767 and was highest for the Japan-Indonesia comparison, congruent with patterns of isolation-
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by-distance (Table S5). Population structure analyses without one of the highly-related individuals
(N4) did not differ substantially (Figure S8).
(d) Demographic analyses

Analyses with fastsimcoal? revealed moderate Japan-Philippines migration rates of 0.0038
[95% CI: 0.0025, 0.0047] and 0.0056 [95% CI: 0.0038, 0.0072] for Philippines-Indonesia, or the
equivalent of ~10 individuals per generation. Long-term N, estimates did not differ substantially
between the three localities (Table 1). Stairway Plot analyses suggested slow declines in the
Philippines but did not reveal recent bottlenecks or expansions (Figure S9).
(e) Functional and structural annotation

Of the 4,770 SNPs that could be mapped to the 4. frenatus assembly, most mapped to either
coding regions (2,418 SNPs) or UTRs (1,406 SNPs) (Table S6). Of the 56 outlier SNPs, 48 could
be fully annotated, four could only be annotated functionally, and two could only be annotated
structurally. These 56 outlier SNPs represented 25 distinct candidate genes. We grouped these
candidate genes into general biological categories based on their GO annotations (Table 2, Table
S3). Broadly, most of the candidate genes were involved in protein turnover and translation. The
structural annotation suggested that 29 of the SNPs were in coding regions (1 nonsense, 11
missense, 17 synonymous) and 19 were in the UTRs (17 in 3” and 2 in 5”). One SNP was mapped
to the upstream region of a gene and one was mapped to an intergenic region, which may represent

either a currently unannotated protein coding gene or RNA gene.

4. Discussion

Despite theoretical work predicting how and under what conditions populations at range

peripheries may undergo local adaptation [5,8,11], empirical support for these models remains
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scarce, particularly in the marine realm. Here, we investigated how evolutionary forces interact to
shape patterns of adaptive potential and enable local adaptation across the northern half of the
range of a common coral reef fish. Comparison of 4,212 SNPs from three Amphiprion clarkii
populations revealed clear evidence of spatially divergent selection and reduced levels of genetic
variation at the northern periphery of this species’ range. In addition, there was substantial
population structure despite moderate gene flow between the edge and core populations.

Studies of marine species using putatively neutral genetic markers frequently report genetic
structure in the Indo-West Pacific [60-62]. However, this study is unique in that multiple SNPs
had strong associations with environmental variables. Moreover, when only examining outlier
SNPs, the edge vs. core population distinction could explain fully 73% of the genetic variation.
These results suggest that selection, in addition to neutral processes, shapes patterns of genetic
structure in our study system. Combined, our findings further suggest that neutral and adaptive
variation are differently partitioned among the three sampling locations, a pattern that is
increasingly reported in marine taxa [16].

Life on the edge

Climate change is driving range expansions in marine ecosystems [20], renewing interest
in the balance between gene flow and adaptation at range margins. Here, population structure
analyses provide evidence for at least two genetic clusters, with Japanese individuals at the edge
appearing genetically distinct from individuals closer to the core. Clownfish have a relatively short
pelagic larval duration (~2 weeks) [26] and exhibit self-recruitment [63]. These characteristics
should limit dispersal, leading to genetic structure as observed in other clownfish species in the
region [60]. Given the large physical distance between our sites, a stepping-stone model of gene

flow likely explains the observed genetic patterns.
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However, a lack of apparent population structure is not unusual in marine populations that
span large geographic ranges [14]. Theory also suggests that neutral genetic variation can become
homogenized with even minimal gene flow, including rates lower than what we estimated [64].
The Kuroshio Current runs northward to Japan from the bifurcation of the Northern Equatorial
Current off the eastern coast of the Philippines [65] and may provide an avenue for migration,
particularly from the core to the edge. Indeed, other damselfish show limited genetic differentiation
between Japanese populations and those in the Coral Triangle [66]. However, the strong genetic
differentiation seen between A. clarkii populations in Japan and the Philippines/Indonesia suggests
these distinct genetic lineages may be maintained by local adaptation in addition to gene flow.

Evidence for the role of neutral processes comes from lower genetic diversity at the range
edge of A. clarkii as well. Nucleotide diversity and Fs were lowest, and relatedness highest, in the
peripheral Japanese site. These findings are congruent with the idea that edge populations are
subject to higher rates of genetic drift due to reduced N. [6,10] and match previous studies that
found declining genetic diversity along the Kuroshio Current towards species' northern range
margins [67]. However, our analyses also estimated similar long-term N, in all three sites and no
signatures of recent bottlenecks at the range edge. These results suggest the greater levels of
diversity observed in the core may be maintained by higher connectivity to other populations in
the region, including those we did not sample. Continued gene flow could provide a steady influx
of alleles to offset the effects of drift [68]. Populations at the range edge, with fewer connections,
may only see reduced benefits of dispersal.

Despite the action of neutral processes, our results also provide strong evidence of spatially
divergent selection across the northern half of the range of 4. clarkii. Fifty-six SNPs were

adaptively divergent and significantly associated with environmental variables. Surprisingly,
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within-population Tajima’s D for transcripts containing these SNPs was slightly positive, counter
to the negative values expected following recent, hard selective sweeps. Positive Tajima's D values
indicate an over-abundance of intermediate frequency alleles, which are often a signature of
balancing selection [69]. While it is unlikely that balancing selection acted separately within each
population examined here, balanced polymorphisms may nonetheless be maintained by the push
of locally directional selection and the pull of gene flow continuously re-introducing maladaptive
alleles and their linked genetic background.

Most of the outlier SNPs were significantly associated with either mean or minimum SST
and latitude. As temperature and latitude are correlated, these findings are not unexpected.
However, almost every SNP was more strongly associated with temperature than with latitude,
which suggests that temperature, in particular, may be driving the observed differences in allele
frequencies. In fact, the pattern of outlier allele frequencies among the three sites closely mirrored
those of average SST temperatures. Similarly, most SNPs associated with mean SST were also
associated with minimum SST, suggesting that differences in mean SST are likely reflective of
differences in the degree of seasonality (namely, whether a population experiences a winter
season). As many biological pathways are temperature-sensitive [22], and winter water
temperatures at the Japanese site can regularly drop below 15°C [70], changing seasonality across
A. clarkii’s range is likely a strong force driving local adaptation.

The correlative nature of our evidence for thermal adaptation cannot rule out alternative
selective pressures, however. We did not examine other factors like primary productivity,
dissolved oxygen, carbonate chemistry, population densities, or resource availability that are also
likely to differ between these locations and may drive local adaptation. Similarly, demographic

processes like allele surfing during expansion waves and isolation-by-distance may also contribute
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to the genetic differentiation across 4. clarkii’s range [71]. However, the outlier detection methods
we used are reasonably effective at accounting for these latter sources of evolutionary non-
independence [72]; thus, we do not expect drift to be the primary force creating these outlier SNPs.

Further evidence that the allele frequency variation in outlier SNPs is linked to differences
in thermal regimes comes from the fact that the genetic pathways represented by these SNPs are
similar to those invoked during gene expression changes that accompany acclimation to cold
shock. Genes and proteins that are important for temperature acclimation likely also play a large
role in temperature adaptation [73], and differences in gene expression among populations may
have a genetic basis in addition to being a plastic response. The candidate genes we identified are
largely involved in energy metabolism, protein turnover, cell structure, cell death, and oxidative
stress response, functional categories that are often up-regulated in heart tissue during short-term
acclimation to cold stress [74,75]. Cytoskeleton reorganization has been shown to occur during
thermal acclimation as well, although this has been at least partially attributed to cold-induced
hypertrophy of heart tissue [75]. Interestingly, many candidate SNPs mapped to the 3* or 5 UTR
(including near CpG islands), regions that help regulate gene expression [76]. Shifting gene
expression levels are one of the ways organisms can plastically acclimate to environmental
stressors; thus, SNPs in regulatory regions may provide a link between plastic and evolutionary
responses involved in thermal adaptation [77]. In addition, most of the candidate SNPs that
mapped to coding regions appear to be synonymous substitutions. Recent theory has proposed that
silent mutations may not be truly neutral and can undergo weak selection, via codon bias, linkage,
and translation efficiency [78]. Altered gene expression and enhanced translation accuracy may
also be a more feasible route for adaptation, as opposed to modifications of gene structure or the

development of novel proteins. Theory suggests that changes in regulatory regions play a major
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role in adaptation [76,77], and several studies have linked regulatory region mutations with
adaptive traits, including temperature response in Drosophila melanogaster [79]. While further
work is needed to link genetic variation to phenotypes, our results suggest a similar pattern of

adaptation within 4. clarkii populations in response to differences in thermal environments.

5. Conclusion

As the oceans continue to change, marine taxa will face substantial shifts in climatological
and ecological parameters. The effects of climate change will differ by population depending on
their climatic tolerance and local environment [80]. Here, we show how selection, gene flow, and
drift combined to shape adaptive variation within an edge population, including variation
associated with thermal environments. Edge populations are particularly important in predicting
species responses, as they are often the first to start shifting as climates change [19,20]. Continued
connectivity to warmer core populations may provide an avenue for these typically cooler-climate
demes to access novel genetic variation that will enable adaptation to warming temperatures [12].
However, the outcome of adaptation is highly dependent on the extent to which these evolutionary
forces interact in a synergistic or antagonistic manner. Species with both the genetic variation to
allow local adaptation and the gene flow to transport such variation to novel environments are

likely to have particularly strong abilities to adapt to future climatic conditions.
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Figure 1. Map of the three sampling locations: Japan (n = 8), Philippines (n = 10), Indonesia (n = 7).
Northern and southern range extents are marked with horizontal dashed lines. Red shading indicates the

relative probability of occurrence of A. clarkii (data from AquaMaps).
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Figure 2. Relationships between BFs and corresponding XtX values for each SNP-covariate combination
(A: SSS Mean, B: SST Mean, C: SST Min, D: SST Max, E: Latitude). Lines drawn at BF of 20 dB represent
the significance threshold for association with the given covariate. Lines drawn at XtX of 6.03 represent
the significance threshold for adaptive divergence among populations. Black triangles represent the 56
candidate SNPs, while grey circles represent the remaining SNPs.
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Figure 3. A) Results of PCA with all 4,212 SNPs. B) Results of PCA with only the 56 outlier SNPs. C)
STRUCTURE analysis with all 4,212 SNPs (K = 3). D) STRUCTURE analysis with only the 56 outlier
SNPs (K = 2). For both C & D, each putative population is represented by a unique color, and individuals
are grouped by sampling sites (divided by the dashed vertical lines). The proportion of assignment is
represented by the vertical axis on the left.
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Table 1. Mean per-site nucleotide diversity (), the inbreeding coefficient (F7s5), mean within-population
pairwise relatedness (r), mean Tajima’s D (with either all transcripts included or only transcripts with
outlier SNPs), and effective population sizes (N,) from fastsimcoal? for each sampling location. 95%
confidence intervals provided in brackets. SE provided after & for Tajima’s D.

Sampling 4 Tajima’s | Tajima’s D N.
location 7 (x 10%) Fis r D (all) (outliers)
Japan 8.44[8.22, | -0.189[-0.201, 0.222 [0.202, -0.28 + 0.031 + 2,176 [1,773,
p 8.67] -0.178] 0.243] 0.052 0.255 3117]
Philippines 9.64[9.45, | -0.057 [-0.069, -0.011 [-0.063, -0.29 + 0.066 + 2,090 [1,931,
pp 9.84] -0.046] 0.04] 0.046 0.244 3,527]
Indonesia 9.5319.30, | -0.101 [-0.113, 0.018 [-0.061, -0.166 + 0.006 + 1,988 [1,552,
9.73] -0.087] 0.097] 0.05 0.244 3,272]
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644
645

Table 2. List of the contigs containing the 56 candidate SNPs and their functional and structural
annotations. Number of candidate SNPs in each contig is listed.

Contig # SNPs Gene name GO annotation SNP effects
DN14997 ¢0 gl il 3 MCL1 apoptotic process 5” UTR (1); missense (2); 3 UTR (1)
DN2025 c0 gl il 2 KRT8 cell structure 3” UTR (1); unannotated (1)
DN20310 cl gl il 1 cstb proteolysis unannotated (1)
DN20701 c0-gl il 1 smdtl calcium ion transport synonymous (1)
DN22229 c0 gl il 1 ATP5H ATP biosynthetic process synonymous (1)
DN24358 c0 gl il 1 Arl6ipl protein targeting; cell death synonymous (1)
DN27846 c0 gl il 3 KRT8 cell structure 3> UTR (2); unannotated (1)
DN28343 ¢0 gl il 2 CRIP1 signal transduction; protein binding synonymous (2)
DN30912 ¢c0 gl il 1 KRT13 cell structure unannotated (1)
DN33929 c0 g3 il 2 PSMD12 proteolysis 3’ UTR (2)
DN34728 cl gl il 1 KRT8 cell structure 3> UTR (1)
DN35673 ¢l g2 i2 2 pl9 translation missense (1); synonymous (1)
DN35709 c0 g2 il 2 KRT8 cell structure missense (1); synonymous (1)
DN35710 ¢0 gl il 1 SPCS3 proteolysis; protein targeting missense (1)
DN36584 c0 gl il 2 ANXAS calcium ion transport missense (1); synonymous (1)
DN36805 ¢l gl il 3 PRDX1 antioxidant activity; response to stress missense (2); 3 UTR (1)
DN37204 c0 gl il 3 Tomm?20 protein targeting synonymous (1); 3° UTR (2)
DN37469 c0 g3 il 1 rps3a translation synonymous (1)
DN37870 c0 g1 il 1 CHCHDI10 metabolic process; mitochondrial organization | synonymous (1)
DN38348 c0 gl il 1 CCT5 protein folding missense (1)
DN38348 ¢0 @2 il |3 CCTS protein folding ?;i)ssense (1); synonymous (1); 3" UTR
DN38750 c0 gl il 1 GOT2 metabolic process synonymous (1)
DN39050 c0 g3 il |5 CCT4 protein folding :yrﬂ;éll:é‘;t lost (1); missense (1);
DN39195 ¢l gl i2 1 YWHAB signal transduction; protein binding 3> UTR (1)
DN39216 ¢c0 g1 il 3 RablA autophagy; protein targeting 3’ UTR (3)
DN39927 cl gl il 1 HMGB2 transcription; immune response 3> UTR (1)
DN40382 c0 g2 il 1 P4hb isomerase activity; protein folding 3> UTR (1)

DN40393_c0_g2 il

unannotated

upstream (1)
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DN40479 c0 g2 il EIF3B translation 3’ UTR (2)

DN40807 c0 gl il - unannotated intergenic region (1); unannotated (2)
DN4487 c0 g2 il HMGB2 transcription; immune response synonymous (1)

DN58176_c0 gl il RPL14 translation synonymous (1)
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