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ABSTRACT 25 

In this paper, we present a predictive and generative design approach to supporting the conceptual design 26 

of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural 27 

network architecture, which consists of two modules: 1) a training module with two encoders and one 28 

decoder (𝐸2𝐷 network); and 2) an application module performing the generative design of new 3D shapes 29 

and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the 30 

proposed approach in the design of 3D car body and mugs. The results show that our approach can 31 

generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single 32 

 
1 Corresponding author: zsha@austin.utexas.edu 
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silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details, 33 

which have better visualization than voxels and point clouds, and are ready for downstream engineering 34 

evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing).35 

 36 

1. INTRODUCTION 37 

Sketching plays an essential role in sparking creative ideas to explore emerging 38 

design concepts [1]. For example, in car design, characteristic contour lines are often 39 

used to represent silhouettes in supporting conceptual design of car body shapes [2, 3], 40 

which complements many other ideation approaches, such as freehand sketches, design 41 

analogies, and prototypes. Compared to freehand sketches, silhouettes regularize the 42 

sketching process, and thereby makes sketching easier and more manageable. This is 43 

particularly useful for designers who lack professional sketching skills. However, 44 

silhouettes, as a specific type of 2D sketches, are often ambiguous and lack of geometric 45 

details. In later design stages, such as embodiment design, a 3D computer-aided design 46 

(CAD) model is often required to more accurately evaluate the engineering performance 47 

of a design concept. 3D shapes can also provide better visualization and thus help 48 

designers better understand the design, inspiring them to develop new shapes and refine 49 

geometric details. Therefore, the question is: can we build a system to predict and 50 

automatically generate 3D shapes just based on silhouettes? 51 

Such a system will yield several benefits. First, it automates the 2D-to-3D 52 

reconstruction process, thereby saving labor and time. Designers can allocate more 53 

resources for better design iteration and ideation. Second, all silhouettes created during 54 

the conceptual design stage can be evaluated against the desired engineering performance 55 

in 3D form. So, designs that would have better performance will not be ruled out too 56 
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early when performance-driven decisions (i.e., rational decisions) are not yet obtained. 57 

Third, ordinary people would not be discouraged to show their design ideas merely due to 58 

the lack of CAD experience or sketching skills. This may have significant educational 59 

implications for training novice designers and facilitate the democratization of design 60 

innovation. Lastly, enterprises may use this system to enable user interface soliciting 61 

consumer preferences for design customization. 62 

However, automatically reconstructing 3D shapes directly from 2D sketches is a 63 

challenge because it is an ill-defined problem due to insufficient and imperfect 64 

information from simple strokes [4]. To tackle this challenge, inspired by the target-65 

embedding autoencoder (TEA) network [5, 6], we propose a novel target-embedding 66 

variational autoencoder (TEVAE) (see Fig. 1(a)). The TEVAE architecture consists of 67 

two modules: 1) A training module with an 𝐸2𝐷 network that has two encoders and one 68 

decoder. 2) An application module performing two functions: generative design function, 69 

such as shape interpolation and random generation of new 3D shapes; and predictive 70 

design function (i.e., 3D shape prediction from silhouette sketches). The integration of 71 

generative and predictive functions is beneficial in that it makes the structure of the 72 

neural network compact, thus saving training costs. To demonstrate the utility and 73 

generalizability of the proposed approach, we apply it to two case studies in the design of 74 

3D car body and mugs.  75 

The contributions of this paper are summarized below.  76 

a) To the best of our knowledge, this is the first attempt of developing a system 77 

integrating both predictive and generative functions of 3D mesh shapes from 78 

silhouettes. The TEA has a classic autoencoder that can perform pseudo 79 
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generative tasks, but essentially, is not a generative model. Our TEVAE applies 80 

variational autoencoders (VAEs) and becomes a true generative model. It can also 81 

learn a continuous and smooth latent representation of the data.  82 

b) Predicting 3D shapes from silhouettes is more challenging because a silhouette 83 

sketch provides less information (e.g., depth and normal maps) than traditional 84 

freehand sketches with inner contour lines. To that end, we introduce an 85 

intermediate step (e.g., extrusion or rotation) to first convert the silhouette to a 3D 86 

primitive shape. This transforms the original 2D-to-3D problem to a 3D-to-3D 87 

problem, which promotes a stable training process and the generation of reliable 88 

and viable 3D shapes. 89 

c) Building upon a graph convolutional mesh VAE [7], our approach can directly 90 

output high-quality 3D mesh shapes that are more storage-efficient for high-91 

resolution 3D structure, compared to point clouds [8] and voxels [9]. 3D meshes 92 

also facilitates engineering analyses because they are compatible with existing 93 

computer-aided engineering (CAE) software2.  94 

d) A data automation program is developed for training data pairs of 3D shapes that 95 

can be used in any TEA-like neural networks for supervised learning problems. 96 

2. LITERATURE REVIEW 97 

In this section, we review the existing research that is most relevant to our work. 98 

2.1 Learning-Based Sketch-to-3D Generation Methods  99 

 
2 “Meshes” are used for 3D representation here. In CAE software, there is a concept called “meshing”. 
Meshing is a process that breaks down the continuous geometric space of an object into a discrete 
number of shape elements. All 3D representations including meshes and native CAD data format (e.g., 
IGES, DWG, and STL) that can be directly input to CAE software have to go through the meshing process 
for analysis. 
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Point clouds and voxels have been widely used as 3D representations for sketch-100 

to-3D generation [8-10]. These methods need to postprocess the resulting 3D shapes to 101 

meshes for better visualization, which still suffer from low surface quality. There are 102 

studies attempting to directly produce high-quality mesh shapes. For example, concurrent 103 

with the development of our approach, Guillard et al. [11] propose a pipeline to 104 

reconstruct and edit 3D shapes from 2D sketches. They train an encoder/decoder 105 

architecture to regress surface meshes from freehand sketches. The method applies a 106 

differentiable rendering technique to iteratively refine the resulting 3D shapes. Similarly, 107 

Xiang et al. [12] integrate a differentiable rendering approach to an end-to-end learning 108 

framework for predicting 3D mesh shapes from line drawings. 109 

All methods above are promising and have inspired us to explore a more 110 

challenging task, i.e., to predict a 3D shape from a simple silhouette sketch. Our approach 111 

is similar to [10, 11, 13, 14] in that we only need one single sketch as input, but we create 112 

a new neural network architecture that can predict a 3D shape from a single silhouette 113 

and simultaneously generate novel 3D shapes. The direct output shapes are 3D meshes 114 

with high-quality surface details, thus, requiring no postprocessing. 115 

2.2 Learning-Based Generative Design Methods 116 

Learning-based generative design (GD) methods have been primarily developed 117 

based on two techniques, generative adversarial networks (GANs) [15] and variational 118 

autoencoders (VAEs) [16]. There are several approaches for 2D designs [17-19], but they 119 

are not appropriate for design applications that require 3D models. In 3D applications, 120 

Shu et al. [20] present a method that combines GAN and the physics-based virtual 121 

environment introduced in [18] to generate high-performance 3D aircraft models. Zhang 122 
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et al. [21] propose a method using a VAE, a physics-based simulator, and a functional 123 

design optimizer to synthesize 3D aircrafts with prescribed engineering performance. 124 

Building upon [17], Yoo et al. [22] develop a deep learning-based CAD/CAE framework 125 

that can automatically generate 3D car wheels from 2D images. Gunpinar et al. [3] apply 126 

a spatial simulated annealing algorithm to generate various silhouettes of cars, which are 127 

then extruded to 3D car models. Those models can be further refined by sweeping a 128 

predefined cross-section sketch. However, simply extrusion does not guarantee 129 

satisfactory outcomes, and the resulting 3D car models look unreal.  130 

2.3 Target-Embedding Representation Learning  131 

Girdhar et al. propose a TL-embedding network [6] that is composed of a T-132 

network for training and an L-network for testing. The T-network contains an 133 

autoencoder (encoder-decoder) network and a CNN. After training, the L-network can be 134 

used to predict 3D shapes in voxel from images. Similarly, Mostajabi et al. [23] uses an 135 

autoencoder and a CNN to perform the semantic segmentation task of images. Dalca et 136 

al. [24] apply a similar network structure as [6, 23], consisting of a prior generative 137 

model to generate paired data (biomedical images and anatomical regions) to solve the 138 

scarcity of labeled image data for anatomical segmentation tasks. Jarrett and Schaar [5] 139 

categorize these studies as supervised representation learning methods. They observe that 140 

when the dimension of the target data space is higher or similar to the feature data space, 141 

a target-embedding autoencoder (TEA) can be more effective than a feature-embedding 142 

autoencoder (FEA). The authors verify that the TEA structure will guarantee the learning 143 

stability by using a mathematical proof of a simple linear TEA and showing the empirical 144 
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results from a complex non-linear TEA. Inspired by those existing works, we construct 145 

the target-embedding variational autoencoder (TEVAE) architecture. 146 

3. APPROACH 147 

The proposed target-embedding variational autoencoder (TEVAE) architecture, 148 

shown in Fig. 1(a), consists of two modules: a training module and an application 149 

module. 150 

3.1 The 𝑬𝟐𝑫 Network and the Two-Stage Training 151 

The key component of the training module is the 𝐸2𝐷 network that consists of 152 

two encoders and one decoder, which is constructed by concatenating an encoder (labeled 153 

as 𝐸𝑛𝑐2(⋅)) to a mesh VAE (an encoder-decoder network, labeled as 𝐸𝑛𝑐1(⋅) and 𝐷𝑒𝑐(⋅)) 154 

[7]. The 𝐸𝑛𝑐1(⋅) maps target shapes (𝑆𝑡, i.e., the original authentic 3D mesh shapes) to a 155 

low-dimensional latent space, and the 𝐷𝑒𝑐(⋅) maps latent vectors from that latent space 156 

to 3D mesh shapes. With the same network structure as 𝐸𝑛𝑐1(⋅), 𝐸𝑛𝑐2(⋅) takes source 157 

shapes (𝑆𝑠, the 3D mesh shapes extruded from silhouette sketches of the target shapes) as 158 

the input and maps them to the same dimensional latent space as the mesh VAE.  159 

We adopt the same loss function developed in [7] to train  𝐸𝑛𝑐1(⋅) and 𝐷𝑒𝑐(⋅). 160 

For 𝐸𝑛𝑐2(⋅), we create a new loss function 𝐿2 as below.  161 

 𝐿2 = 𝛼𝐷𝑅𝑒𝑔𝑟𝑒𝑠𝑠 + 𝐷𝑅 (1) 

where α is the weight for the regression loss and 162 

 
𝐷𝑅𝑒𝑔𝑟𝑒𝑠𝑠 =

1

2𝑀
∑||μ2
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 163 

denotes the Euclidean loss, where μ2
𝑖 is the output of 𝐸𝑛𝑐2(⋅) using 𝑋𝑖  as input and μ1

𝑖 is 164 

the mean vector obtained from the latent space of the mesh VAE using the input of 𝑌𝑖. 165 

𝐷𝑅 is the regularization loss applied to improve the generalization ability of the 𝐸𝑛𝑐2(⋅). 166 

Figure 1: (a) The proposed approach using target-embedding variational autoencoder 
(TEVAE); (b) The preparation of data pairs 
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We apply a two-stage training strategy [23] to jointly train the mesh VAE and 167 

𝐸𝑛𝑐2(⋅) from scratch. In Stage 1, the mesh VAE is trained independently. In Stage 2, we 168 

fix all the learning parameters of the mesh VAE and train 𝐸𝑛𝑐2(⋅) by minimizing 𝐿2. 169 

3.2 The Predictive Network and Generative Network 170 

After the 𝐸2𝐷 network is trained, we connect 𝐸𝑛𝑐2(⋅) to 𝐷𝑒𝑐(⋅) to form the 171 

predictive network. It can take a 3D extrusion mesh shape as input and output a 3D mesh 172 

shape that is similar to the input shape but has finer geometric details, making it authentic 173 

and aesthetic. We use the trained mesh VAE as the generative network, which can 174 

perform generative design tasks, including shape reconstruction, interpolation, and 175 

random generation. 176 

3.3 Preparation of Data Pairs 177 

Data pairs {𝑆𝑠
𝑖, 𝑆𝑡

𝑖}𝑖=1
𝑁  are needed to train the 𝐸2𝐷 network. Fig. 1(b) shows the 178 

process of obtaining one training data pair using a car body as an example. From the 179 

sideview image of an authentic 3D car model, we extract its contour points, from which 180 

we can obtain an extrusion model using the FreeCAD Python API. We develop a set of 181 

Python scripts that fully automate the whole process, which are made open-source for the 182 

community3. We process 𝑁 = 1240 car models obtained from [25] and 𝑁 = 203 mug 183 

models from [26]. For car models, we keep only car bodies by removing all the other 184 

parts, such as mirrors, wheels, and spoilers.  185 

3.4 Shape Preprocessing and Feature Representation 186 

The 𝐸2𝐷 network requires input mesh shapes in both the source shape set 187 

({𝑆𝑠
𝑖}𝑖=1

𝑁 ) and the target shape set ({𝑆𝑡
𝑖}𝑖=1

𝑁 ) to have the same topology (i.e., the same 188 

 
3 https://github.com/Xingang1990/TEVAE 
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number of vertices and the same mesh connectivity). However, the mesh typologies 189 

between the two datasets can be different. For simplicity, we use a uniform topology for 190 

both datasets and the non-rigid registration method [27] is applied to meet this 191 

requirement. Nonrigid registration is a widely used technique in the computer graphics 192 

field to map one point set (e.g., point cloud, mesh) to another. A uniform unit cube mesh 193 

with 19.2k triangles (9602 vertices) is used to register all mesh shapes. This makes all 194 

shapes have the same topology as the cube mesh, but remain the same as their original 195 

shapes and geometric details.  196 

The As-Consistent-As-Possible (ACAP) method [28] is applied to extract features 197 

of a 3D shape to input to the 𝐸2𝐷 network. We deform the aforementioned uniform cube 198 

mesh to a target 3D mesh shape by multiplying deformation matrices, from which nine 199 

unique numbers can be extracted for each vertex of the mesh shape. Thus, a shape with 𝑣 200 

vertices can be represented by a feature matrix 𝑀𝑓 ∈ ℝ𝑣×9, where 𝑣 = 9602 in our 201 

implementation. We can get the feature representations of the source shape dataset 𝑋 =202 

{𝑋𝑘}𝑘=1
𝑁  and the target shape dataset 𝑌 = {𝑌𝑙}𝑙=1

𝑁 , where 𝑁 = 1240 for the car models 203 

and 𝑁 = 203 for the mug models, and {𝑋𝑖 , 𝑌𝑖} forms the input feature of one data pair. 204 

More details of the approach and the training of the 𝐸2𝐷 network are provided in 205 

the [Supplementary Material].  206 

4. CASE STUDIES AND RESULTS 207 

4.1 Implementation of the Two-Stage Training 208 

For training the mesh VAE in Stage 1, the input target shape dataset 𝑌 = {𝑌𝑙}𝑙=1
𝑁  209 

 is randomly divided into the training set (80%) and the test set (20%). For training the 210 

𝐸𝑛𝑐2(⋅) network in Stage 2, we also do an 80-20 split of the source shape dataset 𝑋 =211 
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{𝑋𝑘}𝑘=1
𝑁 , and meanwhile use the data pair to make sure the 𝑖𝑡ℎ target shape (𝑆𝑡

𝑖) 212 

corresponds to the 𝑖𝑡ℎ source shape (𝑆𝑠
𝑖) in both the training and test sets.  213 

 214 

Figure 2: (a) Results of car bodies: predicted shapes (in the fourth row) and 
reconstructed shapes (in the second row); (b) The prediction results of mugs 
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4.2 The Predictive Network 215 

The predictive network aims to predict a 3D shape from an input silhouette 216 

sketch. We conducted experiments on the prediction of the training set and the test set. 217 

The results of the car models are shown in Fig. 2(a). For the result of the training set, the 218 

first row shows the target shapes, and the following rows are their corresponding 219 

reconstruction shapes from the mesh VAE, extrusion shapes (with silhouettes marked in 220 

dark), and the predicted shapes, respectively. The results indicate that, given an input 221 

extrusion shape from the corresponding silhouette sketch, the predictive network is 222 

capable of predicting an authentic 3D shape, as illustrated in the fourth row. It should be 223 

noted that even though we are targeting shapes (ground truth) in the first row, the best 224 

results that can be achieved from the predictive network are the reconstruction shapes in 225 

the second row. The reconstruction shapes and the corresponding predicted shapes look 226 

identical in terms of visual appearance, but are different in geometric details. To show the 227 

difference, we compute the Hausdorff distance between those shapes and visualize the 228 

distance values in the fifth row. Similar results are also observed for the shapes in the test 229 

set, which indicates a good generalization of the network because the test set shapes are 230 

unseen data for the network. This is particularly important in real-world applications, 231 

where user input often does not resemble existing shapes in a training dataset.  232 

The prediction results of the mug models are shown in Fig. 2(b). The first two 233 

rows are the source shapes that are obtained from extruding the silhouettes, while the last 234 

two rows are the corresponding predicted shapes. Mugs are generally non-extrudable  235 

from side-view silhouettes, so the extrusion shapes look more like toast instead of mugs. 236 

However, our approach can still predict authentic mug shapes. Please note that, besides 237 
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extruding, other 3D modeling techniques, such as revolving and sweeping, can also be 238 

used to obtain 3D primitive shapes. Extruding is adopted in this study for ease of 239 

implementation. In addition, it provides us with basic geometric features for 3D shape 240 

prediction. 241 

 242 

4.3 The Generative Network 243 

For the generative network, different generative operations, such as shape 244 

reconstruction, interpolation, and random generation, can be performed. The 245 

reconstructed 3D shapes are already shown in the second row for both the training set and 246 

the testing set in Fig. 2(a). For shape interpolation, new 3D shapes are synthesized by 247 

Figure 3: (a) The results of shape interpolation for three cases; (b) The results of random 
generation shapes along with two nearest neighbor (NN) shapes 
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linearly interpolating two target 3D shapes through their encoded latent vectors. We 248 

demonstrate the results of shape interpolation in three cases using the case study of car 249 

models (see Fig. 3(a)): 1) interpolation between two training shapes, 2) between two test 250 

shapes, and 3) between a training shape and a test shape. In each case, the first and the 251 

last columns are the shapes to be interpolated, and the in-between columns are linearly 252 

interpolated shapes. It can be observed that there is a gradual transition of the shape 253 

geometry between the two target shapes.  254 

For random shape generation, latent vectors are randomly sampled from the latent 255 

space of the Mesh VAE, and decoded by the trained 𝐷𝑒𝑐(⋅) to 3D mesh shapes. Fig. 3(b) 256 

shows that the generative network can generate novel car models (in the first row) that 257 

are not seen in the original dataset. This is validated by finding their nearest neighbors 258 

(NNs) (the second and third rows) in the original dataset based on the Hausdorff distance. 259 

A quick visual comparison between the randomly generated car models and their NNs 260 

tells the differences, and they are indeed new shapes. 261 

5. CONCLUSION 262 

To tackle the challenge of predicting a 3D shape from a silhouette sketch, we 263 

present a novel target-embedding variational autoencoder (TEVAE) network that enables 264 

a 2D-to-3D design approach. Our approach can effectively predict a 3D shape from a 265 

silhouette sketch. The predicted 3D shape is consistent with the input sketch, and is 266 

authentic with rich geometric details. Such a design transformation could greatly shorten 267 

the iteration between the design ideation to CAD modeling. The approach can also 268 

generate novel 3D shapes, and thus could better inspire designers for their creative work. 269 
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The resulting 3D shapes are represented in meshes, which are ready for downstream 270 

engineering analyses, evaluation, and prototype (e.g., 3D printing). 271 

 272 

Quantity yields quality, and this can be achieved by broadening the initial pool of 273 

concept ideas [29]. We believe that the presented approach can help designers explore the 274 

design space more efficiently and stimulate creative design ideas in early design stages. 275 

Figure 4: Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a mug) 
can be partitioned to several genus-zero shapes. Then, the proposed approach can be 

applied to each component for shape exploration and synthesis 
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From the methodology point of view, this new generative design approach is general 276 

enough to be applied in many applications where 3D shape modeling and rendering are 277 

necessary. As long as the sketch can provide a major perspective view of an object, like 278 

the frontview of a human body and the sideview of a bottle, the corresponding authentic 279 

3D shape can be predicted and novel shape concepts can be generated. In addition, our 280 

approach is friendly to ordinary people who have few professional sketching skills, since 281 

it only requires a simple silhouette of an object as input. 282 

There are a few limitations in the current study that the authors would like to 283 

share. First, the current model only handles genus-zero shapes and ignores any through 284 

holes (e.g., the hole between the body and the handle of a mug in Fig. 2(b)) in the original 285 

shape due to the non-rigid registration [27]. However, many design artifacts are usually 286 

non-genus-zero (e.g., a mug with a through hole between the body and the handle) or 287 

have more complex geometry consisting of many components, e.g., a plane model can 288 

have a body, two wings, and three tails, etc., as shown in Fig. 4(a).  289 

To address this limitation, a part-aware method [26, 30] may be a potential 290 

solution. We perform a quick experiment using a part-aware mug design problem (see 291 

Fig. 4(b)). In this particular application, users can first draw an outline sketch for an 292 

individual component (e.g., a mug body or a handle). Then, the corresponding 3D mesh 293 

shape can be predicted and new shapes can be generated. Lastly, the resulting individual 294 

components can be combined to a holistic structure allowing non-genus-zero topology. 295 

However, the part-aware strategy could not work for parts that are non-genus-zero and 296 

unable to be further decomposed into genus-zero components, e.g., a chair back with 297 

hollow-out structures and holes. In this experiment, we applied a cube mesh template to 298 
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register mug models using non-rigid registration [27] as introduced previously. However, 299 

we observed that artifacts with a large curvature could not be perfectly registered (e.g., 300 

the mug handle in Fig. 4(b) highlighted by a circle). This issue can be alleviated by using 301 

different templates of 3D primitives, e.g., a sphere or a cylinder.  302 

In addition to the part-aware method, other methods based on new 3D 303 

representations could also be applied to address the first limitation. For example, 304 

primitive-based methods can use a set of primitive surfaces to represent a 3D shape [31-305 

34]. Implicit 3D representation (e.g., signed distance fields [35, 36]) can characterize 3D 306 

surfaces implicitly, and the resulting 3D geometries can be converted to mesh 307 

representation. These methods can capture the topology changes of 3D shapes without 308 

using a template mesh for data registration, thus deserving our future exploration.  309 

Second, the constructed 3D shapes are consistent with the designer's sketch in 310 

terms of sideview, but they might not be the same as what the designer has in mind. To 311 

address this limitation, we plan to integrate interactive modeling techniques to build a 312 

graphical user interface (GUI) for users to adjust the generated 3D shapes according to 313 

their preferences. 314 

Third, the generative network performs well in shape reconstruction and shape 315 

interpolation, but the success rate of random shape generation is lower than one-third due 316 

to the sparsity of the training data. Therefore, the random shape generation function is not 317 

fully reliable in practice for now. This problem could be solved by obtaining more 3D 318 

shape data using data augmentation methods, such as the one presented in the study of 319 

[13], to improve the diversity and quality of the training dataset. These limitations 320 

motivate us to further improve the current model in the future. 321 
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Figure Captions List 443 

 444 

Fig. 1 (a) The proposed approach using target-embedding variational 

autoencoder (TEVAE); (b) The preparation of data pairs 

Fig. 2 (a) Results of car bodies: predicted shapes (in the fourth row) and 

reconstructed shapes (in the second row); (b) The prediction results of 

mugs 

Fig. 3 (a) The results of shape interpolation for three cases; (b) The results of 

random generation shapes along with two nearest neighbor (NN) shapes 

Fig. 4 Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a 

mug) can be partitioned to several genus-zero shapes. Then, the proposed 

approach can be applied to each component for shape exploration and 

synthesis 
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SUPPLEMENTARY MATERIALS 469 

Part 1: The 𝑬𝟐𝑫 Network 470 

We construct the 𝐸2𝐷 network by concatenating an encoder (𝐸𝑛𝑐2(⋅)) to a mesh 471 

VAE [1]. The 𝐸𝑛𝑐1(⋅) has the following network structure: two graph convolutional 472 

(Conv) layers with a batch normalization (BN) layer and a tanh activation function 473 

following each graph Conv layer, one pooling layer, and a third graph Conv layer. The 474 

output of the last Conv layer is mapped to a 128-dimensional space that contains a mean 475 

vector (μ1 ∈ ℝ128) and a deviation vector (𝜎 ∈ ℝ128) by two different fully-connected 476 

(FC) layers. The mean vector does not have an activation function and the deviation 477 

vector uses sigmoid as the activation function. The 𝐸𝑛𝑐2(⋅) shares the same network 478 

structure as 𝐸𝑛𝑐1(⋅) except that only one FC layer is used to form the latent vector 479 

(μ2 ∈ ℝ128) because the standard deviation vector is not needed here. 𝐸𝑛𝑐1(⋅) takes 𝑌 480 

and 𝐸𝑛𝑐2(⋅) takes 𝑋 as input, where 𝑋 ∈ ℝ𝑉×9 and 𝑌 ∈ ℝ𝑉×9 are feature representations 481 

of source shapes (𝑆𝑠) and target shapes (𝑆𝑡), respectively. 𝑉 represents the number of 482 

vertices of a 3D mesh shape. 𝑆𝑠 are 3D extrusion mesh models extruded from sideview 483 

sketches of the original authentic 3D mesh models (𝑆𝑡). 484 

The decoder (𝐷𝑒𝑐(⋅)) mirrors the encoders and it consists of an FC layer, a graph 485 

Conv layer and a de-pooling layer, followed by two graph Conv layers. Each Conv layer 486 

is connected to a BN layer and a tanh activation function except the third Conv layer. The 487 

𝐷𝑒𝑐(⋅) takes the latent vector 𝑧1 = μ1 + σϵ as input, where ϵ ∈ 𝑁(0, 𝐼) which is a 488 

standard multivariate Gaussian distribution. The output of 𝐷𝑒𝑐(⋅) is 𝑌̂ ∈ ℝ𝑉×9 which has 489 

the same dimension as the input 𝑌 and can be used to reconstruct 3D mesh shapes. 490 

 491 
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The entire 𝐸2𝐷 network is trained by minimizing the following loss function: 492 

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐿1 + 𝐿2 (1) 

where 𝐿2 is the loss function for 𝐸𝑛𝑐2(⋅) which has been shown in the paper, 𝜆 is a 493 

weight parameter, and 𝐿1 is the loss function for the mesh VAE. 𝐿1 can be written as: 494 

 𝐿1 = 𝛼1𝐿𝑅𝑒𝑐𝑜𝑛 + 𝛼2𝐿𝐾𝐿 + 𝐿𝑅𝑒𝑔 (2) 

where α1 and α2 are the weights of different loss terms, and  495 

 
𝐿𝑅𝑒𝑐𝑜𝑛 =

1

2𝑀
∑||𝑌𝑖 − 𝑌̂

𝑖
||𝐹

2

𝑀

𝑖=1

  (3) 

denotes the mean squared error (MSE) reconstruction loss, where 𝑌𝑖 and 𝑌̂𝑖represent the 496 

input feature matrix of the 𝑖𝑡ℎ model and the corresponding output of the mesh VAE, 497 

respectively. || ⋅||𝐹 is the Frobenius norm of the matrix and 𝑀 is the number of mesh 498 

shapes in the training dataset.  499 

 𝐿𝐾𝐿 = 𝐷𝐾𝐿(𝑞(𝑧1||𝑌)||𝑝(𝑧1)) (4) 

represents the Kullback–Leibler (KL) divergence loss to promote the Gaussian 500 

distribution in the latent space, where 𝑧1 is the latent vector, 𝑝(𝑧1) is the prior 501 

probability, 𝑞(𝑧1||𝑌) is the posterior distribution given the feature matrix 𝑌, and 𝐷𝐾𝐿 is 502 

the KL-divergence. 𝐿𝑅𝑒𝑔 is the squared 𝑙2 norm regularization loss of the parameters 503 

which is used to avoid overfitting to the training data to improve the generalization ability 504 

of the mesh VAE.  505 

For the two-stage training in our application, in Stage 1, the mesh VAE is trained 506 

independently. The network is initialized at random and trained end-to-end by 507 

minimizing 𝐿1 as shown in Supp. Equation (2). The 128-dimensional mean vectors μ1 508 

from the latent space of the trained mesh VAE, will be used in Stage 2 training. In Stage 509 
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2, we fix all the learning parameters of the trained mesh VAE and train 𝐸𝑛𝑐2(⋅).  𝐸𝑛𝑐2(⋅) 510 

is also initialized randomly. It is trained by minimizing 𝐿2 as shown in Equations (1) and 511 

(2) of the paper.  512 

 513 

Part 2: Data Pair Preparation 514 

We present more details of the process of how we prepare training data pairs (see 515 

Fig 1(b) of the paper) using a car body as the example. Data can be processed as the 516 

following steps.   517 

1) Obtain the sideview image from an authentic 3D car mesh shape.  518 

2) Get the binary image from the sideview image.  519 

3) Extract the contour of the binary image, which results in a dense point set. 520 

Supplemental Figure 1: An example showing the comparison between resulting 
extrusion mesh models using a point set after the approximation method and the 

final simplified point set 
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4) Get a simplified point set using a simple contour approximation method provided 521 

in OpenCV-Python package. 522 

5) Get an extrusion shape using the FreeCAD Python API. Then, the original 523 

authentic 3D mesh shape (target shape) and the extrusion shape (source shape) 524 

form one data pair. 525 

An approximation method is used in Step 4 because the extrusion model directly 526 

from the original contour points (a dense point set) has zigzags on its surface, which 527 

affects the quality of the extruded shapes. The contour approximation method can keep 528 

more points where the geometry is more complex (e.g., bumper lines, windshield lines) 529 

and fewer points where the geometry is simpler (e.g., the bottom line). In our 530 

implementation, as shown in Supp. Fig. 1, this simplification process results in a point set 531 

that has around 400 points (varies a little for different car models), and we reduce the 532 

number of points by a factor of 1/4 to around 100 points for a further avoidance of 533 

zigzags on the models' surface, which can still preserve the contour shape well thanks to 534 

the simplification method. It can be observed that the resulting extrusion mesh model 535 

using the finally simplified point set has a smoother surface than that using the point set 536 

directly after the simplification. In addition, to make sure the extruded model has an 537 

equivalent scale as the original authentic model, for each point set, we calculate the 538 

diagonal length of its bounding box 𝐷𝑖𝑎𝑔𝑃𝑡𝑠 and the diagonal length of the bounding box 539 

of sideview of its corresponding original authentic mesh model 𝐷𝑖𝑎𝑔𝑆 as illustrated by 540 

blue dash lines in Fig. 1(b) of the paper. We then scale down the coordinates of the 541 

finally simplified point set by a factor of 𝐷𝑖𝑎𝑔𝑆/𝐷𝑖𝑎𝑔𝑃𝑡𝑠. We also move the center of the 542 
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bounding box of the point set to the origin (0, 0). The top right image in Supp. Fig. 1 543 

shows an example of the final simplified point set displayed in FreeCAD.  544 

In Step 5, to obtain the extrusion model, we need to specify the extrusion depth in 545 

the orthogonal direction (𝑧-axis) on the sideview. We use the 𝑧 dimension size of the 546 

bounding box of the original authentic 3D mesh model as the extrusion depth. We store 547 

the 𝑥 and 𝑦 coordinates of the simplified point set and the extrusion depth in a CSV file 548 

in Step 4, which will be used as input for a Python script using the FreeCAD Python API 549 

to generate a 2D sideview sketch first and then extrude the sketch to an extrusion mesh 550 

model. 551 

We develop a set of Python scripts that fully automate the whole process, and the 552 

scripts are made open-source for the community 553 

(https://github.com/Xingang1990/TEVAE). 554 

Part 3: Feature Representation 555 

We present more details of how we apply the as-consistent-as-possible (ACAP) 556 

algorithm [2] to obtain feature representations of 3D mesh shapes. Given a set of 3D 557 

mesh shapes with the same topology, each shape is represented by 𝑆𝑚, where 𝑚 ∈558 

[1, … , 𝑛]. 𝑝𝑚,𝑖 ∈ ℝ3 is denoted as the 𝑖𝑡ℎ vertex of the 𝑚𝑡ℎ shape 𝑆𝑚. The first shape 𝑆1 559 

is the reference shape. Let 𝑁𝑖 represent the index set of 1-ring neighbors of the 𝑖𝑡ℎ vertex 560 

on a 3D shape. 1-ring neighbors are all adjacent vertices that are connected to a vertex 561 

with one edge. We can then get the deformation matrix 𝑇𝑚,𝑖 ∈ ℝ3×3 that represents the 562 

local shape deformation by Supp. Equation (5). 563 

 arg min
𝑇𝑚,𝑖

∑ 𝑐𝑖,𝑗||(𝑝𝑚,𝑖 − 𝑝𝑚,𝑗) − 𝑇𝑚,𝑖(𝑝1,𝑖 − 𝑝1,𝑗)||2
2

𝑗∈𝑁𝑖

 (5) 

https://github.com/Xingang1990/TEVAE
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where 𝑐𝑖,𝑗 is the cotangent weight. Using polar decomposition, we can then get 𝑇𝑚,𝑖 =564 

𝑅𝑚,𝑖𝑆𝑚,𝑖, where 𝑅𝑚,𝑖 ∈ ℝ3×3 is an orthogonal matrix representing rotation deformation 565 

and 𝑆𝑚,𝑖 ∈ ℝ3×3 is a real symmetry matrix describing the scale and shear deformation. 566 

log 𝑅𝑚,𝑖 is a skew-symmetry matrix, from which we can extract 3 entries (i.e., the upper 567 

triangular matrix excluding the diagonal elements that are always zeros). Additionally, 568 

we can get 6 entries (i.e., the upper triangular matrix that includes diagonal elements) 569 

from 𝑆𝑚,𝑖 since it is a symmetry matrix. Thus, for each vertex, 9 features can be obtained 570 

and concatenated to a 9-dimensional vector 𝑞𝑚,𝑖. In a result, a mesh shape with 𝑉 vertices 571 

can be represented by a feature matrix 𝑀 ∈ ℝV×9. The first shape 𝑆1 is a uniform cube 572 

with 9602 vertices, which is the same as the one used in the registration process, so 𝑉 =573 

9602 in our applications.  574 

Part 4: Training Details of the Approach 575 

We present the detail of the training process using the case study of car design as 576 

an example, and the training of the neural network for mug shapes generation follows the 577 

same procedure. We apply a two-stage training strategy to train the 𝐸2𝐷 network. We set 578 

λ = 1 in the total loss function as shown in Supp. Equation (1), the value of which does 579 

not affect the training in our case per se, because we actually minimize 𝐿1 and 𝐿2 580 

independently. 581 

For training the mesh VAE in Stage 1 (i.e., 𝐸𝑛𝑐1(⋅) and 𝐷𝑒𝑐(⋅)), the input target 582 

shape dataset is randomly split into the training set (80%) and testing set (20%). The 583 

generalization ability of the mesh VAE (i.e., whether the trained model is overfitting to 584 

the training data or not) is evaluated by the validation loss on the testing data (unseen 585 

data). It is also worth investigating the impact of the 𝐿𝐾𝐿 term on the performance of the 586 
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generative network. By trial-and-error, we find that α1 = 40 and α2 = 10 for Supp. 587 

Equation (2) produces the best results in terms of the reconstruction loss, validation loss, 588 

KL-divergence loss, and the regularization loss. In minimizing the losses, the Adam 589 

optimizer is applied with a learning rate of 𝑙𝑟1 = 0.0001. The batch size is set as 32, and 590 

the training batches are randomly sampled from the training dataset. We train the mesh 591 

VAE 4000 epochs and save the best model that has the least validation loss.  592 

 593 

Supplemental Figure 2: (a) The loss values from Stage 1 training of the car models; 
(b) The loss values from Stage 2 training of the car models 
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For training the 𝐸𝑛𝑐2(⋅) network in Stage 2, we also do an 80-20 split, and 594 

meanwhile use the data pair to make sure the 𝑖𝑡ℎ target shape (𝑆𝑡
𝑖) corresponds to the 𝑖𝑡ℎ 595 

source shape (𝑆𝑠
𝑖) in both the training and testing sets. This ensures that the 20% testing 596 

shapes are always unseen data. We set 𝛼 = 1 in Equation (2) of the paper. The optimizer, 597 

the learning rate 𝑙𝑟2, and the number of epochs follow the same setting of Stage 1. 598 

For stage 1, the loss values during the training process of car models are reported 599 

in Supp. Fig. 2(a). It can be observed that the network is learning, and all loss terms start 600 

converging at around epoch 1000. The regularization loss is also gradually reduced, 601 

which can prevent the network from overfitting to the training dataset, and thus improve 602 

the generalization ability of the network. For stage 2, the loss values in every 100 epochs 603 

are shown in Supp. Fig. 2(b). Note that the validation loss achieves the least value at 604 

epoch 100 and then converges to a higher loss value. However, in light of the total loss 605 

and the overall performance of the 𝐸𝑛𝑐2(⋅) network, we select epoch 2700 as the best 606 

model, which has the second least validation loss, but with much lower regression loss 607 

and regularization loss compared to those at epoch 100. 608 

 609 

 610 

 611 

 612 

 613 

 614 
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Figure Captions List for Supplementary Materials 644 

 645 

Supp. Fig. 1 An example showing the comparison between resulting extrusion mesh 

models using a point set after the approximation method and the final 

simplified point set 

Supp. Fig. 2 (a) The loss values from Stage 1 training of the car models; (b) The loss 

values from Stage 2 training of the car models 
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