
 

 
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first 
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To 
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request 
permissions from permissions@acm.org. 
© 2022 Association for Computing Machinery. 
1084-4309/2022/1-ART1 $15.00  
http://dx.doi.org/10.1145/3564290 

ACM Trans. Des. Autom. Electron. Syst. 

Accelerating Graph Computations on 3D NoC-enabled PIM Architectures  

DWAIPAYAN CHOUDHURY, LIZHI XIANG, ARAVIND SUKUMARAN RAJAM, ANANTH 

KALYANARAMAN AND PARTHA PRATIM PANDE 

Washington State University, Pullman, WA 

Graph application workloads are dominated by random memory accesses with poor locality. To tackle the irregular 

and sparse nature of computation, ReRAM-based Processing-in-Memory (PIM) architectures have been proposed 

recently. Most of these ReRAM architecture designs have focused on mapping graph computations into a set of 

multiply-and-accumulate (MAC) operations. ReRAMs also offer a key advantage in reducing memory latency between 

cores and memory by allowing for processing-in-memory (PIM). However, when implemented on a ReRAM-based 

manycore architecture, graph applications still pose two key challenges – significant storage requirements 

(particularly due to wasted zero cell storage), and significant amount of on-chip traffic. To tackle these two challenges, 

in this paper we propose the design of a 3D NoC-enabled ReRAM-based manycore architecture. Our proposed 

architecture incorporates a novel crossbar-aware node reordering to reduce ReRAM storage requirements. Secondly, 

its 3D NoC-enabled design reduces on-chip communication latency. Our architecture outperforms the state-of-the-art 

in ReRAM-based graph acceleration by up to 5x in performance while consuming up to 10.3x less energy for a range of 

graph inputs and workloads.  
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1 INTRODUCTION 

Graphs have become ubiquitous in several data-driven applications and machine learning workflows, as 

they offer an effective way to model networked behavior in both the natural world and human-engineered 

systems. However, with steep increases in both the volume of observable data and the diversity in 

applications, scalable processing for graph workloads on emerging manycore platforms remains a 

challenge. While CPU- and GPU-based manycore platforms continue to be used for executing graph 

applications, poor locality in graph structures and irregular data access patterns pose significant 

challenges. Skewed vertex degree distributions of real-world graphs make it nearly impossible to maintain 

high locality in graph structures, causing repeated accesses to vertex neighborhoods or random walk 

traversals to incur a high volume of cache misses. Furthermore, the deep memory hierarchies in 

conventional manycore architectures (such as CPUs and GPUs) exacerbate the cost of data movement [1].  

Resistive random-access memory (ReRAM)-based Processing-in-Memory (PIM) modules, offer an 

effective way to address the high memory bandwidth requirement of graph analytics by integrating the 

computing logic in the memory. The ReRAM crossbars can store the adjacency matrix of a graph and the 

computation in most graph primitives can be decomposed into multiply-and-accumulate (MAC) 

operations, which are supported by ReRAM. However, most real-world graphs are sparse–i.e., with far 

fewer number of nonzero cells than the zero cells–causing significant wastage in the storage across the 

ReRAM crossbars (as only nonzeros contribute to meaningful computation). One way to reduce storage as 

well as improve locality in the distribution of nonzeros is through vertex (re)ordering [2]. By assigning 

similar ranks to vertices that are also neighbors on the graph, reordering techniques can effectively cluster 

the nonzero cells along the main diagonal of the adjacency matrix. While this increased density of nonzero 
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cells can reduce wasted storage on ReRAMs, current vertex reordering schemes are not fully equipped to 

maximize on this potential as they do not consider the crossbar structure of ReRAMs [3]. Secondly, current 

ReRAM-based approaches [2][3] also do not support an efficient communication backbone between 

ReRAM-based processing elements (PEs). Graph computations frequently feature irregular memory 

accesses including long range traffic between PEs, which could degrade overall performance and energy 

efficiency.  

In this paper, we address the above limitations of ReRAM-based graph acceleration by presenting the 

design of an efficient 3D Network-on-Chip (NoC)-enabled ReRAM manycore accelerator for graph 

analytics.  The main contributions are as follows: 

1) (Software-level) To improve performance and reduce storage for ReRAM-based graph applications, we 

propose an efficient crossbar-aware vertex reordering-based approach. 

2) (Hardware-level) To reduce communication latency for irregular graph workloads, we present the design of 

a 3D NoC architecture that optimizes ReRAM block placement on the manycore platform. 

3) (Evaluation) We present a thorough evaluation of our proposed architecture on various real-world graph 

inputs using different graph operations – namely, PageRank, Single Source Shortest Path (SSSP), Connected 

Components (CC), BFS and Triangle counting. Our proposed framework significantly outperforms existing 

state-of-the-art ReRAM-based graph accelerators both in terms of execution time and energy consumption. 

2 BACKGROUND AND RELATED WORK 

Designing specialized manycore architectures for graph analytics has been an area of active research in 

recent years. Though CPU and GPU-based manycore computing have been used, the data movement due 

to irregular memory accesses limits performance and energy efficiency. One possible way is to modify the 

organization of caches and partition them into multiple planar layers in a 3D structure to improve the 

cache hit rate [4]. DRAM-based Hybrid Memory Cube (HMC) is another way to enhance performance of 

graph accelerators [5][24][25]. However, the deep memory hierarchies in these architectures degrade the 

overall performance.  

Performance of most of the current ReRAM-based accelerators is limited by the sparsity and lack of 

locality in graph structures [6][7]. To this end, vertex reordering techniques can help by clustering non-

zero elements in graph adjacency matrix [2][3]. Yet, in almost all existing ReRAM-based graph accelerators 

either reordering techniques are unaware of crossbar structure, or the crossbar bounded property does not 

utilize the benefit introduced by the clustering of non-zero entries.  

Another factor influencing performance is the cost of data movement. An efficient communication 

backbone for inter-PE exchanges is critical; however, existing ReRAM-based graph accelerators do not 

support such efficient and scalable on-chip communication [3]. An optimized placement of the PEs and 

suitable network-on-chip (NoC) design have been shown to significantly improve the overall latency and 

energy efficiency, including for graph analytics [8]. However, these NoC architectures do not consider 

ReRAM-based PEs. Design of 3D NoC-based ReRAM architecture for training graph neural networks 

(GNN) involving dense weight matrices has been proposed [15]. The dense computations make the GNN 

workloads different from the sparsity seen in graph workloads. Hence, in this paper, we bridge the gap in 
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the state-of-the-art of ReRAM-based graph accelerators by designing a crossbar-aware vertex reordering 

scheme (software-level) complemented with an optimized NoC architecture (hardware-level) to achieve 

high performance and energy efficiency. We postulate that optimizing solely at either the software-level or 

at hardware-level will be inadequate as the gains achieved at one layer can be lost in the other if left 

unoptimized. In contrast, our software-hardware design is better positioned to generate significant 

performance gains because of its complementary nature – i.e., reducing data movement and storage 

requirement using software, while reducing communication latency using hardware. 

3 VERTEX REORDERING 

Preliminaries: Graph computations involve traversing the input sparse adjacency matrix corresponding 

to the graph. Since it is only the nonzero values of the matrix that contribute to work, reducing the zero 

storage becomes an important consideration. One way to achieve this is to rearrange the rows and 

columns of the adjacency matrix such that the concentration of nonzero cells is ۔clusteredە in only some 
regions of the matrix, so that the vast remaining sections of the matrix, which have only zero cells need 

not be stored.  

Vertex (re)ordering is an effective way to perform such a clustering [9]. Given an input graph � = (�, �) 

with n vertices (in V) and m edges in E, the goal is to compute a linear ordering � ∶ � → [1, �], for every 

vertex � ∈ �, such that the average linear gap distance in � between any two neighbors  �   ∈ � is 

minimized. The assignment �(�) is also referred to as the rank of vertex i. We refer to the original input 

ordering as the graph’s natural ordering (�(�) = �, for each � ∈ �). The process of taking a natural ordering 

and producing a different vertex ordering is referred to as ۔reorderingە. Several heuristics are used to 
generate reordering [10]. These schemes range from light-weight (e.g., degree-based) to more heavy-

weight (window- and partitioning-based) schemes [9]. However, most existing node reordering algorithms 

are designed assuming a more traditional parallel platform (multicores, cluster computing) and remain 

oblivious to the ReRAM crossbar structure. Two recently proposed ReRAM-based graph accelerators 

(GraphSAR[3]and Spara [2]) leveraged vertex reordering techniques which help to outperform several 

well-known previous investigations (e.g., GraphR [6] and HyVE [7]) making them appropriate as baselines 

to consider. 

GraphSAR [3] proposes vertex reordering technique where the rank of each vertex is assigned in an 

incremental order depending on their location in the original graph input file. More specifically, while 

loading the original edge list, an index is assigned to each new vertex starting from 0. For example, if 

vertices 1 and 3 are the vertices of the first edge listed in the input file, then these two vertices are 

renumbered as 0 and 1 respectively (i.e., 1 → 0 and 3 → 1). Subsequently, any vertex to be encountered for 

the first time is assigned the next unallocated vertex rank in an incremental fashion.  This implies that the 

vertex reordering will depend on the order in which the list of edges is provided at input. Figs. 1 (a) and (b) 

show the adjacency matrices of the original and the reordered graph while using GraphSAR. Considering 

the ReRAM crossbar of size 2x2 (for illustration purpose only), we can see that the number of active blocks 

for original and reordered graph from Figs. 1 (a) and (b). In this example, the GraphSAR scheme reduces 

the number of active blocks from twelve in the natural ordering to eleven in the GraphSAR ordering. This 

reordering scheme is oblivious to the underlying crossbar configuration.  
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Fig 1: The adjacency matrices for (a) original (Natural) and reordered graph for (b) GraphSAR, (c) Spara and 

(d) CARE. 

Spara [2] uses different graph formats (compressed sparse row (CSR) and column (CSC)) to determine 

the ranks for destination and source vertices of an edge. Starting from an initial vertex, it searches its 

destination vertex set based on the CSR-formatted graph. Next, each node in the destination vertex set is 

analyzed one-by-one to obtain a new source vertex set based on the CSC representation. Based on that 

source vertex set, it then finds the new destination vertex set until it reaches the bounded threshold, which 

directly depends on the crossbar size. Fig. 1 (c) shows the adjacency matrix of the reordered graph using 

Spara. Considering the threshold as two for illustration purpose, we can see from Fig. 1 (c) that the number 

of active blocks is nine in the reordered graph by Spara, whereas it is twelve for the original graph. Hence, 

clustering the edges by reordering results in the reduction of the number of active crossbars.  

However, the crossbar-aware feature does not fully exploit the advantage introduced by the clustering, 

leading to suboptimal use of ReRAM-based architectures. Moreover, Spara and GraphSAR both rely on 

sequentially processing the vertices to determine the new vertex labels. This makes both these two 

algorithms inherently sequential. Hence, we present a new crossbar-aware vertex reordering scheme 

called CARE that improves the clustering factor of the adjacency matrix and thus reduces the total number 

of ۔active blocks.ە 

Crossbar-Aware Vertex Reordering (CARE) Algorithm: A matrix block of size X*X is considered 

 active” if it contains at least one non-zero cell. The objective of the CARE algorithm is to minimize the۔

total number of active blocks (via reordering of rows and columns), which in turn reduces the execution 

time, storage requirement, and power consumption.  

Terminology: For a given adjacency matrix A, a row panel of size l starting at row r is a slice of A, 

which includes all rows from r to r+l-1. Let col_seg(j, r, l) denote a column segment of a given column j of 

length l starting at the cell at row r, i.e., the contiguous slice A[r:r+l-1, j]. A column segment col_seg(j, r, l) 

is considered ۔activeە if at least one of its cells is a non-zero. Similarly, a 2D block of matrix A is 

considered ۔activeە if at least one of its cells is a non-zero. Let    �         represent the set of column IDs 

of all the non-zero cells in row p. We define the similarity of two rows, p and q, using the Jaccard 

similarity of the active columns, i.e., 
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                             �            �             �            �                                     
The CARE algorithm is based on the following main ideas: (i) for a crossbar of size X, the number of 

active blocks is positively correlated with the number of active column segments; (ii) grouping rows with a 

high similarity can reduce the total number of active column segments; and (iii) empty 2D blocks within a 

row panel can be safely ignored.  

Row ordering: Building on these ideas, CARE first tries to reorder rows with high similarity together 

and then reorders the columns to minimize the total number of active 2D blocks. First, rows are reordered 

so that similar rows are assigned contiguous row ids. Jaccard similarity can be used to group and reorder 

the rows; however, such an approach is expensive (  �   ; n = #rows,   = average #nnz per row). 

Alternatively, a light-weight approach is to sort the rows based on the number of non-zeros – intuitively, 

vertex (row) pairs that share a high Jaccard similarity also need to have similar degrees (i.e., a necessary 

but not sufficient condition). Once the rows are reordered, the set of rows is partitioned into row panels of 

size X. Fig. 2 depicts phase 1 of our algorithm. Fig. 2 (a) shows the original adjacency matrix A. Fig. 2 (b) 

shows the state of A after row sorting. Fig. 2 (c) shows the conceptual view of A after the X-way row panel 

split.  

 
Fig. 2: Overview of CARE reordering algorithm (X represents crossbar size) 
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Column ordering: The second step of the approach reorders the columns. While existing approaches reorder 

columns, we reorder the column segments within each row panel (without explicitly renumbering the column ids), 

allowing for a better clustering of nonzero cells. For each row panel, we find the list of active column segments. Each 

such active column is then reordered such that the first active column is placed in column 0, the second active column 

in column 1, and so on. In other words, all the active columns are grouped together and moved to the left side, leaving 

the non-active columns grouped together to the right side. A separate array per row panel is used to indicate the 

column id (metadata). Fig. 2 (c) shows the state after reordering. The blue boxes represent the active blocks. Clustering 

subgraphs with active elements in left columns helps to discard the inactive blocks placed in the right side of the 

adjacency matrix. As ReRAM crossbars store active blocks only, it reduces storage requirement. Moreover, the locality 

improvement by the CARE reordering scheme brings a vertex closer to its neighboring vertices and thus decreases the 

on-chip traffic. Fig. 1 (d) shows the adjacency matrix of the reordered graph by using CARE.  Here, the value of X is 

considered as two for illustration purpose. We can see from Figs. 1 (a), (b), (c) and (d) that the number of active blocks 

is twelve, eleven and nine for natural, GraphSAR and Spara respectively, whereas the number of active blocks for 

CARE is seven. However, though CARE potentially reduces the number of active vertices, when irregular graph 

workloads are mapped onto a ReRAM-based manycore architecture, inter-PE communication is significant. It should 

be noted that any ReRAM-based architecture must be divided into multiple ReRAM tiles with bounded crossbar size. 

Hence, inter-PE traffic is inevitable. Therefore, to reduce communication latency for irregular graph workloads, we 

present the design of a 3D NoC that optimizes ReRAM-based PE placement on the manycore platform in the next 

section.  

4 OVERALL ARCHITECTURE 

In this section, we present the key attributes of our proposed architecture including the ReRAM-based tile 

(4.1) and NoC (4.2).  
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4.1 Tiled Architecture 

Vertex In ReRAM-based accelerators, the adjacency matrix of the input graph is stored across the ReRAM 

cells, and graph computations are decomposed into a set of MAC operations that are performed based on 

Ohm’s and Kirchhoff’s current laws. By applying a voltage into the word line and sensing the resultant 

current along the bit-line, we implement the product of the input voltage and the cell conductance. Along 

with the product, the sum is obtained through the current summation over the bit-lines. Each row 

computes a product by streaming in the multiplicand via the word-line Digital to Analog Converter (DAC). 

The overall system consists of multiple ReRAM processing elements (PEs), where each PE contains several 

ReRAM tiles. Each ReRAM tile is composed of several crossbars and the associated peripherals [15].  

We use a simple strategy to map each active block (blue boxes in Fig. 2 (c)) to ReRAM tiles  Each active 

block is assigned by a sequential id S and is mapped to the a unique tile (i,j), where    �   √   �  �        √    �       √                        
4.2 NoC-Based Communication Backbone 

When irregular graph workloads are mapped onto a ReRAM-based manycore architecture, inter-PE 

communication is significant. To analyze the effects of inter-PE communication, we considered three 

graph applications, viz. PageRank, Single Source Shortest Path (SSSP) and Connected Components (CC). 

Six different datasets (Table 1) considered in this work, are taken from the Stanford Network Analysis 

Platform [18] and the Network Repository [19].  

 

Fig. 3: PageRank communication analysis: (a) Factor of increase in communication time for Natural ordering 

relative to CARE. (b) Contribution of communication to the total execution time for CARE.  

Fig. 3(a), Fig. 4(a), and Fig. 5 (a) show the normalized time needed for inter-PE communication with the 

natural ordering and CARE reordering scheme with PageRank, SSSP and CC, respectively. It is evident 

from Fig. 3(a), Fig. 4(a) and Fig. 5 (a) that locality improvement by CARE achieves significant reduction 

(25.2x to 76.1x) in on-chip communication time compared to the natural ordering except for the RM (5.3x) 

dataset. The reduction in savings is least for RM because it is a road network with a uniform degree 

distribution, and consequently there is relatively less to be gained in locality through reordering relative to 

natural ordering. All other inputs (GH, DZ, OR, FB and LJ), which have power-law degree distribution 

characteristics, demonstrate larger savings with the CARE ordering. Though CARE reduces the overall 

communication cost compared to natural, it still has significant amount of inter-PE data traffic. Fig. 3(b), 
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Fig. 4(b), and Fig. 5 (b) show the contribution of inter-PE communication in total processing time for a 2D 

Mesh NoC-based manycore architecture incorporating CARE. We can see from Fig. 3(b), Fig. 4(b), and Fig. 

5 (b) that even after applying CARE, the contribution of inter-PE communication to total execution time 

for all the datasets is high (63.4% to 89.7%) except for RM (16.6%). This motivates the need for designing an 

efficient NoC for inter-PE communication (even with CARE).  

 

Fig. 4: SSSP communication analysis: (a) Factor of increase in communication time for Natural ordering 

relative to CARE. (b) Contribution of communication to the total execution time for CARE.  

Traffic and network topology: Most of the graph workloads follow the Gather-Apply-Scatter (GAS) 

model, where processing each vertex includes (a) gathering values from incoming neighbors, (b) 

generating new value and (c) scattering that to all outgoing neighbors [3]. Hence, graph operations on 

ReRAM-based accelerators are expected to predominantly give rise to many-to-few traffic patterns. This 

many-to-few traffic pattern involves long-range communication, which degrades the overall performance. 

Conventional 2D Mesh NoC architectures are not suitable for this kind of traffic [11]. It has already been 

shown that either by inserting long-range shortcuts in a regular Mesh to induce small-world effects or by 

adopting power-law based small-world connectivity, we can achieve significant performance gain and 

lower energy dissipation compared to traditional multi-hop Mesh networks [11]. Therefore, we design a 

small-world network based NoC (SWNoC) where the links between routers are established following a 

power law distribution for the graph applications under consideration. However, when a small-world 

network is implemented in a 2D structure, there will be multiple physically long wires connecting the 

largely separated PEs. Ultimately, this will give rise to high timing and energy overheads. However, when 

a small-world NoC is implemented using 3D integration, the largely separated PEs in a 2D structure can be 

placed in different planar dies and connected using vertical links. Fig. 6 shows the overall architecture and 

the illustration of the 3D SWNoC based ReRAM-based manycore architecture. As shown in Fig. 6, 

relatively longer planner links, can be converted to shorter vertical links by placing the communicating 

PEs in two planar dies. Hence, it reduces the timing and energy costs [11]. Therefore, in this work, we 

design a 3D SWNoC to enhance the overall performance.  
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Table 1: Input statistics of the graph datasets used in our experiments. 

Input graph (label) No. vertices No. edges 

musae_Github (GH) 37,699 289,003 

gemsec-Deezer (DZ)  41,773 125,826 

road_luxembourg-osm (RM)  114,598 119,667 

com-Orkut (OR) 2,937,612 20,959,854 

socfb-A-anon (FB) 3,097,165 23,667,394 

soc-LiveJournal1 (LJ) 4,847,571 68,993,773 

Placement: Due to massive data parallelism, ReRAM based manycore architectures are typically 

optimized to achieve high throughput. Reducing the average hop count reduces latency, making PEs 

available for more computation and thereby improving the throughput of computation.  Additionally, load 

balancing across the NoC is used to further enhance throughput [12]. Minimizing the standard deviation of 

hop count will achieve load balancing by reducing the congestion along various paths. Hence, we compare 

designs (θ) with different PE and link placements via the degree of achievable load balancing in the NoC, 

i.e., using mean M(θ) and standard deviation SD(θ) of the hop count, as given by:  

 

Fig. 5: CC communication analysis: (a) Factor of increase in communication time for Natural ordering 

relative to CARE. (b) Contribution of communication to the total execution time for CARE.  

                                              ∑∑    
   

 
                                        

                                  √  ∑∑ቀ         ቁ  
   

 
                         

where C and L represents the number of PEs and the number of links respectively, in the overall 

architecture,     is the number of hops from PE i to PE j. Therefore, designing the optimized SWNoC boils 

down to a multi-objective optimization (MOO) problem where both M(θ) and SD(θ) are minimized to 

maximize the achievable throughput. We can represent the MOO-formulation as follows:             {       ∈                         }                
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where,    is the set of Pareto optimal designs. We choose the design (   ) from the set of Pareto optimal 

designs where the throughput is maximum. The optimization problem is solved by using the popular 

simulated annealing (SA) based multi-objective heuristic, AMOSA [13] as it can find a high-quality 

solution with optimized placement of PEs and links in a reasonable time.  

 

Fig. 6: Illustration of the overall architecture. 

5 EXPERIMENT RESULTS 

Experimental Setup: We use NVSim [17] in conjunction with BookSim [16] to evaluate the performance 

of the proposed ReRAM-based manycore architecture. We leverage Booksim [16] for implementing 

different NoC architectures considered in this work. In the proposed architecture, each PE has four tiles. 

Each tile contains 96 crossbars (128x128) and associated peripheral circuits such as ADC, DAC, etc. along 

with eDRAM. The capacity of eDRAM is considered as 36 MB in our proposed design. The value of LRS 

and HRS are 14.7 KΩ and 167 KΩ respectively. Here, we assume ReRAMs that can store 2-bits per cell. 

Each PE takes up 0.37 mm
2
 of area [14]. The architecture requires multiple such ReRAM PEs for storage as 

well as computation, to accommodate the large sizes of input graphs. For implementing 2D Mesh, 1024 PEs 

are arranged in an 32x32 grid pattern. Considering a 20mmx20mm die, the length of each inter-router link 

is 0.625mm. The overall system runs at the clock frequency of 2.5 GHz. Considering this clock frequency, a 

0.625 mm link can be traversed in one cycle. In our proposed 3D SWNoC architecture, 1024 PEs are equally 

partitioned into four planar layers.  Each layer is of size 10mmx10mm (considering same area as the 2D 

system). Within each layer, 256 PEs are placed in 16x16 grid pattern. In the SWNoC architecture, there are 

planar links longer than 0.625mm. The longer links are divided into multiple pipelined stages where each 

stage is of length 0.625 mm. Hence, multiple cycles are necessary to traverse these links. All the vertical 

links connecting the planar layers are traversed in one cycle. BookSim determines the overall NoC latency. 
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We use the PE and memory characteristics along with total NoC latency in NVSim to determine the overall 

energy consumption and execution time. We evaluate the performance of the manycore architecture 

incorporating CARE with respect to two state-of-the-art ReRAM-based graph accelerators, GraphSAR [3] 

and Spara [2]. We choose GraphSAR and Spara as these are the state-of-the-art architectures that 

outperform other previously developed techniques such as GraphR [6] and HyVE [7]. More specifically, 

GraphSAR achieves 4.43x energy reduction and 1.85x speedup with respect to GraphR and 1.29x speedup 

and 2.18x energy reduction compared with HyVE on an average. On the other hand, Spara outperforms 

GraphR and GraphSAR by 8.21x and 5.01x in terms of performance, and by 8.97x and 5.68x in terms of 

energy savings, respectively. Therefore, as GraphSAR and Spara already demonstrated the comparative 

performance analysis with respect to other state-of-the-art counterparts, we refrain from repeating those 

results in this paper for brevity. Table 1 shows all the inputs used for the full system performance analysis. 

Table 2 shows the specifications of the proposed 3D manycore ReRAM architecture. For thermal 

evaluation, we model the overall architecture in 3-D-ICE simulator based on various parameters e.g., layer 

thickness, thermal conductivity, etc. as listed in [20].  

 

Fig. 7: Area-Power-Zero storage trade-offs for different crossbar configurations. 

Table 2: Specifications of the proposed 3D manycore ReRAM architecture 

No. of planar layers 4 

No. of total PEs 1024 

Area of each PE 0.37 mm
2
 

Area of each planar layer  10 x 10 mm
2
 

Clock frequency 2.5 GHz 

Value of LRS 14.7 KΩ 

Value of HRS  167 KΩ 

Capacity of eDRAM 36 MB 

ReRAM cell size 2-bits per cell 
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5.1 Selection of Crossbar Size 

While storing the graph in crossbars, the adjacency matrix is decomposed into multiple non-overlapping     segments to map on to     shaped ReRAM crossbars. Current graph PIM architectures use 

relatively small crossbars (   ) to reduce the storage of zeros [3]. However, this also negatively impacts 

the area and power as those terms are dominated by peripheral circuits [14]. To reduce area and power, as 

well as to minimize the overall number of required ReRAM crossbars, a larger size becomes more desirable, 

and experimentation is needed to evaluate this tradeoff.  In other words, when considering total area, 

power and zero storage, it boils down to two choices: (a) smaller size implies a greater number of crossbars 

and fewer zeros, and (b) larger size implies fewer crossbars and more zeros. We conducted an experiment 

to evaluate this tradeoff with multiple inputs. Fig. 7 shows the normalized area, power and zero storage by 

varying the crossbar size from     to         for all the graph datasets considered in this work. We 

can see that the area and power continuously decrease with increasing crossbar size. However, beyond         both area and power show saturating trends, while the zero storage increases. Consequently, 

we select the         crossbar configuration as our default for all our experiments. This also implies 

setting the value of parameter parameter X in CARE reordering (Fig. 2) to 128.  

 

Fig. 8: (a) Normalized no. of active blocks (relative to CARE) for Spara, GraphSAR and natural, (b) 

Normalized reordering time of CARE, GraphSAR and Spara. 

5.2 Performance of Reordering Scheme 

Due to the sparsity in most real-world graph datasets, vertex reordering schemes help to reduce number of 

active blocks (i.e., matrix blocks with at least one non-zero element). Hence, we compare the number of 

active blocks generated using CARE to that of GraphSAR, Spara, and natural orderings. Fig. 8 (a) shows 

that all the ReRAM-based accelerators (CARE, GraphSAR and Spara) outperform natural. Furthermore, we 

observe that CARE significantly outperforms GraphSAR and Spara, by up to 23.8x and 18.3x respectively. 

Note that the storage improvements achieved expectedly vary with inputs as it is tied to the structural 

organization of the underlying graphs. For instance, CARE reduces the number of active blocks for RM by 

9.5x compared to natural, whereas the gains are varying from 27.7x to 58.4x for the other social media 

datasets (e.g., GH, DZ, OR, FB and LJ) considered in this work. It should be noted that the reduction in the 

number of active blocks for RM is much lower than the other social media datasets with power-law 

characteristics. This is because the RM dataset’s natural ordering already had a good locality to start with. 
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Hence, there is less room for improving the locality towards the goal of reducing the number of active 

blocks.     

 

Fig.  9. (a) Percentage of total traffic that is long-range, under different NoC architectures for PageRank with 

GH, (b) Normalized execution time w.r.t 2D Mesh for PageRank. 

Next, to assess the cost of the reordering time (preprocessing), we compared the reordering times for 

CARE, GraphSAR, and Spara (Fig. 8 (b)). In all the cases, the CARE reordering times were the smallest, 

with the other two schemes taking considerably longer (up to over 10x more in some cases). In summary, 

these experiments demonstrate that CARE reordering outperforms both GraphSAR and Spara on both zero 

storage as well as preprocessing cost.  

 

Fig. 10. (a) Percentage of total traffic that is long-range, under different NoC architectures for SSSP with 

GH, (b) Normalized execution time w.r.t 2D Mesh for SSSP. 

5.3 Full System Performance Evaluation 

Using CARE as the chosen reordering scheme, we analyzed hop count distribution of the proposed 3D 

SWNoC and compared that with 2D and 3D Mesh-based designs. For evaluation purposes, we refer to 

traffic with more than three 2D mesh hops as ۔long-rangeە. Fig. 9(a), Fig. 10(a), and Fig. 11(a) show the 

percentage of long-range traffic for the 2D Mesh, 3D Mesh and 3D SWNoC. The traffic shown is for 

PageRank, SSSP and CC, respectively with GH input as an example. We observe similar characteristics for 

other datasets as well. The results show that long-range traffic for 3D SWNoC is 40% of total traffic, 

compared to 57% and 47.3% for 2D Mesh and 3D Mesh respectively. It should be noted that introduction of 
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the 3D structure helps in the reduction of long-range traffic due to the presence of shorter vertical links. 

As mentioned earlier the PEs that are separated by long distance on a 2D Mesh can be placed in different 

planar layers and connected through vertical links. As vertical links are smaller in length compared to 

their planar counterparts, they can establish one-hop data exchange. Hence, it is evident from Fig. 9(a), Fig. 

10(a), and Fig. 11(a) that the traffic within three hops has been increased and the amount of long-range 

traffic has been reduced. Fig. 9(b), Fig. 10(b), and Fig. 11(b) show the normalized execution time for the 

three NoC architectures running PageRank, SSSP and CC. Fig. 9(b), Fig. 10(b), and Fig. 11(b) show that 3D 

SWNoC achieves the lowest execution time, and that improvement is also input-dependent. For instance, 

more savings are achieved on the power-law graphs with 3D SWNoC (26% to 32.5% savings) than with RM 

(17%). As mentioned above, the reduction in savings is least for RM because it is a road network with a 

uniform degree distribution.  

 

Fig. 11. (a) Percentage of total traffic that is long-range, under different NoC architectures for CC with GH, 

(b) Normalized execution time w.r.t 2D Mesh for CC. 

 

Fig. 12. Speedup of Spara and CARE in total execution time compared to GraphSAR for (a) PageRank, (b) 

SSSP and (c) CC. 

In Fig. 12 and Fig. 13, we compare the speedups achieved in full-system execution time by the proposed 

manycore architecture using CARE and Spara against GraphSAR (baseline). To ensure a fair and direct 

comparison, we tested the graph applications with the datasets reordered by Spara and GraphSAR 

reordering schemes, on our proposed architecture. The full-system execution time includes the 

computation time, inter-PE communication time and the data transfer time from the host. It should be 

noted that we show preprocessing cost separately from this analysis because we execute the reordering 

process once offline and then the reordered graph is being used multiple times for various applications 

(e.g. SSSP, PageRank, CC). Hence, the preprocessing cost is being amortized over multiple runs of the 
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accelerator. The same strategy is adopted in other related works such as GraphSAR and Spara as well. For 

comparing these preprocessing times, we have reported the preprocessing timings, which are in seconds, 

for CARE along with GraphSAR and Spara in Fig. 8 (b). It should be noted that reordering not only helps to 

achieve speed up in graph computation on ReRAM, but also reduces the storage requirement. For example, 

the CARE reordering takes 89.2x more time than the processing time of PageRank with LJ on ReRAM-

based manycore system. However, by paying that amount of preprocessing cost once, the proposed 

reordering scheme, CARE reduces on-chip storage requirement by 58.4x and achieves 84.2x speed up 

compared to that of natural (i.e., without any preprocessing). This speed up compared to natural is valid 

for executing the application on the ReRAM-based system as many times as the user requires. So, we pay 

the one-time offline processing cost to achieve this huge speed up multiple times.  

 

 

Fig. 13. Speedup of Spara and CARE in total execution time compared to GraphSAR for (a) BFS, (b) 

Triangle counting. 

 

 

Fig. 14. Normalized energy of (a) PageRank, (b) SSSP and (c) CC for CARE, Spara and GraphSAR. 

 

We can see from Fig. 12 and Fig. 13 that the SWNoC-enabled manycore architecture incorporating 

CARE achieves highest speedup (2.87x to 49.4x) compared to GraphSAR. This was clearly superior to the 

speedups achieved by Spara, which ranged from 1.3x to 16.3x. Another key observation is that the speedup 

gains realized by the proposed architecture with CARE is higher for the larger datasets (where it matters 
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more) – e.g., CARE achieves peak speedups (41x to 49.4x) for the largest input tested (LJ: 4.8M vertices and 

68.9M edges). This is because CARE significantly reduces the number of active blocks and on-chip data 

movement, and thereby also reducing the time taken for data transfer, on-chip traffic, and computation. 

Furthermore, if we were to exclude the contribution from the inter-PE on-chip communication in total 

execution time, the speedup for CARE with respect to GraphSAR would reduce (ranging from 1.29x to 14x) 

relative to its counterpart with communication time (2.87x to 49.4x). Excluding on-chip communication 

compromises the achievable performance gain significantly, which reinforces the necessity of designing an 

efficient NoC.    

 

 

Fig. 15. Normalized energy of (a) BFS, (b) Triangle Counting for CARE, Spara and GraphSAR. 

 

Figs. 14 (a), (b), and (c) illustrate the comparison of full-system energy consumption for CARE with 

respect to GraphSAR and Spara for PageRank, SSSP, and CC respectively. Similarly, Figs. 15 (a) and (b) 

show the comparison of full-system energy consumption for CARE with respect to GraphSAR and Spara 

for BFS and Triangle counting respectively. Fig. 14 and Fig. 15 show that CARE consumes 1.3x to 16.3x less 

energy compared to GraphSAR and 1.1x to 10.3x less energy compared to Spara for the inputs tested. As 

mentioned above, CARE is more efficient in reducing the number of active blocks and on-chip data 

movement. Also, due to high energy efficiency of ReRAM-based PEs, the peak temperature of the system 

remains below 85
ο
C for all the configurations tested.  

6 CONCLUSION 

In this paper, we presented a 3D manycore ReRAM architecture well suited for accelerating graph 

applications. We introduce a crossbar-aware node reordering scheme called CARE that reduces the storage 

requirement and on-chip traffic volume on ReRAM. However, even after applying CARE, the contribution 

of inter-PE communication in total execution time for all the datasets is high (63.4% to 89.7%) except for 

RM (16.6%), which motivates the need of an efficient NoC for inter-PE communication. To reduce latency 

of communication on the chip, we presented an optimized 3D SWNoC architecture that reduces the 

network latency incurred by the long-range traffic in graph workloads. This combination of CARE 

reordering in software coupled with SWNoC yields drastic reductions in both runtime and energy cost, 
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also consistently outperforming two state-of-the-art ReRAM-based graph accelerators. We have also 

demonstrated that the speed up and energy improvement of our proposed architecture vary with the 

datasets. For social network inputs, vertex reordering and NoC architecture, both contribute noticeably to 

the overall performance and energy improvement whereas they are comparatively less for Road Map. This 

dichotomy in the results goes to show that the input characteristics could have a pronounced impact on 

what can be achieved through the combination of CARE reordering in software coupled with the proposed 

3D SWNoC-based manycore ReRAM architecture. 
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