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Monte Carlo (MC) methods are important
computational tools for molecular struc-
ture optimizations and predictions. When
solvent effects are explicitly considered,
MC methods become very expensive due
to the large degree of freedom associated
with the water molecules and mobile ions.

Monte Carlo simulation

with MM force
" field + machine
learning-based
implicit solvent

Alternatively implicit-solvent MC can largely reduce the computational cost by applying a
mean field approximation to solvent effects and meanwhile maintains the atomic detail of the
target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann
(PB) model and the Generalized Born (GB) model in a way such that the GB model is an
approximation to the PB model but is much faster in simulation time. In this work, we
develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by com-
bining the advantages of both implicit solvent models in accuracy and efficiency. Specifically,
the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme
to compute the electrostatic solvation free energy at each step. We validate our MLIMC
method by using a benzene-water system and a protein-water system. We show that the
proposed MLIMC method has great advantages in speed and accuracy for molecular struc-

ture optimization and prediction.

Key words: Machine learning, Implicit-solvent Monte Carlo simulation, Poisson-Boltzmann

equation, Electrostatics

l. INTRODUCTION

The determination of protein structures is of
paramount importance for structural biology and
macromolecular study. However, not all protein struc-
tures can be determined with available experimen-
tal techniques due to various limitations. Computa-
tional methods offer important alternative approaches
for structural determination and optimization [1]. In-

deed, molecular force field models and molecular dy-
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namics [2-4] can generate time-resolved trajectories of
protein folding and protein-ligand binding predictions
as well as structural ensemble simulations [5]. In these
simulations, mathematical models and numerical algo-
rithms are imperative for achieving computational ac-
curacy and efficiency. A large number of advanced al-
gorithms have been developed to reduce the computa-
tional cost and improve the accuracy for biomolecular
simulations [6-9]. A major difficulty of molecular dy-
namics is the long timescales associated with real molec-
ular processes taking place in nature. Therefore, ignor-
ing the requirement of having time-resolved trajectories
of the molecular processes will immediately remove the
difficulty.

have a predicted representative ensemble of structures

Indeed, it is sufficient for most studies to
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for a given process. This representative prediction can
be generated by Monte Carlo sampling [10].

Monte Carlo method is one of the most of popular
approaches for biomolecular systems. Under physiolog-
ical condition, biomolecules are immersed in and inter-
act with surrounding water molecules and other pos-
sible co-factors. As such, Monte Carlo simulations of
a biomolecule have to deal with a large number of sol-
vent water molecules, which makes the simulations very
expensive and sometimes, intractable. Additionally, in
Monte Carlo simulations, the biomolecular conforma-
These
perturbations will inevitably result in the overlaps be-

tion is subject to random perturbations [11].

tween the biomolecule and explicit solvent molecules,
which leads to an unfavorable and non-representative
structure. Implicit solvent models, such as Poisson-
Boltzmann (PB) [12, 13], polarizable continuum [14, 15]
and Generalized Born (GB) methods [16-19] are de-
veloped to overcome this challenge by taking a mean
field approximation of water molecules and resulting in
a dielectric continuum. The GB method is faster than
PB methods but it only provides an approximation for
electrostatic energies. PB methods, derived from fun-
damental physical theories [20, 21], offer more accurate
electrostatic analysis. PB model has been applied to
the calculations of protein-protein and protein-ligand
binding energies [22], the pH value predictions of pro-
tonation and/or deprotonation states of titration sites
[23], and drug design [24].
efficient, and robust numerical solver, a large number

To seek for an accurate,

of numerical methods have been developed for the PB
model, including finite difference method (FDM) [25],
finite element method (FEM) [26], and boundary ele-
ment method (BEM) [7, 27].
numerical explorations, the FDM has the most enfran-
chisement such as Amber PBSA [28], Delphi [29], APBS
[23, 26], MIBPB [6, 30-33], and CHARMM PBEQ [25].
Among them, MIBPB is the solely available second-

Among this variety of

order accurate method and has been used to calibrate
the GB method in Amber [34], where PB methods are
generally very expensive. In addition, the molecular
surface involved in all the aforementioned method with
corresponding software developed, such as ESES [35],

Nanoshaper [36], and MSMS [37].

Over the past a few years, machine learning, includ-
ing deep learning, has had tremendous success in sci-
ence and engineering. Especially, convolutional neu-
ral networks have proved their ability to automatically
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extract features and recognize patterns from relatively
simple but large datasets. Deep learning has a growing
dominance in important applications such as handwrit-
ing recognition, speech recognition, and drug discovery
[38—40]. Aided by the availability of quality databases,
new algorithms, graphics processing unit (GPU), and
high-performance computers, various machine learn-
ing approaches have been established in many classical
computational problems such as solvation free energies,
protein-ligand binding affinities, mutation impacts, tox-
icity, partition coefficients, protein B-factors, etc. [41-
50]. Additionally, deep learning neural networks are
also applied in computational protein design [51], sta-
bility changes of protein induced by mutations [52, 53],
and calculations of protein energy [54, 55].

Recently, we developed a Poisson-Boltzmann based
machine learning (PBML) model, which can compute
the solvation free energy of macromolecules in the sol-
vent with the GB speed and the PB accuracy [56]. We
assume that all of the macromolecular electrostatic sol-
vation free energies follow a probability distribution,
which can be sampled by the PB model. Our idea is
based on a representability hypothesis and a learning
hypothesis. The representability hypothesis states that
the solvation free energy of a molecule can be described
by the features of atom interactions and their geometric
relations in the solvent. Thus, we can construct feature
vectors to characterize the molecular electrostatic dis-
tribution. In our learning hypothesis, we assume that a
machine learning model can be trained based on train-
ing labels and corresponding features for a sufficiently
large training set of molecules. Additionally, advanced
machine learning algorithms can give accurate predic-
tions of the electrostatic potential for a new molecule
which has the same probability distribution with the
training set. In our approach, training labels are com-
puted from MIBPB and features are generated using
multiscale weighted colored subgraphs [47].

In the present work, we apply our newly devel-
oped PBML model to compute molecular solvation free
energies in the implicit-solvent Monte Carlo simula-
tions, which typically require millions of samplings.
The new machine learning-based implicit-solvent Monte
Carlo model can guarantee the accuracy of the implicit-
solvent Monte Carlo model while dramatically speeding
up existing implicit-solvent Monte Carlo algorithms.

This manuscript is organized as follows. Section

II gives a brief introduction of molecular force fields,
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Monte Carlo methods, and implicit solvent models.
The PBML model is introduced in this section as well,
which includes the Poisson-Boltzmann equation, Gen-
eralized Born model, and multiscale weighted colored
subgraphs. Section III presents the results of structural
predictions of benzene and the human hyperplastic discs
protein (PDB: 1i2t) [57] in water. We demonstrate that
the PBML model is more accurate and faster than com-
monly used PB solvers and thus, can significantly re-
duce the computational time of implicit-solvent Monte
Carlo simulations. A summary is given in Section IV.

Il. METHODS AND ALGORITHMS

In this section, we briefly review biomolecular force
fields, the Monte Carlo methods, and implicit solvent
models, followed by the Poisson-Boltzmann based ma-
chine learning model.

A. Biomolecular force fields

The quality of molecular simulations depends cru-
cially on molecular force fields to offer a physical repre-
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sentation of molecular interactions and energy distribu-
tions. Molecular force fields typically describe molec-
ular interactions in terms of classical molecular me-
chanics of atoms. The potential energies of atomic in-
teractions are approximated by a set of mathematical
functions, modeling the bonded and non-bonded com-
ponents. These functions consist of a set of free co-
efficients, which are obtained by approximating either
the results of elaborate quantum mechanical calcula-
tions, or experimental data. One of the advantages of
biomolecular force field approach is its computational
efficiency. The potential energy can be efficiently com-
puted at the molecular level comparing to other meth-
ods, such as quantum mechanical approaches, which
deal with electrons [58, 59]. Additionally, the forces in
molecular dynamics can be evaluated analytically from
molecular force fields.

A variety of molecular force fields have been devel-
oped for various purpose. In this work, we adopt the
popular and simple Amber ff99SB force field [59]. The
Amber force field for governing the potential energy
consists of the following terms,

N-1 N
qiq;
E = Zkzbr—ro Zkge 00)* Z Vo[l + cos(ng — v)] Z Z <R12 R6+61R ) (1)
bonds angles dihedrals i=1 j=i
where ky, kg, and V,, are force constants. Here, 7, 6, tem using molecular dynamics is computationally ex-

and ¢ are bond length, angle, and dihedral angle with
7o, 0o, and v being optimal bond length, optimal angle,
and proper dihedral angle, respectively. The first three
terms in the energy expression describe the bonded
energy of the molecular system. The last term repre-
sents the Lennard-Jones interactions and electrostatic
interactions, where N is the number of atoms in the
molecular system, R;; is the distance between ith and
jth atoms, A;; and B;; are Lennard-Jones parameters,
q; is the atom charge, and €; is the dielectric constant.

B. Monte Carlo methods

In this session, we provide a brief introduction of the
molecular dynamics and the Monte Carlo method. We
start from statistical mechanics and show that the cal-
culation of the physical property of a solute-solvent sys-
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pensive or even intractable [10]. Then, we introduce

Metropolis’s Monte Carlo method for biomolecular sim-
ulations [11].

The classical expression for the partition function @
of a solute-solvent system is

Q= c/drdpexp[

where r={X, Y} stands for the atomic coordinates of a

Hep) @)

kT

solute X and solvent Y, p stands for the corresponding
momenta, ¢ is a physical constant as specified below,
kg is the Boltzmann constant and 7' is the temperature
of the system. The function H(r,p) is the Hamilto-
nian of the system. It describes the total energy of
an individual system as summation of the kinetic en-
ergy K and the potential energy E: H=K+FE, where

K is a quadratic function of the momenta. For a sys-
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tem of N identical atoms, one has c=1/(h3"N N!) using
the Planck constant h. Under the assumption that all
of the other physical observables A of interest depend
only on the positions, i.e., A=A(r), the integration over
the momenta can be carried out analytically in a clas-
sical mechanical treatment. As a result, the expected
value of a physical observable of interest is given by

[ araw esl-5Ew)
(4) = 3)
[ arexpl-sE@)

where f=1/kgT. Evaluating (A) requires numerical
techniques, such as quadrature rules for the integra-
tion. Since each particle moves in a three dimensional
(3D) space, the total number of degrees of freedom is
3N for a system of N atoms. If each dimension is inte-
grated with a mesh size of m points, the total number

3N which is computa-

of points for the integration is m
tionally prohibitive.

The complexity in evaluating Eq.(3) can be signifi-
cantly reduced by using the Monte Carlo sampling. In-
deed, Metropolis et al. [11] suggested an efficient Monte
Carlo scheme to approximate the ratio in Eq.(3). Let
us denote the probability density function in finding a
microstate in the canonical ensemble in a configuration

r by

exp[—[E(r)]

P(x) =
[ arexol-sE@)

(4)

According to this probability function, we can perturb
randomly selected points in the configuration. Hence,
the number of points n; generated per unit volume in
the neighborhood of r is equal to Npy.xP(r) for the
average of A(r), which is

1 Ny
)~ > i) o)

where Nyic is the total number running in Monte Carlo
simulations. Eq.(5) shows that all states of ensemble
contribute to the average equally. Therefore, Metropo-
lis Monte Carlo method starts at a given configura-
tion ro={Xy, Yo} and next perturbs the configuration
by a defined transformation with a new configuration
r1={X;,Y;}. The probability to accept the new con-
figuration is
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Pace = min{1, exp[=B(E(ro) — E(r1))]}  (6)

If the new configuration is rejected, the previous con-
figuration is retained and the method repeats another
random perturbation. This process iterates until the
iteration number equals to a fixed number. It is shown
that the structure in the system will approach the Boltz-
mann distribution, if the perturbations satisfy the con-
dition

m(ri)pij = m(r;)pji (7)

where 7(r;) is the probability of the system in con-
figuration r; and p;; is the probability to perturb the
configuration from state r; to state r; [11].

C. Implicit solvent models

Implicit solvent models are class of multiscale tech-
niques for reducing the dimensionality of a solvent-
solute system. They retain the crucial electrostatic
interactions between a biomolecule and its solvent en-
vironment without modeling solvent molecules explic-
itly. A variety of two-scale implicit solvent models have
been developed, such as the Poisson-Boltzmann (PB)
model [13] and the generalized Born (GB) model [16-
19]. One desirable application of implicit solvent models
is the Monte Carlo simulations of biomolecule in sol-
vent, which is relatively easy to implement. The basic
derivation for molecular implicit solvent models relies
on statistical mechanics. For more detail, the reader is
referred to the literature [60]. Essentially, the molecular
solvation free energy can be given by

AGsolv = AC:elec + ACY'nonpol (8)

where AGglec represents the electrostatic contribution
of the solvent-solute interaction, and AGronpol denotes
the nonpolar energy in the reversible work needed to
insert a fixed configuration molecule into the solvent
with all solute charges set to zero. Here AGyonpol is
proportional to the solvent accessible surface area. The
molecular solvation free energy is used in our implicit-
solvent Monte Carlo method to represent solvent-solute
interactions.

(©2021 Chinese Physical Society



Chin. J. Chem. Phys., Vol. 34, No. 6

D. Poisson-Boltzmann based machine learning (PBML)
model

In this section, we briefly discuss the Poisson-
Boltzmann based machine learning (PBML) model [56],
which is applied to compute AGee. in Eq.(8). Our
PBML model involves three major components, i.e.,
training labels, molecular features, and learning algo-
rithms. Our training labels for a large training set
of molecules are generated from solving the Poisson-
Boltzmann (PB) equation. Our molecular features for
both the training set and the test set constitute two
parts, a GB part and a correction part. The latter is
computed from multiscale weighted colored subgraphs
[56].

1. The Poisson-Boltzmann (PB) model

The PB model considers the solute biomolecule with
N, fixed charges as the interior domain 1, and the
solvent, including free ions, as the exterior domain 2.
The interface I' separates these two domains. The PB
model is given as

Nc
—V - e(r)Vo(r) + B2 (r)p(r) = > qrd(r —1%)  (9)
k=1

For r€R3, ¢(r) is the electrostatic potential, €(r) dielec-
tric constant is given by

re
10
re ( )

In the PB model, % is the screening parameter with the

2

relation K2=eyk? where & is the inverse Debye length
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measuring the ionic effective length. To ensure the con-
tinuity of electrostatic potential and flux density across
the interface I', the PB equation is associated with fol-

lowing interface conditions

6¢1 (I’) . 6(152 (I‘)
€1 €2

(bl (I‘) = ¢2 (I‘), an - an ’

rel (11)

where ¢1 and ¢o are electrostatic potential from the
solute domain 1 and the solvent domain €25, and n is
the outward unit normal vector on I'.

The solvation free energy can be obtained from the
PB model by

Ne
AGEE = 33" a6l — dolw))  (12)
k=1

where ¢g(ry) is the free space solution to the PB equa-
tion assuming no solvent-solute interface. To solve the
PB equation, we apply the accurate and robust 2nd or-
der MIBPB solver [6, 32] developed in our group, which

applies rigorous treatment on geometric complexity, in-

PB
elec

terface condition, and charge singularity. The AG
results generated by MIBPB solver for a set of macro-
molecules are used as the training labels in the repre-
sentability hypothesis.

2. The Generalized Born (GB) model

Having described the labels for our machine learning
training, we discuss the molecular feature construction
for both machine learning training and test, which in-
volves the GB model. As a fast approximation to the
PB model, the GB model computes the electrostatic
solvation free energy by

B 11 1 1 (1 9B
acinr 2868 = (0 S ras (e mom) B -

where R; is the effective Born radius for i-th atom,
ri; is the distance between atoms ¢ and j, f=e; /e,
a=0.571412, and B is the electrostatic size of the
molecule. The function f;; is given as

fii = \/7"1-2]» + RiRjexp( - 4R;JRJ») (14)
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(

The effective Born radii R; is calculated by the following
boundary integral

1 r—r; 1/3
Rflz(——y{ildS) 15
¢ dr Jp |r — ;6 (15)

In Eq.(15), the MSMS package [61] is used to generate
the triangulation discretization of the molecular surface
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for the numerical surface integral on T'.

3. Multiscale weighted colored subgraphs

The weighted colored subgraph (WCS) use the no-
tion G(V, E) with vertices V' and edges E to describe
the atomic interactions in a protein of N atoms. The
vertices is defined as

V= {(r;,a;)|ri e R* a; €C,i=1,2,...,N} (16)

where C={C,N, O, S, H} contains all the commonly oc-
curring element types in a protein. Each vertex is an
atom labeled by both its position r; element type «;,

J
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for i=1, --- N.

The edge E relates the pairwise interactions, which
are defined as a colored set P={a} with «, 8€C. For
C defined above, P=CC, CN, CO, CS, CH, NN, NO,
NS, NH, OO, OS, OH, SS, SH, HH and we define the
partition of P as Py, k=1, 2,..., 15 such that P;={CC},
P>={CN} and so on. The set of involved vertices Vp, is
a subset of V' containing all atoms involved in forming
the pair in Pj. For instance, Po={CN} contains all
carbon-nitrogen atom pairs and Vp, contains all carbon
and nitrogen atom vertices in the protein. Based on
these configuration, all the edges for pairwise atomic
interactions in the WCS description are defined by

EFTC = {07 (Ir; —x5l|) | @iy € Pryi=1,2,...,No,j =1,2,...,Ng} (17)

where |[r; —r;|| defines the Euclidean distance between
ith and jth atoms, IV, and Ng are numbers of type o
and 8 atoms, o indicates the type of radial basic func-
tions (e.g., o=L for Lorentz kernel, c=E for exponential
kernel), 7 is a scale distance factor between two atoms
and ( is a parameter of power in the kernel (i.e., (=« for
o=E, {(=v for 0=L). In this model, we use generalized

exponential functions
oF = e~ (lri=r;ll/7(ritri))™ o 5 @ (18)

and generalized Lorentz functions
B 1
L ([l — x5l /m(ri + 75))”
v>0 (19)

®7, (i = xjl)

where r; and r; are, respectively, the van der Waals
radius of the ith and jth atoms. Finally, the features for
describing the electrostatics interactions and geometric
properties are expressed as

No Ng

=SS w7 (- xl). @i € P

i=1 j=1

k,o,7,¢,w

o

(20)
where w;; is a weight function assigned to each atomic
pair with w;;=1 for atomic rigidity or w;;=g; for atomic
charge. Since we have 15 options of the colored subsets
P, we can obtain corresponding 15 subgraph centrali-
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[
ties uko™Gw for k=1,2,...,15. By varying kernel pa-
rameters (o, T, ,w), one can achieve multiscale central-
ities for multiscale weighted colored subgraph (MWCS)
[62], which can be the features.

With labels and features described above, we can con-
struct the machine learning model to predict the solva-
tion free energy of new macromolecules. Specifically,
using MIBPB results as labels, and GB and MWCS
results as features, we train gradient boosting decision
trees (GBDTSs) for the solvation free energy prediction.

Ill. RESULTS

In this section, we demonstrate the performance of
the proposed MLIMC method numerically. First, we
describe the Poisson-Boltzmann based machine learn-
ing (PBML) model for computing protein electrostatic
solvation energies, followed by the illustration of the
accuracy and efficiency of the model. The use of the
PBML model for electrostatic interactions in the MC
simulations is introduced. Our main idea is to replace
time-consuming electrostatic calculations by using our
PBML model. The efficiency of our new MLIMC model
is also examined. Finally, we validate the proposed
MLIMC method by two cases.
molecule, benzene, with initial atom position randomly
protruded. Our MLIMC method is used to reconstruct
the benzene molecule in solvent. Case two is a relatively

Case one is a small

larger molecule, protein (PDB: 1i2t) with 61 amino acid
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residues. In this case, we stretch the last two residues
of 1i2t using steered molecular dynamics and then we
try to restore the equilibrium configuration by using the
proposed MLIMC method. Both simulations are carried
out at temperature of 27 °C, the dielectric constants
are ;=1 in the molecule and e5=80 in the solvent, the
MSMS [61] mesh density is set as 2, and the Debye-

J

Machine Learning-based Implicit-Solvent Monte Carlo 689

Huckel constant is set as k=0.1257 A~1. There are three
kernels used to generate features for machine learning,
which are (E,0.3,2,1), (E,4.7,2,¢;), and (L,4.2,5,1).

To measure the performance, we use the root-mean-
square deviation (RMSD) of atomic positions in length
units (A), defined as

N
RMSD(v, w) = %Z [(via = wia)? + (g = 3y)? + (viz = wi2)? (21)
i=1

RN><3

where v, we are vectors of positions of the N

atoms at two different MC samplings. Moreover, we
also present relative errors of the total energy measured
by comparing the energy for a MC sampling Fyic, and

the energy for the equilibrium state Egg as

|Ess — Encl

x 100% 22

Ctl =
We compute the RMSD and errors between Monte
Carlo sampling results and the original molecular struc-
ture for every 100 Monte Carlo steps for both cases. The
core code was written in C/C++ and a cython wrapper
calling the core code for performing adds-on functions
and applications. Our simulations are produced on a
desktop with an i5 7500 CPU and 16GB memory.

A. PBML model

The MLPB model used in Monte Carlo simulation
is a pre-trained model. The training set includes 3706
protein structures from the PDBbind v2015 refined set
[63]. This refined set was selected from a general set of
14,620 protein-ligand complexes. A data pre-processing
(i.e. adding force field parameters) is required be-
fore a PB solver can be used for electrostatics calcu-
Though the PDBbind refined set consists of
protein-ligand complexes, only protein structures are

lations.

applied for calculations. These protein structures are
adjusted by the protein preparation wizard utility of
the Schrodinger 2015-2 Suite [64] with default parame-
ters unless filling the missing side chains is required.
The training set covers a wide range of proteins in
different sizes with atom numbers from 997 to 27,713.
The current training set can be expanded to an even
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(

larger group of proteins. However, from our test, we
conclude that expanding training set will not signifi-
cantly improve the trained model, thus the size of the
current training set is sufficiently large.

The purpose of PBML is to implement a machine
learning predictor of PB electrostatic solvation free en-
ergies for various proteins efficiently and accurately
without explicitly solving the PB equation. Gradient
boosting decision tree method is selected for this su-
pervised learning task because of its efficiency. The
accuracy of the PBML model is maintained by the ac-
curate electrostatic free energy of solvation as the la-
bel calculated by the MIBPB solver. Once a trained
PBML model is obtained, the MIBPB solver will not
Using the learned PBML model
only requires calculating features on the prediction of

be called anymore.

electrostatic solvation free energies for new compounds,
which is rapid.

B. Efficiency of the PBML model

FIG. 1 shows the results for computing solvation en-
ergy on 195 proteins from PDBbind v2015 core set [63]
using PBML, Amber, and Dephi. The results are shown
in terms of the average CPU time per protein versus the
mean absolute percentage errors. From FIG. 1(a), we
can see PBML is more accurate and much faster than
standard PB solvers such as DelPhi and Amber PB.
FIG. 1(b) gives more details by zooming into the region
where CPU time is small to distinct the CPU time used
by the PBML using different MSMS density.

We here add a few notes about how we improve the
PBML model in addition to machine learning. We no-
tice that in the energy and feature calculations, every
term has a degree of freedom associated with the num-

(©2021 Chinese Physical Society
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FIG. 1 Comparison of the mean CPU time (in unit of s) per protein and the mean absolute percentage errors of Amber,
DelPhi and machine learning predictions of the electrostatic solvation free energies using the test set of 195 proteins. (a)
Results of Amber and DelPhi were obtained at ten different mesh sizes from 0.2 A to 1.1 A; results of PBML were obtained
at four MSMS densities (number of vertices per A?) at 15, 2, 1, and 0.5. (b) A zoom-in plot of the left plot for small CPU

time.

TABLE I Average CPU time for one step MLIMC simula-
tion using Amber, DelPhi and PBML for electrostatic sol-
vation free energy on the 195 protein dataset. Results of
Amber and DelPhi were obtained at 0.2 A and 0.5 A mesh
sizes, and that from PBML uses mesh density 2. The aver-
age CPU time includes all computations needed for Monte
Carlo evaluations. The PB error is obtained relative to the
electrostatic solvation energy computed from MIBPB solver
with grid size h=0.2 A.

PB solver CPU time/s PB error/%
h=02A h=05A h=02A h=05A
Amber 6136 1177 0.618 1.271
DelPhi 1621 214 0.819 1.552
PBML? 25 0.484

& PBML uses mesh density of 2.

ber of atoms, except the computation of the effective
Born radii R; in Eq.(15), which depends on the num-
ber of surface triangles M. Since M >N, faster evalu-
ating of Eq.(15) can significantly accelerate the entire
Monte Carlo process. In our present implementation,
instead of taking the integral in Eq.(15) on each tri-
angle, we take the integral on a neighborhood of each
vertex. This treatment nearly doubled the efficiency of
the GB method since number of vertices is about half of
number of triangles on the surface. In addition, apply-
ing a cut-off can also further improve the GB method.

C. MLIMC model
The assembling of MLIMC includes the implemen-

tation of empirical potential energy functions (except
electrostatics) and the prediction of electrostatics for
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each step on Monte Carlo simulations. The conforma-
tion of the target protein is perturbed randomly on each
step. The new conformation is directly accepted if it
shows a lower energy or is accepted with a probability
determined by the Boltzmann distribution if it shows a
higher energy. As the MLPB model is pre-trained be-
fore simulations, the Monte Carlo simulation does not
include the time for solving the PB equation, resulting
in much reduced time for MLIMC simulations.

D. Efficiency of the MLIMC model

We show that the high efficiency of the MLPB model
will significantly improve the efficiency of the MLIMC
model.

Table I shows the mean CPU time of one Monte Carlo
step and the mean absolute percentage errors of Amber,
DelPhi and PBML predictions of the electrostatic sol-
vation free energies of the 195 proteins. The mean CPU
time for each protein includes the computations for the
total energies, in which computing electrostatic is the
dominant component.

Clearly, the machine learning method has the high-
est accuracy but the lowest CPU time. For the same
accuracy level (<1%), the estimation of the mean CPU
time for a one-million-step Monte Carlo simulation is
6.136x10% s, 1.621x10% s, and 2.5x10° s for using Am-
ber, DelPhi and PBML, respectively. Even with com-
promised accuracy for DelPhi and Amber at gird size of
0.5 A, the MLIMC with PBML will be 47 times faster
than that with Amber and 8 times faster than that with
DelPhi. Next we show some MC simulation results us-
ing MLIMC on the benzene molecule and the human

(©2021 Chinese Physical Society
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FIG. 2 MLIMC simulation of benzene in solvent. (a) The red curve is the total energy calculated by our implicit-solvent
Monte Carlo model and the blue curve is the root mean square deviation of the atomic positions on each Monte Carlo step
to the non-protruded one. (b) The red curve is the error of total energies ey defined by Eq.(22) and the blue curve is the

same RMSD as the left figure.

hyperplastic discs protein (PDB:1i2t).
E. Test case one: benzene molecule

Our first case is a Benzene molecule with some atomic
position randomly perturbed. In detail, we fixed three
atoms at equilibrium positions in order to have the pre-
diction and the comparison structure in the same plane,
and perturb the coordinates of the remained nine atoms
in (p, 0, ¢) directions by uniformly distributed random
numbers in ([0, 10], [0, 27], [0,7]). The initial RMSD is
6.42 A as compared with the equilibrium position. We
will try to perform a MC simulation on this perturbed
molecule to see if the original steady status can be ob-
tained. FIG. 2(a) shows the total energy and RMSD wvs.
MC steps, from which we can see that the total energy
of benzene in solvent starts at 349123.61 kcal/mol and
converges to the range of 5—15 kcal/mol after the first
20,000 MC steps. It stays in a convergent range for the
rest MC steps. The RMSD initially is 6.42 A and ends
around 0.15 A. It decreases rapidly as the total energy
for the first 20,000 steps. After 20,000 steps, the to-
tal energy converges with only slightly oscillation, and
the RMSD keeps the decreasing trend until it reaches
around 0.15 A when MC steps are greater than 70,000.

FIG. 2(b) shows errors and RMSD versus MC steps.
Here we set Fgg in Eq.(22) to be 10.60 kcal/mol as the
steady state energy for reference. The plot shows that
the errors of total energy are very small for our MC
When the simula-
tion structure is close to that of its equilibrium state,
the RMSD is smaller than 1 A and the errors stay in

simulation after 10,000 iterations.

DOI:10.1063/1674-0068/cjcp2109150

FIG. 3 Illustration of MLIMC simulations of a benzene

molecular in solvent. (a) The blue structure is the randomly
perturbed atom positions and the green one is the benzene
structure in steady state. (b) The red one is the benzene
structure after MLIMC sampling compared with the equi-
librium structure in green. Pictures are produced with VMD
[65].

between 1% and 100%. Note since the total energy is a
small number, a tiny perturbation causes a large error
changing.

Qualitatively, FIG. 3(a) shows that the benzene
molecule with its initial perturbed structure is in blue
and the equilibrium structure is in green. After the MC
simulation, we receive the predicted structure in red as
compared with the steady state structure in green as
shown in FIG. 3(b). The total CPU time for 100,000
Monte Carlo steps is 643 s.

F. Test case two: protein (PDB: 1i2t)

The second MC test is on the human hyperplastic
discs protein (PDB: 1i2t) with 61 residues. We first

(©2021 Chinese Physical Society
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FIG. 4 MLIMC simulation of the protein (PDB: 1i2t) in
solvent. (a) The red curve is the total energy calculated by
implicit-solvent Monte Carlo model, the blue curve is the
root mean square deviation of the atomic positions on each
Monte Carlo step to the non-protruded one. (b) The red
curve is the error of total energies ey defined by Eq.(22),
the blue curve is the same RMSD as the left figure.

stretch the last two residues of the original protein by a
steered molecular dynamics. As a result, the stretched
molecule has an initial RMSD of 8.14 A. We apply
our MLIMC for 100,000 steps, which takes 16,684 s
in CPU time. FIG. 4(a) shows that the total energy
of 7260.90 kcal/mol initially decays rapidly within the
first 5000 Monte Carlo steps, then oscillates around
—2070.00 kcal/mol. In the same plot, we can see the
RMSD drops quickly in the first 10,000 MC steps, af-
ter then decays slowly with fluctuation for the next
40,000 MC steps, then decays steadily after 45,000 MC
steps, and finally oscillates slightly around 2.2 A af-
ter 60,000 MC steps.
FIG. 4 (b), relative to the total energy in the equilib-

For the energy errors shown in

rium of —2068.13 kcal/mol, the errors rapidly decays in
the first 20,000 MC steps and then oscillate within 10%
after that.

Similar to the benzene case, FIG. 5(a) qualitatively
shows the perturbed structure in blue against the steady
state structure in green for the first two residues and

DOI:10.1063/1674-0068/cjcp2109150

Jia-hui Chen et al.

(a) (b)

FIG. 5 Mlustration of MLIMC simulations of the protein
(PDB: 1i2t) [57] in solvent. (a) The blue structure is the
perturbed protein structure generated with steered molec-
ular dynamics and the green one is the original structure
at the equilibrium state in solvent. (b) The red one is the
predicted structure after MLIMC sampling compared with
the original structure in green. Pictures are produced with
VMD [65].

FIG. 5 (b) shows that the MLIMC structural prediction
in red color after the MC simulation, which is very close
to the steady state structure in green.

IV. CONCLUSION

Monte Carlo simulations are widely used in sci-
ence and engineering for molecular structure optimiza-
tion and prediction. In many situations, particularly
biomolecular systems, the solute molecule is immersed
in a water solvent and the full-scale explicit solvent
Alter-

natively, implicit solvent Monte Carlo methods us-

Monte Carlo simulations are very expensive.

ing either Poisson-Boltzmann (PB) model or general-
ized Born (GB) model for computing electrostatics can
greatly reduce the degree of freedom. However, the ac-
curacy reduction in GB model or the efficiency con-
cerns in PB model hinders the wide application of im-
plicit solvent Monte Carlo simulation. In this work,
we introduce a machine learning-based implicit-solvent
Monte Carlo (MLIMC) method for molecular struc-
ture optimization and prediction. A vital component of
our MLIMC is the newly developed Poisson-Boltzmann
based machine learning (PBML) model, which main-
tains the PB accuracy at the GB cost. We validate the
proposed MLIMC method by simulating two molecu-
lar systems, randomly perturbed benzene structure and
protein (PDB: 1i2t) structures modified by a steered
molecular dynamics. Numerical experiments demon-
strate that proposed MLIMC is efficient in predicting
molecular structures at equilibrium. In a comparative
analysis, we show that the MLIMC model has a great
advantage on CPU time and accuracy over DelPhi and

(©2021 Chinese Physical Society
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Amber PB based Monte Carlo methods. We believe this
innovated PBML method can also disruptively change
the current status of PB based molecular simulation
involving molecular dynamics [66] and Monte Carlo.
MLIMC provides accurate electrostatic solvation energy
at each configuration of the target protein thus can be
helpful in searching protein folding states as interme-
diate or final using MC based simulation. The result-
ing machine learning-based implicit molecular dynam-
ics (MLIMD), together with the present MLIMC model,
will have a vast variety of applications in molecular sci-
ence, including drug design.
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