
TABI-PB 2.0: An Improved Version of the Treecode-Accelerated
Boundary Integral Poisson-Boltzmann Solver
Published as part of The Journal of Physical Chemistry virtual special issue “Biomolecular Electrostatic
Phenomena”.
Leighton Wilson,* Weihua Geng,* and Robert Krasny*

Cite This: J. Phys. Chem. B 2022, 126, 7104−7113 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: This work describes TABI-PB 2.0, an improved version
of the treecode-accelerated boundary integral Poisson-Boltzmann
solver. The code computes the electrostatic potential on the molecular
surface of a solvated biomolecule, and further processing yields the
electrostatic solvation energy. The new implementation utilizes the
NanoShaper surface triangulation code, node-patch boundary integral
discretization, a block preconditioner, and a fast multipole method
based on barycentric Lagrange interpolation and dual tree traversal.
Performance-critical portions of the code were implemented on a
GPU. Numerical results for protein 1A63 and two viral capsids (Zika,
H1N1) demonstrate the code’s accuracy and e!ciency.

■ INTRODUCTION
Implicit solvent models play an important role in describing
electrostatic interactions between biomolecules and their
solvent environment.1−3 Of particular interest is the Poisson-
Boltzmann (PB) model4,5 comprising a domain Ω1 ⊂ R3 with
dielectric constant ε1 containing the solute biomolecule and a
domain = \2

3
1 with dielectric constant ε2 containing an

ionic solvent. In this work, the dielectric interface = 1 2
is taken to be the molecular surface (or solvent excluded surface,
SES).6,7 In a 1:1 electrolyte with low ionic concentration, the
linear PB equation for the electrostatic potential ϕ is

· + =
=

qx x x x x y

x

(() ()) () () (),

,
k

N

k k
2

1
3

c

(1)

where ε is the dielectric constant, κ̅ is the inverse modified
Debye length in units of Å−1, Nc is the number of atomic point
charges representing the biomolecule, yk is the position of the
kth atom, and qk is its partial charge in units of elementary charge
ec. The interface conditions on the molecular surface are

= =
n n

x x
x x

x() (),
() ()

,1 2 1
1

2
2

(2)

where ϕ1, ϕ2 are the limiting values for x → Γ from inside and
outside Ω1, respectively, and n denotes the outward normal on
Γ. The potential also satisfies the far-field boundary condition,

ϕ(x) → 0 as |x| → ∞. In the present work ε, κ̅ are taken as
piecewise constant,

= = N e
k T

I
x

x

x
x

x

x
()

, ,

, ,
, ()

0, ,

8
1000

, ,c
s

1 1

2 2

2
1

A
2

B
2

lmoonoo
lmooooonooooo

(3)

whereNA is Avogadro’s number, kB is Boltzmann’s constant, T is
absolute temperature, and Is is molar concentration of the ionic
solvent. A key quantity of interest is the electrostatic solvation
energy,

=
=

G q y1
2

(),
k

N

k ksolv
1

reac

c

(4)

where the reaction field potential at a solute atom is the
di#erence between the total potential and the Coulomb
potential,

Received: June 30, 2022
Revised: August 28, 2022
Published: September 14, 2022

Articlepubs.acs.org/JPCB

© 2022 American Chemical Society
7104

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

D
ow

nl
oa

de
d

vi
a

SO
U

TH
ER

N
 M

ET
H

O
D

IS
T

U
N

IV
 o

n
O

ct
ob

er
 1

5,
 2

02
2

at
 0

3:
26

:2
4

(U
TC

).
Se

e
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcb.2c04604&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpcbfk/126/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/126/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/126/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/126/37?ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org/JPCB?ref=pdf

=
| |=

q
y x

x y
() lim () 1

4k
j

N
j

jx yreac
1 1k

ci
k
jjjjjjj y

{
zzzzzzz (5)

It should be noted that the electrostatic solvation energy in eq 4
is a useful metric for assessing accuracy, but it is not physically
relevant for the biomolecular systems considered in this study
due to the lack of treatment of many other physical e#ects
(nonpolar, conformational/unfolding, titration, etc.).

■ METHODS
A variety of methods have been applied to solve the PB equation
including finite-di#erence,8−20 finite-element,5,21,22 domain
decomposition,23 and boundary integral24−33 methods. The
present work is concerned with a treecode-accelerated boundary
integral method called TABI-PB.31,34 In most cases, boundary
integral PB solvers compute the potential on a triangulation of
the molecular surface, and while they benefit from rigorous
enforcement of the interface and far-field boundary conditions,
they face the challenge of discretizing singular surface integrals
and the expense of solving a dense linear system.
The boundary integral form of the PB equation is not unique,

and various forms have di#erent condition numbers,26 but Ju#er
et al.27 developed a well-conditioned form that couples the
surface potential and its interior normal derivative on the
interface,

+

= + +K
n

K S S

x

x y
y

x y y x

1
2
(1) ()

(,)
()

(,) () d ()y1 2 1

Ä
ÇÅÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑÑ

(6a)

+

= + +

n

K
n

K S S

x

x y
y

x y y x

1
2
(1) ()

(,)
()

(,) () d ()y

1

3 4 2

Ä
ÇÅÅÅÅÅÅÅÅÅ

É
ÖÑÑÑÑÑÑÑÑÑ

(6b)
where x ∈ Γ and ε = ε2/ε1 is the solvent/solute ratio of dielectric
constants. The kernels depend on the Coulomb and screened
Coulomb potentials,

=
| |

=
| |

| |
G Gx y

x y
x y

x y
(,) 1

4
, (,) e

4

x y

0
(7)

with = /2 2
2, and are given by

=

=

K G G

K
K
n n

x y x y x y

x y
x y

(,) (,) (,),

(,)
(,)

x y

1 0

4

2
1

(8a)

=

=

K
H

n

H G G

x y
x y

x y x y x y

(,)
(,)

,

(,) (,) (,)

y
2

2

2 0 (8b)

=

=

K
H

n

H G G

x y
x y

x y x y x y

(,)
(,)

,

(,) (,) (,)
x

3
3

3 0
1 (8c)

The source terms in eq 6 depend on the solute atoms,

= =
= =

S q G S q
G

n
x x y x

x y
() 1 (,), () 1 (,)

.
k

N

k k
k

N

k
k

x
1

1 1
0 2

1 1

0c c

(9)

Our earlier TABI-PB 1.0 solver31 triangulated the molecular
surface using MSMS35,36 and computed the surface integrals by
collocation at the triangle centroids xi, i = 1:N. This yields a
linear system for the surface potential and its normal derivative
at the centroids,

+

= + +
=

K
n

K A S

x

x x
x

x x x x

1
2
(1) ()

(,)
()

(,) () (),

i

j

j i

N

i j
j

i j j j i
1

1 2 1

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑ

(10a)

+

= + +
=

n

K
n

K A S

x

x x
x

x x x x

1
2
(1)

()

(,)
()

(,) () (),

i

j

j i

N

i j
j

i j j j i

1

1
3 4 2

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑ

(10b)

where i = 1:N, and Aj is the area of the jth triangle. The linear
system was solved by GMRES37 and at each step the matrix-
vector product was computed using a Taylor treecode.38 In this
context, the electrostatic solvation energy is

= +
= =

G q K
n

K Ay x
x

y x x1
2

(,)
()

(,) () ,
k

N

k
j

N

k j
j

k j j jsolv
1 1

1 2

c
Ä
Ç
ÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑ
(11)

where the singularity in eq 5 has been analytically canceled and
the reaction field potential ϕreac(yk) is given by the inner sum in
eq 11.
The present article describes an improved boundary integral

solver called TABI-PB 2.0 utilizing the NanoShaper surface
triangulation code,39−41 node-patch discretization,30 a block
preconditioner,42 and a GPU-accelerated fast multipole method
called BLDTT based on barycentric Lagrange interpolation and
dual tree traversal.43 The following sections describe these
techniques.

Surface Triangulation and Preconditioning. In this
work, the dielectric interface separating the solute and solvent is
taken to be the molecular surface or solvent-excluded surface
(SES).6,7 In boundary integral PB simulations, the quality of the
surface triangulation critically a#ects the condition number of
the linear system, and an ill-conditioned system requires more
GMRES iterations to converge. TABI-PB 1.0 utilized theMSMS
triangulation code which creates an analytical surface
representation and generates a triangulation by fitting
predefined triangulated patches.35,36 In some cases, MSMS
can produce triangles of exceedingly small area and large aspect
ratio leading to a poorly conditioned linear system, but this is
alleviated by block preconditioning.42 More recently the
NanoShaper triangulation code was developed which builds a
patch description of the surface and employs ray-casting and a
marching cubes algorithm to obtain the triangulation.39−41 A
comparison of MSMS and NanoShaper for a set of 38
biomolecules showed that the two codes yield comparable
values for the SES surface area and electrostatic solvation energy,

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7105

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

but NanoShaper computations were more e!cient and reliable,
especially when parameters were set to produce highly resolved
triangulations.44
Boundary Integral Discretization. Given a triangulation

of the molecular surface, TABI-PB 1.0 discretized the surface
integrals by centroid collocation to obtain the potential and its
normal derivative at the triangle centroids. The node-patch
scheme is an alternative that yields the surface potential and its
normal derivative at the triangle vertices.30 In the node-patch
scheme, a node is a triangle vertex and a patch is a portion of the
surface surrounding the vertex. Figure 1 depicts the two schemes

for five triangles meeting at a vertex; the quadrature weights for
centroid collocation are the triangle areas, while the quadrature
weights for the node-patch scheme are the patch areas formed by
summing one-third of the surrounding triangle areas. The linear
system has the same form as in eq 10, but since a surface
triangulation has roughly half as many vertices as centroids, the
node-patch scheme reduces the system size while maintaining
the same level of surface resolution.30
Matrix-Vector Product. Solving the linear system in eq 10

by GMRES requires computing matrix-vector products in the
form of N-body potentials,

= =
=

K q i Nx x y() (,) , 1: ,i
j

N

i j j
1 (12)

where xi, yj are triangle centroids or vertices and qj is a charge
associated with yj. The xi are considered as target particles and
the yj as source particles; the two sets are allowed to be di#erent
as required in computing the source terms in eq 9 and solvation
energy in eq 11, but for simplicity below, we consider them as
two copies of the same set.
The run time for computing the sums in eq 12 by direct

summation scales like O(N2), but TABI-PB 1.0 used a Taylor
treecode with run time O(N log N),31,38 while TABI-PB 2.0
uses the recently developed barycentric Lagrange dual tree
traversal (BLDTT) fast multipole method with run time
O(N).43,45,46 In the BLDTT, each set of particles is divided
into a hierarchical tree of cuboid clusters (rectangular boxes with
sides parallel to the Cartesian axes); hence there are two trees,
the target tree with clusters Ct and the source tree with clusters
Cs. The computed target potential ϕ(xi) has contributions from
(1) direct interactions with nearby source clusters, and (2)
approximate interactions with well-separated source clusters

obtained by applying barycentric Lagrange interpolation47 to the
kernel K(xi, yj).

Barycentric Lagrange Interpolation. Let f(x) be a given
function for x ∈ [−1, 1] and consider interpolation at
Chebyshev points sk = cos(πk/n), k = 0:n, where n ≥ 1 is an
integer. The barycentric Lagrange form of the interpolating
polynomial is

= =
= =

p x f s L x L x() () (), () ,
k

n

k k k

w
x s

k
n w

x s0 0

k

k

k

k (13)

where the barycentric weights are

= = = =
=

w
k k n

k n
(1) ,

1/2 if 0 or ,

1 if 1: 1.
k

k
k k

lmoonoo (14)

Barycentric Lagrange interpolation is e!cient and stable, and it
is scale-invariant in that to interpolate on an interval [a, b] other
than [−1, 1], the Chebyshev points are linearly mapped to the
interval, but the weights wk stay the same.47 Barycentric
Lagrange interpolation extends in a straightforward way to
functions defined on cuboids in 3D, where the interpolation
points form a tensor product grid of Chebyshev points in each
Cartesian coordinate.
In the BLDTT, barycentric Lagrange interpolation is applied

to the kernel K(x, y), utilizing Chebyshev grid points
= t t tt (, ,)

1 2 3
in a target cluster and = s s ss (, ,)k k kk 1 2 3

in a
source cluster. The Chebyshev grid points tl, sk are considered to
be proxy particles because they replace the actual particles xi, yj.
There are four types of clusters as depicted in Figure 2, (a) target

cluster Ct = {xi}, (b) proxy target cluster = { }tCt , (c) source
cluster Cs = {yj}, and (d) proxy source cluster Cs = {sk}, where
the filled dots are particles (targets/sources are blue/red) and
the crosses are proxy particles. Proxy clusters are used when the
actual clusters contain su!ciently many particles; hence the
numerous light blue/red particles in (b) and (d) are replaced by
a smaller set of proxy particles.

Cluster Interactions. Figure 2 showed there are two types
of target clusters Ct (a, b) and two types of source clusters Cs (c,
d); hence, the BLDTT allows four types of cluster interactions,
(1) particle−particle (PP): particles in Ct interact with

particles in Cs;
(2) particle−cluster (PC): particles in Ct interact with proxy

particles in Cs;
(3) cluster−particle (CP): proxy particles in Ct interact with

particles in Cs;
(4) cluster−cluster (CC): proxy particles in Ct interact with

proxy particles in Cs.

Figure 1. Boundary integral discretization, five triangles meeting at a
vertex: (a) the centroid collocation uses triangle centroids, and the
quadrature weight is a triangle area; (b) the node-patch scheme uses
triangle vertices, and the quadrature weight is a patch area formed by
summing one-third of surrounding triangle areas.30

Figure 2. Four types of clusters. Blue/red dots are target/source
particles, crosses are proxy particles. Key: (a) target cluster, (b) proxy
target cluster, (c) source cluster, and (d) proxy source cluster.
Numerous light blue/red particles in (b) and (d) are replaced by proxy
particles.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7106

https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig2&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Table 1 shows the corresponding four ways of evaluating the
kernel K(xi, yj); (1) PP uses direct evaluation, (2) PC
interpolates with respect to y, (3) CP interpolates with respect
to x, and (4) CC interpolates with respect to x and y, where in
each case the interpolation is done using the barycentric
Lagrange form in eq 13. Note that Table 1 uses 1D notation for
simplicity and the extension to 3D is straightforward. Table 1
also indicates that PP and PC yield potentials ϕ(xi), while CP
and CC yield proxy potentials t(). In 3D, the proxy charges
arising in PC and CC are defined by

=q L y L y L y q() () () .
C

k j k j k j jk
y

1 2 3
j s

1 2 3

(15)

The proxy charges are associated with proxy source particles,
and they are computed by an upward pass similar to that in the
FMM,48 although here it is adapted to polynomial interpola-
tion.43
Note that in all cases the expressions for the potentials and

proxy potentials in Table 1 have a direct sum form requiring only
kernel evaluations for suitable target and source particles and
their proxies; this enables an e!cient GPU implementation
without thread divergence as discussed below, but first, we
explain the dual tree traversal that determines the interaction list
for target and source clusters.49,50
Dual Tree Traversal. Before the traversal starts, two sets of

potentials are initialized to zero, potentials ϕ(xi) at the target
particles and proxy potentials t() at the proxy target particles.
During the traversal, potentials ϕ(xi) are incremented due to PP
and PC interactions, and proxy potentials t() are incremented
due to CP and CC interactions. Following the traversal, the
proxy potentials t() are interpolated to the target particles xi
and combined with the potentialsϕ(xi) in a downward pass as in
the FMM.43,48
The dual tree traversal uses a recursive procedure taking a

target cluster Ct and source cluster Cs as input, starting from the
root clusters of the target and source trees. The clusters are
considered to be well-separated if (rt + rs)/R < θ, where rt, rs are
the cluster radii, R is their center−center distance, and θ is the
user-specified multipole acceptance criterion (MAC) parame-
ter.
If Ct and Cs are well-separated, they interact in one of four

ways depending on the number of particles they contain (|Ct|, |
Cs|) in comparison with the number of proxy particles (np = (n +
1)3). If |Ct| > np and |Cs| > np, then CC proxy potentials are
computed; else if |Ct| > np and |Cs| ≤ np, then CP proxy potentials
are computed; else if |Ct| ≤ np and |Cs| > np, then PC potentials
are computed; else |Ct| ≤ np and |Cs| ≤ np, and then PP potentials
are computed.

If Ct and Cs are not well-separated, the traversal proceeds as
follows. If Ct and Cs are both leaves, they interact directly. If Ct is
not a leaf but Cs is a leaf, then Cs interacts recursively with the
children ofCt; conversely, ifCt is a leaf butCs is not a leaf, thenCt
interacts recursively with the children ofCs. Otherwise,Ct andCs
are not leaves, and the smaller cluster interacts recursively with
the children of the larger cluster.

Application to TABI-PB 2.0. The main cost in computing
the matrix-vector product required in GMRES consists of
evaluating the sums in eq 10, and we shall write them in a more
concise form better suited for the BLDTT. Let (ai) denote the
input vector of the sums, where entries i = 1:N are the potentials
ϕ(xi) and entries i = (N + 1):2N are the normal derivatives
∂nϕ(xi). Then (bi) is the output vector of the sums, where

= [+ ·]
=

+b K a H a Ax x n x x x(,) () (,) ,
i

j

j i

N

i j N j j i j j jy
1

1 2

(16a)

= [·

]

+
=

+b H a

K a A

n x x x n x n x

x x

() (,) () ()

: (,)) .

N i

j

j i

N

i i j N j i j

i j j j

x

xy

1
3

2
1 (16b)

Then the desired concise form of the sums is

= =
=

+
= =

b p i V i j b p i V i j() (,), () (,),i
j

N

N i
m

m
j

N

m0
1

0
1

3

1

(17)

where Table 2 defines new target charges pm(i), source charges
qm(j), and potentials Vm(i, j), for m = 0:3.
At each step of GMRES, the BLDTT computes the four sums

in eq 17 involving Vm(i, j), m = 0:3, where the target and source
trees are built on the triangle vertices as required by node-patch
discretization. The source terms S1(xi), S2(xi) in eq 9 are also
computed using the BLDTT, where the target particles are the
triangle vertices, xi, i = 1:N, and the source particles are the
atomic point charges representing the solute, yk, k = 1:Nc. The
solvation energy ΔGsolv in eq 11 is computed similarly except
that the target and source particles are reversed. These
computations rely on the capability of the BLDTT to handle
disjoint sets of target and source particles.43,46

GPU Implementation. In TABI-PB 2.0, the matrix−vector
product in each step of GMRES is computed using a GPU
implementation of the BLDTT, where the compute kernels are
generated by OpenACC directives and compiled with the
NVIDIA HPC nvc++ compiler. The four most important GPU

Table 1. FourWays of EvaluatingK(xi, yj): (1) Particle−Particle (PP), (2) Particle−Cluster (PC), (3) Cluster−Particle (CP), and
(4) Cluster−Cluster (CC)a

PP, direct PC, interpolate in y CP, interpolate in x CC, interpolate in x and y

K(xi, yj)
=

K x s L y(,) ()
k

n

i k k j
0 =

L x K t y() (,)
n

i j
0 = =

L x K t s L y() (,) ()
k

n n

i k k j
0 0

potentials ϕ(xi) proxy potentials t()

K x y q(,)
y C

i j j
j s =

K x s q(,)
k

n

i k k
0

K t y q(,)
y C

j j
j s =

K t s q(,)
k

n

k k
0

aPP and PC yield potentials ϕ(xi), CP and CC yield proxy potentials t(), and 1D notation used for simplicity.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7107

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

compute kernels correspond to PP, PC, CP, and CC interactions
between a target cluster Ct and source cluster Cs on the
interaction list. The compute kernels evaluate the potentials and
proxy potentials defined in Table 1 as required for the
subsequent downward pass. Each interaction launches a
compute kernel asynchronously, and further computation is
blocked until all compute kernels for a given GMRES iteration
have completed.
The four compute kernels have similar structure, with an outer

loop over target particles xi or proxy target particles tl in Ct, and
an inner loop over source particles yj or proxy source particles sk
in Cs. In all cases the expressions for the potentials and proxy
potentials in Table 1 have a direct sum form requiring only
kernel evaluations for suitable target and source particles and
their proxies; as a result, the inner loop iterations are
independent of each other and can be computed concurrently
without thread divergence. The outer loop maps to the
OpenACC gang construct and the inner loop maps to the
vector construct, where, roughly speaking, a gang member
corresponds to a CUDA thread block and a vector member
corresponds to an individual CUDA thread. Note that in
addition to the matrix−vector product, the proxy charges, PB
source terms, and solvation energy were also computed using the
GPU-accelerated BLDTT. Further details of the GPU
implementation are reported elsewhere.43,51

■ RESULTS AND DISCUSSION
We consider the three solutes in Table 3, protein 1A63 and two
viral capsids (Zika, H1N1), showing their PDB ID if available,

number of atoms, and bounding box dimensions. Note that the
bounding box dimensions are given here only to indicate the
relative sizes of the solutes and are not used in the TABI-PB 2.0
solver. The PQR files were generated using PDB 2PQR52 with
the CHARMM force field. The dielectric constants were ε1 = 1
for protein 1A63, ε1 = 4 for the viral capsids, and ε2 = 80 for the

solvent. The ionic concentration was Is = 150 mM. The GMRES
tolerance was 1 × 10−4 with 10 iterations between restarts.
The TABI-PB 2.0 code was written in C++ and compiled with

the NVIDIA HPC nvc++ compiler using the -O3 optimization
flag. The computations were done on SDSC Expanse using one
CPU core of a 2.25 GHz AMD EPYC 7742 processor and one
NVIDIA V100 GPU. Several operations are done on the CPU
including surface triangulation by NanoShaper, building the tree
data structure, and computing interaction lists by dual tree
traversal, while the cluster interactions are done either on the
GPU or on the CPU for comparison as indicated below. We
compare two boundary integral discretization schemes (CC =
centroid collocation, NP = node-patch) and three matrix-vector
product methods (DS = direct summation, TTC = Taylor
treecode, and BLDTT = barycentric Lagrange dual tree
traversal). In principle, the code should be able to run on an
AMD GPU using the g++ compiler with OpenACC from the
GCC, but that configuration has not yet been tested. TABI-PB
2.0 can also run on a single CPU compute node with OpenMP
threading using any standard C++ compiler supported on Mac,
Linux, or Windows systems.

1A63 CPU Performance. This section presents results for
protein 1A63 running on one CPU core. Three versions of the
code are compared, one using centroid collocation and the
Taylor treecode as in TABI-PB 1.0 (CC-TTC), and two using
the node-patch scheme with the Taylor treecode or the BLDTT
(NP-TTC, NP-BLDTT). The TTC computations used MAC θ
= 0.8, expansion order p = 2, maximum leaf size N0 = 500, and
the BLDTT computations used MAC θ = 0.8, interpolation
degree n = 2, maximum leaf sizeN0 = 50; these values ensure that
the error in computing the matrix−vector product is less than
the CC/NP discretization error. Table 4 gives the NanoShaper

scale s used to triangulate the molecular surface and the
corresponding system size N, which is the number of faces in
centroid collocation or the number of vertices in node-patch. As
expected, for a given triangulation, the node-patch scheme uses
roughly half as many degrees of freedom as centroid collocation.
Figure 3 presents (a) solvation energy ΔGsolv (kcal/mol) and

(b) ΔGsolv relative error (%) versus 1/N, where N is the system
size from Table 4. Note that part a is plotted in linear scale and
part b is plotted in logarithmic scale. The reference value for
computing the error is obtained by extrapolation to the limit N
→ ∞; the procedure will be explained below in the context of
the Zika capsid. Figure 3a shows that, for all three versions of the
code, the computed ΔGsolv converges smoothly as the surface
triangulation is refined. Figure 3b indicates that the three
versions converge roughly at the rate O(N−1), although for a
given system size N, the node-patch is more accurate than

Table 2. Definitions for the Concise Form of Sums in
Equation 17Required for theMatrix−Vector Product, Target
Charges pm(i), Source Charges qm(j), and Potentials Vm(i, j)a

m pm(i) qm(j) Vm(i, j)

0 1 aN+jAj +
=

q j K q j n Hx() () ()
m

m m j x0 1
1

3

2jm

1 n1(xi) n1(xj)ajAj []
=

n q j H q j n Kx x() () () ()
i x

m

m m j x x1 0 3
1

3

1i i jm1 1

2 n2(xi) n2(xj)ajAj []
=

n q j H q j n Kx x() () () ()
i x

m

m m j x x2 0 3
1

3

1i i jm2 2

3 n3(xi) n3(xj)ajAj []
=

n q j H q j n Kx x() () () ()
i x

m

m m j x x3 0 3
1

3

1i i jm3 3

a,Kernels K1, H2, and H3 are evaluated at (xi, xj) with definitions in eq
8).

Table 3. Solute Examples

PDB ID Nc atoms bounding box
protein 1A63 2065 26 Å × 38 Å × 34 Å
Zika capsid53 6CO8 1 576 628 467 Å × 460 Å × 465 Å
H1N1 capsid54 − 14 442 610 1160 Å × 1153 Å × 1237 Å

Table 4. Protein 1A63, Surface Triangulation with
NanoShaper Scale s, System Size N, Number of Faces in
Centroid Collocation (CC), and the Number of Vertices in
the Node-Patch Scheme (NP)

scale s CC N (faces) NP N (vertices)
1.0 20 688 10 350
1.5 47 496 23 754
2.0 84 512 42 260
2.5 132 612 66 312
3.0 191 124 95 568
3.5 260 280 130 146
4.0 340 116 170 064

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7108

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

centroid collocation, and BLDTT is slightly more accurate than
TTC. The latter observation can be understood by noting that
the Taylor approximation error in the TTC is nonuniform; in
particular, it is larger for target particles closer to the boundary of
the source cluster, but this e#ect is absent in the BLDTT since
Chebyshev interpolation controls the approximation error
uniformly. The accuracy of the TTC degrades slightly as the
triangulation is refined because in that case there is more
opportunity for target particles to be close to source clusters.
Figure 4a presents run time (s) versus system sizeN, showing

that NP-BLDTT is faster than NP-TTC and CC-TTC (except

for the smallest system size N = 1e4 where NP-TTC is slightly
faster). The run time for NP-TTC and CC-TTC scales
approximately like O(N logN) as expected for a treecode,
while the run time for NP-BLDTT scales closer to O(N) as
expected for a fast multipole method43,48 Figure 4b presents run
time (s) versus ΔGsolv relative error (%). The gap between CC-
TTC and the two node-patch codes is consistent with the error
results in Figure 3b. The results show that NP-BLDTT achieves
smaller error with less run time than either NP-TTC or CC-
TTC (except for the largest error data point where NP-TTC is
slightly faster).
Table 5 displays the results in detail, where the top portion

used centroid collocation and the bottom portion used node-
patch, and the matrix−vector product was computed by DS,
TTC, or BLDTT. Column 1 gives the NanoShaper scale s and
column 2 gives the system size N (number of faces for CC,
number of vertices for NP). Columns 3−5 give the solvation
energy ΔGsolv (kcal/mol), where the rowN = ∞ is the reference
value obtained by extrapolation as described below. Note that
the reference values for CC andNP agree to within 1.5 kcal/mol,
which is less than 0.07%. Columns 6−8 present the ΔGsolv
relative error (%). Column 6 (DS) is the boundary integral
discretization error measuring the deviation between the
computed ΔGsolv and the reference value, showing that for a

given scale, NP has significantly smaller discretization error than
CC. Columns 7−8 (TTC, BLDTT) give the fast summation
approximation error measuring the deviation between theΔGsolv
values in columns 4−5 and the value in column 3; the BLDTT
approximation error is less than the TTC approximation error,
which in turn is less than the DS discretization error. Columns
9−11 give the run time (s) showing that NP is faster than CC,
while BLDTT is faster than TTC, which in turn is faster thanDS.

1A63 GPU Performance. The following results also pertain
to protein 1A63 with the same BLDTT parameters and errors as
in Table 5. Figure 5 plots the NP-BLDTT run time (s) versus
system sizeN on one CPU core and on one GPU, where dashed
lines include the run time for surface triangulation which is done
on the CPU, and solid lines exclude the triangulation time. Table
6 presents the run time (s) plotted in Figure 5 together with the
speedup of the GPU over the CPU. For the largest scale s = 4,
NP-BLDTT computes ΔGsolv with 0.5% error in 6.81 s on the
GPU; moreover the code runs 15 times faster on the GPU than
on the CPU, and the speedup doubles if the triangulation run
time on the CPU is excluded.
Figure 6 shows the fraction of NP-BLDTT run time by

component versus scale s on (a) one CPU, and (b) one GPU.
The components are NanoShaper surface triangulation (blue),
source terms S1, S2 (orange), upward pass for proxy charges qk
(yellow), downward pass to interpolate proxy potentials t() to
potentials ϕ(xi) (purple), PP, PC, CP, CC cluster interactions
(green), computing ΔGsolv (light blue), and other (burgundy)
including tree building and constructing interaction lists. In the
CPU computation (a), the run time fraction for each component
varies little with scale s, and most of the run time is due to cluster
interactions. In the GPU computation (b), the largest fraction of
run time is due to triangulation (which is actually done on the
CPU), followed by cluster interactions (except at the smallest
scales s = 1, 1.5); this implies that a future GPU implementation
of NanoShaper will yield a sizable speedup in GPU run time.
Note that in the GPU computation (b), the run times for the
source terms and ΔGsolv are too small to be visible.

Viral Capsids. Table 7 shows results for the Zika and H1N1
viral capsids whose data were given in Table 3. The
computations were done using NP-BLDTT on one GPU with
parameters MAC θ = 0.8, degree n = 3, maximum leaf size N0 =
500. Columns 1−2 give the NanoShaper scale s and system size
N. The Zika computations used three scales s = 1, 1.5, 2, and
since the H1N1 capsid has larger dimensions only a single scale s
= 0.5 is presented because larger scales did not yield a valid
triangulation. Columns 3−4 give the solvation energy ΔGsolv
(kcal/mol) and its relative error (%), where the error is
computed with respect to the reference value in the row N = ∞;
the calculation of the reference value is described below.
Column 5 gives two values for the run time (s), where t1 includes
the triangulation time done on the CPU and t2 excludes this
time. Column 6 gives the number of GMRES iterations and
column 7 gives the peak memory (GB).
Among the Zika results, the row N = ∞ gives the ΔGsolv

reference value for computing the error, which was obtained by
extrapolation as follows.31 Let ΔGsolv(N) be the computed value
of the solvation energy for a given system size N and suppose it
varies smoothly,

+ + + ···G N
N N

()solv 0
1 2

2 (18)

Figure 3. Protein 1A63: (a) solvation energyΔGsolv (kcal/mol) and (b)
ΔGsolv relative error (%) versus 1/N for system size N from Table 4,
comparing CC-TTC, NP-TTC, and NP-BLDTT computations on one
CPU core.

Figure 4. Protein 1A63, run time (s) versus (a) system size N from
Table 4 and (b) ΔGsolv relative error (%), comparing CC-TTC, NP-
TTC, and NP-BLDTT computations on one CPU core.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7109

https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig4&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

where the coe!cients α0,1,2 are obtained by fitting to the three
values ofN in Table 7. Then α0 is an estimate of the exact ΔGsolv
in the limitN → ∞; this value appears in Table 7 in the rowN =

Table 5. Protein 1A63, Matrix−Vector Product by DS, TTC, BLDTT, Discretization by Centroid Collocation (CC), Node-Patch
(NP)a

ΔGsolv (kcal/mol) ΔGsolv error (%) run time (s)

s N DS TTC BLDTT DS TTC BLDTT DS TTC BLDTT
centroid collocation (CC)

1.0 20 688 −2749.0 −2750.2 − 14.92 0.046 − 158 18 −
1.5 47 496 −2533.3 −2536.1 − 5.91 0.109 − 849 47 −
2.0 84 512 −2471.7 −2474.8 − 3.33 0.122 − 3 381 112 −
2.5 132 612 −2442.2 −2445.7 − 2.10 0.144 − 7 517 176 −
3.0 191 124 −2427.1 −2432.6 − 1.47 0.225 − 16 706 279 −
3.5 260 280 −2417.7 −2423.6 − 1.07 0.245 − 32 605 406 −
4.0 340 116 −2411.6 −2418.2 − 0.82 0.273 − 55 419 511 −

∞ −2392.0
node-patch (NP)

1.0 10 350 −2587.7 −2590.4 −2588.0 8.11 0.106 0.010 29 5 6
1.5 23 754 −2479.6 −2481.6 −2479.8 3.60 0.078 0.005 181 19 14
2.0 42 260 −2443.1 −2445.5 −2443.4 2.07 0.097 0.011 610 39 27
2.5 66 312 −2424.4 −2427.4 −2424.6 1.29 0.125 0.007 1 611 63 42
3.0 95 568 −2415.1 −2418.6 −2415.4 0.90 0.142 0.010 3 359 102 58
3.5 130 146 −2409.3 −2413.1 −2409.4 0.66 0.161 0.006 6 659 148 82
4.0 170 064 −2405.5 −2410.3 −2405.7 0.50 0.199 0.010 11 335 211 106

∞ −2393.5
aColumn 1: NanoShaper scale s. Column 2: system size N. Columns 3−5: solvation energy ΔGsolv (kcal/mol), reference value in row N = ∞
computed by extrapolation. Columns 6−8: ΔGsolv relative error (%), where column 6 is discretization error and columns 7 and 8 are fast
summation approximation error. Columns 9−11: run time (s). TTC uses θ = 0.8, p = 2, and N0 = 500. BLDTT uses θ = 0.8, n = 2, and N0 = 50,
computations on one CPU core.

Figure 5. Protein 1A63, NP-BLDTT run time (s) versus system sizeN,
computations on one CPU core (×) and on one GPU (○). Dashed
lines include triangulation run time, and solid lines exclude
triangulation run time, NP-BLDTT parameters and errors as in Table 5.

Table 6. Protein 1A63, NP-BLDTT Run Time (s), (a) Including Triangulation and (b) Excluding Triangulationa

(a) run time (s) including triangulation (b) run time (s) excluding triangulation

s N error (%) CPU GPU speedup CPU GPU speedup
1.0 10 350 8.11 5.73 0.82 7.0 5.19 0.27 19.5
1.5 23 754 3.60 14.19 1.34 10.6 13.40 0.63 21.5
2.0 42 260 2.07 26.90 1.98 13.6 25.65 0.74 34.7
2.5 66 312 1.29 42.44 2.66 15.9 41.38 1.05 39.3
3.0 95 568 0.90 57.97 3.37 17.2 56.56 1.42 39.9
3.5 130 146 0.66 81.77 5.17 15.8 79.76 2.32 34.3
4.0 170 064 0.50 105.61 6.81 15.5 103.09 3.25 31.7

aScale s, system size N, ΔGsolv relative error (%), computations on one CPU core and on one GPU, speedup of GPU over CPU, NP-BLDTT
parameters as in Table 5.

Figure 6. Protein 1A63, fraction of NP-BLDTT run time by component
versus scale s, computations on (a) one CPU core, (b) one GPU.
Components are NanoShaper surface triangulation (blue), source
terms S1, S2 (orange), upward pass (yellow), downward pass (purple),
cluster interactions for matrix-vector product (green), computing
ΔGsolv (light blue), and other (burgundy) including tree building and
constructing interaction lists.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7110

https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig6&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

∞, and it is the reference value for computing the error. Figure 7
illustrates the extrapolation procedure by plotting the right side
of eq 18 as a function of inverse system size 1/N.

Returning to Table 7, for example with scale s = 1.5 and
system size N = 11 653 254, the computed solvation energy
ΔGsolv = −113 707.4 kcal/mol has error 2.2%, the run time
including triangulation was 1124 s, and the calculation required
26 GMRES iterations and 9.6 GB of memory. These results
compare favorably with another recent computation of the Zika
solvation energy on a dual 20-core CPU node using a Galerkin
boundary integral discretization and an alternative version of the
fast multipole method.55
The H1N1 viral capsid has about nine times as many atoms as

the Zika capsid and the ΔGsolv is about 30 times lower. As
mentioned, valid H1N1 triangulations could not be obtained for
larger scale s, so we are unable to estimate the error at this time.
Figure 8 shows the Zika surface potential at scale s = 1.5 and the
H1N1 surface potential at scale s = 0.5; note that the spatial
dimensions in these plots are in arbitrary units.

■ CONCLUSIONS
This work described an improved version of the treecode-
accelerated boundary integral Poisson-Boltzmann solver called
TABI-PB 2.0. The code computes the electrostatic potential on
the molecular surface of a solvated biomolecule and further
processing yields the electrostatic solvation energy ΔGsolv. The
new implementation utilizes the NanoShaper surface triangu-
lation code, node-patch boundary integral discretization, a block
preconditioner, and a fast multipole method based on

barycentric Lagrange interpolation and dual tree traversal
(BLDTT). Performance-critical portions of the code were
implemented on a GPU including the matrix−vector product in
the GMRES solution of the linear system, and computing the
proxy charges, PB source terms, and solvation energy. The
BLDTT approximations have a direct sum form that facilitates
their GPU implementation without thread divergence. Results
presented for protein 1A63 (2065 atoms) demonstrate the new
code’s accuracy and e!ciency in comparison with the earlier
TABI-PB 1.0 code that used centroid collocation and a Taylor
treecode, and in these tests, the new code ran approximately 15
times faster on a GPU than on a CPU. Finally, TABI-PB 2.0 was
applied to the Zika viral capsid (1 576 628 atoms) and H1N1
viral capsid (14 442 610 atoms). The code is available on
GitHub56 and as a contributed module in the Adaptive Poisson-
Boltzmann Solver (APBS) software suite.57
Recent studies have shown the merit of Galerkin discretiza-

tion for solution of the Poisson-Boltzmann boundary integral
equations,55,58 and it would be interesting to combine that
approach with the GPU-accelerated BLDTT described here. A
remaining bottleneck is the NanoShaper surface triangulation,
which is currently done on a CPU, and it is hoped that a GPU
implementation will be forthcoming to further improve the
e!ciency of these calculations.

■ AUTHOR INFORMATION
Corresponding Authors

Leighton Wilson − Cerebras Systems, Sunnyvale, California
94085, United States; orcid.org/0000-0003-1676-8156;
Email: leightonwilson@mac.com

Weihua Geng − Department of Mathematics, Southern
Methodist University, Dallas, Texas 75275, United States;

Table 7. Zika and H1N1 Viral Capsids, NanoShaper Scale s, System Size N, Solvation Energy ΔGsolv (kcal/mol), Relative Error
(%), Run Time (s), t1 Includes Triangulation, t2 Excludes Triangulation, Number of GMRES Iterations (iter), and Peak Memory
(GB)a

run time (s)

s N ΔGsolv (kcal/mol) error (%) t1 t2 iter mem (GB)
Zika53

1.0 5 109 760 −117 632.1 5.7 394 223 16 6.8
1.5 11 653 254 −113 707.4 2.2 1124 790 26 9.6
2.0 20 832 704 −112 565.8 1.2 1685 1096 20 15.4

∞ −111 270.6
H1N154

0.5 12 313 670 −31 424 958.2 1112 555 14 37.4
aRow N = ∞ is extrapolated ΔGsolv reference value for computing error, computations by NP-BLDTT on one NVIDIA V100 GPU.

Figure 7. Zika viral capsid,53 computed ΔGsolv (○) versus inverse
system size 1/N, dashed line plots right side of eq 18 with coe!cients αi
fit to data in Table 7, extrapolated value ΔGsolv = −111 270.6 (×) is the
estimated exact value in row N = ∞ in Table 7.

Figure 8. Viral capsid surface potential (kcal/mol/ec): (a) Zika,53
NanoShaper scale s = 1.5; (b) H1N1,54 NanoShaper scale s = 0.5, spatial
dimensions in arbitrary units, and NP-BLDTT computations on one
NVIDIA V100 GPU.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7111

https://orcid.org/0000-0003-1676-8156
mailto:leightonwilson@mac.com
https://orcid.org/0000-0001-9911-6588
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?fig=fig8&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

orcid.org/0000-0001-9911-6588; Email: wgeng@
smu.edu

Robert Krasny − Department of Mathematics, University of
Michigan, Ann Arbor, Michigan 48109, United States;
orcid.org/0000-0002-8375-1699; Email: krasny@

umich.edu
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.2c04604

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by National Science Foundation
Grants DMS-1819094, DMS-1819193, DMS-2110767, and
DMS-2110869 and Extreme Science and Engineering Discovery
Environment (XSEDE) Allocation ACI-1548562. We thank
Walter Rocchia for providing the H1N1 structure.

■ REFERENCES
(1) Roux, B.; Simonson, T. Implicit Solvent Models. Biophys. Chem.
1999, 78, 1−20.
(2) Zhang, Z.; Witham, S.; Alexov, E. On the Role of Electrostatics in
Protein-Protein Interactions. Phys. Biol. 2011, 8, 035001.
(3) Tomasi, J. Thirty Years of Continuum Solvation Chemistry: A
Review, and Prospects for the Near Future. Theor. Chem. Acc. 2004,
112, 184−203.
(4) Baker, N. A. Poisson−Boltzmann Methods for Biomolecular
Electrostatics. Methods Enzymol. 2004, 383, 94−118.
(5) Lu, B.; Zhou, Y. C.; Holst, M. J.; McCammon, J. A. Recent
Progress in Numerical Methods for the Poisson-Boltzmann Equation in
Biophysical Applications. Commun. Comput. Phys. 2008, 3, 973−1009.
(6) Richards, F. M. Areas, Volumes, Packing, and Protein Structure.
Annu. Rev. Biophys. Bioeng. 1977, 6, 151−176.
(7) Connolly, M. L. Molecular Surface Triangulation. J. Appl.
Crystallogr. 1985, 18, 499−505.
(8) Warwicker, J.; Watson, H. C. Calculation of the Electric Potential
in the Active Site Cleft due to α-Helix Dipoles. J. Mol. Biol. 1982, 157,
671−679.
(9) Holst, M. J.; Saied, F. Numerical solution of the Nonlinear
Poisson-Boltzmann Equation: Developing More Robust and Efficient
Methods. J. Comput. Chem. 1995, 16, 337−364.
(10) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A.
Electrostatics of Nanosystems: Application to Microtubules and the
Ribosome. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 10037−10041.
(11) Luo, R.; David, L.; Gilson, M. K. Accelerated Poisson-Boltzmann
Calculations for Static and Dynamic Systems. J. Comput. Chem. 2002,
23, 1244−1253.
(12) Wang, J.; Luo, R. Assessment of Linear Finite-Difference
Poisson-Boltzmann Solvers. J. Comput. Chem. 2010, 31, 1689−1698.
(13) Chen, M.; Lu, B. TMSmesh: A Robust Method for Molecular
Surface Mesh Generation Using a Trace Technique. J. Chem. Theory
Comput. 2011, 7, 203−212.
(14) Boschitsch, A. H.; Fenley, M. O. A Fast and Robust Poisson-
Boltzmann Solver Based on Adaptive Cartesian Grids. J. Chem. Theory
Comput. 2011, 7, 1524−1540.
(15) Geng, W.; Wei, G. W. Multiscale Molecular Dynamics Using the
Matched Interface and Boundary Method. J. Comput. Phys. 2011, 230,
435−457.
(16) Geng, W.; Zhao, S. Fully Implicit ADI Schemes for Solving the
Nonlinear Poisson-Boltzmann Equation. Mol. Based Math. Biol. 2012,
1, 109−123.
(17) Geng, W.; Jacob, F. A GPU-Accelerated Direct-Sum Boundary
Integral Poisson-Boltzmann Solver. Comput. Phys. Commun. 2013, 184,
1490−1496.

(18) Mirzadeh, M.; Theillard, M.; Helgadóttir, A.; Boy, D.; Gibou, F.
An Adaptive, Finite Difference Solver for the Nonlinear Poisson-
Boltzmann Equation with Applications to Biomolecular Computations.
Commun. Comput. Phys. 2013, 13, 150−173.
(19) Wilson, L.; Zhao, S. Unconditionally Stable Time Splitting
Methods for the Electrostatic Analysis of Solvated Biomolecules. Int. J.
Numer. Anal. Model. 2016, 13, 852−878.
(20) Kucherova, A.; Strango, S.; Sukenik, S.; Theillard, M.
Computational Modeling of Protein Conformational Changes -
Application to the Opening SARS-CoV-2 Spike. J. Comput. Phys.
2021, 444, 110591.
(21) Holst, M. J.; Baker, N. A.; Wang, F. Adaptive Multilevel Finite
Element Solution of the Poisson-Boltzmann Equation I: Algorithms
and Examples. J. Comput. Chem. 2000, 21, 1319−1342.
(22) Baker, N. A.; Holst, M. J.; Wang, F. Adaptive Multilevel Finite
Element Solution of the Poisson-Boltzmann Equation II: Refinement at
Solvent-Accessible Surfaces in Biomolecular Systems. J. Comput. Chem.
2000, 21, 1343−1352.
(23) Quan, C.; Stamm, B.; Maday, Y. A Domain Decomposition
Method for the Poisson-Boltzmann Solvation Models. SIAM J. Sci.
Comput. 2019, 41, B320−B350.
(24) Zauhar, R. J.; Morgan, R. S. A New Method for Computing the
Macromolecular Electric Potential. J. Mol. Biol. 1985, 186, 815−820.
(25) Yoon, B. J.; Lenhoff, A. M. A Boundary Element Method for
Molecular Electrostatics with Electrolyte Effects. J. Comput. Chem.
1990, 11, 1080−1086.
(26) Liang, J.; Subramaniam, S. Computation of Molecular Electro-
statics with Boundary Element Methods. Biophys. J. 1997, 73, 1830−
1841.
(27) Juffer, A. H.; Botta, E. F. F.; van Keulen, B. A. M.; van der Ploeg,
A.; Berendsen, H. J. C. The Electric Potential of a Macromolecule in a
Solvent: A Fundamental Approach. J. Comput. Phys. 1991, 97, 144−
171.
(28) Boschitsch, A. H.; Fenley, M. O.; Zhou, H.-X. Fast Boundary
Element Method for the Linear Poisson-Boltzmann Equation. J. Phys.
Chem. B 2002, 106, 2741−2754.
(29) Lu, B.; Cheng, X.; Huang, J.; McCammon, J. A. Order N
Algorithm for Computation of Electrostatic Interactions in Biomo-
lecular Systems. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 19314−19319.
(30) Lu, B.; McCammon, J. A. Improved Boundary Element Methods
for Poisson-Boltzmann Electrostatic Potential and Force Calculations.
J. Chem. Theory Comput. 2007, 3, 1134−1142.
(31) Geng, W.; Krasny, R. A Treecode-Accelerated Boundary Integral
Poisson-Boltzmann Solver for Electrostatics of Solvated Biomolecules.
J. Comput. Phys. 2013, 247, 62−78.
(32) Cooper, C. D.; Bardhan, J. P.; Barba, L. A. A Biomolecular
Electrostatics Solver Using Python, GPUs and Boundary Elements
That Can Handle Solvent-Filled Cavities and Stern Layers. Comput.
Phys. Commun. 2014, 185, 720−729.
(33) Zhong, Y.; Ren, K.; Tsai, R. An Implicit Boundary Integral
Method for Computing Electric Potential of Macromolecules in
Solvent. J. Comput. Phys. 2018, 359, 199−215.
(34) Geng, W. A. Boundary Integral Poisson-Boltzmann Solvers
Package for Solvated Bimolecular Simulations. Mol. Based Math. Biol.
2015, 3, 54−69.
(35) Sanner, M. F.; Olson, A. J.; Spehner, J.-C. Fast and Robust
Computation of Molecular Surfaces. Proc. 11th ACM Symp. Comput.
Geom. (SoCG) 1995, C6−C7.
(36) Sanner, M. F.; Olson, A. J.; Spehner, J.-C. Reduced Surface: An
Efficient Way to Compute Molecular Surfaces. Biopolymers 1996, 38,
305−320.
(37) Saad, Y.; Schultz, M. GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat.
Comput. 1986, 7, 856−869.
(38) Li, P.; Johnston, H.; Krasny, R. A Cartesian Treecode for
Screened Coulomb Interactions. J. Comput. Phys. 2009, 228, 3858−
3868.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7112

https://orcid.org/0000-0001-9911-6588
mailto:wgeng@smu.edu
mailto:wgeng@smu.edu
https://orcid.org/0000-0002-8375-1699
https://orcid.org/0000-0002-8375-1699
mailto:krasny@umich.edu
mailto:krasny@umich.edu
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c04604?ref=pdf
https://doi.org/10.1016/S0301-4622(98)00226-9
https://doi.org/10.1088/1478-3975/8/3/035001
https://doi.org/10.1088/1478-3975/8/3/035001
https://doi.org/10.1007/s00214-004-0582-3
https://doi.org/10.1007/s00214-004-0582-3
https://doi.org/10.1016/S0076-6879(04)83005-2
https://doi.org/10.1016/S0076-6879(04)83005-2
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1107/S0021889885010779
https://doi.org/10.1016/0022-2836(82)90505-8
https://doi.org/10.1016/0022-2836(82)90505-8
https://doi.org/10.1002/jcc.540160308
https://doi.org/10.1002/jcc.540160308
https://doi.org/10.1002/jcc.540160308
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.1002/jcc.10120
https://doi.org/10.1002/jcc.10120
https://doi.org/10.1002/jcc.21456
https://doi.org/10.1002/jcc.21456
https://doi.org/10.1021/ct100376g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct100376g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1006983?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1006983?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcp.2010.09.031
https://doi.org/10.1016/j.jcp.2010.09.031
https://doi.org/10.2478/mlbmb-2013-0006
https://doi.org/10.2478/mlbmb-2013-0006
https://doi.org/10.1016/j.cpc.2013.01.017
https://doi.org/10.1016/j.cpc.2013.01.017
https://doi.org/10.4208/cicp.290711.181011s
https://doi.org/10.4208/cicp.290711.181011s
https://doi.org/10.1016/j.jcp.2021.110591
https://doi.org/10.1016/j.jcp.2021.110591
https://doi.org/10.1137/18M119553X
https://doi.org/10.1137/18M119553X
https://doi.org/10.1016/0022-2836(85)90399-7
https://doi.org/10.1016/0022-2836(85)90399-7
https://doi.org/10.1002/jcc.540110911
https://doi.org/10.1002/jcc.540110911
https://doi.org/10.1016/S0006-3495(97)78213-4
https://doi.org/10.1016/S0006-3495(97)78213-4
https://doi.org/10.1016/0021-9991(91)90043-K
https://doi.org/10.1016/0021-9991(91)90043-K
https://doi.org/10.1021/jp013607q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp013607q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.0605166103
https://doi.org/10.1073/pnas.0605166103
https://doi.org/10.1073/pnas.0605166103
https://doi.org/10.1021/ct700001x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700001x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcp.2013.03.056
https://doi.org/10.1016/j.jcp.2013.03.056
https://doi.org/10.1016/j.cpc.2013.10.028
https://doi.org/10.1016/j.cpc.2013.10.028
https://doi.org/10.1016/j.cpc.2013.10.028
https://doi.org/10.1016/j.jcp.2018.01.021
https://doi.org/10.1016/j.jcp.2018.01.021
https://doi.org/10.1016/j.jcp.2018.01.021
https://doi.org/10.1515/mlbmb-2015-0004
https://doi.org/10.1515/mlbmb-2015-0004
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1016/j.jcp.2009.02.022
https://doi.org/10.1016/j.jcp.2009.02.022
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(39) Decherchi, S.; Rocchia, W. A General and Robust Ray-Casting-
Based Algorithm for Triangulating Surfaces at the Nanoscale. PLoS One
2013, 8, No. e59744.
(40) Decherchi, S.; Colmenares, J.; Catalano, C. E.; Spagnuolo, M.;
Alexov, E.; Rocchia, W. Between Algorithm and Model: Different
Molecular Surface Definitions for the Poisson-Boltzmann Based
Electrostatic Characterization of Biomolecules in Solution. Commun.
Comput. Phys. 2013, 13, 61−89.
(41) Decherchi, S.; Spitaleri, A.; Stone, J.; Rocchia, W. NanoShaper-
VMD Interface: Computing and Visualizing Surfaces, Pockets and
Channels in Molecular Systems. Bioinformatics 2019, 35, 1241−1243.
(42) Chen, J.; Geng, W. On Preconditioning the Treecode-
Accelerated Boundary Integral (TABI) Poisson-Boltzmann Solver. J.
Comput. Phys. 2018, 373, 750−762.
(43) Wilson, L.; Vaughn, N.; Krasny, R. A GPU-Accelerated Fast
Summation Method Based on Barycentric Lagrange Interpolation and
Dual Tree Traversal. Comput. Phys. Commun. 2021, 265, 108017.
(44) Wilson, L.; Krasny, R. Comparison of the MSMS and
NanoShaper Molecular Surface Triangulation Codes in the TABI
Poisson-Boltzmann Solver. J. Comput. Chem. 2021, 42, 1552−1560.
(45) Boateng, H. A. Cartesian Treecode Algorithms for Electrostatic
Interactions in Molecular Dynamics Simulations. Ph.D. thesis, University
of Michigan: Ann Arbor, MI, 2010.
(46) Boateng, H. A.; Krasny, R. Comparison of Treecodes for
Computing Electrostatic Potentials in Charged Particle Systems with
Disjoint Targets and Sources. J. Comput. Chem. 2013, 34, 2159−2167.
(47) Berrut, J.-P.; Trefethen, L. N. Barycentric Lagrange Interpola-
tion. SIAM Rev. 2004, 46, 501−517.
(48) Greengard, L.; Rokhlin, V. A Fast Algorithm for Particle
Simulations. J. Comput. Phys. 1987, 73, 325−348.
(49) Appel, A. W. An Efficient Program for Many-Body Simulation.
SIAM J. Sci. Stat. Comput. 1985, 6, 85−103.
(50) Dehnen, W. A. Hierarchical O(N) Force Calculation Algorithm.
J. Comput. Phys. 2002, 179, 27−42.
(51) Vaughn, N.;Wilson, L.; Krasny, R. AGPU-Accelerated Barycentric
Lagrange Treecode. 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops; IPDPSW: 2020; pp 701−710.
(52) Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A.
PDB2PQR: An Automated Pipeline for the Setup, Execution, and
Analysis of Poisson-Boltzmann Electrostatics Calculations. Nucleic
Acids Res. 2004, 32, W665−W667.
(53) Sevvana, M.; Long, F.; Miller, A. S.; Klose, T.; Buda, G.; Sun, L.;
Kuhn, R. J.; Rossmann, M. G. Refinement and Analysis of the Mature
Zika Virus Cryo-EM Structure at 3.1 Å Resolution. Structure 2018, 26,
1169−1177.
(54) Amaro, R. E.; Ieong, P. U.; Huber, G.; Dommer, A.; Steven, A. C.;
Bush, R. M.; Durrant, J. D.; Votapka, L. W. A Computational Assay that
Explores the Hemagglutinin/Neuraminidase Functional Balance
Reveals the Neuraminidase Secondary Site as a Novel Anti-Influenza
Target. ACS Cent. Sci. 2018, 4, 1570−1577.
(55) Wang, T.; Cooper, C. D.; Betcke, T.; Barba, L. A. High-
Productivity, High-Performance Workflow for Virus-Scale Electrostatic
Simulations with Bempp-Exafmm. 2021; arXiv:2103.01048v2.
(56) Wilson, L. W.; Krasny, R.; Geng, W.; Chen, J. TABI-PB 2.0;
http://github.com/Treecodes/TABI-PB (accessed August 27, 2022).
(57) Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.
E.; Brookes, D. H.;Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to
the APBS Biomolecular Solvation Software Suite. Protein Sci. 2018, 27,
112−128.
(58) Chen, J.; Tausch, J.; Geng, W. A Cartesian FMM-Accelerated
Galerkin Boundary Integral Poisson-Boltzmann Solver. 2021;
arXiv:2110.13778.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c04604
J. Phys. Chem. B 2022, 126, 7104−7113

7113

 Recommended by ACS

Lawrence Tabak named acting head of the NIH
Andrea Widener.
JANUARY 03, 2022
C&EN GLOBAL ENTERPRISE READ

Quantifying the Separation of Positive and Negative Areas in
Electrostatic Potential for Predicting Feasibility of
Ammonium Sulfate for Protein Crystallization
Yan Guo, Tyuji Hoshino, et al.
AUGUST 16, 2021
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ

Periodic Coulomb Tree Method: An Alternative to Parallel
Particle Mesh Ewald
Henry A. Boateng.
NOVEMBER 20, 2019
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ

Efficient Irreversible Monte Carlo Samplers
Fahim Faizi, Edina Rosta, et al.
FEBRUARY 25, 2020
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ

Get More Suggestions >

https://doi.org/10.1371/journal.pone.0059744
https://doi.org/10.1371/journal.pone.0059744
https://doi.org/10.4208/cicp.050711.111111s
https://doi.org/10.4208/cicp.050711.111111s
https://doi.org/10.4208/cicp.050711.111111s
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.1016/j.jcp.2018.07.011
https://doi.org/10.1016/j.jcp.2018.07.011
https://doi.org/10.1016/j.cpc.2021.108017
https://doi.org/10.1016/j.cpc.2021.108017
https://doi.org/10.1016/j.cpc.2021.108017
https://doi.org/10.1002/jcc.26692
https://doi.org/10.1002/jcc.26692
https://doi.org/10.1002/jcc.26692
https://doi.org/10.1002/jcc.23371
https://doi.org/10.1002/jcc.23371
https://doi.org/10.1002/jcc.23371
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1137/0906008
https://doi.org/10.1006/jcph.2002.7026
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1016/j.str.2018.05.006
https://doi.org/10.1016/j.str.2018.05.006
https://doi.org/10.1021/acscentsci.8b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://github.com/Treecodes/TABI-PB
https://doi.org/10.1002/pro.3280
https://doi.org/10.1002/pro.3280
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c04604?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/cen-10001-polcon2?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/cen-10001-polcon2?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/cen-10001-polcon2?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jcim.1c00505?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jcim.1c00505?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jcim.1c00505?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jcim.1c00505?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jcim.1c00505?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00648?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00648?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00648?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00648?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01135?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01135?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
http://pubs.acs.org/doi/10.1021/acs.jctc.9b01135?utm_campaign=RRCC_jpcbfk&utm_source=RRCC&utm_medium=pdf_stamp&originated=1665652815&referrer_DOI=10.1021%2Facs.jpcb.2c04604
https://preferences.acs.org/ai_alert?follow=1

