

A Predictive and Generative Design Approach for 3D Mesh Shapes Using Target-Embedding Variational Autoencoder

Xingang Li

Walker Department of Mechanical Engineering
University of Texas at Austin
Austin, TX 78712, USA
xingang.li@utexas.edu
ASME Student Member

Charles Xie

Institute for Future Intelligence
Natick, MA 01760, USA
charles@intofuture.org

Zhenghui Sha¹

Walker Department of Mechanical Engineering
University of Texas at Austin
Austin, TX 78712, USA
zsha@austin.utexas.edu
ASME Member

ABSTRACT

In this paper, we present a predictive and generative design approach to supporting the conceptual design of product shapes in 3D meshes. We develop a target-embedding variational autoencoder (TEVAE) neural network architecture, which consists of two modules: 1) a training module with two encoders and one decoder (E²D network); and 2) an application module performing the generative design of new 3D shapes and the prediction of a 3D shape from its silhouette. We demonstrate the utility and effectiveness of the proposed approach in the design of 3D car body and mugs. The results show that our approach can generate a large number of novel 3D shapes and successfully predict a 3D shape based on a single

¹ Corresponding author: zsha@austin.utexas.edu

33 silhouette sketch. The resulting 3D shapes are watertight polygon meshes with high-quality surface details,
34 which have better visualization than voxels and point clouds, and are ready for downstream engineering
35 evaluation (e.g., drag coefficient) and prototyping (e.g., 3D printing).

36

37 1. INTRODUCTION

38 Sketching plays an essential role in sparking creative ideas to explore emerging
39 design concepts [1]. For example, in car design, characteristic contour lines are often
40 used to represent silhouettes in supporting conceptual design of car body shapes [2, 3],
41 which complements many other ideation approaches, such as freehand sketches, design
42 analogies, and prototypes. Compared to freehand sketches, silhouettes regularize the
43 sketching process, and thereby makes sketching easier and more manageable. This is
44 particularly useful for designers who lack professional sketching skills. However,
45 silhouettes, as a specific type of 2D sketches, are often ambiguous and lack of geometric
46 details. In later design stages, such as embodiment design, a 3D computer-aided design
47 (CAD) model is often required to more accurately evaluate the engineering performance
48 of a design concept. 3D shapes can also provide better visualization and thus help
49 designers better understand the design, inspiring them to develop new shapes and refine
50 geometric details. Therefore, the question is: can we build a system to predict and
51 automatically generate 3D shapes just based on silhouettes?

52 Such a system will yield several benefits. First, it automates the 2D-to-3D
53 reconstruction process, thereby saving labor and time. Designers can allocate more
54 resources for better design iteration and ideation. Second, all silhouettes created during
55 the conceptual design stage can be evaluated against the desired engineering performance
56 in 3D form. So, designs that would have better performance will not be ruled out too

57 early when performance-driven decisions (i.e., rational decisions) are not yet obtained.
58 Third, ordinary people would not be discouraged to show their design ideas merely due to
59 the lack of CAD experience or sketching skills. This may have significant educational
60 implications for training novice designers and facilitate the democratization of design
61 innovation. Lastly, enterprises may use this system to enable user interface soliciting
62 consumer preferences for design customization.

63 However, automatically reconstructing 3D shapes directly from 2D sketches is a
64 challenge because it is an ill-defined problem due to insufficient and imperfect
65 information from simple strokes [4]. To tackle this challenge, inspired by the target-
66 embedding autoencoder (TEA) network [5, 6], we propose a novel target-embedding
67 variational autoencoder (TEVAE) (see Fig. 1(a)). The TEVAE architecture consists of
68 two modules: 1) A training module with an E^2D network that has two encoders and one
69 decoder. 2) An application module performing two functions: *generative design* function,
70 such as shape interpolation and random generation of new 3D shapes; and *predictive*
71 *design* function (i.e., 3D shape prediction from silhouette sketches). The integration of
72 generative and predictive functions is beneficial in that it makes the structure of the
73 neural network compact, thus saving training costs. To demonstrate the utility and
74 generalizability of the proposed approach, we apply it to two case studies in the design of
75 3D car body and mugs.

76 The contributions of this paper are summarized below.

77 a) To the best of our knowledge, this is the first attempt of developing a system
78 integrating both predictive and generative functions of 3D mesh shapes from
79 silhouettes. The TEA has a classic autoencoder that can perform pseudo

80 generative tasks, but essentially, is not a generative model. Our TEVAE applies
81 variational autoencoders (VAEs) and becomes a true generative model. It can also
82 learn a continuous and smooth latent representation of the data.

83 b) Predicting 3D shapes from silhouettes is more challenging because a silhouette
84 sketch provides less information (e.g., depth and normal maps) than traditional
85 freehand sketches with inner contour lines. To that end, we introduce an
86 intermediate step (e.g., extrusion or rotation) to first convert the silhouette to a 3D
87 primitive shape. This transforms the original 2D-to-3D problem to a 3D-to-3D
88 problem, which promotes a stable training process and the generation of reliable
89 and viable 3D shapes.

90 c) Building upon a graph convolutional mesh VAE [7], our approach can directly
91 output high-quality 3D mesh shapes that are more storage-efficient for high-
92 resolution 3D structure, compared to point clouds [8] and voxels [9]. 3D meshes
93 also facilitates engineering analyses because they are compatible with existing
94 computer-aided engineering (CAE) software².

95 d) A data automation program is developed for training data pairs of 3D shapes that
96 can be used in any TEA-like neural networks for supervised learning problems.

97 2. LITERATURE REVIEW

98 In this section, we review the existing research that is most relevant to our work.

99 2.1 Learning-Based Sketch-to-3D Generation Methods

² “Meshes” are used for 3D representation here. In CAE software, there is a concept called “meshing”. Meshing is a process that breaks down the continuous geometric space of an object into a discrete number of shape elements. All 3D representations including meshes and native CAD data format (e.g., IGES, DWG, and STL) that can be directly input to CAE software have to go through the meshing process for analysis.

100 Point clouds and voxels have been widely used as 3D representations for sketch-
101 to-3D generation [8-10]. These methods need to postprocess the resulting 3D shapes to
102 meshes for better visualization, which still suffer from low surface quality. There are
103 studies attempting to directly produce high-quality mesh shapes. For example, concurrent
104 with the development of our approach, Guillard et al. [11] propose a pipeline to
105 reconstruct and edit 3D shapes from 2D sketches. They train an encoder/decoder
106 architecture to regress surface meshes from freehand sketches. The method applies a
107 differentiable rendering technique to iteratively refine the resulting 3D shapes. Similarly,
108 Xiang et al. [12] integrate a differentiable rendering approach to an end-to-end learning
109 framework for predicting 3D mesh shapes from line drawings.

110 All methods above are promising and have inspired us to explore a more
111 challenging task, i.e., to predict a 3D shape from a simple silhouette sketch. Our approach
112 is similar to [10, 11, 13, 14] in that we only need one single sketch as input, but we create
113 a new neural network architecture that can predict a 3D shape from a single silhouette
114 and simultaneously generate novel 3D shapes. The direct output shapes are 3D meshes
115 with high-quality surface details, thus, requiring no postprocessing.

116 **2.2 Learning-Based Generative Design Methods**

117 Learning-based generative design (GD) methods have been primarily developed
118 based on two techniques, generative adversarial networks (GANs) [15] and variational
119 autoencoders (VAEs) [16]. There are several approaches for 2D designs [17-19], but they
120 are not appropriate for design applications that require 3D models. In 3D applications,
121 Shu et al. [20] present a method that combines GAN and the physics-based virtual
122 environment introduced in [18] to generate high-performance 3D aircraft models. Zhang

123 et al. [21] propose a method using a VAE, a physics-based simulator, and a functional
124 design optimizer to synthesize 3D aircrafts with prescribed engineering performance.
125 Building upon [17], Yoo et al. [22] develop a deep learning-based CAD/CAE framework
126 that can automatically generate 3D car wheels from 2D images. Gunpinar et al. [3] apply
127 a spatial simulated annealing algorithm to generate various silhouettes of cars, which are
128 then extruded to 3D car models. Those models can be further refined by sweeping a
129 predefined cross-section sketch. However, simply extrusion does not guarantee
130 satisfactory outcomes, and the resulting 3D car models look unreal.

131 **2.3 Target-Embedding Representation Learning**

132 Girdhar et al. propose a TL-embedding network [6] that is composed of a T-
133 network for training and an L-network for testing. The T-network contains an
134 autoencoder (encoder-decoder) network and a CNN. After training, the L-network can be
135 used to predict 3D shapes in voxel from images. Similarly, Mostajabi et al. [23] uses an
136 autoencoder and a CNN to perform the semantic segmentation task of images. Dalca et
137 al. [24] apply a similar network structure as [6, 23], consisting of a prior generative
138 model to generate paired data (biomedical images and anatomical regions) to solve the
139 scarcity of labeled image data for anatomical segmentation tasks. Jarrett and Schaar [5]
140 categorize these studies as supervised representation learning methods. They observe that
141 when the dimension of the target data space is higher or similar to the feature data space,
142 a target-embedding autoencoder (TEA) can be more effective than a feature-embedding
143 autoencoder (FEA). The authors verify that the TEA structure will guarantee the learning
144 stability by using a mathematical proof of a simple linear TEA and showing the empirical

145 results from a complex non-linear TEA. Inspired by those existing works, we construct
 146 the target-embedding variational autoencoder (TEVAE) architecture.

147 **3. APPROACH**

148 The proposed target-embedding variational autoencoder (TEVAE) architecture,
 149 shown in Fig. 1(a), consists of two modules: a training module and an application
 150 module.

151 **3.1 The E^2D Network and the Two-Stage Training**

152 The key component of the training module is the E^2D network that consists of
 153 two encoders and one decoder, which is constructed by concatenating an encoder (labeled
 154 as $Enc_2(\cdot)$) to a mesh VAE (an encoder-decoder network, labeled as $Enc_1(\cdot)$ and $Dec(\cdot)$)
 155 [7]. The $Enc_1(\cdot)$ maps target shapes (S_t , i.e., the original authentic 3D mesh shapes) to a
 156 low-dimensional latent space, and the $Dec(\cdot)$ maps latent vectors from that latent space
 157 to 3D mesh shapes. With the same network structure as $Enc_1(\cdot)$, $Enc_2(\cdot)$ takes source
 158 shapes (S_s , the 3D mesh shapes extruded from silhouette sketches of the target shapes) as
 159 the input and maps them to the same dimensional latent space as the mesh VAE.

160 We adopt the same loss function developed in [7] to train $Enc_1(\cdot)$ and $Dec(\cdot)$.

161 For $Enc_2(\cdot)$, we create a new loss function L_2 as below.

$$L_2 = \alpha D_{Regress} + D_R \quad (1)$$

162 where α is the weight for the regression loss and

$$D_{Regress} = \frac{1}{2M} \sum_{i=1}^M \|\mu_2^i - \mu_1^i\|_2^2 \quad (2)$$

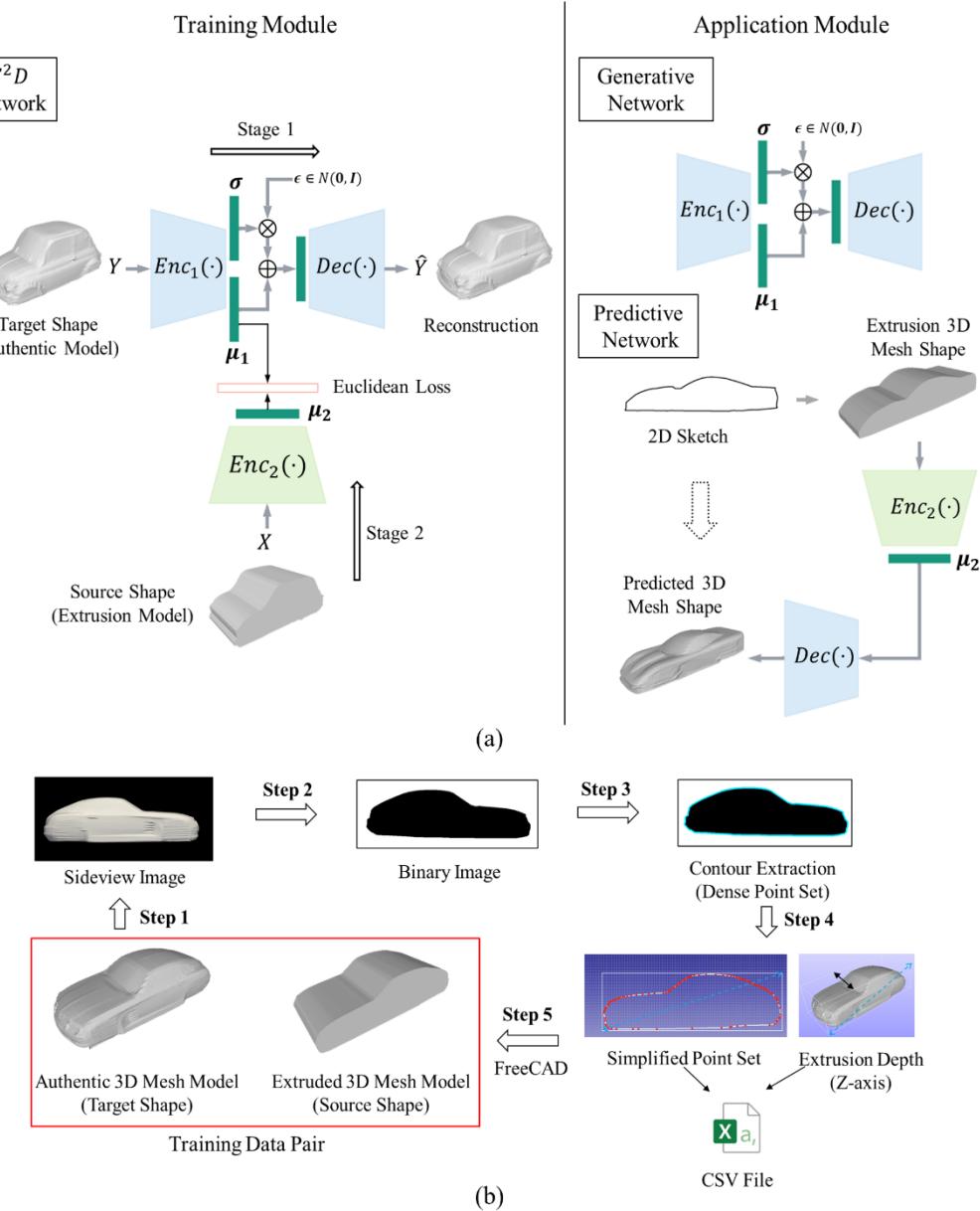


Figure 1: (a) The proposed approach using target-embedding variational autoencoder (TEVAE); (b) The preparation of data pairs

163

164 denotes the Euclidean loss, where μ_2^i is the output of $Enc_2(\cdot)$ using X^i as input and μ_1^i is
 165 the mean vector obtained from the latent space of the mesh VAE using the input of Y^i .
 166 D_R is the regularization loss applied to improve the generalization ability of the $Enc_2(\cdot)$.

167 We apply a two-stage training strategy [23] to jointly train the mesh VAE and
 168 $Enc_2(\cdot)$ from scratch. In Stage 1, the mesh VAE is trained independently. In Stage 2, we
 169 fix all the learning parameters of the mesh VAE and train $Enc_2(\cdot)$ by minimizing L_2 .

170 **3.2 The Predictive Network and Generative Network**

171 After the E^2D network is trained, we connect $Enc_2(\cdot)$ to $Dec(\cdot)$ to form the
 172 predictive network. It can take a 3D extrusion mesh shape as input and output a 3D mesh
 173 shape that is similar to the input shape but has finer geometric details, making it authentic
 174 and aesthetic. We use the trained mesh VAE as the generative network, which can
 175 perform generative design tasks, including shape reconstruction, interpolation, and
 176 random generation.

177 **3.3 Preparation of Data Pairs**

178 Data pairs $\{S_s^i, S_t^i\}_{i=1}^N$ are needed to train the E^2D network. Fig. 1(b) shows the
 179 process of obtaining one training data pair using a car body as an example. From the
 180 sideview image of an authentic 3D car model, we extract its contour points, from which
 181 we can obtain an extrusion model using the FreeCAD Python API. We develop a set of
 182 Python scripts that fully automate the whole process, which are made open-source for the
 183 community³. We process $N = 1240$ car models obtained from [25] and $N = 203$ mug
 184 models from [26]. For car models, we keep only car bodies by removing all the other
 185 parts, such as mirrors, wheels, and spoilers.

186 **3.4 Shape Preprocessing and Feature Representation**

187 The E^2D network requires input mesh shapes in both the source shape set
 188 $(\{S_s^i\}_{i=1}^N)$ and the target shape set $(\{S_t^i\}_{i=1}^N)$ to have the same topology (i.e., the same

³ <https://github.com/Xingang1990/TEVAE>

189 number of vertices and the same mesh connectivity). However, the mesh typologies
 190 between the two datasets can be different. For simplicity, we use a uniform topology for
 191 both datasets and the non-rigid registration method [27] is applied to meet this
 192 requirement. Nonrigid registration is a widely used technique in the computer graphics
 193 field to map one point set (e.g., point cloud, mesh) to another. A uniform unit cube mesh
 194 with 19.2k triangles (9602 vertices) is used to register all mesh shapes. This makes all
 195 shapes have the same topology as the cube mesh, but remain the same as their original
 196 shapes and geometric details.

197 The As-Consistent-As-Possible (ACAP) method [28] is applied to extract features
 198 of a 3D shape to input to the E^2D network. We deform the aforementioned uniform cube
 199 mesh to a target 3D mesh shape by multiplying deformation matrices, from which nine
 200 unique numbers can be extracted for each vertex of the mesh shape. Thus, a shape with v
 201 vertices can be represented by a feature matrix $M_f \in \mathbb{R}^{v \times 9}$, where $v = 9602$ in our
 202 implementation. We can get the feature representations of the source shape dataset $X =$
 203 $\{X^k\}_{k=1}^N$ and the target shape dataset $Y = \{Y^l\}_{l=1}^N$, where $N = 1240$ for the car models
 204 and $N = 203$ for the mug models, and $\{X^i, Y^i\}$ forms the input feature of one data pair.

205 More details of the approach and the training of the E^2D network are provided in
 206 the [Supplementary Material].

207 4. CASE STUDIES AND RESULTS

208 4.1 Implementation of the Two-Stage Training

209 For training the mesh VAE in Stage 1, the input target shape dataset $Y = \{Y^l\}_{l=1}^N$
 210 is randomly divided into the training set (80%) and the test set (20%). For training the
 211 $Enc_2(\cdot)$ network in Stage 2, we also do an 80-20 split of the source shape dataset $X =$

212 $\{X^k\}_{k=1}^N$, and meanwhile use the data pair to make sure the i^{th} target shape (S_t^i)
 213 corresponds to the i^{th} source shape (S_s^i) in both the training and test sets.

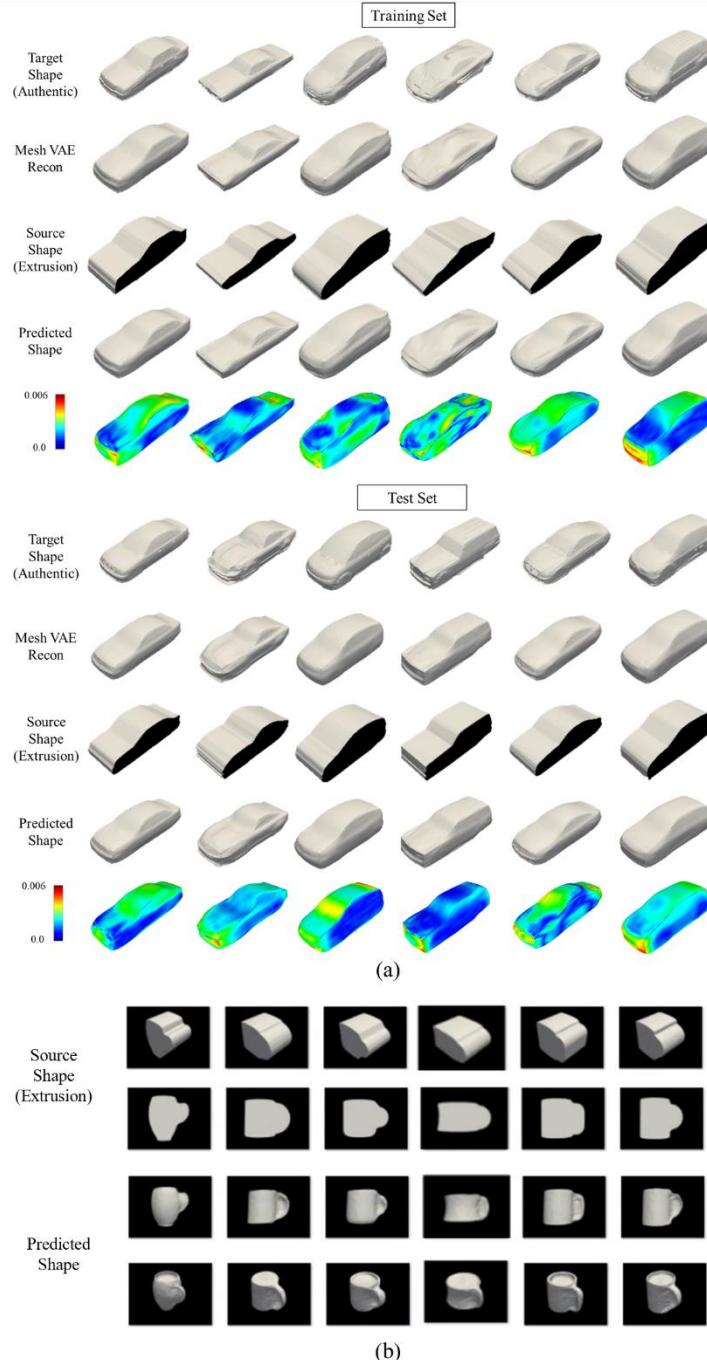


Figure 2: (a) Results of car bodies: predicted shapes (in the fourth row) and reconstructed shapes (in the second row); (b) The prediction results of mugs

215 **4.2 The Predictive Network**

216 The predictive network aims to predict a 3D shape from an input silhouette
217 sketch. We conducted experiments on the prediction of the training set and the test set.
218 The results of the car models are shown in Fig. 2(a). For the result of the training set, the
219 first row shows the target shapes, and the following rows are their corresponding
220 reconstruction shapes from the mesh VAE, extrusion shapes (with silhouettes marked in
221 dark), and the predicted shapes, respectively. The results indicate that, given an input
222 extrusion shape from the corresponding silhouette sketch, the predictive network is
223 capable of predicting an authentic 3D shape, as illustrated in the fourth row. It should be
224 noted that even though we are targeting shapes (ground truth) in the first row, the best
225 results that can be achieved from the predictive network are the reconstruction shapes in
226 the second row. The reconstruction shapes and the corresponding predicted shapes look
227 identical in terms of visual appearance, but are different in geometric details. To show the
228 difference, we compute the Hausdorff distance between those shapes and visualize the
229 distance values in the fifth row. Similar results are also observed for the shapes in the test
230 set, which indicates a good generalization of the network because the test set shapes are
231 unseen data for the network. This is particularly important in real-world applications,
232 where user input often does not resemble existing shapes in a training dataset.

233 The prediction results of the mug models are shown in Fig. 2(b). The first two
234 rows are the source shapes that are obtained from extruding the silhouettes, while the last
235 two rows are the corresponding predicted shapes. Mugs are generally non-extrudable
236 from side-view silhouettes, so the extrusion shapes look more like toast instead of mugs.
237 However, our approach can still predict authentic mug shapes. Please note that, besides

238 extruding, other 3D modeling techniques, such as revolving and sweeping, can also be
 239 used to obtain 3D primitive shapes. Extruding is adopted in this study for ease of
 240 implementation. In addition, it provides us with basic geometric features for 3D shape
 241 prediction.

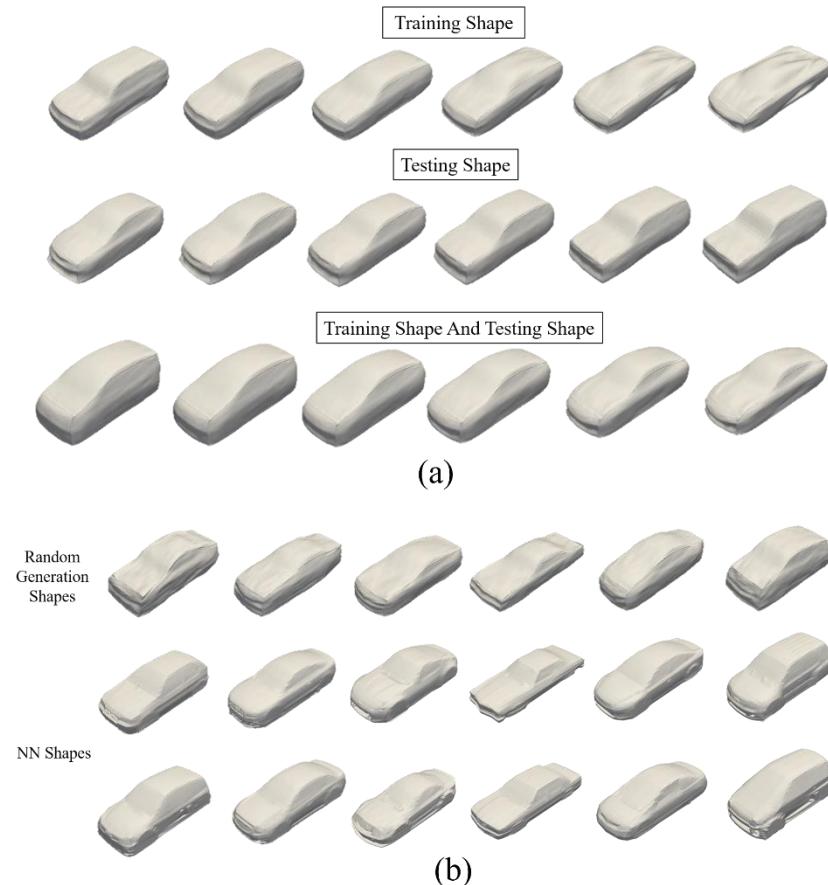


Figure 3: (a) The results of shape interpolation for three cases; (b) The results of random generation shapes along with two nearest neighbor (NN) shapes

242

243 4.3 The Generative Network

244 For the generative network, different generative operations, such as shape
 245 reconstruction, interpolation, and random generation, can be performed. The
 246 reconstructed 3D shapes are already shown in the second row for both the training set and
 247 the testing set in Fig. 2(a). For shape interpolation, new 3D shapes are synthesized by

248 linearly interpolating two target 3D shapes through their encoded latent vectors. We
249 demonstrate the results of shape interpolation in three cases using the case study of car
250 models (see Fig. 3(a)): 1) interpolation between two training shapes, 2) between two test
251 shapes, and 3) between a training shape and a test shape. In each case, the first and the
252 last columns are the shapes to be interpolated, and the in-between columns are linearly
253 interpolated shapes. It can be observed that there is a gradual transition of the shape
254 geometry between the two target shapes.

255 For random shape generation, latent vectors are randomly sampled from the latent
256 space of the Mesh VAE, and decoded by the trained $Dec(\cdot)$ to 3D mesh shapes. Fig. 3(b)
257 shows that the generative network can generate novel car models (in the first row) that
258 are not seen in the original dataset. This is validated by finding their nearest neighbors
259 (NNs) (the second and third rows) in the original dataset based on the Hausdorff distance.
260 A quick visual comparison between the randomly generated car models and their NNs
261 tells the differences, and they are indeed new shapes.

262 **5. CONCLUSION**

263 To tackle the challenge of predicting a 3D shape from a silhouette sketch, we
264 present a novel target-embedding variational autoencoder (TEVAE) network that enables
265 a 2D-to-3D design approach. Our approach can effectively predict a 3D shape from a
266 silhouette sketch. The predicted 3D shape is consistent with the input sketch, and is
267 authentic with rich geometric details. Such a design transformation could greatly shorten
268 the iteration between the design ideation to CAD modeling. The approach can also
269 generate novel 3D shapes, and thus could better inspire designers for their creative work.

270 The resulting 3D shapes are represented in meshes, which are ready for downstream
 271 engineering analyses, evaluation, and prototype (e.g., 3D printing).

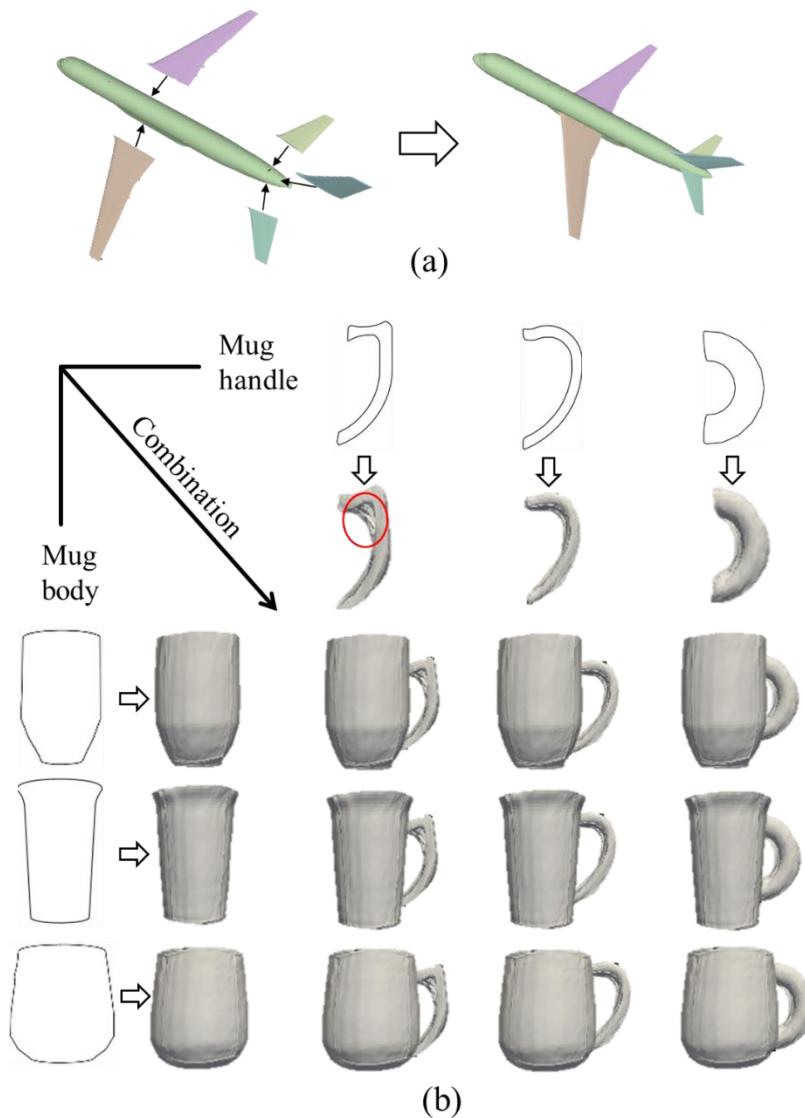


Figure 4: Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a mug) can be partitioned to several genus-zero shapes. Then, the proposed approach can be applied to each component for shape exploration and synthesis

272
 273 Quantity yields quality, and this can be achieved by broadening the initial pool of
 274 concept ideas [29]. We believe that the presented approach can help designers explore the
 275 design space more efficiently and stimulate creative design ideas in early design stages.

276 From the methodology point of view, this new generative design approach is general
277 enough to be applied in many applications where 3D shape modeling and rendering are
278 necessary. As long as the sketch can provide a major perspective view of an object, like
279 the frontview of a human body and the sideview of a bottle, the corresponding authentic
280 3D shape can be predicted and novel shape concepts can be generated. In addition, our
281 approach is friendly to ordinary people who have few professional sketching skills, since
282 it only requires a simple silhouette of an object as input.

283 There are a few limitations in the current study that the authors would like to
284 share. First, the current model only handles genus-zero shapes and ignores any through
285 holes (e.g., the hole between the body and the handle of a mug in Fig. 2(b)) in the original
286 shape due to the non-rigid registration [27]. However, many design artifacts are usually
287 non-genus-zero (e.g., a mug with a through hole between the body and the handle) or
288 have more complex geometry consisting of many components, e.g., a plane model can
289 have a body, two wings, and three tails, etc., as shown in Fig. 4(a).

290 To address this limitation, a part-aware method [26, 30] may be a potential
291 solution. We perform a quick experiment using a part-aware mug design problem (see
292 Fig. 4(b)). In this particular application, users can first draw an outline sketch for an
293 individual component (e.g., a mug body or a handle). Then, the corresponding 3D mesh
294 shape can be predicted and new shapes can be generated. Lastly, the resulting individual
295 components can be combined to a holistic structure allowing non-genus-zero topology.
296 However, the part-aware strategy could not work for parts that are non-genus-zero and
297 unable to be further decomposed into genus-zero components, e.g., a chair back with
298 hollow-out structures and holes. In this experiment, we applied a cube mesh template to

299 register mug models using non-rigid registration [27] as introduced previously. However,
300 we observed that artifacts with a large curvature could not be perfectly registered (e.g.,
301 the mug handle in Fig. 4(b) highlighted by a circle). This issue can be alleviated by using
302 different templates of 3D primitives, e.g., a sphere or a cylinder.

303 In addition to the part-aware method, other methods based on new 3D
304 representations could also be applied to address the first limitation. For example,
305 primitive-based methods can use a set of primitive surfaces to represent a 3D shape [31-
306 34]. Implicit 3D representation (e.g., signed distance fields [35, 36]) can characterize 3D
307 surfaces implicitly, and the resulting 3D geometries can be converted to mesh
308 representation. These methods can capture the topology changes of 3D shapes without
309 using a template mesh for data registration, thus deserving our future exploration.

310 Second, the constructed 3D shapes are consistent with the designer's sketch in
311 terms of sideview, but they might not be the same as what the designer has in mind. To
312 address this limitation, we plan to integrate interactive modeling techniques to build a
313 graphical user interface (GUI) for users to adjust the generated 3D shapes according to
314 their preferences.

315 Third, the generative network performs well in shape reconstruction and shape
316 interpolation, but the success rate of random shape generation is lower than one-third due
317 to the sparsity of the training data. Therefore, the random shape generation function is not
318 fully reliable in practice for now. This problem could be solved by obtaining more 3D
319 shape data using data augmentation methods, such as the one presented in the study of
320 [13], to improve the diversity and quality of the training dataset. These limitations
321 motivate us to further improve the current model in the future.

322 **ACKNOWLEDGMENT**

323 The authors appreciate the financial support from the NSF through the grant
324 DUE-1918847. We also thank Dr. Miaoqing Huang for granting us access to the
325 computer with GPUs to train the E^2D network.

326 **FUNDING**

327 This study is supported by the U.S. National Science Foundation (NSF) DUE
328 through grant #1918847.

329 **REFERENCES**

330 [1] Pratt, M. J., Anderson, B. D., and Ranger, T., 2005. "Towards the standardized
 331 exchange of parameterized feature-based cad models". *Computer-Aided Design*, 37(12),
 332 pp. 1251–1265.

333 [2] Reid, T. N., Gonzalez, R. D., and Papalambros, P. Y., 2010. "Quantification of
 334 perceived environmental friendliness for vehicle silhouette design". *Journal of
 335 Mechanical Design*, 132(10), 101010.

336 [3] Gunpinar, E., Ovur, S. E., and Gunpinar, S., 2019. "A user-centered side silhouette
 337 generation system for sedan cars based on shape templates". *Optimization and
 338 Engineering*, 20(3), pp. 683–723.

339 [4] Schmidt, R., Khan, A., Kurtenbach, G., and Singh, K., 2009. "On expert performance
 340 in 3d curve-drawing tasks". In *Proceedings of the 6th euro graphics symposium on
 341 sketch-based interfaces and modeling*, pp. 133–140.

342 [5] Jarrett, D., and van der Schaar, M., 2020. "Target- embedding autoencoders for
 343 supervised representation learning". *arXiv preprint arXiv:2001.08345*.

344 [6] Girdhar, R., Fouhey, D. F., Rodriguez, M., and Gupta, A., 2016. "Learning a
 345 predictable and generative vector representation for objects". In *European Conference on
 346 Computer Vision*, Springer, pp. 484–499.

347 [7] Yuan, Y.-J., Lai, Y.-K., Yang, J., Duan, Q., Fu, H., and Gao, L., 2020. "Mesh
 348 variational autoencoders with edge contraction pooling". In *Proceedings of the
 349 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp.
 350 274–275.

351 [8] Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., and Wang, R., 2017. "3d shape
 352 reconstruction from sketches via multi-view convolutional networks". In *2017
 353 International Conference on 3D Vision (3DV)*, IEEE, pp. 67–77.

354 [9] Jin, A., Fu, Q., and Deng, Z., 2020. "Contour-based 3d modeling through joint
 355 embedding of shapes and contours". In *Symposium on Interactive 3D Graphics and
 356 Games*, pp. 1–10.

357 [10] Nozawa, N., Shum, H. P., Feng, Q., Ho, E. S., and Morishima, S., 2021. "3d car
 358 shape reconstruction from a contour sketch using gan and lazy learning". *The Visual
 359 Computer*, pp. 1–14.

360 [11] Guillard, B., Remelli, E., Yvernay, P., and Fua, P., 2021. "Sketch2mesh:
 361 Reconstructing and editing 3d shapes from sketches". *arXiv preprint arXiv:2104.00482*.

362 [12] Xiang, N., Wang, R., Jiang, T., Wang, L., Li, Y., Yang, X., and Zhang, J., 2020.
 363 "Sketch-based modeling with a differentiable renderer". *Computer Animation and Virtual
 364 Worlds*, 31(4-5), p. e1939.

365 [13] Nozawa, N., Shum, H. P., Ho, E. S., and Morishima, S., 2020. "Single sketch image
 366 based 3d car shape reconstruction with deep learning and lazy learning.". In *VISIGRAPP
 367 (1: GRAPP)*, pp. 179–190.

368 [14] Han, X., Gao, C., and Yu, Y., 2017. "Deepsketch2face: A deep learning based
 369 sketching system for 3d face and caricature modeling". *ACM Transactions on graphics
 370 (TOG)*, 36(4), pp. 1–12.

371 [15] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
 372 Courville, A., and Bengio, Y., 2014. "Generative adversarial nets". In *Advances in neural
 373 information processing systems*, pp. 2672–2680.

374 [16] Kingma, D. P., and Welling, M., 2013. “Auto-encoding variational bayes”. *arXiv preprint arXiv:1312.6114*.

375 [17] Oh, S., Jung, Y., Kim, S., Lee, I., and Kang, N., 2019. “Deep generative design: Integration of topology optimization and generative models”. *Journal of Mechanical Design*, 141(11).

376 [18] Dering, M., Cunningham, J., Desai, R., Yukish, M. A., Simpson, T. W., and Tucker, C. S., 2018. “A physics-based virtual environment for enhancing the quality of deep generative designs”. In *ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, American Society of Mechanical Engineers Digital Collection.

377 [19] Fujita, K., Minowa, K., Nomaguchi, Y., Yamasaki, S., and Yaji, K., 2021. “Design concept generation with variational deep embedding over comprehensive optimization”. In *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, Vol. 85390, American Society of Mechanical Engineers, p. V03BT03A038.

378 [20] Shu, D., Cunningham, J., Stump, G., Miller, S. W., Yukish, M. A., Simpson, T. W., and Tucker, C. S., 2020. “3d design using generative adversarial networks and physics-based validation”. *Journal of Mechanical Design*, 142(7).

379 [21] Zhang, W., Yang, Z., Jiang, H., Nigam, S., Yamakawa, S., Furuhata, T., Shimada, K., and Kara, L. B., 2019. “3d shape synthesis for conceptual design and optimization using variational autoencoders”. In *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, Vol. 59186, American Society of Mechanical Engineers, p. V02AT03A017.

380 [22] Yoo, S., Lee, S., Kim, S., Hwang, K. H., Park, J. H., and Kang, N., 2020. “Integrating deep learning into cad/cae system: Case study on road wheel design automation”. *arXiv preprint arXiv:2006.02138*.

381 [23] Mostajabi, M., Maire, M., and Shakhnarovich, G., 2018. “Regularizing deep networks by modeling and predicting label structure”. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5629–5638.

382 [24] Dalca, A. V., Guttag, J., and Sabuncu, M. R., 2018. “Anatomical priors in convolutional networks for unsupervised biomedical segmentation”. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 9290–9299.

383 [25] Umetani, N., 2017. “Exploring generative 3d shapes using autoencoder networks”. In *SIGGRAPH Asia 2017 technical briefs*. pp. 1–4.

384 [26] Gao, L., Yang, J., Wu, T., Yuan, Y.-J., Fu, H., Lai, Y. K., and Zhang, H., 2019. “Sdm-net: Deep generative network for structured deformable mesh”. *ACM Transactions on Graphics (TOG)*, 38(6), pp. 1–15.

385 [27] Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., and Theobalt, C., 2014. “Real-time non-rigid reconstruction using an RGB-D camera”. *ACM Transactions on Graphics (ToG)*, 33(4), pp. 1–12.

386 [28] Gao, L., Lai, Y.-K., Yang, J., Ling-Xiao, Z., Xia, S., and Kobbelt, L., 2019. “Sparse data driven mesh deformation”. *IEEE transactions on visualization and computer graphics*.

387 [29] Yang, M. C., 2003. “Concept generation and sketching: Correlations with design outcome”. In *International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*, Vol. 37017, pp. 829–834.

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420 [30] Li, X., Xie, C., and Sha, Z., 2021. “Part-aware product design agent using deep
421 generative network and local linear embedding”. *In Proceedings of the 54th Hawaii
422 International Conference on System Sciences*, p. 5250.

423 [31] Paschalidou, D., Katharopoulos, A., Geiger, A., and Fidler, S., 2021. “Neural parts:
424 Learning expressive 3d shape abstractions with invertible neural networks”. *In
425 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
426 pp. 3204–3215.

427 [32] Vasu, S., Talabot, N., Lukoianov, A., Baque, P., Donier, J., and Fua, P., 2021.
428 “Hybridsdf: Combining free form shapes and geometric primitives for effective shape
429 manipulation”. *arXiv preprint arXiv:2109.10767*.

430 [33] Jones, R. K., Hanocka, R., and Ritchie, D., 2021. “The neurally-guided shape parser:
431 A monte carlo method for hierarchical labeling of over-segmented 3d shapes”.
432 *arXiv preprint arXiv:2106.12026*.

433 [34] Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and Aubry, M., 2018. “A papier-
434 mâché approach to learning 3d surface generation”. *In Proceedings of the IEEE
435 conference on computer vision and pattern recognition*, pp. 216–224.

436 [35] Chen, Z., and Zhang, H., 2019. “Learning implicit fields for generative shape
437 modeling”. *In Proceedings of the IEEE/CVF Conference on Computer Vision and
438 Pattern Recognition*, pp. 5939–5948.

439 [36] Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S., 2019.
440 “Deepsdf: Learning continuous signed distance functions for shape representation”. *In
441 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
442 pp. 165–174.

443

Figure Captions List

444

Fig. 1 (a) The proposed approach using target-embedding variational autoencoder (TEVAE); (b) The preparation of data pairs

Fig. 2 (a) Results of car bodies: predicted shapes (in the fourth row) and reconstructed shapes (in the second row); (b) The prediction results of mugs

Fig. 3 (a) The results of shape interpolation for three cases; (b) The results of random generation shapes along with two nearest neighbor (NN) shapes

Fig. 4 Complex geometries (e.g., a toy plane) or non-genus-zero shapes (e.g., a mug) can be partitioned to several genus-zero shapes. Then, the proposed approach can be applied to each component for shape exploration and synthesis

445

446

Table Captions List

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469 **SUPPLEMENTARY MATERIALS**470 **Part 1: The E^2D Network**

471 We construct the E^2D network by concatenating an encoder ($Enc_2(\cdot)$) to a mesh
 472 VAE [1]. The $Enc_1(\cdot)$ has the following network structure: two graph convolutional
 473 (Conv) layers with a batch normalization (BN) layer and a *tanh* activation function
 474 following each graph Conv layer, one pooling layer, and a third graph Conv layer. The
 475 output of the last Conv layer is mapped to a 128-dimensional space that contains a mean
 476 vector ($\mu_1 \in \mathbb{R}^{128}$) and a deviation vector ($\sigma \in \mathbb{R}^{128}$) by two different fully-connected
 477 (FC) layers. The mean vector does not have an activation function and the deviation
 478 vector uses *sigmoid* as the activation function. The $Enc_2(\cdot)$ shares the same network
 479 structure as $Enc_1(\cdot)$ except that only one FC layer is used to form the latent vector
 480 ($\mu_2 \in \mathbb{R}^{128}$) because the standard deviation vector is not needed here. $Enc_1(\cdot)$ takes Y
 481 and $Enc_2(\cdot)$ takes X as input, where $X \in \mathbb{R}^{V \times 9}$ and $Y \in \mathbb{R}^{V \times 9}$ are feature representations
 482 of source shapes (S_s) and target shapes (S_t), respectively. V represents the number of
 483 vertices of a 3D mesh shape. S_s are 3D extrusion mesh models extruded from sideview
 484 sketches of the original authentic 3D mesh models (S_t).

485 The decoder ($Dec(\cdot)$) mirrors the encoders and it consists of an FC layer, a graph
 486 Conv layer and a de-pooling layer, followed by two graph Conv layers. Each Conv layer
 487 is connected to a BN layer and a *tanh* activation function except the third Conv layer. The
 488 $Dec(\cdot)$ takes the latent vector $z_1 = \mu_1 + \sigma\epsilon$ as input, where $\epsilon \in N(0, I)$ which is a
 489 standard multivariate Gaussian distribution. The output of $Dec(\cdot)$ is $\hat{Y} \in \mathbb{R}^{V \times 9}$ which has
 490 the same dimension as the input Y and can be used to reconstruct 3D mesh shapes.

491

492 The entire E^2D network is trained by minimizing the following loss function:

$$L_{total} = \lambda L_1 + L_2 \quad (1)$$

493 where L_2 is the loss function for $Enc_2(\cdot)$ which has been shown in the paper, λ is a
494 weight parameter, and L_1 is the loss function for the mesh VAE. L_1 can be written as:

$$L_1 = \alpha_1 L_{Recon} + \alpha_2 L_{KL} + L_{Reg} \quad (2)$$

495 where α_1 and α_2 are the weights of different loss terms, and

$$L_{Recon} = \frac{1}{2M} \sum_{i=1}^M ||Y^i - \hat{Y}^i||_F^2 \quad (3)$$

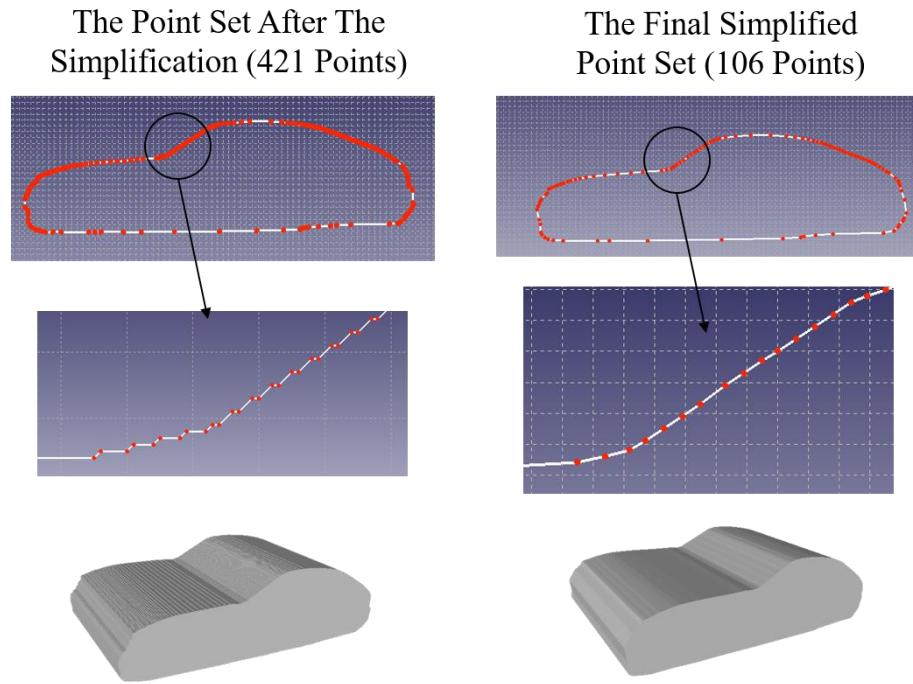
496 denotes the mean squared error (MSE) reconstruction loss, where Y^i and \hat{Y}^i represent the
497 input feature matrix of the i^{th} model and the corresponding output of the mesh VAE,
498 respectively. $|| \cdot ||_F$ is the Frobenius norm of the matrix and M is the number of mesh
499 shapes in the training dataset.

$$L_{KL} = D_{KL}(q(z_1||Y)||p(z_1)) \quad (4)$$

500 represents the Kullback–Leibler (KL) divergence loss to promote the Gaussian
501 distribution in the latent space, where z_1 is the latent vector, $p(z_1)$ is the prior
502 probability, $q(z_1||Y)$ is the posterior distribution given the feature matrix Y , and D_{KL} is
503 the KL-divergence. L_{Reg} is the squared l_2 norm regularization loss of the parameters
504 which is used to avoid overfitting to the training data to improve the generalization ability
505 of the mesh VAE.

506 For the two-stage training in our application, in Stage 1, the mesh VAE is trained
507 independently. The network is initialized at random and trained end-to-end by
508 minimizing L_1 as shown in Supp. Equation (2). The 128-dimensional mean vectors μ_1
509 from the latent space of the trained mesh VAE, will be used in Stage 2 training. In Stage

510 2, we fix all the learning parameters of the trained mesh VAE and train $Enc_2(\cdot)$. $Enc_2(\cdot)$
 511 is also initialized randomly. It is trained by minimizing L_2 as shown in Equations (1) and
 512 (2) of the paper.



Supplemental Figure 1: An example showing the comparison between resulting extrusion mesh models using a point set after the approximation method and the final simplified point set

513

514 **Part 2: Data Pair Preparation**

515 We present more details of the process of how we prepare training data pairs (see
 516 Fig 1(b) of the paper) using a car body as the example. Data can be processed as the
 517 following steps.

518 1) Obtain the sideview image from an authentic 3D car mesh shape.
 519 2) Get the binary image from the sideview image.
 520 3) Extract the contour of the binary image, which results in a dense point set.

521 4) Get a simplified point set using a simple contour approximation method provided
522 in OpenCV-Python package.

523 5) Get an extrusion shape using the FreeCAD Python API. Then, the original
524 authentic 3D mesh shape (target shape) and the extrusion shape (source shape)
525 form one data pair.

526 An approximation method is used in Step 4 because the extrusion model directly
527 from the original contour points (a dense point set) has zigzags on its surface, which
528 affects the quality of the extruded shapes. The contour approximation method can keep
529 more points where the geometry is more complex (e.g., bumper lines, windshield lines)
530 and fewer points where the geometry is simpler (e.g., the bottom line). In our
531 implementation, as shown in Supp. Fig. 1, this simplification process results in a point set
532 that has around 400 points (varies a little for different car models), and we reduce the
533 number of points by a factor of 1/4 to around 100 points for a further avoidance of
534 zigzags on the models' surface, which can still preserve the contour shape well thanks to
535 the simplification method. It can be observed that the resulting extrusion mesh model
536 using the finally simplified point set has a smoother surface than that using the point set
537 directly after the simplification. In addition, to make sure the extruded model has an
538 equivalent scale as the original authentic model, for each point set, we calculate the
539 diagonal length of its bounding box $Diag^{pts}$ and the diagonal length of the bounding box
540 of sideview of its corresponding original authentic mesh model $Diag^S$ as illustrated by
541 blue dash lines in Fig. 1(b) of the paper. We then scale down the coordinates of the
542 finally simplified point set by a factor of $Diag^S/Diag^{pts}$. We also move the center of the

543 bounding box of the point set to the origin (0, 0). The top right image in Supp. Fig. 1
 544 shows an example of the final simplified point set displayed in FreeCAD.

545 In Step 5, to obtain the extrusion model, we need to specify the extrusion depth in
 546 the orthogonal direction (z-axis) on the sideview. We use the z dimension size of the
 547 bounding box of the original authentic 3D mesh model as the extrusion depth. We store
 548 the x and y coordinates of the simplified point set and the extrusion depth in a CSV file
 549 in Step 4, which will be used as input for a Python script using the FreeCAD Python API
 550 to generate a 2D sideview sketch first and then extrude the sketch to an extrusion mesh
 551 model.

552 We develop a set of Python scripts that fully automate the whole process, and the
 553 scripts are made open-source for the community
 554 (<https://github.com/Xingang1990/TEVAE>).

555 Part 3: Feature Representation

556 We present more details of how we apply the as-consistent-as-possible (ACAP)
 557 algorithm [2] to obtain feature representations of 3D mesh shapes. Given a set of 3D
 558 mesh shapes with the same topology, each shape is represented by S_m , where $m \in$
 559 $[1, \dots, n]$. $p_{m,i} \in \mathbb{R}^3$ is denoted as the i^{th} vertex of the m^{th} shape S_m . The first shape S_1
 560 is the reference shape. Let N_i represent the index set of 1-ring neighbors of the i^{th} vertex
 561 on a 3D shape. 1-ring neighbors are all adjacent vertices that are connected to a vertex
 562 with one edge. We can then get the deformation matrix $T_{m,i} \in \mathbb{R}^{3 \times 3}$ that represents the
 563 local shape deformation by Supp. Equation (5).

$$\arg \min_{T_{m,i}} \sum_{j \in N_i} c_{i,j} \|(p_{m,i} - p_{m,j}) - T_{m,i}(p_{1,i} - p_{1,j})\|_2^2 \quad (5)$$

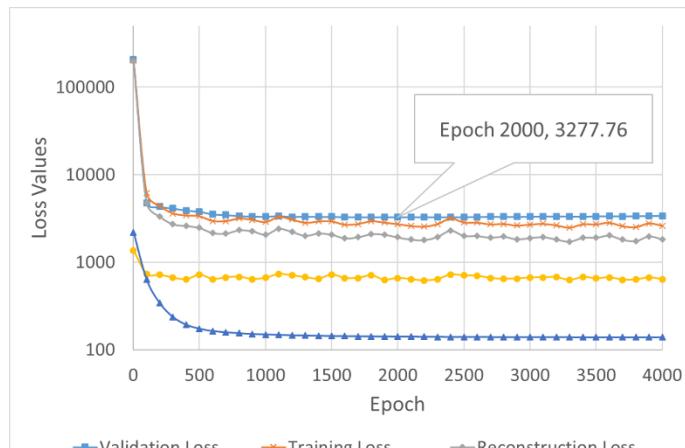
564 where $c_{i,j}$ is the cotangent weight. Using polar decomposition, we can then get $T_{m,i} =$
 565 $R_{m,i}S_{m,i}$, where $R_{m,i} \in \mathbb{R}^{3 \times 3}$ is an orthogonal matrix representing rotation deformation
 566 and $S_{m,i} \in \mathbb{R}^{3 \times 3}$ is a real symmetry matrix describing the scale and shear deformation.
 567 $\log R_{m,i}$ is a skew-symmetry matrix, from which we can extract 3 entries (i.e., the upper
 568 triangular matrix excluding the diagonal elements that are always zeros). Additionally,
 569 we can get 6 entries (i.e., the upper triangular matrix that includes diagonal elements)
 570 from $S_{m,i}$ since it is a symmetry matrix. Thus, for each vertex, 9 features can be obtained
 571 and concatenated to a 9-dimensional vector $q_{m,i}$. In a result, a mesh shape with V vertices
 572 can be represented by a feature matrix $M \in \mathbb{R}^{V \times 9}$. The first shape S_1 is a uniform cube
 573 with 9602 vertices, which is the same as the one used in the registration process, so $V =$
 574 9602 in our applications.

575 **Part 4: Training Details of the Approach**

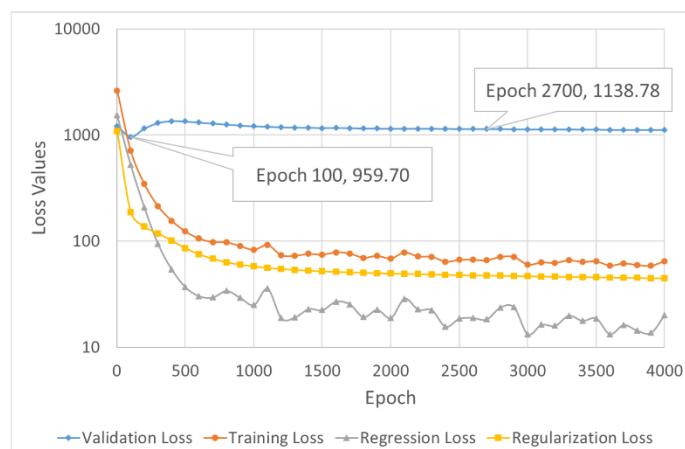
576 We present the detail of the training process using the case study of car design as
 577 an example, and the training of the neural network for mug shapes generation follows the
 578 same procedure. We apply a two-stage training strategy to train the E^2D network. We set
 579 $\lambda = 1$ in the total loss function as shown in Supp. Equation (1), the value of which does
 580 not affect the training in our case *per se*, because we actually minimize L_1 and L_2
 581 independently.

582 For training the mesh VAE in Stage 1 (i.e., $Enc_1(\cdot)$ and $Dec(\cdot)$), the input target
 583 shape dataset is randomly split into the training set (80%) and testing set (20%). The
 584 generalization ability of the mesh VAE (i.e., whether the trained model is overfitting to
 585 the training data or not) is evaluated by the validation loss on the testing data (unseen
 586 data). It is also worth investigating the impact of the L_{KL} term on the performance of the

587 generative network. By trial-and-error, we find that $\alpha_1 = 40$ and $\alpha_2 = 10$ for Supp.
 588 Equation (2) produces the best results in terms of the reconstruction loss, validation loss,
 589 KL-divergence loss, and the regularization loss. In minimizing the losses, the Adam
 590 optimizer is applied with a learning rate of $lr_1 = 0.0001$. The batch size is set as 32, and
 591 the training batches are randomly sampled from the training dataset. We train the mesh
 592 VAE 4000 epochs and save the best model that has the least validation loss.



(a)



(b)

Supplemental Figure 2: (a) The loss values from Stage 1 training of the car models;
 (b) The loss values from Stage 2 training of the car models

593

594 For training the $Enc_2(\cdot)$ network in Stage 2, we also do an 80-20 split, and
595 meanwhile use the data pair to make sure the i^{th} target shape (S_t^i) corresponds to the i^{th}
596 source shape (S_s^i) in both the training and testing sets. This ensures that the 20% testing
597 shapes are always unseen data. We set $\alpha = 1$ in Equation (2) of the paper. The optimizer,
598 the learning rate lr_2 , and the number of epochs follow the same setting of Stage 1.

599 For stage 1, the loss values during the training process of car models are reported
600 in Supp. Fig. 2(a). It can be observed that the network is learning, and all loss terms start
601 converging at around epoch 1000. The regularization loss is also gradually reduced,
602 which can prevent the network from overfitting to the training dataset, and thus improve
603 the generalization ability of the network. For stage 2, the loss values in every 100 epochs
604 are shown in Supp. Fig. 2(b). Note that the validation loss achieves the least value at
605 epoch 100 and then converges to a higher loss value. However, in light of the total loss
606 and the overall performance of the $Enc_2(\cdot)$ network, we select epoch 2700 as the best
607 model, which has the second least validation loss, but with much lower regression loss
608 and regularization loss compared to those at epoch 100.

609

610

611

612

613

614

615

616

617 **REFERENCES FOR SUPPLEMENTARY MATERIALS**

618 [1] Yuan, Y.-J., Lai, Y.-K., Yang, J., Duan, Q., Fu, H., and Gao, L., 2020. “Mesh
619 variational autoencoders with edge contraction pooling”. *In Proceedings of the*
620 *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp.
621 274–275.
622 [2] Gao, L., Lai, Y.-K., Yang, J., Ling-Xiao, Z., Xia, S., and Kobbelt, L., 2019. “Sparse
623 data driven mesh deformation”. *IEEE transactions on visualization and computer*
624 *graphics*.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

Figure Captions List for Supplementary Materials

645

Supp. Fig. 1 An example showing the comparison between resulting extrusion mesh models using a point set after the approximation method and the final simplified point set

Supp. Fig. 2 (a) The loss values from Stage 1 training of the car models; (b) The loss values from Stage 2 training of the car models

646

647