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ABSTRACT

In this paper, we present a predictive and generative design approach to supporting the conceptual design
of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural
network architecture, which consists of two modules: 1) a training module with two encoders and one
decoder (E*D network); and 2) an application module performing the generative design of new 3D shapes
and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the
proposed approach in the design of 3D car body and mugs. The results show that our approach can

generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single

! Corresponding author: zsha@austin.utexas.edu
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silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details,
which have better visualization than voxels and point clouds, and are ready for downstream engineering

evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing).

1. INTRODUCTION

Sketching plays an essential role in sparking creative ideas to explore emerging
design concepts [1]. For example, in car design, characteristic contour lines are often
used to represent silhouettes in supporting conceptual design of car body shapes [2, 3],
which complements many other ideation approaches, such as freehand sketches, design
analogies, and prototypes. Compared to freehand sketches, silhouettes regularize the
sketching process, and thereby makes sketching easier and more manageable. This is
particularly useful for designers who lack professional sketching skills. However,
silhouettes, as a specific type of 2D sketches, are often ambiguous and lack of geometric
details. In later design stages, such as embodiment design, a 3D computer-aided design
(CAD) model is often required to more accurately evaluate the engineering performance
of a design concept. 3D shapes can also provide better visualization and thus help
designers better understand the design, inspiring them to develop new shapes and refine
geometric details. Therefore, the question is: can we build a system to predict and
automatically generate 3D shapes just based on silhouettes?

Such a system will yield several benefits. First, it automates the 2D-to-3D
reconstruction process, thereby saving labor and time. Designers can allocate more
resources for better design iteration and ideation. Second, all silhouettes created during
the conceptual design stage can be evaluated against the desired engineering performance

in 3D form. So, designs that would have better performance will not be ruled out too
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early when performance-driven decisions (i.e., rational decisions) are not yet obtained.
Third, ordinary people would not be discouraged to show their design ideas merely due to
the lack of CAD experience or sketching skills. This may have significant educational
implications for training novice designers and facilitate the democratization of design
innovation. Lastly, enterprises may use this system to enable user interface soliciting
consumer preferences for design customization.

However, automatically reconstructing 3D shapes directly from 2D sketches is a
challenge because it is an ill-defined problem due to insufficient and imperfect
information from simple strokes [4]. To tackle this challenge, inspired by the target-
embedding autoencoder (TEA) network [5, 6], we propose a novel target-embedding
variational autoencoder (TEVAE) (see Fig. 1(a)). The TEVAE architecture consists of
two modules: 1) A training module with an E2D network that has two encoders and one
decoder. 2) An application module performing two functions: generative design function,
such as shape interpolation and random generation of new 3D shapes; and predictive
design function (i.e., 3D shape prediction from silhouette sketches). The integration of
generative and predictive functions is beneficial in that it makes the structure of the
neural network compact, thus saving training costs. To demonstrate the utility and
generalizability of the proposed approach, we apply it to two case studies in the design of
3D car body and mugs.

The contributions of this paper are summarized below.

a) To the best of our knowledge, this is the first attempt of developing a system
integrating both predictive and generative functions of 3D mesh shapes from

silhouettes. The TEA has a classic autoencoder that can perform pseudo
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b)

d)

generative tasks, but essentially, is not a generative model. Our TEVAE applies
variational autoencoders (VAEs) and becomes a true generative model. It can also
learn a continuous and smooth latent representation of the data.

Predicting 3D shapes from silhouettes is more challenging because a silhouette
sketch provides less information (e.g., depth and normal maps) than traditional
freehand sketches with inner contour lines. To that end, we introduce an
intermediate step (e.g., extrusion or rotation) to first convert the silhouette to a 3D
primitive shape. This transforms the original 2D-to-3D problem to a 3D-to-3D
problem, which promotes a stable training process and the generation of reliable
and viable 3D shapes.

Building upon a graph convolutional mesh VAE [7], our approach can directly
output high-quality 3D mesh shapes that are more storage-efficient for high-
resolution 3D structure, compared to point clouds [8] and voxels [9]. 3D meshes
also facilitates engineering analyses because they are compatible with existing
computer-aided engineering (CAE) software?.

A data automation program is developed for training data pairs of 3D shapes that

can be used in any TEA-like neural networks for supervised learning problems.

2. LITERATURE REVIEW

In this section, we review the existing research that is most relevant to our work.

2.1 Learning-Based Sketch-to-3D Generation Methods

2 “Meshes” are used for 3D representation here. In CAE software, there is a concept called “meshing”.
Meshing is a process that breaks down the continuous geometric space of an object into a discrete
number of shape elements. All 3D representations including meshes and native CAD data format (e.g.,
IGES, DWG, and STL) that can be directly input to CAE software have to go through the meshing process
for analysis.



100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

ASME Journal of Mechanical Design

Point clouds and voxels have been widely used as 3D representations for sketch-
to-3D generation [8-10]. These methods need to postprocess the resulting 3D shapes to
meshes for better visualization, which still suffer from low surface quality. There are
studies attempting to directly produce high-quality mesh shapes. For example, concurrent
with the development of our approach, Guillard et al. [11] propose a pipeline to
reconstruct and edit 3D shapes from 2D sketches. They train an encoder/decoder
architecture to regress surface meshes from freehand sketches. The method applies a
differentiable rendering technique to iteratively refine the resulting 3D shapes. Similarly,
Xiang et al. [12] integrate a differentiable rendering approach to an end-to-end learning
framework for predicting 3D mesh shapes from line drawings.

All methods above are promising and have inspired us to explore a more
challenging task, i.e., to predict a 3D shape from a simple silhouette sketch. Our approach
is similar to [10, 11, 13, 14] in that we only need one single sketch as input, but we create
a new neural network architecture that can predict a 3D shape from a single silhouette
and simultaneously generate novel 3D shapes. The direct output shapes are 3D meshes
with high-quality surface details, thus, requiring no postprocessing.

2.2 Learning-Based Generative Design Methods

Learning-based generative design (GD) methods have been primarily developed
based on two techniques, generative adversarial networks (GANs) [15] and variational
autoencoders (VAEs) [16]. There are several approaches for 2D designs [17-19], but they
are not appropriate for design applications that require 3D models. In 3D applications,
Shu et al. [20] present a method that combines GAN and the physics-based virtual

environment introduced in [18] to generate high-performance 3D aircraft models. Zhang
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et al. [21] propose a method using a VAE, a physics-based simulator, and a functional
design optimizer to synthesize 3D aircrafts with prescribed engineering performance.
Building upon [17], Yoo et al. [22] develop a deep learning-based CAD/CAE framework
that can automatically generate 3D car wheels from 2D images. Gunpinar et al. [3] apply
a spatial simulated annealing algorithm to generate various silhouettes of cars, which are
then extruded to 3D car models. Those models can be further refined by sweeping a
predefined cross-section sketch. However, simply extrusion does not guarantee
satisfactory outcomes, and the resulting 3D car models look unreal.
2.3 Target-Embedding Representation Learning

Girdhar et al. propose a TL-embedding network [6] that is composed of a T-
network for training and an L-network for testing. The T-network contains an
autoencoder (encoder-decoder) network and a CNN. After training, the L-network can be
used to predict 3D shapes in voxel from images. Similarly, Mostajabi et al. [23] uses an
autoencoder and a CNN to perform the semantic segmentation task of images. Dalca et
al. [24] apply a similar network structure as [6, 23], consisting of a prior generative
model to generate paired data (biomedical images and anatomical regions) to solve the
scarcity of labeled image data for anatomical segmentation tasks. Jarrett and Schaar [5]
categorize these studies as supervised representation learning methods. They observe that
when the dimension of the target data space is higher or similar to the feature data space,
a target-embedding autoencoder (TEA) can be more effective than a feature-embedding
autoencoder (FEA). The authors verify that the TEA structure will guarantee the learning

stability by using a mathematical proof of a simple linear TEA and showing the empirical
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results from a complex non-linear TEA. Inspired by those existing works, we construct
the target-embedding variational autoencoder (TEVAE) architecture.
3. APPROACH

The proposed target-embedding variational autoencoder (TEVAE) architecture,
shown in Fig. 1(a), consists of two modules: a training module and an application
module.
3.1 The E?D Network and the Two-Stage Training

The key component of the training module is the E2D network that consists of
two encoders and one decoder, which is constructed by concatenating an encoder (labeled
as Enc,(-)) to a mesh VAE (an encoder-decoder network, labeled as Enc,(-) and Dec(+))
[7]. The Ency(-) maps target shapes (S;, i.e., the original authentic 3D mesh shapes) to a
low-dimensional latent space, and the Dec(-) maps latent vectors from that latent space
to 3D mesh shapes. With the same network structure as Enc, (), Enc,(+) takes source
shapes (Ss, the 3D mesh shapes extruded from silhouette sketches of the target shapes) as
the input and maps them to the same dimensional latent space as the mesh VAE.

We adopt the same loss function developed in [7] to train Enc,(-) and Dec(-).
For Enc,(+), we create a new loss function L, as below.

L, = aDgegress + Dr (1

where o is the weight for the regression loss and

M
1 ) .
DRegress = WZ”IJ-ZL - ull”% ()

i=1
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Figure 1: (a) The proposed approach using target-embedding variational autoencoder
(TEVAE); (b) The preparation of data pairs

denotes the Euclidean loss, where 1, is the output of Enc,(-) using X* as input and p,‘ is

the mean vector obtained from the latent space of the mesh VAE using the input of Y*.

Dy, is the regularization loss applied to improve the generalization ability of the Enc,(-).
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We apply a two-stage training strategy [23] to jointly train the mesh VAE and
Enc,(-) from scratch. In Stage 1, the mesh VAE is trained independently. In Stage 2, we
fix all the learning parameters of the mesh VAE and train Enc,(-) by minimizing L.

3.2 The Predictive Network and Generative Network

After the E2D network is trained, we connect Enc,(-) to Dec(+) to form the
predictive network. It can take a 3D extrusion mesh shape as input and output a 3D mesh
shape that is similar to the input shape but has finer geometric details, making it authentic
and aesthetic. We use the trained mesh VAE as the generative network, which can
perform generative design tasks, including shape reconstruction, interpolation, and
random generation.

3.3 Preparation of Data Pairs

Data pairs {S%, S{}V_, are needed to train the E2D network. Fig. 1(b) shows the
process of obtaining one training data pair using a car body as an example. From the
sideview image of an authentic 3D car model, we extract its contour points, from which
we can obtain an extrusion model using the FreeCAD Python API. We develop a set of
Python scripts that fully automate the whole process, which are made open-source for the
community’. We process N = 1240 car models obtained from [25] and N = 203 mug
models from [26]. For car models, we keep only car bodies by removing all the other
parts, such as mirrors, wheels, and spoilers.

3.4 Shape Preprocessing and Feature Representation
The E2D network requires input mesh shapes in both the source shape set

({SHY.,) and the target shape set ({S{},) to have the same topology (i.e., the same

3 https://github.com/Xingang1990/TEVAE
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number of vertices and the same mesh connectivity). However, the mesh typologies
between the two datasets can be different. For simplicity, we use a uniform topology for
both datasets and the non-rigid registration method [27] is applied to meet this
requirement. Nonrigid registration is a widely used technique in the computer graphics
field to map one point set (e.g., point cloud, mesh) to another. A uniform unit cube mesh
with 19.2k triangles (9602 vertices) is used to register all mesh shapes. This makes all
shapes have the same topology as the cube mesh, but remain the same as their original
shapes and geometric details.

The As-Consistent-As-Possible (ACAP) method [28] is applied to extract features
of a 3D shape to input to the E2D network. We deform the aforementioned uniform cube
mesh to a target 3D mesh shape by multiplying deformation matrices, from which nine
unique numbers can be extracted for each vertex of the mesh shape. Thus, a shape with v
vertices can be represented by a feature matrix My € RY*?, where v = 9602 in our
implementation. We can get the feature representations of the source shape dataset X =
{X*}¥_, and the target shape dataset Y = {Y'}\_,, where N = 1240 for the car models
and N = 203 for the mug models, and {X*, Y*} forms the input feature of one data pair.

More details of the approach and the training of the E2D network are provided in
the [Supplementary Material].

4. CASE STUDIES AND RESULTS
4.1 Implementation of the Two-Stage Training

For training the mesh VAE in Stage 1, the input target shape dataset Y = {Y'})_,

is randomly divided into the training set (80%) and the test set (20%). For training the

Enc, () network in Stage 2, we also do an 80-20 split of the source shape dataset X =
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212 {X*}¥_,, and meanwhile use the data pair to make sure the i*" target shape (S})

213 corresponds to the i*" source shape (S!) in both the training and test sets.
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Figure 2: (a) Results of car bodies: predicted shapes (in the fourth row) and
reconstructed shapes (in the second row); (b) The prediction results of mugs
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4.2 The Predictive Network

The predictive network aims to predict a 3D shape from an input silhouette
sketch. We conducted experiments on the prediction of the training set and the test set.
The results of the car models are shown in Fig. 2(a). For the result of the training set, the
first row shows the target shapes, and the following rows are their corresponding
reconstruction shapes from the mesh VAE, extrusion shapes (with silhouettes marked in
dark), and the predicted shapes, respectively. The results indicate that, given an input
extrusion shape from the corresponding silhouette sketch, the predictive network is
capable of predicting an authentic 3D shape, as illustrated in the fourth row. It should be
noted that even though we are targeting shapes (ground truth) in the first row, the best
results that can be achieved from the predictive network are the reconstruction shapes in
the second row. The reconstruction shapes and the corresponding predicted shapes look
identical in terms of visual appearance, but are different in geometric details. To show the
difference, we compute the Hausdorff distance between those shapes and visualize the
distance values in the fifth row. Similar results are also observed for the shapes in the test
set, which indicates a good generalization of the network because the test set shapes are
unseen data for the network. This is particularly important in real-world applications,
where user input often does not resemble existing shapes in a training dataset.

The prediction results of the mug models are shown in Fig. 2(b). The first two
rows are the source shapes that are obtained from extruding the silhouettes, while the last
two rows are the corresponding predicted shapes. Mugs are generally non-extrudable
from side-view silhouettes, so the extrusion shapes look more like toast instead of mugs.

However, our approach can still predict authentic mug shapes. Please note that, besides
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extruding, other 3D modeling techniques, such as revolving and sweeping, can also be
used to obtain 3D primitive shapes. Extruding is adopted in this study for ease of
implementation. In addition, it provides us with basic geometric features for 3D shape

prediction.

Training Shape

/VMJJ\/

Testing Shape

| Training Shape And Testing Shdpe

2 PIPTP P
PPGFPP

(b)

Figure 3: (a) The results of shape interpolation for three cases; (b) The results of random
generation shapes along with two nearest neighbor (NN) shapes

4.3 The Generative Network

For the generative network, different generative operations, such as shape
reconstruction, interpolation, and random generation, can be performed. The
reconstructed 3D shapes are already shown in the second row for both the training set and

the testing set in Fig. 2(a). For shape interpolation, new 3D shapes are synthesized by
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linearly interpolating two target 3D shapes through their encoded latent vectors. We
demonstrate the results of shape interpolation in three cases using the case study of car
models (see Fig. 3(a)): 1) interpolation between two training shapes, 2) between two test
shapes, and 3) between a training shape and a test shape. In each case, the first and the
last columns are the shapes to be interpolated, and the in-between columns are linearly
interpolated shapes. It can be observed that there is a gradual transition of the shape
geometry between the two target shapes.

For random shape generation, latent vectors are randomly sampled from the latent
space of the Mesh VAE, and decoded by the trained Dec(-) to 3D mesh shapes. Fig. 3(b)
shows that the generative network can generate novel car models (in the first row) that
are not seen in the original dataset. This is validated by finding their nearest neighbors
(NNs) (the second and third rows) in the original dataset based on the Hausdorff distance.
A quick visual comparison between the randomly generated car models and their NNs
tells the differences, and they are indeed new shapes.
5. CONCLUSION

To tackle the challenge of predicting a 3D shape from a silhouette sketch, we
present a novel target-embedding variational autoencoder (TEVAE) network that enables
a 2D-to-3D design approach. Our approach can effectively predict a 3D shape from a
silhouette sketch. The predicted 3D shape is consistent with the input sketch, and is
authentic with rich geometric details. Such a design transformation could greatly shorten
the iteration between the design ideation to CAD modeling. The approach can also

generate novel 3D shapes, and thus could better inspire designers for their creative work.
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The resulting 3D shapes are represented in meshes, which are ready for downstream

engineering analyses, evaluation, and prototype (e.g., 3D printing).

a)

(
Mug
handle j

(b)

Figure 4: Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a mug)
can be partitioned to several genus-zero shapes. Then, the proposed approach can be
applied to each component for shape exploration and synthesis

Quantity yields quality, and this can be achieved by broadening the initial pool of
concept ideas [29]. We believe that the presented approach can help designers explore the

design space more efficiently and stimulate creative design ideas in early design stages.
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From the methodology point of view, this new generative design approach is general
enough to be applied in many applications where 3D shape modeling and rendering are
necessary. As long as the sketch can provide a major perspective view of an object, like
the frontview of a human body and the sideview of a bottle, the corresponding authentic
3D shape can be predicted and novel shape concepts can be generated. In addition, our
approach is friendly to ordinary people who have few professional sketching skills, since
it only requires a simple silhouette of an object as input.

There are a few limitations in the current study that the authors would like to
share. First, the current model only handles genus-zero shapes and ignores any through
holes (e.g., the hole between the body and the handle of a mug in Fig. 2(b)) in the original
shape due to the non-rigid registration [27]. However, many design artifacts are usually
non-genus-zero (e.g., a mug with a through hole between the body and the handle) or
have more complex geometry consisting of many components, e.g., a plane model can
have a body, two wings, and three tails, etc., as shown in Fig. 4(a).

To address this limitation, a part-aware method [26, 30] may be a potential
solution. We perform a quick experiment using a part-aware mug design problem (see
Fig. 4(b)). In this particular application, users can first draw an outline sketch for an
individual component (e.g., a mug body or a handle). Then, the corresponding 3D mesh
shape can be predicted and new shapes can be generated. Lastly, the resulting individual
components can be combined to a holistic structure allowing non-genus-zero topology.
However, the part-aware strategy could not work for parts that are non-genus-zero and
unable to be further decomposed into genus-zero components, e.g., a chair back with

hollow-out structures and holes. In this experiment, we applied a cube mesh template to
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register mug models using non-rigid registration [27] as introduced previously. However,
we observed that artifacts with a large curvature could not be perfectly registered (e.g.,
the mug handle in Fig. 4(b) highlighted by a circle). This issue can be alleviated by using
different templates of 3D primitives, e.g., a sphere or a cylinder.

In addition to the part-aware method, other methods based on new 3D
representations could also be applied to address the first limitation. For example,
primitive-based methods can use a set of primitive surfaces to represent a 3D shape [31-
34]. Implicit 3D representation (e.g., signed distance fields [35, 36]) can characterize 3D
surfaces implicitly, and the resulting 3D geometries can be converted to mesh
representation. These methods can capture the topology changes of 3D shapes without
using a template mesh for data registration, thus deserving our future exploration.

Second, the constructed 3D shapes are consistent with the designer's sketch in
terms of sideview, but they might not be the same as what the designer has in mind. To
address this limitation, we plan to integrate interactive modeling techniques to build a
graphical user interface (GUI) for users to adjust the generated 3D shapes according to
their preferences.

Third, the generative network performs well in shape reconstruction and shape
interpolation, but the success rate of random shape generation is lower than one-third due
to the sparsity of the training data. Therefore, the random shape generation function is not
fully reliable in practice for now. This problem could be solved by obtaining more 3D
shape data using data augmentation methods, such as the one presented in the study of
[13], to improve the diversity and quality of the training dataset. These limitations

motivate us to further improve the current model in the future.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Figure Captions List

(a) The proposed approach using target-embedding variational
autoencoder (TEVAE); (b) The preparation of data pairs

(a) Results of car bodies: predicted shapes (in the fourth row) and
reconstructed shapes (in the second row); (b) The prediction results of
mugs

(a) The results of shape interpolation for three cases; (b) The results of
random generation shapes along with two nearest neighbor (NN) shapes
Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a
mug) can be partitioned to several genus-zero shapes. Then, the proposed
approach can be applied to each component for shape exploration and

synthesis
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SUPPLEMENTARY MATERIALS
Part 1: The ED Network

We construct the E2D network by concatenating an encoder (Enc,(-)) to a mesh
VAE [1]. The Enc,(+) has the following network structure: two graph convolutional
(Conv) layers with a batch normalization (BN) layer and a fanh activation function
following each graph Conv layer, one pooling layer, and a third graph Conv layer. The
output of the last Conv layer is mapped to a 128-dimensional space that contains a mean
vector (u; € R'?8) and a deviation vector (o € R1?®) by two different fully-connected
(FC) layers. The mean vector does not have an activation function and the deviation
vector uses sigmoid as the activation function. The Enc,(-) shares the same network
structure as Enc, (-) except that only one FC layer is used to form the latent vector
(n, € R'?8) because the standard deviation vector is not needed here. Enc, (+) takes Y
and Enc,(-) takes X as input, where X € RV* and Y € RV*? are feature representations
of source shapes (S) and target shapes (S;), respectively. V represents the number of
vertices of a 3D mesh shape. S are 3D extrusion mesh models extruded from sideview
sketches of the original authentic 3D mesh models (S;).

The decoder (Dec(-)) mirrors the encoders and it consists of an FC layer, a graph
Conv layer and a de-pooling layer, followed by two graph Conv layers. Each Conv layer
is connected to a BN layer and a fanh activation function except the third Conv layer. The
Dec(-) takes the latent vector z; = W; + o€ as input, where € € N(0, 1) which is a
standard multivariate Gaussian distribution. The output of Dec(-) is Y € RV*? which has

the same dimension as the input Y and can be used to reconstruct 3D mesh shapes.
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The entire E2D network is trained by minimizing the following loss function:
Liotar = ALy + L, (1)
where L, is the loss function for Enc,(-) which has been shown in the paper, 11is a
weight parameter, and L, is the loss function for the mesh VAE. L; can be written as:
Ly = ayLgecon + @2Lgy + Ligey (2)
where a; and a, are the weights of different loss terms, and
M
Lnecan = 57 Y 1Y =711 G)
2M -
denotes the mean squared error (MSE) reconstruction loss, where Y* and ?irepresent the
input feature matrix of the i*" model and the corresponding output of the mesh VAE,
respectively. || -||r is the Frobenius norm of the matrix and M is the number of mesh
shapes in the training dataset.

Lg, = DKL(CI(Z1 [1Y)] |P(Z1)) 4)
represents the Kullback—Leibler (KL) divergence loss to promote the Gaussian
distribution in the latent space, where z; is the latent vector, p(z,) is the prior
probability, q(z1||Y) is the posterior distribution given the feature matrix Y, and Dy, is
the KL-divergence. Lg, is the squared [, norm regularization loss of the parameters
which is used to avoid overfitting to the training data to improve the generalization ability
of the mesh VAE.

For the two-stage training in our application, in Stage 1, the mesh VAE is trained
independently. The network is initialized at random and trained end-to-end by
minimizing L, as shown in Supp. Equation (2). The 128-dimensional mean vectors 1,

from the latent space of the trained mesh VAE, will be used in Stage 2 training. In Stage
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510 2, we fix all the learning parameters of the trained mesh VAE and train Enc,(-). Enc,(+)
511  is also initialized randomly. It is trained by minimizing L, as shown in Equations (1) and

512 (2) of the paper.

The Point Set After The The Final Simplified
Simplification (421 Points) Point Set (106 Points)

Supplemental Figure 1: An example showing the comparison between resulting
extrusion mesh models using a point set after the approximation method and the
final simplified point set

513

514  Part 2: Data Pair Preparation

515 We present more details of the process of how we prepare training data pairs (see
516  Fig 1(b) of the paper) using a car body as the example. Data can be processed as the

517  following steps.

518 1) Obtain the sideview image from an authentic 3D car mesh shape.

519 2) Get the binary image from the sideview image.

520 3) Extract the contour of the binary image, which results in a dense point set.
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4) Get a simplified point set using a simple contour approximation method provided
in OpenCV-Python package.

5) Get an extrusion shape using the FreeCAD Python API. Then, the original
authentic 3D mesh shape (target shape) and the extrusion shape (source shape)
form one data pair.

An approximation method is used in Step 4 because the extrusion model directly
from the original contour points (a dense point set) has zigzags on its surface, which
affects the quality of the extruded shapes. The contour approximation method can keep
more points where the geometry is more complex (e.g., bumper lines, windshield lines)
and fewer points where the geometry is simpler (e.g., the bottom line). In our
implementation, as shown in Supp. Fig. 1, this simplification process results in a point set
that has around 400 points (varies a little for different car models), and we reduce the
number of points by a factor of 1/4 to around 100 points for a further avoidance of
zigzags on the models' surface, which can still preserve the contour shape well thanks to
the simplification method. It can be observed that the resulting extrusion mesh model
using the finally simplified point set has a smoother surface than that using the point set
directly after the simplification. In addition, to make sure the extruded model has an
equivalent scale as the original authentic model, for each point set, we calculate the
diagonal length of its bounding box Diag®*s and the diagonal length of the bounding box
of sideview of its corresponding original authentic mesh model Diag* as illustrated by
blue dash lines in Fig. 1(b) of the paper. We then scale down the coordinates of the

finally simplified point set by a factor of Diag>/Diag®*s. We also move the center of the
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bounding box of the point set to the origin (0, 0). The top right image in Supp. Fig. 1
shows an example of the final simplified point set displayed in FreeCAD.

In Step 5, to obtain the extrusion model, we need to specify the extrusion depth in
the orthogonal direction (z-axis) on the sideview. We use the z dimension size of the
bounding box of the original authentic 3D mesh model as the extrusion depth. We store
the x and y coordinates of the simplified point set and the extrusion depth in a CSV file
in Step 4, which will be used as input for a Python script using the FreeCAD Python API
to generate a 2D sideview sketch first and then extrude the sketch to an extrusion mesh
model.

We develop a set of Python scripts that fully automate the whole process, and the
scripts are made open-source for the community

(https.//github.com/Xingang 1 990/TEVAE).

Part 3: Feature Representation

We present more details of how we apply the as-consistent-as-possible (ACAP)
algorithm [2] to obtain feature representations of 3D mesh shapes. Given a set of 3D
mesh shapes with the same topology, each shape is represented by S,,,, where m €
[1,..,n]. pm; € R3 is denoted as the i*" vertex of the m*" shape S,,. The first shape S;
is the reference shape. Let N; represent the index set of 1-ring neighbors of the i*" vertex
on a 3D shape. 1-ring neighbors are all adjacent vertices that are connected to a vertex
with one edge. We can then get the deformation matrix Ty, ; € R3*3 that represents the

local shape deformation by Supp. Equation (5).

argmin Z i jll(Pmi — Pmj) = Tmi(Pri — Poj)I3 (5)

" JEN;
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where ¢; ; is the cotangent weight. Using polar decomposition, we can then get Ty,; =
Ry, iSm.i» where Ry, ; € R3*3 is an orthogonal matrix representing rotation deformation
and S, ; € R®*3 is a real symmetry matrix describing the scale and shear deformation.
log Ry, ; 1s a skew-symmetry matrix, from which we can extract 3 entries (i.e., the upper
triangular matrix excluding the diagonal elements that are always zeros). Additionally,
we can get 6 entries (i.e., the upper triangular matrix that includes diagonal elements)
from Sy, ; since it is a symmetry matrix. Thus, for each vertex, 9 features can be obtained
and concatenated to a 9-dimensional vector q,, ;. In a result, a mesh shape with V' vertices

can be represented by a feature matrix M € RV*°. The first shape S; is a uniform cube
with 9602 vertices, which is the same as the one used in the registration process, so V =
9602 in our applications.

Part 4: Training Details of the Approach

We present the detail of the training process using the case study of car design as
an example, and the training of the neural network for mug shapes generation follows the
same procedure. We apply a two-stage training strategy to train the E%D network. We set
A = 1 in the total loss function as shown in Supp. Equation (1), the value of which does
not affect the training in our case per se, because we actually minimize L, and L,
independently.

For training the mesh VAE in Stage 1 (i.e., Enc,(:) and Dec(-)), the input target
shape dataset is randomly split into the training set (80%) and testing set (20%). The
generalization ability of the mesh VAE (i.e., whether the trained model is overfitting to
the training data or not) is evaluated by the validation loss on the testing data (unseen

data). It is also worth investigating the impact of the Ly; term on the performance of the
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generative network. By trial-and-error, we find that a; = 40 and o, = 10 for Supp.
Equation (2) produces the best results in terms of the reconstruction loss, validation loss,
KL-divergence loss, and the regularization loss. In minimizing the losses, the Adam
optimizer is applied with a learning rate of [r; = 0.0001. The batch size is set as 32, and
the training batches are randomly sampled from the training dataset. We train the mesh

VAE 4000 epochs and save the best model that has the least validation loss.
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Supplemental Figure 2: (a) The loss values from Stage 1 training of the car models;
(b) The loss values from Stage 2 training of the car models
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For training the Enc,(-) network in Stage 2, we also do an 80-20 split, and
meanwhile use the data pair to make sure the it" target shape (S}) corresponds to the i"
source shape (S!) in both the training and testing sets. This ensures that the 20% testing
shapes are always unseen data. We set @ = 1 in Equation (2) of the paper. The optimizer,
the learning rate Ir,, and the number of epochs follow the same setting of Stage 1.

For stage 1, the loss values during the training process of car models are reported
in Supp. Fig. 2(a). It can be observed that the network is learning, and all loss terms start
converging at around epoch 1000. The regularization loss is also gradually reduced,
which can prevent the network from overfitting to the training dataset, and thus improve
the generalization ability of the network. For stage 2, the loss values in every 100 epochs
are shown in Supp. Fig. 2(b). Note that the validation loss achieves the least value at
epoch 100 and then converges to a higher loss value. However, in light of the total loss
and the overall performance of the Enc,(-) network, we select epoch 2700 as the best
model, which has the second least validation loss, but with much lower regression loss

and regularization loss compared to those at epoch 100.
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Supp. Fig. 1  An example showing the comparison between resulting extrusion mesh
models using a point set after the approximation method and the final
simplified point set
Supp. Fig. 2 (a) The loss values from Stage 1 training of the car models; (b) The loss

values from Stage 2 training of the car models
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