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Abstract 27 

Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic 28 

variation across a species’ range is of great interest in ecology and evolution, especially in an era 29 

of global change. While theory predicts how and when populations at range margins are likely to 30 

undergo local adaptation, empirical evidence testing these models remains sparse. Here, we 31 

address this knowledge gap by investigating the relationship between selection, gene flow, and 32 

genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern 33 

periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow 34 

from the core to the edge, and genomic signatures of local adaptation at 56 Single Nucleotide 35 

Polymorphisms (SNPs) in 25 candidate genes, most of which are significantly correlated with 36 

minimum annual sea surface temperature. Several of these candidate genes play a role in functions 37 

that are up-regulated during cold stress, including protein turnover, metabolism, and translation. 38 

Our results illustrate how spatially divergent selection spanning the range core to the periphery 39 

can occur despite the potential for strong genetic drift at the range edge and moderate gene flow 40 

from the core populations.  41 
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1. Introduction 51 

Understanding how environmental heterogeneity drives patterns of selection and partitions 52 

adaptive variation into discrete populations is increasingly important in today’s changing world. 53 

Species with large geographic ranges often span a similarly wide array of environmental 54 

conditions, which may result in natural selection favoring distinct sets of alleles across the species 55 

range [1]. Such a process is commonly referred to as spatially divergent selection and can shape 56 

the evolutionary trajectory of a population by causing allele frequencies at select loci to move 57 

away from a global mean and towards local optima [2]. While there exists a large body of work 58 

investigating spatially divergent selection, the scale at which such patterns can manifest, and the 59 

extent to which populations may become locally adapted, remains an area of intense debate [3,4].  60 

Selection, however, is only one of several evolutionary processes operating in a natural 61 

system and rarely acts in isolation. Gene flow and drift also shape the distribution of genetic 62 

variation, and the interplay of these forces can influence population dynamics, patterns of range 63 

expansion, and evolutionary trajectories [5,6]. Gene flow is commonly thought to decrease the 64 

fitness of edge populations through gene swamping, as immigrants from the range core may be 65 

sub-optimally adapted to edge environments [7,8]. Alternatively, gene flow can increase adaptive 66 

potential at the edge by transporting in novel genetic variation and replenishing genetic diversity 67 

that is otherwise depleted due to drift and serial founder events [9,10]. 68 

Empirical evidence detailing how migration-selection balance affects adaptation in 69 

peripheral populations is rare, especially in marine taxa [11; although see 12]. Many marine 70 

species are historically thought to have large, well-mixed populations due to a lack of geographic 71 

barriers and high dispersal capabilities [13,14]. Such conditions would tip migration-selection 72 

balance away from local adaptation and towards range-wide adaptation to a global trait mean. 73 
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However, recent studies have found that adaptive and neutral genetic variation can be differentially 74 

distributed within marine populations, suggesting that selection may be strong enough to cause 75 

differentiation even in the face of heavy gene flow [15,16] and across pronounced environmental 76 

gradients [17,18].  77 

Despite such evidence, it is still unclear how selection and gene flow interact to shape 78 

adaptation at range peripheries. Populations near the range center are thought to maintain high 79 

enough densities to withstand an influx of maladaptive alleles from elsewhere in the range [7]. 80 

Less dense populations at the range edge may not benefit from the same demographic processes, 81 

however, [6]. Nevertheless, directional selection at the edge may be strong enough to overcome 82 

asymmetrical migration rates, especially as peripheral populations tend to inhabit novel 83 

environments [6,8]. Thus, our understanding of how evolutionary forces interact to either suppress 84 

or replenish genetic diversity at marine range peripheries remains lacking.  85 

At the same time, it is these edge populations that play a critical role in enabling species to 86 

adapt to changing environments [19]. Species shift their ranges to track environmental conditions, 87 

and it is often individuals at the edge that first colonize novel habitats [20]. The oceans are 88 

predicted to warm by 1-3°C over the coming century, presenting serious challenges for marine 89 

taxa [21]. Many biological pathways are sensitive to temperature change [22], and water 90 

temperature has been shown to influence development, reproduction, and survival in many 91 

ectotherms [23]. Thus, adaptation to thermal regimes often provides a large fitness advantage [24] 92 

and shifting thermal environments may impose strong selective pressures on populations as they 93 

respond in situ. Such responses may vary across a species range, as adaptive potential is unlikely 94 

to be uniform from the core to the periphery. Thus, understanding the roles that evolutionary forces 95 
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play in partitioning genetic variation among populations is important when trying to predict how 96 

species will fare in the coming years. 97 

The yellowtail clownfish, Amphiprion clarkii, provides an ideal system for investigating 98 

how different evolutionary processes interact to shape genetic diversity and adaptive potential 99 

across a species range. A. clarkii occupies one of the broadest latitudinal ranges of all anemonefish 100 

species, with populations from the Indo-Pacific tropics to the subtropics (Figure 1) [25]. 101 

Anemonefish are philopatric, remaining on the same anemone for the duration of their adult lives 102 

[25]; as such, populations are only connected by pelagic larval dispersal (PLD). However, with a 103 

PLD of ~2 weeks [26], the larval duration of A. clarkii is relatively limited, and few larvae 104 

regularly disperse farther than 27 km, although rare long-distance migration is possible [27]. 105 

Here, we explore the relationship between gene flow, selection, and drift across the 106 

northern half of the species range of Amphiprion clarkii to determine if edge populations have 107 

responded to spatially divergent selection despite (or perhaps because of) gene flow from the core 108 

and the potential for stronger genetic drift at the edge. Specifically, we address three questions: (i) 109 

how is genetic diversity, both adaptive and neutral, partitioned across the northern extent of A. 110 

clarkii’s range, (ii) are there signatures of selection in edge and core populations, and (iii) what 111 

are the underlying biological or molecular processes targeted by such selection? 112 

 113 

2. Materials & Methods 114 

(a) Study species and sample collection 115 

We sampled a total of 25 Amphiprion clarkii individuals (4-11 cm fork length) from three 116 

locations. These locations represent the core of the species distribution (near the equator), part-117 
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way to the northern edge, and near the northern edge of the species range. We collected seven 118 

individuals from Sulawesi Tengeh, Indonesia (six from 0.652217 °S, 119.739 °E and one from 119 

0.65695 °S, 119.741 °E), ten from Leyte, Philippines (10.87304 °N, 124.7122 °E), and eight from 120 

Shikoku Island, Japan (33.005133 °N, 132.5047 °E) (Figure 1). All sampling took place in 2012 121 

(May-August). Upon capture, a sample of heart tissue was taken and immediately preserved in 122 

RNAlater. The heart was chosen as it plays an important role in determining thermal sensitivity 123 

through oxygen transport and aerobic capacity [28]. As taking heart tissue is lethal, we designed 124 

our sampling scheme to capture the largest sample possible while minimizing cost and population 125 

impact. 126 

We extracted total RNA using a Qiagen RNAeasy spin column (Qiagen, Hilden, Germany) 127 

following manufacturer recommendations and made cDNA libraries with Illumina TruSeq v2 kit 128 

(Illumina, San Diego, CA, USA) at half reaction volumes. We assessed concentrations with a 129 

Qubit dsDNA HS assay (ThermoFisher Scientific, Waltham, MA, USA), quality with a NanoDrop 130 

spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA), and fragment length with an 131 

Agilent 2100 BioAnalyzer and a DNA 1000 kit (Agilent, Santa Clara, CA, USA). We sequenced 132 

the libraries on an Illumina HiSeq 2500 (Illumina, San Diego, CA, USA) with 140 bp and 187 bp 133 

single-end reads at Princeton University's Lewis-Sigler Institute Genomics Core Facility.  134 

(b) Read mapping and variant calling 135 

We demultiplexed the sequenced reads by Illumina index using a Python script adapted 136 

from FASTX Barcode Splitter [29], trimmed to bases with a quality score >20 with the 137 

TQSfastq.py from the SSAKE assembly pipeline [30], and removed reads <30 bases long after 138 

trimming. Reads from individual N3 were assembled into a de novo reference transcriptome using 139 

Trinity v.2.2.0 [31] (details in Supplement). The final reference transcript contained 103,518 140 
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transcripts, varying in length from 201-7,323 nucleotides. We mapped reads to the reference 141 

transcriptome using Stampy v.1.0.28 [32], filtered for mapping quality ≥20 using SAMtools v.1.3.0 142 

[33], marked read duplicates using the MarkDuplicates function in Picard Tools v.1.119 143 

(https://broadinstitute.github.io/picard/), and realigned indels using IndelRealigner in GATK 144 

v.3.8.1 [34]. Variants were called with HaplotypeCaller in GATK. We removed all variants except 145 

biallelic SNPs genotyped in at least 24 samples. Additional filtering with VCFtools v.1.16 [35] 146 

removed SNPs with a minor allele count <2. After filtering, we had 4,212 SNPs, distributed across 147 

1,002 transcripts. 148 

(c) Genetic diversity 149 

We assessed two measures of genetic diversity and one measure of relatedness. We 150 

calculated per-site nucleotide diversity (π) for each sampling site using VCFtools. The mean 151 

inbreeding coefficient (FIS) was estimated from observed heterozygosity and expected gene 152 

diversity with the hierfstat package in R v.3.4.4 [36,37]. We assessed the mean within-population 153 

pairwise relatedness using the relatedness R package [38] and the Wang relatedness estimator [39] 154 

that has reduced bias with small sample sizes [40]. We calculated 95% confidence intervals for all 155 

metrics by bootstrapping with replacement across individuals 1000x in R. Tajima’s D was 156 

calculated across each transcript using VCFtools. To include rare variants and avoid potential 157 

biases from purifying selection, Tajima’s D was calculated using only synonymous sites from a 158 

SNP dataset unfiltered for minor allele count (1,453 SNPs). Synonymous sites were identified 159 

using SnpEff [41] (see annotation section for details). 160 

(d) Outlier test and environmental association analyses 161 

To identify candidate SNPs under selection, we used an outlier test and two environmental 162 

association analyses (EAA). For the outlier analysis, we ran the core model implemented in the 163 

https://broadinstitute.github.io/picard/
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program BAYPASS v.2.1.1 [42] using default parameters and all 4,212 SNPs. This model 164 

generates an XtX statistic [43], which is an FST-type measurement that considers population 165 

structure. We determined a threshold XtX value for outliers by creating pseudo-observed data sets 166 

under a null model and analyzed them with the core model [42]. We used the 99% quantile of this 167 

empirical XtX distribution under no selection as the selection/neutrality threshold.  168 

For the EAAs, we utilized two methods. First, we ran the standard covariate model 169 

implemented in BAYPASS which tests for associations between allele frequencies and 170 

environmental covariables while accounting for the neutral covariance among localities. We used 171 

annual mean sea surface temperature (SST mean), minimum SST (SST min), maximum SST (SST 172 

max), latitude, and mean sea surface salinity (SSS mean) (Table S2) from the MARSPEC database 173 

[44]. For every variable, we ran a burn-in of 5,000 iterations and then 25,000 MCMC steps thinned 174 

to every 25. We used the full dataset of 4,212 SNPs. Bayes Factors (BFs) in deciban (dB) units 175 

were used to determine whether a SNP was associated with an environmental variable. As 176 

recommended in [42], we considered SNPs with a BF greater than 20 dB to be strongly associated. 177 

To assess these associations, we randomly reassigned individuals among locations to create 178 

permuted datasets that we then analyzed in BAYPASS (details in Supplement).  179 

Our second EAA was a redundancy analysis (RDA). We used the vegan v.2.4.1 R package 180 

[45] to perform RDA with the same environmental variables as in BAYPASS and a centered allele 181 

frequency dataset with all 4,212 SNPs. We used two methods to identified potential outlier SNPs: 182 

(1) those with a q-value >0.1 [46] and (2) those with scores ± 3 SDs from the mean axis score for 183 

each of the first two constrained axes that also had a p ≤ 0.0001 when regressed against an 184 

environmental variable [47]. Both methods identified similar sets of outlier SNPs. However, the 185 

second method was more stringent, so we used only those SNPs for downstream analyses. Mean 186 
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outlier allele frequencies were calculated for each sampling site, polarized so that the Japanese 187 

allele frequency was highest. Since one pair of individuals appeared highly related, we also 188 

conducted all outlier analyses without one of the highly-related individuals (N4). 189 

(e) Population structure 190 

We analyzed population structure with principal component analysis (PCA) and 191 

STRUCTURE [48]. PCA was performed with all 4,212 SNPs using Plink v.1.9 [49]. In addition, 192 

SNPs out of Hardy-Weinberg Proportions (HWP) were identified using VCFtools and PCA was 193 

redone without these SNPs. We also performed PCAs with only outlier SNPs and with all outlier 194 

SNPs removed. STRUCTURE v.2.3.4 was run assuming admixture and correlated allele 195 

frequencies. We ran five replicates of each K (number of populations) from 1 to 5 with a burn-in 196 

of 100,000 followed by an additional 10,000 MCMC steps. STRUCTURE was run on the same 197 

four datasets as PCA. The optimal value of K was identified using the Evanno method [50]. Results 198 

were visualized with CLUMPP [51] and the pophelper v.2.3.0 package in R [52]. Finally, pairwise 199 

FST estimates calculated with all 4,212 SNPs and 95% confidence intervals were evaluated using 200 

the hierfstat package in R [36]. We also conducted all analyses without one of the highly-related 201 

individuals (N4), though we note that removing related individuals can bias inference [53]. 202 

(f) Demographic analyses 203 

 We estimated dispersal rates and long-term effective population sizes (Ne) with 204 

fastsimcoal2 [54] by fitting a model of population splits and ongoing migration against the 205 

multidimensional site frequency spectrum (details in Supplement). We also ran Stairway Plot v.2 206 

[55] to estimate changes in abundance in each location from the folded site frequency spectrum 207 

(see Supplement), though we acknowledge challenges with inference based on <106 SNPs [56]. 208 

(g) Functional and structural annotation 209 
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The de novo transcriptome assembly was mapped to Amphiprion frenatus with BLASTn 210 

searches against A. frenatus with an E-value cutoff of 10-6 [57,58]. Structural annotation was 211 

performed on these mapped SNPs with SnpEff [41]. A. frenatus is one of the most closely related 212 

and completely annotated transcriptomes available [59]. Gene ontology (GO) terms were 213 

annotated to predicted proteins from the best BLASTn match against the SwissProt database.  214 

 215 

3. Results 216 

(a) Genetic diversity & relatedness 217 

Per-site nucleotide diversity and the inbreeding coefficient (FIS) were both lowest in Japan 218 

and highest in the Philippines (Table 1). Mean within-site Tajima’s D ranged from -0.29 ± 0.046 219 

in the Philippines to -0.166 ± 0.05 in Indonesia and was -0.355 ± 0.041 with all individuals pooled 220 

together (Table 1, Figure S1). Mean pairwise relatedness (r) varied as well, from r = 0.222 in Japan 221 

to r = -0.011 and r = 0.018 in the Philippines and Indonesia, respectively (Table 1).  222 

(b) Spatially divergent selection 223 

BAYPASS identified 93 highly diverged SNPs with an XtX value ≥6.03, the 99% 224 

significance threshold. BAYPASS also revealed 192 SNPs with a strong association with at least 225 

one environmental variable (BF >20 dB). Most SNPs were associated with SST mean. Of those 226 

108 SNPs, 81% were also associated with SST min and latitude. Most of these latter SNPs were 227 

more strongly associated with either SST variable than with latitude (Figure S2). The empirical 228 

cumulative distribution of BFs for each environmental covariate was significantly different from 229 

the permuted distribution (Mann-Whitney U-test; p < 0.001; Figure S3). RDA identified 67 SNPs 230 

with a significant association with at least one environmental variable (p ≤ 0.0001) (Figure S4). 231 

Of these, most were associated with SST min (Table S3). 232 
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Across all analyses, 56 SNPs had an XtX greater than the 99% threshold and a significant 233 

association with at least one environmental variable according to both EAAs (Figure 2). Of these, 234 

most were associated with SST mean (54 SNPs), SST min (52 SNPs), or latitude (49 SNPs) (Table 235 

S3). Again, most of these SNPs (80%) were more strongly associated with either temperature 236 

variable than with latitude (Table S3). The mean polarized outlier allele frequency was 0.847 in 237 

Japan, 0.179 in the Philippines, and 0.162 in Indonesia (Figure S5). When within-site Tajima’s D 238 

was calculated for only the outlier sequences (transcripts that contained at least one outlier SNP), 239 

the mean estimate trended slightly positive (Table 1, Figure S1). However, the difference between 240 

the outlier-only and overall Tajima’s D distributions was not significant for any combination of 241 

individuals (Figure S6). The outlier analyses after removing related individual N4 did not differ 242 

substantially from the findings with all individuals included (Table S4). 243 

(c) Population structure 244 

PCA revealed that individuals from Japan clustered more tightly relative to the Philippines 245 

or Indonesia (Figures 3A, S7A). PC 1 explained 11% of the total variance, while PC 2 explained 246 

7%. However, the PCA with only outlier SNPs revealed that Japanese individuals were much more 247 

diverged from an Indonesian and Philippines cluster (Figure 3B). PC 1 explained 73% of the 248 

variance in this latter case, while PC 2 explained 7%. STRUCTURE analyses also revealed 249 

population clustering. The Evanno method suggested three clusters (K = 3), regardless of whether 250 

the full dataset was used, only SNPs in HWP, or only non-outlier SNPs (Figures 3C, S7C, S7D). 251 

However, with only outlier SNPs, only two clusters were suggested (K = 2), one for Japan and one 252 

for the Philippines and Indonesia combined (Figure 3D). Pairwise FST ranged from 0.0247 to 253 

0.0767 and was highest for the Japan-Indonesia comparison, congruent with patterns of isolation-254 
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by-distance (Table S5). Population structure analyses without one of the highly-related individuals 255 

(N4) did not differ substantially (Figure S8). 256 

(d) Demographic analyses 257 

 Analyses with fastsimcoal2 revealed moderate Japan-Philippines migration rates of 0.0038 258 

[95% CI: 0.0025, 0.0047] and 0.0056 [95% CI: 0.0038, 0.0072] for Philippines-Indonesia, or the 259 

equivalent of ~10 individuals per generation. Long-term Ne estimates did not differ substantially 260 

between the three localities (Table 1). Stairway Plot analyses suggested slow declines in the 261 

Philippines but did not reveal recent bottlenecks or expansions (Figure S9). 262 

(e) Functional and structural annotation 263 

Of the 4,770 SNPs that could be mapped to the A. frenatus assembly, most mapped to either 264 

coding regions (2,418 SNPs) or UTRs (1,406 SNPs) (Table S6). Of the 56 outlier SNPs, 48 could 265 

be fully annotated, four could only be annotated functionally, and two could only be annotated 266 

structurally. These 56 outlier SNPs represented 25 distinct candidate genes. We grouped these 267 

candidate genes into general biological categories based on their GO annotations (Table 2, Table 268 

S3). Broadly, most of the candidate genes were involved in protein turnover and translation. The 269 

structural annotation suggested that 29 of the SNPs were in coding regions (1 nonsense, 11 270 

missense, 17 synonymous) and 19 were in the UTRs (17 in 3’ and 2 in 5’). One SNP was mapped 271 

to the upstream region of a gene and one was mapped to an intergenic region, which may represent 272 

either a currently unannotated protein coding gene or RNA gene. 273 

 274 

4. Discussion 275 

Despite theoretical work predicting how and under what conditions populations at range 276 

peripheries may undergo local adaptation [5,8,11], empirical support for these models remains 277 
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scarce, particularly in the marine realm. Here, we investigated how evolutionary forces interact to 278 

shape patterns of adaptive potential and enable local adaptation across the northern half of the 279 

range of a common coral reef fish. Comparison of 4,212 SNPs from three Amphiprion clarkii 280 

populations revealed clear evidence of spatially divergent selection and reduced levels of genetic 281 

variation at the northern periphery of this species’ range. In addition, there was substantial 282 

population structure despite moderate gene flow between the edge and core populations. 283 

Studies of marine species using putatively neutral genetic markers frequently report genetic 284 

structure in the Indo-West Pacific [60-62]. However, this study is unique in that multiple SNPs 285 

had strong associations with environmental variables. Moreover, when only examining outlier 286 

SNPs, the edge vs. core population distinction could explain fully 73% of the genetic variation. 287 

These results suggest that selection, in addition to neutral processes, shapes patterns of genetic 288 

structure in our study system. Combined, our findings further suggest that neutral and adaptive 289 

variation are differently partitioned among the three sampling locations, a pattern that is 290 

increasingly reported in marine taxa [16]. 291 

Life on the edge 292 

Climate change is driving range expansions in marine ecosystems [20], renewing interest 293 

in the balance between gene flow and adaptation at range margins. Here, population structure 294 

analyses provide evidence for at least two genetic clusters, with Japanese individuals at the edge 295 

appearing genetically distinct from individuals closer to the core. Clownfish have a relatively short 296 

pelagic larval duration (~2 weeks) [26] and exhibit self-recruitment [63]. These characteristics 297 

should limit dispersal, leading to genetic structure as observed in other clownfish species in the 298 

region [60]. Given the large physical distance between our sites, a stepping-stone model of gene 299 

flow likely explains the observed genetic patterns. 300 
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However, a lack of apparent population structure is not unusual in marine populations that 301 

span large geographic ranges [14]. Theory also suggests that neutral genetic variation can become 302 

homogenized with even minimal gene flow, including rates lower than what we estimated [64]. 303 

The Kuroshio Current runs northward to Japan from the bifurcation of the Northern Equatorial 304 

Current off the eastern coast of the Philippines [65] and may provide an avenue for migration, 305 

particularly from the core to the edge. Indeed, other damselfish show limited genetic differentiation 306 

between Japanese populations and those in the Coral Triangle [66]. However, the strong genetic 307 

differentiation seen between A. clarkii populations in Japan and the Philippines/Indonesia suggests 308 

these distinct genetic lineages may be maintained by local adaptation in addition to gene flow.  309 

Evidence for the role of neutral processes comes from lower genetic diversity at the range 310 

edge of A. clarkii as well. Nucleotide diversity and FIS were lowest, and relatedness highest, in the 311 

peripheral Japanese site. These findings are congruent with the idea that edge populations are 312 

subject to higher rates of genetic drift due to reduced Ne [6,10] and match previous studies that 313 

found declining genetic diversity along the Kuroshio Current towards species' northern range 314 

margins [67]. However, our analyses also estimated similar long-term Ne in all three sites and no 315 

signatures of recent bottlenecks at the range edge. These results suggest the greater levels of 316 

diversity observed in the core may be maintained by higher connectivity to other populations in 317 

the region, including those we did not sample. Continued gene flow could provide a steady influx 318 

of alleles to offset the effects of drift [68]. Populations at the range edge, with fewer connections, 319 

may only see reduced benefits of dispersal. 320 

Despite the action of neutral processes, our results also provide strong evidence of spatially 321 

divergent selection across the northern half of the range of A. clarkii. Fifty-six SNPs were 322 

adaptively divergent and significantly associated with environmental variables. Surprisingly, 323 
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within-population Tajima’s D for transcripts containing these SNPs was slightly positive, counter 324 

to the negative values expected following recent, hard selective sweeps. Positive Tajima's D values 325 

indicate an over-abundance of intermediate frequency alleles, which are often a signature of 326 

balancing selection [69]. While it is unlikely that balancing selection acted separately within each 327 

population examined here, balanced polymorphisms may nonetheless be maintained by the push 328 

of locally directional selection and the pull of gene flow continuously re-introducing maladaptive 329 

alleles and their linked genetic background.  330 

Most of the outlier SNPs were significantly associated with either mean or minimum SST 331 

and latitude. As temperature and latitude are correlated, these findings are not unexpected. 332 

However, almost every SNP was more strongly associated with temperature than with latitude, 333 

which suggests that temperature, in particular, may be driving the observed differences in allele 334 

frequencies. In fact, the pattern of outlier allele frequencies among the three sites closely mirrored 335 

those of average SST temperatures. Similarly, most SNPs associated with mean SST were also 336 

associated with minimum SST, suggesting that differences in mean SST are likely reflective of 337 

differences in the degree of seasonality (namely, whether a population experiences a winter 338 

season). As many biological pathways are temperature-sensitive [22], and winter water 339 

temperatures at the Japanese site can regularly drop below 15°C [70], changing seasonality across 340 

A. clarkii’s range is likely a strong force driving local adaptation.  341 

The correlative nature of our evidence for thermal adaptation cannot rule out alternative 342 

selective pressures, however. We did not examine other factors like primary productivity, 343 

dissolved oxygen, carbonate chemistry, population densities, or resource availability that are also 344 

likely to differ between these locations and may drive local adaptation. Similarly, demographic 345 

processes like allele surfing during expansion waves and isolation-by-distance may also contribute 346 
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to the genetic differentiation across A. clarkii’s range [71]. However, the outlier detection methods 347 

we used are reasonably effective at accounting for these latter sources of evolutionary non-348 

independence [72]; thus, we do not expect drift to be the primary force creating these outlier SNPs.  349 

Further evidence that the allele frequency variation in outlier SNPs is linked to differences 350 

in thermal regimes comes from the fact that the genetic pathways represented by these SNPs are 351 

similar to those invoked during gene expression changes that accompany acclimation to cold 352 

shock. Genes and proteins that are important for temperature acclimation likely also play a large 353 

role in temperature adaptation [73], and differences in gene expression among populations may 354 

have a genetic basis in addition to being a plastic response. The candidate genes we identified are 355 

largely involved in energy metabolism, protein turnover, cell structure, cell death, and oxidative 356 

stress response, functional categories that are often up-regulated in heart tissue during short-term 357 

acclimation to cold stress [74,75]. Cytoskeleton reorganization has been shown to occur during 358 

thermal acclimation as well, although this has been at least partially attributed to cold-induced 359 

hypertrophy of heart tissue [75]. Interestingly, many candidate SNPs mapped to the 3’ or 5’ UTR 360 

(including near CpG islands), regions that help regulate gene expression [76]. Shifting gene 361 

expression levels are one of the ways organisms can plastically acclimate to environmental 362 

stressors; thus, SNPs in regulatory regions may provide a link between plastic and evolutionary 363 

responses involved in thermal adaptation [77]. In addition, most of the candidate SNPs that 364 

mapped to coding regions appear to be synonymous substitutions. Recent theory has proposed that 365 

silent mutations may not be truly neutral and can undergo weak selection, via codon bias, linkage, 366 

and translation efficiency [78]. Altered gene expression and enhanced translation accuracy may 367 

also be a more feasible route for adaptation, as opposed to modifications of gene structure or the 368 

development of novel proteins. Theory suggests that changes in regulatory regions play a major 369 
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role in adaptation [76,77], and several studies have linked regulatory region mutations with 370 

adaptive traits, including temperature response in Drosophila melanogaster [79]. While further 371 

work is needed to link genetic variation to phenotypes, our results suggest a similar pattern of 372 

adaptation within A. clarkii populations in response to differences in thermal environments. 373 

 374 

5. Conclusion 375 

As the oceans continue to change, marine taxa will face substantial shifts in climatological 376 

and ecological parameters. The effects of climate change will differ by population depending on 377 

their climatic tolerance and local environment [80]. Here, we show how selection, gene flow, and 378 

drift combined to shape adaptive variation within an edge population, including variation 379 

associated with thermal environments. Edge populations are particularly important in predicting 380 

species responses, as they are often the first to start shifting as climates change [19,20]. Continued 381 

connectivity to warmer core populations may provide an avenue for these typically cooler-climate 382 

demes to access novel genetic variation that will enable adaptation to warming temperatures [12]. 383 

However, the outcome of adaptation is highly dependent on the extent to which these evolutionary 384 

forces interact in a synergistic or antagonistic manner. Species with both the genetic variation to 385 

allow local adaptation and the gene flow to transport such variation to novel environments are 386 

likely to have particularly strong abilities to adapt to future climatic conditions. 387 
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 620 

Figure 1. Map of the three sampling locations: Japan (n = 8), Philippines (n = 10), Indonesia (n = 7). 621 
Northern and southern range extents are marked with horizontal dashed lines. Red shading indicates the 622 
relative probability of occurrence of A. clarkii (data from AquaMaps).  623 
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 624 

Figure 2. Relationships between BFs and corresponding XtX values for each SNP-covariate combination 625 
(A: SSS Mean, B: SST Mean, C: SST Min, D: SST Max, E: Latitude). Lines drawn at BF of 20 dB represent 626 
the significance threshold for association with the given covariate. Lines drawn at XtX of 6.03 represent 627 
the significance threshold for adaptive divergence among populations. Black triangles represent the 56 628 
candidate SNPs, while grey circles represent the remaining SNPs.  629 
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 630 

 631 

Figure 3. A) Results of PCA with all 4,212 SNPs. B) Results of PCA with only the 56 outlier SNPs. C) 632 
STRUCTURE analysis with all 4,212 SNPs (K = 3). D) STRUCTURE analysis with only the 56 outlier 633 
SNPs (K = 2). For both C & D, each putative population is represented by a unique color, and individuals 634 
are grouped by sampling sites (divided by the dashed vertical lines). The proportion of assignment is 635 
represented by the vertical axis on the left.  636 
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Table 1. Mean per-site nucleotide diversity (π), the inbreeding coefficient (FIS), mean within-population 637 
pairwise relatedness (r), mean Tajima’s D (with either all transcripts included or only transcripts with 638 
outlier SNPs), and effective population sizes (Ne) from fastsimcoal2 for each sampling location. 95% 639 
confidence intervals provided in brackets. SE provided after ± for Tajima’s D. 640 

Sampling 
location 

π (x 10-4) FIS  r  Tajima’s 
D (all) 

Tajima’s D 
(outliers) 

Ne 

Japan 8.44 [8.22, 
8.67] 

-0.189 [-0.201, 
-0.178] 

0.222 [0.202, 
0.243] 

-0.28 ± 
0.052 

0.031 ± 
0.255 

2,176 [1,773, 
3117] 

Philippines 9.64 [9.45, 
9.84] 

-0.057 [-0.069, 
-0.046] 

-0.011 [-0.063, 
0.04] 

-0.29 ± 
0.046  

0.066 ± 
0.244 

2,090 [1,931, 
3,527] 

Indonesia 9.53 [9.30, 
9.73] 

-0.101 [-0.113, 
-0.087] 

0.018 [-0.061, 
0.097] 

-0.166 ± 
0.05 

0.006 ± 
0.244 

1,988 [1,552, 
3,272] 

 641 
  642 
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Table 2. List of the contigs containing the 56 candidate SNPs and their functional and structural 643 
annotations. Number of candidate SNPs in each contig is listed. 644 
 645 

Contig # SNPs Gene name GO annotation SNP effects 

DN14997_c0_g1_i1 3 MCL1 apoptotic process 5’ UTR (1); missense (2); 3’ UTR (1) 

DN2025_c0_g1_i1 2 KRT8 cell structure 3’ UTR (1); unannotated (1) 

DN20310_c1_g1_i1 1 cstb proteolysis unannotated (1) 

DN20701_c0-g1_i1 1 smdt1 calcium ion transport synonymous (1) 

DN22229_c0_g1_i1 1 ATP5H ATP biosynthetic process synonymous (1) 

DN24358_c0_g1_i1 1 Arl6ip1 protein targeting; cell death synonymous (1) 

DN27846_c0_g1_i1 3 KRT8 cell structure 3’ UTR (2); unannotated (1) 

DN28343_c0_g1_i1 2 CRIP1 signal transduction; protein binding synonymous (2) 

DN30912_c0_g1_i1 1 KRT13 cell structure unannotated (1) 

DN33929_c0_g3_i1 2 PSMD12 proteolysis 3’ UTR (2) 

DN34728_c1_g1_i1 1 KRT8 cell structure 3’ UTR (1) 

DN35673_c1_g2_i2 2 rpl9 translation missense (1); synonymous (1) 

DN35709_c0_g2_i1 2 KRT8 cell structure missense (1); synonymous (1) 

DN35710_c0_g1_i1 1 SPCS3 proteolysis; protein targeting missense (1) 

DN36584_c0_g1_i1 2 ANXA5 calcium ion transport missense (1); synonymous (1) 

DN36805_c1_g1_i1 3 PRDX1 antioxidant activity; response to stress missense (2); 3’ UTR (1) 

DN37204_c0_g1_i1 3 Tomm20 protein targeting synonymous (1); 3’ UTR (2) 

DN37469_c0_g3_i1 1 rps3a translation synonymous (1) 

DN37870_c0_g1_i1 1 CHCHD10 metabolic process; mitochondrial organization synonymous (1) 

DN38348_c0_g1_i1 1 CCT5 protein folding missense (1) 

DN38348_c0_g2_i1 3 CCT5 protein folding 
missense (1); synonymous (1); 3’ UTR 
(1) 

DN38750_c0_g1_i1 1 GOT2 metabolic process synonymous (1) 

DN39050_c0_g3_i1 5 CCT4 protein folding 
5’ UTR (1); start lost (1); missense (1); 
synonymous (2) 

DN39195_c1_g1_i2 1 YWHAB signal transduction; protein binding 3’ UTR (1) 

DN39216_c0_g1_i1 3 Rab1A autophagy; protein targeting 3’ UTR (3) 

DN39927_c1_g1_i1 1 HMGB2 transcription; immune response 3’ UTR (1) 

DN40382_c0_g2_i1 1 P4hb isomerase activity; protein folding 3’ UTR (1) 

DN40393_c0_g2_i1 1 --- unannotated upstream (1) 
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DN40479_c0_g2_i1 2 EIF3B translation 3’ UTR (2) 

DN40807_c0_g1_i1 3 --- unannotated intergenic region (1); unannotated (2) 

DN4487_c0_g2_i1 1 HMGB2 transcription; immune response synonymous (1) 

DN58176_c0_g1_i1 1 RPL14 translation synonymous (1) 

 646 
 647 




