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Monte Carlo (MC) methods are important

computational tools for molecular struc-

ture optimizations and predictions. When

solvent effects are explicitly considered,

MC methods become very expensive due

to the large degree of freedom associated

with the water molecules and mobile ions.

Alternatively implicit-solvent MC can largely reduce the computational cost by applying a

mean field approximation to solvent effects and meanwhile maintains the atomic detail of the

target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann

(PB) model and the Generalized Born (GB) model in a way such that the GB model is an

approximation to the PB model but is much faster in simulation time. In this work, we

develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by com-

bining the advantages of both implicit solvent models in accuracy and efficiency. Specifically,

the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme

to compute the electrostatic solvation free energy at each step. We validate our MLIMC

method by using a benzene-water system and a protein-water system. We show that the

proposed MLIMC method has great advantages in speed and accuracy for molecular struc-

ture optimization and prediction.

Key words: Machine learning, Implicit-solvent Monte Carlo simulation, Poisson-Boltzmann

equation, Electrostatics

I. INTRODUCTION

The determination of protein structures is of

paramount importance for structural biology and

macromolecular study. However, not all protein struc-

tures can be determined with available experimen-

tal techniques due to various limitations. Computa-

tional methods offer important alternative approaches

for structural determination and optimization [1]. In-

deed, molecular force field models and molecular dy-
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namics [2–4] can generate time-resolved trajectories of

protein folding and protein-ligand binding predictions

as well as structural ensemble simulations [5]. In these

simulations, mathematical models and numerical algo-

rithms are imperative for achieving computational ac-

curacy and efficiency. A large number of advanced al-

gorithms have been developed to reduce the computa-

tional cost and improve the accuracy for biomolecular

simulations [6–9]. A major difficulty of molecular dy-

namics is the long timescales associated with real molec-

ular processes taking place in nature. Therefore, ignor-

ing the requirement of having time-resolved trajectories

of the molecular processes will immediately remove the

difficulty. Indeed, it is sufficient for most studies to

have a predicted representative ensemble of structures
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for a given process. This representative prediction can

be generated by Monte Carlo sampling [10].

Monte Carlo method is one of the most of popular

approaches for biomolecular systems. Under physiolog-

ical condition, biomolecules are immersed in and inter-

act with surrounding water molecules and other pos-

sible co-factors. As such, Monte Carlo simulations of

a biomolecule have to deal with a large number of sol-

vent water molecules, which makes the simulations very

expensive and sometimes, intractable. Additionally, in

Monte Carlo simulations, the biomolecular conforma-

tion is subject to random perturbations [11]. These

perturbations will inevitably result in the overlaps be-

tween the biomolecule and explicit solvent molecules,

which leads to an unfavorable and non-representative

structure. Implicit solvent models, such as Poisson-

Boltzmann (PB) [12, 13], polarizable continuum [14, 15]

and Generalized Born (GB) methods [16–19] are de-

veloped to overcome this challenge by taking a mean

field approximation of water molecules and resulting in

a dielectric continuum. The GB method is faster than

PB methods but it only provides an approximation for

electrostatic energies. PB methods, derived from fun-

damental physical theories [20, 21], offer more accurate

electrostatic analysis. PB model has been applied to

the calculations of protein-protein and protein-ligand

binding energies [22], the pH value predictions of pro-

tonation and/or deprotonation states of titration sites

[23], and drug design [24]. To seek for an accurate,

efficient, and robust numerical solver, a large number

of numerical methods have been developed for the PB

model, including finite difference method (FDM) [25],

finite element method (FEM) [26], and boundary ele-

ment method (BEM) [7, 27]. Among this variety of

numerical explorations, the FDM has the most enfran-

chisement such as Amber PBSA [28], Delphi [29], APBS

[23, 26], MIBPB [6, 30–33], and CHARMM PBEQ [25].

Among them, MIBPB is the solely available second-

order accurate method and has been used to calibrate

the GB method in Amber [34], where PB methods are

generally very expensive. In addition, the molecular

surface involved in all the aforementioned method with

corresponding software developed, such as ESES [35],

Nanoshaper [36], and MSMS [37].

Over the past a few years, machine learning, includ-

ing deep learning, has had tremendous success in sci-

ence and engineering. Especially, convolutional neu-

ral networks have proved their ability to automatically

extract features and recognize patterns from relatively

simple but large datasets. Deep learning has a growing

dominance in important applications such as handwrit-

ing recognition, speech recognition, and drug discovery

[38–40]. Aided by the availability of quality databases,

new algorithms, graphics processing unit (GPU), and

high-performance computers, various machine learn-

ing approaches have been established in many classical

computational problems such as solvation free energies,

protein-ligand binding affinities, mutation impacts, tox-

icity, partition coefficients, protein B-factors, etc. [41–

50]. Additionally, deep learning neural networks are

also applied in computational protein design [51], sta-

bility changes of protein induced by mutations [52, 53],

and calculations of protein energy [54, 55].

Recently, we developed a Poisson-Boltzmann based

machine learning (PBML) model, which can compute

the solvation free energy of macromolecules in the sol-

vent with the GB speed and the PB accuracy [56]. We

assume that all of the macromolecular electrostatic sol-

vation free energies follow a probability distribution,

which can be sampled by the PB model. Our idea is

based on a representability hypothesis and a learning

hypothesis. The representability hypothesis states that

the solvation free energy of a molecule can be described

by the features of atom interactions and their geometric

relations in the solvent. Thus, we can construct feature

vectors to characterize the molecular electrostatic dis-

tribution. In our learning hypothesis, we assume that a

machine learning model can be trained based on train-

ing labels and corresponding features for a sufficiently

large training set of molecules. Additionally, advanced

machine learning algorithms can give accurate predic-

tions of the electrostatic potential for a new molecule

which has the same probability distribution with the

training set. In our approach, training labels are com-

puted from MIBPB and features are generated using

multiscale weighted colored subgraphs [47].

In the present work, we apply our newly devel-

oped PBML model to compute molecular solvation free

energies in the implicit-solvent Monte Carlo simula-

tions, which typically require millions of samplings.

The new machine learning-based implicit-solvent Monte

Carlo model can guarantee the accuracy of the implicit-

solvent Monte Carlo model while dramatically speeding

up existing implicit-solvent Monte Carlo algorithms.

This manuscript is organized as follows. Section

II gives a brief introduction of molecular force fields,
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Monte Carlo methods, and implicit solvent models.

The PBML model is introduced in this section as well,

which includes the Poisson-Boltzmann equation, Gen-

eralized Born model, and multiscale weighted colored

subgraphs. Section III presents the results of structural

predictions of benzene and the human hyperplastic discs

protein (PDB: 1i2t) [57] in water. We demonstrate that

the PBML model is more accurate and faster than com-

monly used PB solvers and thus, can significantly re-

duce the computational time of implicit-solvent Monte

Carlo simulations. A summary is given in Section IV.

II. METHODS AND ALGORITHMS

In this section, we briefly review biomolecular force

fields, the Monte Carlo methods, and implicit solvent

models, followed by the Poisson-Boltzmann based ma-

chine learning model.

A. Biomolecular force fields

The quality of molecular simulations depends cru-

cially on molecular force fields to offer a physical repre-

sentation of molecular interactions and energy distribu-

tions. Molecular force fields typically describe molec-

ular interactions in terms of classical molecular me-

chanics of atoms. The potential energies of atomic in-

teractions are approximated by a set of mathematical

functions, modeling the bonded and non-bonded com-

ponents. These functions consist of a set of free co-

efficients, which are obtained by approximating either

the results of elaborate quantum mechanical calcula-

tions, or experimental data. One of the advantages of

biomolecular force field approach is its computational

efficiency. The potential energy can be efficiently com-

puted at the molecular level comparing to other meth-

ods, such as quantum mechanical approaches, which

deal with electrons [58, 59]. Additionally, the forces in

molecular dynamics can be evaluated analytically from

molecular force fields.

A variety of molecular force fields have been devel-

oped for various purpose. In this work, we adopt the

popular and simple Amber ff99SB force field [59]. The

Amber force field for governing the potential energy

consists of the following terms,

E =
∑

bonds

kb(r − r0)
2 +

∑

angles

kθ(θ − θ0)
2 +

∑

dihedrals

Vn[1 + cos(nφ− γ)] +
N−1∑

i=1

N∑

j=i+1

(
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ε1Rij

)
(1)

where kb, kθ, and Vn are force constants. Here, r, θ,

and φ are bond length, angle, and dihedral angle with

r0, θ0, and γ being optimal bond length, optimal angle,

and proper dihedral angle, respectively. The first three

terms in the energy expression describe the bonded

energy of the molecular system. The last term repre-

sents the Lennard-Jones interactions and electrostatic

interactions, where N is the number of atoms in the

molecular system, Rij is the distance between ith and

jth atoms, Aij and Bij are Lennard-Jones parameters,

qi is the atom charge, and ε1 is the dielectric constant.

B. Monte Carlo methods

In this session, we provide a brief introduction of the

molecular dynamics and the Monte Carlo method. We

start from statistical mechanics and show that the cal-

culation of the physical property of a solute-solvent sys-

tem using molecular dynamics is computationally ex-

pensive or even intractable [10]. Then, we introduce

Metropolis’s Monte Carlo method for biomolecular sim-

ulations [11].

The classical expression for the partition function Q

of a solute-solvent system is

Q = c

∫
drdp exp

[
−H(r,p)

kBT

]
(2)

where r={X,Y} stands for the atomic coordinates of a

solute X and solvent Y, p stands for the corresponding

momenta, c is a physical constant as specified below,

kB is the Boltzmann constant and T is the temperature

of the system. The function H(r,p) is the Hamilto-

nian of the system. It describes the total energy of

an individual system as summation of the kinetic en-

ergy K and the potential energy E: H=K+E, where

K is a quadratic function of the momenta. For a sys-
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tem of N identical atoms, one has c=1/(h3NN !) using

the Planck constant h. Under the assumption that all

of the other physical observables A of interest depend

only on the positions, i.e., A=A(r), the integration over

the momenta can be carried out analytically in a clas-

sical mechanical treatment. As a result, the expected

value of a physical observable of interest is given by

〈A〉 =

∫
drA(r) exp[−βE(r)]
∫

dr exp[−βE(r)]
(3)

where β=1/kBT . Evaluating 〈A〉 requires numerical

techniques, such as quadrature rules for the integra-

tion. Since each particle moves in a three dimensional

(3D) space, the total number of degrees of freedom is

3N for a system of N atoms. If each dimension is inte-

grated with a mesh size of m points, the total number

of points for the integration is m3N , which is computa-

tionally prohibitive.

The complexity in evaluating Eq.(3) can be signifi-

cantly reduced by using the Monte Carlo sampling. In-

deed, Metropolis et al. [11] suggested an efficient Monte

Carlo scheme to approximate the ratio in Eq.(3). Let

us denote the probability density function in finding a

microstate in the canonical ensemble in a configuration

r by

P (r) =
exp[−βE(r)]∫
dr exp[−βE(r)]

(4)

According to this probability function, we can perturb

randomly selected points in the configuration. Hence,

the number of points ni generated per unit volume in

the neighborhood of r is equal to Nmc×P (r) for the

average of A(r), which is

〈A〉 ≈ 1

NMC

NMC∑

i=1

niA(ri) (5)

where NMC is the total number running in Monte Carlo

simulations. Eq.(5) shows that all states of ensemble

contribute to the average equally. Therefore, Metropo-

lis Monte Carlo method starts at a given configura-

tion r0={X0,Y0} and next perturbs the configuration

by a defined transformation with a new configuration

r1={X1,Y1}. The probability to accept the new con-

figuration is

pacc = min{1, exp[−β(E(r0)− E(r1))]} (6)

If the new configuration is rejected, the previous con-

figuration is retained and the method repeats another

random perturbation. This process iterates until the

iteration number equals to a fixed number. It is shown

that the structure in the system will approach the Boltz-

mann distribution, if the perturbations satisfy the con-

dition

π(ri)pij = π(rj)pji (7)

where π(ri) is the probability of the system in con-

figuration ri and pij is the probability to perturb the

configuration from state ri to state rj [11].

C. Implicit solvent models

Implicit solvent models are class of multiscale tech-

niques for reducing the dimensionality of a solvent-

solute system. They retain the crucial electrostatic

interactions between a biomolecule and its solvent en-

vironment without modeling solvent molecules explic-

itly. A variety of two-scale implicit solvent models have

been developed, such as the Poisson-Boltzmann (PB)

model [13] and the generalized Born (GB) model [16–

19]. One desirable application of implicit solvent models

is the Monte Carlo simulations of biomolecule in sol-

vent, which is relatively easy to implement. The basic

derivation for molecular implicit solvent models relies

on statistical mechanics. For more detail, the reader is

referred to the literature [60]. Essentially, the molecular

solvation free energy can be given by

∆Gsolv = ∆Gelec +∆Gnonpol (8)

where ∆Gelec represents the electrostatic contribution

of the solvent-solute interaction, and ∆Gnonpol denotes

the nonpolar energy in the reversible work needed to

insert a fixed configuration molecule into the solvent

with all solute charges set to zero. Here ∆Gnonpol is

proportional to the solvent accessible surface area. The

molecular solvation free energy is used in our implicit-

solvent Monte Carlo method to represent solvent-solute

interactions.
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D. Poisson-Boltzmann based machine learning (PBML)

model

In this section, we briefly discuss the Poisson-

Boltzmann based machine learning (PBML) model [56],

which is applied to compute ∆Gelec in Eq.(8). Our

PBML model involves three major components, i.e.,

training labels, molecular features, and learning algo-

rithms. Our training labels for a large training set

of molecules are generated from solving the Poisson-

Boltzmann (PB) equation. Our molecular features for

both the training set and the test set constitute two

parts, a GB part and a correction part. The latter is

computed from multiscale weighted colored subgraphs

[56].

1. The Poisson-Boltzmann (PB) model

The PB model considers the solute biomolecule with

Nc fixed charges as the interior domain Ω1, and the

solvent, including free ions, as the exterior domain Ω2.

The interface Γ separates these two domains. The PB

model is given as

−∇ · ε(r)∇φ(r) + κ̄2(r)φ(r) =
Nc∑

k=1

qkδ(r− rk) (9)

For r∈R3, φ(r) is the electrostatic potential, ε(r) dielec-

tric constant is given by

ε(r) =

{
ε1, r ∈ Ω1

ε2, r ∈ Ω2
(10)

In the PB model, κ̄ is the screening parameter with the

relation κ̄2=ε2κ2 where κ is the inverse Debye length

measuring the ionic effective length. To ensure the con-

tinuity of electrostatic potential and flux density across

the interface Γ, the PB equation is associated with fol-

lowing interface conditions

φ1(r) = φ2(r), ε1
∂φ1(r)

∂n
= ε2

∂φ2(r)

∂n
, r ∈ Γ (11)

where φ1 and φ2 are electrostatic potential from the

solute domain Ω1 and the solvent domain Ω2, and n is

the outward unit normal vector on Γ.

The solvation free energy can be obtained from the

PB model by

∆GPB
elec =

1

2

Nc∑

k=1

qk(φ(rk)− φ0(rk)) (12)

where φ0(rk) is the free space solution to the PB equa-

tion assuming no solvent-solute interface. To solve the

PB equation, we apply the accurate and robust 2nd or-

der MIBPB solver [6, 32] developed in our group, which

applies rigorous treatment on geometric complexity, in-

terface condition, and charge singularity. The ∆GPB
elec

results generated by MIBPB solver for a set of macro-

molecules are used as the training labels in the repre-

sentability hypothesis.

2. The Generalized Born (GB) model

Having described the labels for our machine learning

training, we discuss the molecular feature construction

for both machine learning training and test, which in-

volves the GB model. As a fast approximation to the

PB model, the GB model computes the electrostatic

solvation free energy by

∆GGB
elec ≈

∑

i,j

∆GGB
ij = −1

2

( 1

ε1
− 1

ε2

) 1

1 + αβ

∑

i,j

qiqj
( 1

fij(rij , Ri, Rj)
+

αβ

B

)
(13)

where Ri is the effective Born radius for i-th atom,

rij is the distance between atoms i and j, β=ε1/ε2,

α=0.571412, and B is the electrostatic size of the

molecule. The function fij is given as

fij =

√

r2ij +RiRjexp
(
−

r2ij
4RiRj

)
(14)

The effective Born radii Ri is calculated by the following

boundary integral

R−1
i =

(
− 1

4π

∮

Γ

r− ri
|r− ri|6

· dS
)1/3

(15)

In Eq.(15), the MSMS package [61] is used to generate

the triangulation discretization of the molecular surface
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for the numerical surface integral on Γ.

3. Multiscale weighted colored subgraphs

The weighted colored subgraph (WCS) use the no-

tion G(V,E) with vertices V and edges E to describe

the atomic interactions in a protein of N atoms. The

vertices is defined as

V = {(ri,αi)|ri ∈ R3,αi ∈ C, i = 1, 2, . . . , N} (16)

where C={C,N,O, S,H} contains all the commonly oc-

curring element types in a protein. Each vertex is an

atom labeled by both its position ri element type αi,

for i=1, · · · N .

The edge E relates the pairwise interactions, which

are defined as a colored set P={αβ} with α,β∈C. For

C defined above, P=CC, CN, CO, CS, CH, NN, NO,

NS, NH, OO, OS, OH, SS, SH, HH and we define the

partition of P as Pk, k=1, 2,..., 15 such that P1={CC},
P2={CN} and so on. The set of involved vertices VPk is

a subset of V containing all atoms involved in forming

the pair in Pk. For instance, P2={CN} contains all

carbon-nitrogen atom pairs and VP2 contains all carbon

and nitrogen atom vertices in the protein. Based on

these configuration, all the edges for pairwise atomic

interactions in the WCS description are defined by

Eσ,τ,ζ
Pk

= {Φσ
τ,ζ(‖ri − rj‖) | αiβj ∈ Pk; i = 1, 2, . . . , Nα, j = 1, 2, . . . , Nβ} (17)

where ‖ri − rj‖ defines the Euclidean distance between

ith and jth atoms, Nα and Nβ are numbers of type α

and β atoms, σ indicates the type of radial basic func-

tions (e.g., σ=L for Lorentz kernel, σ=E for exponential

kernel), τ is a scale distance factor between two atoms

and ζ is a parameter of power in the kernel (i.e., ζ=κ for

σ=E, ζ=ν for σ=L). In this model, we use generalized

exponential functions

ΦE
τ,κ = e−(‖ri−rj‖/τ(ri+rj))

κ

, κ > 0 (18)

and generalized Lorentz functions

ΦL
τ,ν(‖ri − rj‖) =

1

1 + (‖ri − rj‖/τ(ri + rj))ν
,

ν > 0 (19)

where ri and rj are, respectively, the van der Waals

radius of the ith and jth atoms. Finally, the features for

describing the electrostatics interactions and geometric

properties are expressed as

µk,σ,τ,ζ,w =
Nα∑

i=1

Nβ∑

j=1

wijΦ
σ
τ,ζ(‖ri − rj‖), αiβj ∈ Pk,

(20)

where wij is a weight function assigned to each atomic

pair with wij=1 for atomic rigidity or wij=qj for atomic

charge. Since we have 15 options of the colored subsets

Pk, we can obtain corresponding 15 subgraph centrali-

ties µk,σ,τ,ζ,w, for k=1,2,. . . , 15. By varying kernel pa-

rameters (σ, τ, ζ, w), one can achieve multiscale central-

ities for multiscale weighted colored subgraph (MWCS)

[62], which can be the features.

With labels and features described above, we can con-

struct the machine learning model to predict the solva-

tion free energy of new macromolecules. Specifically,

using MIBPB results as labels, and GB and MWCS

results as features, we train gradient boosting decision

trees (GBDTs) for the solvation free energy prediction.

III. RESULTS

In this section, we demonstrate the performance of

the proposed MLIMC method numerically. First, we

describe the Poisson-Boltzmann based machine learn-

ing (PBML) model for computing protein electrostatic

solvation energies, followed by the illustration of the

accuracy and efficiency of the model. The use of the

PBML model for electrostatic interactions in the MC

simulations is introduced. Our main idea is to replace

time-consuming electrostatic calculations by using our

PBML model. The efficiency of our new MLIMC model

is also examined. Finally, we validate the proposed

MLIMC method by two cases. Case one is a small

molecule, benzene, with initial atom position randomly

protruded. Our MLIMC method is used to reconstruct

the benzene molecule in solvent. Case two is a relatively

larger molecule, protein (PDB: 1i2t) with 61 amino acid
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residues. In this case, we stretch the last two residues

of 1i2t using steered molecular dynamics and then we

try to restore the equilibrium configuration by using the

proposed MLIMCmethod. Both simulations are carried

out at temperature of 27 ◦C, the dielectric constants

are ε1=1 in the molecule and ε2=80 in the solvent, the

MSMS [61] mesh density is set as 2, and the Debye-

Huckel constant is set as κ=0.1257 Å−1. There are three

kernels used to generate features for machine learning,

which are (E, 0.3, 2, 1), (E, 4.7, 2, qj), and (L, 4.2, 5, 1).

To measure the performance, we use the root-mean-

square deviation (RMSD) of atomic positions in length

units (Å), defined as

RMSD(v,w) =

√√√√ 1

N

N∑

i=1

[
(vix − wix)2 + (viy − wiy)2 + (viz − wiz)2

]
(21)

where v,w∈RN×3 are vectors of positions of the N

atoms at two different MC samplings. Moreover, we

also present relative errors of the total energy measured

by comparing the energy for a MC sampling EMC, and

the energy for the equilibrium state ESS as

ettl =
|ESS − EMC|

|ESS|
× 100% (22)

We compute the RMSD and errors between Monte

Carlo sampling results and the original molecular struc-

ture for every 100 Monte Carlo steps for both cases. The

core code was written in C/C++ and a cython wrapper

calling the core code for performing adds-on functions

and applications. Our simulations are produced on a

desktop with an i5 7500 CPU and 16GB memory.

A. PBML model

The MLPB model used in Monte Carlo simulation

is a pre-trained model. The training set includes 3706

protein structures from the PDBbind v2015 refined set

[63]. This refined set was selected from a general set of

14,620 protein-ligand complexes. A data pre-processing

(i.e. adding force field parameters) is required be-

fore a PB solver can be used for electrostatics calcu-

lations. Though the PDBbind refined set consists of

protein-ligand complexes, only protein structures are

applied for calculations. These protein structures are

adjusted by the protein preparation wizard utility of

the Schrodinger 2015-2 Suite [64] with default parame-

ters unless filling the missing side chains is required.

The training set covers a wide range of proteins in

different sizes with atom numbers from 997 to 27,713.

The current training set can be expanded to an even

larger group of proteins. However, from our test, we

conclude that expanding training set will not signifi-

cantly improve the trained model, thus the size of the

current training set is sufficiently large.

The purpose of PBML is to implement a machine

learning predictor of PB electrostatic solvation free en-

ergies for various proteins efficiently and accurately

without explicitly solving the PB equation. Gradient

boosting decision tree method is selected for this su-

pervised learning task because of its efficiency. The

accuracy of the PBML model is maintained by the ac-

curate electrostatic free energy of solvation as the la-

bel calculated by the MIBPB solver. Once a trained

PBML model is obtained, the MIBPB solver will not

be called anymore. Using the learned PBML model

only requires calculating features on the prediction of

electrostatic solvation free energies for new compounds,

which is rapid.

B. Efficiency of the PBML model

FIG. 1 shows the results for computing solvation en-

ergy on 195 proteins from PDBbind v2015 core set [63]

using PBML, Amber, and Dephi. The results are shown

in terms of the average CPU time per protein versus the

mean absolute percentage errors. From FIG. 1(a), we

can see PBML is more accurate and much faster than

standard PB solvers such as DelPhi and Amber PB.

FIG. 1(b) gives more details by zooming into the region

where CPU time is small to distinct the CPU time used

by the PBML using different MSMS density.

We here add a few notes about how we improve the

PBML model in addition to machine learning. We no-

tice that in the energy and feature calculations, every

term has a degree of freedom associated with the num-
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FIG. 1 Comparison of the mean CPU time (in unit of s) per protein and the mean absolute percentage errors of Amber,
DelPhi and machine learning predictions of the electrostatic solvation free energies using the test set of 195 proteins. (a)
Results of Amber and DelPhi were obtained at ten different mesh sizes from 0.2 Å to 1.1 Å; results of PBML were obtained
at four MSMS densities (number of vertices per Å2) at 15, 2, 1, and 0.5. (b) A zoom-in plot of the left plot for small CPU
time.

TABLE I Average CPU time for one step MLIMC simula-
tion using Amber, DelPhi and PBML for electrostatic sol-
vation free energy on the 195 protein dataset. Results of
Amber and DelPhi were obtained at 0.2 Å and 0.5 Å mesh
sizes, and that from PBML uses mesh density 2. The aver-
age CPU time includes all computations needed for Monte
Carlo evaluations. The PB error is obtained relative to the
electrostatic solvation energy computed from MIBPB solver
with grid size h=0.2 Å.

PB solver CPU time/s PB error/%

h=0.2 Å h=0.5Å h=0.2 Å h=0.5Å

Amber 6136 1177 0.618 1.271

DelPhi 1621 214 0.819 1.552

PBMLa 25 0.484
a PBML uses mesh density of 2.

ber of atoms, except the computation of the effective

Born radii Ri in Eq.(15), which depends on the num-

ber of surface triangles M . Since M)N , faster evalu-

ating of Eq.(15) can significantly accelerate the entire

Monte Carlo process. In our present implementation,

instead of taking the integral in Eq.(15) on each tri-

angle, we take the integral on a neighborhood of each

vertex. This treatment nearly doubled the efficiency of

the GB method since number of vertices is about half of

number of triangles on the surface. In addition, apply-

ing a cut-off can also further improve the GB method.

C. MLIMC model

The assembling of MLIMC includes the implemen-

tation of empirical potential energy functions (except

electrostatics) and the prediction of electrostatics for

each step on Monte Carlo simulations. The conforma-

tion of the target protein is perturbed randomly on each

step. The new conformation is directly accepted if it

shows a lower energy or is accepted with a probability

determined by the Boltzmann distribution if it shows a

higher energy. As the MLPB model is pre-trained be-

fore simulations, the Monte Carlo simulation does not

include the time for solving the PB equation, resulting

in much reduced time for MLIMC simulations.

D. Efficiency of the MLIMC model

We show that the high efficiency of the MLPB model

will significantly improve the efficiency of the MLIMC

model.

Table I shows the mean CPU time of one Monte Carlo

step and the mean absolute percentage errors of Amber,

DelPhi and PBML predictions of the electrostatic sol-

vation free energies of the 195 proteins. The mean CPU

time for each protein includes the computations for the

total energies, in which computing electrostatic is the

dominant component.

Clearly, the machine learning method has the high-

est accuracy but the lowest CPU time. For the same

accuracy level (<1%), the estimation of the mean CPU

time for a one-million-step Monte Carlo simulation is

6.136×108 s, 1.621×108 s, and 2.5×106 s for using Am-

ber, DelPhi and PBML, respectively. Even with com-

promised accuracy for DelPhi and Amber at gird size of

0.5 Å, the MLIMC with PBML will be 47 times faster

than that with Amber and 8 times faster than that with

DelPhi. Next we show some MC simulation results us-

ing MLIMC on the benzene molecule and the human
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FIG. 2 MLIMC simulation of benzene in solvent. (a) The red curve is the total energy calculated by our implicit-solvent
Monte Carlo model and the blue curve is the root mean square deviation of the atomic positions on each Monte Carlo step
to the non-protruded one. (b) The red curve is the error of total energies ettl defined by Eq.(22) and the blue curve is the
same RMSD as the left figure.

hyperplastic discs protein (PDB:1i2t).

E. Test case one: benzene molecule

Our first case is a Benzene molecule with some atomic

position randomly perturbed. In detail, we fixed three

atoms at equilibrium positions in order to have the pre-

diction and the comparison structure in the same plane,

and perturb the coordinates of the remained nine atoms

in (ρ, θ, φ) directions by uniformly distributed random

numbers in ([0, 10], [0, 2π], [0,π]). The initial RMSD is

6.42 Å as compared with the equilibrium position. We

will try to perform a MC simulation on this perturbed

molecule to see if the original steady status can be ob-

tained. FIG. 2(a) shows the total energy and RMSD vs.

MC steps, from which we can see that the total energy

of benzene in solvent starts at 349123.61 kcal/mol and

converges to the range of 5−15 kcal/mol after the first

20,000 MC steps. It stays in a convergent range for the

rest MC steps. The RMSD initially is 6.42 Å and ends

around 0.15 Å. It decreases rapidly as the total energy

for the first 20,000 steps. After 20,000 steps, the to-

tal energy converges with only slightly oscillation, and

the RMSD keeps the decreasing trend until it reaches

around 0.15 Å when MC steps are greater than 70,000.

FIG. 2(b) shows errors and RMSD versus MC steps.

Here we set ESS in Eq.(22) to be 10.60 kcal/mol as the

steady state energy for reference. The plot shows that

the errors of total energy are very small for our MC

simulation after 10,000 iterations. When the simula-

tion structure is close to that of its equilibrium state,

the RMSD is smaller than 1 Å and the errors stay in

FIG. 3 Illustration of MLIMC simulations of a benzene
molecular in solvent. (a) The blue structure is the randomly
perturbed atom positions and the green one is the benzene
structure in steady state. (b) The red one is the benzene
structure after MLIMC sampling compared with the equi-
librium structure in green. Pictures are produced with VMD
[65].

between 1% and 100%. Note since the total energy is a

small number, a tiny perturbation causes a large error

changing.

Qualitatively, FIG. 3(a) shows that the benzene

molecule with its initial perturbed structure is in blue

and the equilibrium structure is in green. After the MC

simulation, we receive the predicted structure in red as

compared with the steady state structure in green as

shown in FIG. 3(b). The total CPU time for 100,000

Monte Carlo steps is 643 s.

F. Test case two: protein (PDB: 1i2t)

The second MC test is on the human hyperplastic

discs protein (PDB: 1i2t) with 61 residues. We first
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FIG. 4 MLIMC simulation of the protein (PDB: 1i2t) in
solvent. (a) The red curve is the total energy calculated by
implicit-solvent Monte Carlo model, the blue curve is the
root mean square deviation of the atomic positions on each
Monte Carlo step to the non-protruded one. (b) The red
curve is the error of total energies ettl defined by Eq.(22),
the blue curve is the same RMSD as the left figure.

stretch the last two residues of the original protein by a

steered molecular dynamics. As a result, the stretched

molecule has an initial RMSD of 8.14 Å. We apply

our MLIMC for 100,000 steps, which takes 16,684 s

in CPU time. FIG. 4(a) shows that the total energy

of 7260.90 kcal/mol initially decays rapidly within the

first 5000 Monte Carlo steps, then oscillates around

−2070.00 kcal/mol. In the same plot, we can see the

RMSD drops quickly in the first 10,000 MC steps, af-

ter then decays slowly with fluctuation for the next

40,000 MC steps, then decays steadily after 45,000 MC

steps, and finally oscillates slightly around 2.2 Å af-

ter 60,000 MC steps. For the energy errors shown in

FIG. 4 (b), relative to the total energy in the equilib-

rium of −2068.13 kcal/mol, the errors rapidly decays in

the first 20,000 MC steps and then oscillate within 10%

after that.

Similar to the benzene case, FIG. 5(a) qualitatively

shows the perturbed structure in blue against the steady

state structure in green for the first two residues and

FIG. 5 Illustration of MLIMC simulations of the protein
(PDB: 1i2t) [57] in solvent. (a) The blue structure is the
perturbed protein structure generated with steered molec-
ular dynamics and the green one is the original structure
at the equilibrium state in solvent. (b) The red one is the
predicted structure after MLIMC sampling compared with
the original structure in green. Pictures are produced with
VMD [65].

FIG. 5 (b) shows that the MLIMC structural prediction

in red color after the MC simulation, which is very close

to the steady state structure in green.

IV. CONCLUSION

Monte Carlo simulations are widely used in sci-

ence and engineering for molecular structure optimiza-

tion and prediction. In many situations, particularly

biomolecular systems, the solute molecule is immersed

in a water solvent and the full-scale explicit solvent

Monte Carlo simulations are very expensive. Alter-

natively, implicit solvent Monte Carlo methods us-

ing either Poisson-Boltzmann (PB) model or general-

ized Born (GB) model for computing electrostatics can

greatly reduce the degree of freedom. However, the ac-

curacy reduction in GB model or the efficiency con-

cerns in PB model hinders the wide application of im-

plicit solvent Monte Carlo simulation. In this work,

we introduce a machine learning-based implicit-solvent

Monte Carlo (MLIMC) method for molecular struc-

ture optimization and prediction. A vital component of

our MLIMC is the newly developed Poisson-Boltzmann

based machine learning (PBML) model, which main-

tains the PB accuracy at the GB cost. We validate the

proposed MLIMC method by simulating two molecu-

lar systems, randomly perturbed benzene structure and

protein (PDB: 1i2t) structures modified by a steered

molecular dynamics. Numerical experiments demon-

strate that proposed MLIMC is efficient in predicting

molecular structures at equilibrium. In a comparative

analysis, we show that the MLIMC model has a great

advantage on CPU time and accuracy over DelPhi and
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Amber PB based Monte Carlo methods. We believe this

innovated PBML method can also disruptively change

the current status of PB based molecular simulation

involving molecular dynamics [66] and Monte Carlo.

MLIMC provides accurate electrostatic solvation energy

at each configuration of the target protein thus can be

helpful in searching protein folding states as interme-

diate or final using MC based simulation. The result-

ing machine learning-based implicit molecular dynam-

ics (MLIMD), together with the present MLIMC model,

will have a vast variety of applications in molecular sci-

ence, including drug design.
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