Accelerating Graph Computations on 3D NoC-enabled PIM Architectures

DWAIPAYAN CHOUDHURY, LIZHI XIANG, ARAVIND SUKUMARAN RAJAM, ANANTH
KALYANARAMAN AND PARTHA PRATIM PANDE

Washington State University, Pullman, WA

Graph application workloads are dominated by random memory accesses with poor locality. To tackle the irregular
and sparse nature of computation, ReRAM-based Processing-in-Memory (PIM) architectures have been proposed
recently. Most of these ReRAM architecture designs have focused on mapping graph computations into a set of
multiply-and-accumulate (MAC) operations. ReRAMs also offer a key advantage in reducing memory latency between
cores and memory by allowing for processing-in-memory (PIM). However, when implemented on a ReRAM-based
manycore architecture, graph applications still pose two key challenges - significant storage requirements
(particularly due to wasted zero cell storage), and significant amount of on-chip traffic. To tackle these two challenges,
in this paper we propose the design of a 3D NoC-enabled ReRAM-based manycore architecture. Our proposed
architecture incorporates a novel crossbar-aware node reordering to reduce ReRAM storage requirements. Secondly,
its 3D NoC-enabled design reduces on-chip communication latency. Our architecture outperforms the state-of-the-art
in ReRAM-based graph acceleration by up to 5x in performance while consuming up to 10.3x less energy for a range of
graph inputs and workloads.

CCS CONCEPTS « Computer systems organization ~ Architectures ~ Other architectures ~ Special purpose systems

Additional Keywords and Phrases: Processing-in-Memory, Vertex Reordering, Graph Analytics, ReRAM, Small World NoC.

1 INTRODUCTION

Graphs have become ubiquitous in several data-driven applications and machine learning workflows, as
they offer an effective way to model networked behavior in both the natural world and human-engineered
systems. However, with steep increases in both the volume of observable data and the diversity in
applications, scalable processing for graph workloads on emerging manycore platforms remains a
challenge. While CPU- and GPU-based manycore platforms continue to be used for executing graph
applications, poor locality in graph structures and irregular data access patterns pose significant
challenges. Skewed vertex degree distributions of real-world graphs make it nearly impossible to maintain
high locality in graph structures, causing repeated accesses to vertex neighborhoods or random walk
traversals to incur a high volume of cache misses. Furthermore, the deep memory hierarchies in
conventional manycore architectures (such as CPUs and GPUs) exacerbate the cost of data movement [1].
Resistive random-access memory (ReRAM)-based Processing-in-Memory (PIM) modules, offer an
effective way to address the high memory bandwidth requirement of graph analytics by integrating the
computing logic in the memory. The ReRAM crossbars can store the adjacency matrix of a graph and the
computation in most graph primitives can be decomposed into multiply-and-accumulate (MAC)
operations, which are supported by ReRAM. However, most real-world graphs are sparse-i.e., with far
fewer number of nonzero cells than the zero cells-causing significant wastage in the storage across the
ReRAM crossbars (as only nonzeros contribute to meaningful computation). One way to reduce storage as
well as improve locality in the distribution of nonzeros is through vertex (re)ordering [2]. By assigning
similar ranks to vertices that are also neighbors on the graph, reordering techniques can effectively cluster
the nonzero cells along the main diagonal of the adjacency matrix. While this increased density of nonzero

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1084-4309/2022/1-ART1 $15.00
http://dx.doi.org/10.1145/3564290

ACM Trans. Des. Autom. Electron. Syst.

cells can reduce wasted storage on ReRAMs, current vertex reordering schemes are not fully equipped to
maximize on this potential as they do not consider the crossbar structure of ReRAMs [3]. Secondly, current
ReRAM-based approaches [2][3] also do not support an efficient communication backbone between
ReRAM-based processing elements (PEs). Graph computations frequently feature irregular memory
accesses including long range traffic between PEs, which could degrade overall performance and energy
efficiency.

In this paper, we address the above limitations of ReRAM-based graph acceleration by presenting the
design of an efficient 3D Network-on-Chip (NoC)-enabled ReRAM manycore accelerator for graph
analytics. The main contributions are as follows:

1) (Software-level) To improve performance and reduce storage for ReRAM-based graph applications, we
propose an efficient crossbar-aware vertex reordering-based approach.

2) (Hardware-level) To reduce communication latency for irregular graph workloads, we present the design of
a 3D NoC architecture that optimizes ReRAM block placement on the manycore platform.

3) (Evaluation) We present a thorough evaluation of our proposed architecture on various real-world graph
inputs using different graph operations — namely, PageRank, Single Source Shortest Path (SSSP), Connected
Components (CC), BFS and Triangle counting. Our proposed framework significantly outperforms existing

state-of-the-art ReRAM-based graph accelerators both in terms of execution time and energy consumption.

2 BACKGROUND AND RELATED WORK

Designing specialized manycore architectures for graph analytics has been an area of active research in
recent years. Though CPU and GPU-based manycore computing have been used, the data movement due
to irregular memory accesses limits performance and energy efficiency. One possible way is to modify the
organization of caches and partition them into multiple planar layers in a 3D structure to improve the
cache hit rate [4]. DRAM-based Hybrid Memory Cube (HMC) is another way to enhance performance of
graph accelerators [5][24][25]. However, the deep memory hierarchies in these architectures degrade the
overall performance.

Performance of most of the current ReRAM-based accelerators is limited by the sparsity and lack of
locality in graph structures [6][7]. To this end, vertex reordering techniques can help by clustering non-
zero elements in graph adjacency matrix [2][3]. Yet, in almost all existing ReRAM-based graph accelerators
either reordering techniques are unaware of crossbar structure, or the crossbar bounded property does not
utilize the benefit introduced by the clustering of non-zero entries.

Another factor influencing performance is the cost of data movement. An efficient communication
backbone for inter-PE exchanges is critical; however, existing ReRAM-based graph accelerators do not
support such efficient and scalable on-chip communication [3]. An optimized placement of the PEs and
suitable network-on-chip (NoC) design have been shown to significantly improve the overall latency and
energy efficiency, including for graph analytics [8]. However, these NoC architectures do not consider
ReRAM-based PEs. Design of 3D NoC-based ReRAM architecture for training graph neural networks
(GNN) involving dense weight matrices has been proposed [15]. The dense computations make the GNN
workloads different from the sparsity seen in graph workloads. Hence, in this paper, we bridge the gap in

ACM Trans. Des. Autom. Electron. Syst.

the state-of-the-art of ReRAM-based graph accelerators by designing a crossbar-aware vertex reordering
scheme (software-level) complemented with an optimized NoC architecture (hardware-level) to achieve
high performance and energy efficiency. We postulate that optimizing solely at either the software-level or
at hardware-level will be inadequate as the gains achieved at one layer can be lost in the other if left
unoptimized. In contrast, our software-hardware design is better positioned to generate significant
performance gains because of its complementary nature - i.e., reducing data movement and storage
requirement using software, while reducing communication latency using hardware.

3 VERTEX REORDERING

Preliminaries: Graph computations involve traversing the input sparse adjacency matrix corresponding
to the graph. Since it is only the nonzero values of the matrix that contribute to work, reducing the zero
storage becomes an important consideration. One way to achieve this is to rearrange the rows and
columns of the adjacency matrix such that the concentration of nonzero cells is “clustered” in only some
regions of the matrix, so that the vast remaining sections of the matrix, which have only zero cells need
not be stored.

Vertex (re)ordering is an effective way to perform such a clustering [9]. Given an input graph G = (V, E)
with n vertices (in V) and m edges in E, the goal is to compute a linear ordering IT : i — [1, n], for every
vertex i € V, such that the average linear gap distance in Il between any two neighbors (i,j) € E is
minimized. The assignment [I(i) is also referred to as the rank of vertex i. We refer to the original input
ordering as the graph’s natural ordering (I1(i) = i, for each i € V). The process of taking a natural ordering
and producing a different vertex ordering is referred to as “reordering”. Several heuristics are used to
generate reordering [10]. These schemes range from light-weight (e.g., degree-based) to more heavy-
weight (window- and partitioning-based) schemes [9]. However, most existing node reordering algorithms
are designed assuming a more traditional parallel platform (multicores, cluster computing) and remain
oblivious to the ReRAM crossbar structure. Two recently proposed ReRAM-based graph accelerators
(GraphSAR[3]and Spara [2]) leveraged vertex reordering techniques which help to outperform several
well-known previous investigations (e.g., GraphR [6] and HyVE [7]) making them appropriate as baselines
to consider.

GraphSAR [3] proposes vertex reordering technique where the rank of each vertex is assigned in an
incremental order depending on their location in the original graph input file. More specifically, while
loading the original edge list, an index is assigned to each new vertex starting from 0. For example, if
vertices 1 and 3 are the vertices of the first edge listed in the input file, then these two vertices are
renumbered as 0 and 1 respectively (i.e., 1 — 0 and 3 — 1). Subsequently, any vertex to be encountered for
the first time is assigned the next unallocated vertex rank in an incremental fashion. This implies that the
vertex reordering will depend on the order in which the list of edges is provided at input. Figs. 1 (a) and (b)
show the adjacency matrices of the original and the reordered graph while using GraphSAR. Considering
the ReRAM crossbar of size 2x2 (for illustration purpose only), we can see that the number of active blocks
for original and reordered graph from Figs. 1 (a) and (b). In this example, the GraphSAR scheme reduces
the number of active blocks from twelve in the natural ordering to eleven in the GraphSAR ordering. This

reordering scheme is oblivious to the underlying crossbar configuration.

ACM Trans. Des. Autom. Electron. Syst.

| g Active Block W represents an edge
01234567 012 34 567 012 3456 7

e - LT O TT S S =

=l o W W R D

b - B T I T T R
R T I i P U S =]

Mo, of active Block = 12 Mo. of active Black = 11 Mo, of active Block = 9 o. of active Block = 7
(a)) el ()

Fig 1: The adjacency matrices for (a) original (Natural) and reordered graph for (b) GraphSAR, (¢) Spara and
(d) CARE.

Spara [2] uses different graph formats (compressed sparse row (CSR) and column (CSC)) to determine
the ranks for destination and source vertices of an edge. Starting from an initial vertex, it searches its
destination vertex set based on the CSR-formatted graph. Next, each node in the destination vertex set is
analyzed one-by-one to obtain a new source vertex set based on the CSC representation. Based on that
source vertex set, it then finds the new destination vertex set until it reaches the bounded threshold, which
directly depends on the crossbar size. Fig. 1 (c) shows the adjacency matrix of the reordered graph using
Spara. Considering the threshold as two for illustration purpose, we can see from Fig. 1 (c) that the number
of active blocks is nine in the reordered graph by Spara, whereas it is twelve for the original graph. Hence,
clustering the edges by reordering results in the reduction of the number of active crossbars.

However, the crossbar-aware feature does not fully exploit the advantage introduced by the clustering,
leading to suboptimal use of ReRAM-based architectures. Moreover, Spara and GraphSAR both rely on
sequentially processing the vertices to determine the new vertex labels. This makes both these two
algorithms inherently sequential. Hence, we present a new crossbar-aware vertex reordering scheme
called CARE that improves the clustering factor of the adjacency matrix and thus reduces the total number
of “active blocks.”

Crossbar-Aware Vertex Reordering (CARE) Algorithm: A matrix block of size X*X is considered
“active” if it contains at least one non-zero cell. The objective of the CARE algorithm is to minimize the
total number of active blocks (via reordering of rows and columns), which in turn reduces the execution
time, storage requirement, and power consumption.

Terminology: For a given adjacency matrix A, a row panel of size [starting at row r is a slice of A,
which includes all rows from r to r+I-1. Let col_seg(j, r, 1) denote a column segment of a given column j of
length [starting at the cell at row r, i.e., the contiguous slice A[r:r+l-1, jJ. A column segment col_seg(j, r, 1)
is considered “active” if at least one of its cells is a non-zero. Similarly, a 2D block of matrix A is
considered “active” if at least one of its cells is a non-zero. Let active) represent the set of column IDs
of all the non-zero cells in row p. We define the similarity of two rows, p and g, using the Jaccard
similarity of the active columns, i.e.,

ACM Trans. Des. Autom. Electron. Syst.

lactivecyipy N activegyql

J.q = @

lactivecyipy U active o gl

The CARE algorithm is based on the following main ideas: (i) for a crossbar of size X, the number of
active blocks is positively correlated with the number of active column segments; (ii) grouping rows with a
high similarity can reduce the total number of active column segments; and (iii) empty 2D blocks within a
row panel can be safely ignored.

Row ordering: Building on these ideas, CARE first tries to reorder rows with high similarity together
and then reorders the columns to minimize the total number of active 2D blocks. First, rows are reordered
so that similar rows are assigned contiguous row ids. Jaccard similarity can be used to group and reorder
the rows; however, such an approach is expensive (0(n%0); n = #rows, 0 = average #nnz per row).
Alternatively, a light-weight approach is to sort the rows based on the number of non-zeros - intuitively,
vertex (row) pairs that share a high Jaccard similarity also need to have similar degrees (i.e., a necessary
but not sufficient condition). Once the rows are reordered, the set of rows is partitioned into row panels of
size X. Fig. 2 depicts phase 1 of our algorithm. Fig. 2 (a) shows the original adjacency matrix A. Fig. 2 (b)
shows the state of A after row sorting. Fig. 2 (c) shows the conceptual view of A after the X-way row panel
split.

active
;\E\"-blocks

-

1 34567

X5 B
L&

a) Original b) Row sort ¢} Row panel split Column reordering
Fig. 2: Overview of CARE reordering algorithm (X represents crossbar size)

ACM Trans. Des. Autom. Electron. Syst.

Algorithm 1: CARE reordering algonthim
Input: Adj. matrix Al : n|[1 0} for GV E);
Crosshar size X Mumber of panels p ¥ |
Output: 11, wow reorder;
T1.[1 : pfs column reorderings (one per panel)
1 CARE(A, X))
| Reorder_Rows(A)
L] Reorder_ Cols{ A, X,)
1 Reorder Kowsi A)
3 M, + Degree sort rvws i non-ascending onder;
o | return 1,
Reorder_ Colsi A, X, pl
H Block partition the reordered rows (11,) into p
panels of size X rows ench

=l

a for each row panel T do

T Initialize cofl _odd + (1:

1 for each column slice j € |Lon| within 7 do

1t il there exixts wr feast one nonzens in) then

(&1 I iP][eed_icd] + 3§

14 Increment eof _id

1= Assign empty columns fo the unused column
ids in 1L-[F

I return [1,

Column ordering: The second step of the approach reorders the columns. While existing approaches reorder
columns, we reorder the column segments within each row panel (without explicitly renumbering the column ids),
allowing for a better clustering of nonzero cells. For each row panel, we find the list of active column segments. Each
such active column is then reordered such that the first active column is placed in column 0, the second active column
in column 1, and so on. In other words, all the active columns are grouped together and moved to the left side, leaving
the non-active columns grouped together to the right side. A separate array per row panel is used to indicate the
column id (metadata). Fig. 2 (c) shows the state after reordering. The blue boxes represent the active blocks. Clustering
subgraphs with active elements in left columns helps to discard the inactive blocks placed in the right side of the
adjacency matrix. As ReRAM crossbars store active blocks only, it reduces storage requirement. Moreover, the locality
improvement by the CARE reordering scheme brings a vertex closer to its neighboring vertices and thus decreases the
on-chip traffic. Fig. 1 (d) shows the adjacency matrix of the reordered graph by using CARE. Here, the value of X is
considered as two for illustration purpose. We can see from Figs. 1 (a), (b), (c) and (d) that the number of active blocks
is twelve, eleven and nine for natural, GraphSAR and Spara respectively, whereas the number of active blocks for
CARE is seven. However, though CARE potentially reduces the number of active vertices, when irregular graph
workloads ‘are mapped onto a ReRAM-based manycore architecture, inter-PE communication is significant. It should
be noted that any ReRAM-based architecture must be divided into multiple ReRAM tiles with bounded crossbar size.
Hence, inter-PE traffic is inevitable. Therefore, to reduce communication latency for irregular graph workloads, we
present the design of a 3D NoC that optimizes ReRAM-based PE placement on the manycore platform in the next

section.

4 OVERALL ARCHITECTURE

In this section, we present the key attributes of our proposed architecture including the ReRAM-based tile
(4.1) and NoC (4.2).

ACM Trans. Des. Autom. Electron. Syst.

4.1 Tiled Architecture

Vertex In ReRAM-based accelerators, the adjacency matrix of the input graph is stored across the ReRAM
cells, and graph computations are decomposed into a set of MAC operations that are performed based on
Ohm’s and Kirchhoff’s current laws. By applying a voltage into the word line and sensing the resultant
current along the bit-line, we implement the product of the input voltage and the cell conductance. Along
with the product, the sum is obtained through the current summation over the bit-lines. Each row
computes a product by streaming in the multiplicand via the word-line Digital to Analog Converter (DAC).
The overall system consists of multiple ReRAM processing elements (PEs), where each PE contains several
ReRAM tiles. Each ReRAM tile is composed of several crossbars and the associated peripherals [15].

We use a simple strategy to map each active block (blue boxes in Fig. 2 (c)) to ReRAM tiles. Each active
block is assigned by a sequential id S and is mapped to the a unique tile (i,j), where

0<ij<VNandi=SmodVN andj=S/VN)

4.2 NoC-Based Communication Backbone

When irregular graph workloads are mapped onto a ReRAM-based manycore architecture, inter-PE
communication is significant. To analyze the effects of inter-PE communication, we considered three
graph applications, viz. PageRank, Single Source Shortest Path (SSSP) and Connected Components (CC).
Six different datasets (Table 1) considered in this work, are taken from the Stanford Network Analysis
Platform [18] and the Network Repository [19].
HCARE = Natural

e

=
[=]
=]
et
3

=
(=]

Normalized

Communication tim
(=
(o]

4

(N
72

T
TN
TN
T

N
0.1 3

g“
=
S s

2
=]
N
5
2
[ep]
=
=]
N
=]
=]

L

[
Communication time (%)

as a fraction of total time
=
(===
7/

(@) ()

Fig. 3: PageRank communication analysis: (a) Factor of increase in communication time for Natural ordering
relative to CARE. (b) Contribution of communication to the total execution time for CARE.

Fig. 3(a), Fig. 4(a), and Fig. 5 (a) show the normalized time needed for inter-PE communication with the
natural ordering and CARE reordering scheme with PageRank, SSSP and CC, respectively. It is evident
from Fig. 3(a), Fig. 4(a) and Fig. 5 (a) that locality improvement by CARE achieves significant reduction
(25.2x to 76.1x)in on-chip communication time compared to the natural ordering except for the RM (5.3x)
dataset. The reduction in savings is least for RM because it is a road network with a uniform degree
distribution, and consequently there is relatively less to be gained in locality through reordering relative to
natural ordering. All other inputs (GH, DZ, OR, FB and LJ), which have power-law degree distribution
characteristics, demonstrate larger savings with the CARE ordering. Though CARE reduces the overall
communication cost compared to natural, it still has significant amount of inter-PE data traffic. Fig. 3(b),

ACM Trans. Des. Autom. Electron. Syst.

Fig. 4(b), and Fig. 5 (b) show the contribution of inter-PE communication in total processing time for a 2D
Mesh NoC-based manycore architecture incorporating CARE. We can see from Fig. 3(b), Fig. 4(b), and Fig.
5 (b) that even after applying CARE, the contribution of inter-PE communication to total execution time
for all the datasets is high (63.4% to 89.7%) except for RM (16.6%). This motivates the need for designing an
efficient NoC for inter-PE communication (even with CARE).

100

]

@l
=
=]
=

ARE =Natural
80

60
40
20

10

Normalized
Communication time
[T
ELTELELEOT LR T LT T T
[T
[N T
[
Communication time (%)
as a fraction of total time

772724

/7724
7%

N\

e
[ot
[

777272
W77

Q
I
Z
N
Z
o
=
=
c
2
I
N
Z
o
P

—
]
—
=
—

Fig. 4: SSSP communication analysis: (a) Factor of increase in communication time for Natural ordering
relative to CARE. (b) Contribution of communication to the total execution time for CARE.

Traffic and network topology: Most of the graph workloads follow the Gather-Apply-Scatter (GAS)
model, where processing each vertex includes (a) gathering values from incoming neighbors, (b)
generating new value and (c) scattering that to all outgoing neighbors [3]. Hence, graph operations on
ReRAM-based accelerators are expected to predominantly give rise to many-to-few traffic patterns. This
many-to-few traffic pattern involves long-range communication, which degrades the overall performance.
Conventional 2D Mesh NoC architectures are not suitable for this kind of traffic [11]. It has already been
shown that either by inserting long-range shortcuts in a regular Mesh to induce small-world effects or by
adopting power-law based small-world connectivity, we can achieve significant performance gain and
lower energy dissipation compared to traditional multi-hop Mesh networks [11]. Therefore, we design a
small-world network based NoC (SWNoC) where the links between routers are established following a
power law distribution for the graph applications under consideration. However, when a small-world
network is implemented in a 2D structure, there will be multiple physically long wires connecting the
largely separated PEs. Ultimately, this will give rise to high timing and energy overheads. However, when
a small-world NoC is implemented using 3D integration, the largely separated PEs in a 2D structure can be
placed in different planar dies and connected using vertical links. Fig. 6 shows the overall architecture and
the illustration of the 3D SWNoC based ReRAM-based manycore architecture. As shown in Fig. 6,
relatively longer planner links, can be converted to shorter vertical links by placing the communicating
PEs in two planar dies. Hence, it reduces the timing and energy costs [11]. Therefore, in this work, we
design a 3D SWNoC to enhance the overall performance.

ACM Trans. Des. Autom. Electron. Syst.

Table 1: Input statistics of the graph datasets used in our experiments.

Input graph (label) No. vertices No. edges
musae_Github (GH) 37,699 289,003
gemsec-Deezer (DZ) 41,773 125,826

road_luxembourg-osm (RM) 114,598 119,667
com-Orkut (OR) 2,937,612 20,959,854

socfb-A-anon (FB) 3,097,165 23,667,394

soc-LiveJournall (L]) 4,847,571 68,993,773

Placement: Due to massive data parallelism, ReRAM based manycore architectures are typically
optimized to achieve high throughput. Reducing the average hop count reduces latency, making PEs
available for more computation and thereby improving the throughput of computation. Additionally, load
balancing across the NoC is used to further enhance throughput [12]. Minimizing the standard deviation of
hop count will achieve load balancing by reducing the congestion along various paths. Hence, we compare
designs (6) with different PE and link placements via the degree of achievable load balancing in the NoC,
i.e., using mean M(6) and standard deviation SD(6) of the hop count, as given by:

E“m BCARE ENatural g Elﬂﬂ -
= s = 80 S = ¥
= = W b 2]
52 10 20 wdd NN
s = g o N N N
£ 2 23w X Y) N
= o % \ %
z g 1 1 AN \ '\: \ﬁ
M IR
GH D RM OR FB LJ ﬁ - GH DZ RM OR FE LI

(a)

Z

Fig. 5: CC communication analysis: (a) Factor of increase in communication time for Natural ordering
relative to CARE. (b) Contribution of communication to the total execution time for CARE.

c
M@ =7+ Y Dy ®
i=1j=1
1 c C 2
sD® = |7 Z (hij - M))
i=1j=1

where C and L represents the number of PEs and the number of links respectively, in the overall
architecture, h;; is the number of hops from PE i to PE j. Therefore, designing the optimized SWNoC boils

down to a multi-objective optimization (MOO) problem where both M(6) and SD(0) are minimized to
maximize the achievable throughput. We can represent the MOO-formulation as follows:

pr={6"16" € arg meaxf(M(G),SD(G))} (5)

ACM Trans. Des. Autom. Electron. Syst.

where, P” is the set of Pareto optimal designs. We choose the design (8) from the set of Pareto optimal
designs where the throughput is maximum. The optimization problem is solved by using the popular
simulated annealing (SA) based multi-objective heuristic, AMOSA [13] as it can find a high-quality
solution with optimized placement of PEs and links in a reasonable time.

— Reordered graph DAC DAC DAC
lﬂIHITGﬁPh Ti!l'lli l::lI 'v
" l_ =
: : oac > L]
: o
pac [> z
ERE

Planar Logic Layer

kY
Processing l."-,

Elerment PE) ', eDRAM
* Router L —

Fig. 6: Illustration of the overall architecture.

5 EXPERIMENT RESULTS

Experimental Setup: We use NVSim [17] in conjunction with BookSim [16] to evaluate the performance
of the proposed ReRAM-based manycore architecture. We leverage Booksim [16] for implementing
different NoC architectures considered in this work. In the proposed architecture, each PE has four tiles.
Each tile contains 96 crossbars (128x128) and associated peripheral circuits such as ADC, DAC, etc. along
with eDRAM. The capacity of eDRAM is considered as 36 MB in our proposed design. The value of LRS
and HRS are 14.7 KQ and 167 KQ respectively. Here, we assume ReRAMs that can store 2-bits per cell.
Each PE takes up 0.37 mm’ of area [14]. The architecture requires multiple such ReRAM PEs for storage as
well as computation, to accommodate the large sizes of input graphs. For implementing 2D Mesh, 1024 PEs
are arranged in an 32x32 grid pattern. Considering a 20mmx20mm die, the length of each inter-router link
is 0.625mm. The overall system runs at the clock frequency of 2.5 GHz. Considering this clock frequency, a
0.625 mm link can be traversed in one cycle. In our proposed 3D SWNoC architecture, 1024 PEs are equally
partitioned into four planar layers. Each layer is of size 10mmx10mm (considering same area as the 2D
system). Within each layer, 256 PEs are placed in 16x16 grid pattern. In the SWNoC architecture, there are
planar links longer than 0.625mm. The longer links are divided into multiple pipelined stages where each
stage is of length 0.625 mm. Hence, multiple cycles are necessary to traverse these links. All the vertical
links connecting the planar layers are traversed in one cycle. BookSim determines the overall NoC latency.

ACM Trans. Des. Autom. Electron. Syst.

We use the PE and memory characteristics along with total NoC latency in NVSim to determine the overall
energy consumption and execution time. We evaluate the performance of the manycore architecture
incorporating CARE with respect to two state-of-the-art ReRAM-based graph accelerators, GraphSAR [3]
and Spara [2]. We choose GraphSAR and Spara as these are the state-of-the-art architectures that
outperform other previously developed techniques such as GraphR [6] and HyVE [7]. More specifically,
GraphSAR achieves 4.43x energy reduction and 1.85x speedup with respect to GraphR and 1.29x speedup
and 2.18x energy reduction compared with HyVE on an average. On the other hand, Spara outperforms
GraphR and GraphSAR by 8.21x and 5.01x in terms of performance, and by 8.97x and 5.68x in terms of
energy savings, respectively. Therefore, as GraphSAR and Spara already demonstrated the comparative
performance analysis with respect to other state-of-the-art counterparts, we refrain from repeating those
results in this paper for brevity. Table 1 shows all the inputs used for the full system performance analysis.
Table 2 shows the specifications of the proposed 3D manycore ReRAM architecture. For thermal
evaluation, we model the overall architecture in 3-D-ICE simulator based on various parameters e.g., layer
thickness, thermal conductivity, etc. as listed in [20].

- —hArea — Power Zmro Storage E 1 70
23 i @ 1 70 R &0
§4u b 0w 2 g0 _ 508
E GH P 208 w52 . 50 %
= w06
05 \ \ a0 5 COE aw = \\] 5
= 'E " E Eg,q . 30
#n.4 \ 3 . Zoa B0 : 5
g Wweg m . F1l 5 "ﬂu_! n g
w02 B w ™ =i . o — 10 ™
£ s —— & — 0o - e
5 O a E o o
E 8 16 32 B4 128 256 E B 168 32 B4 138 256 2 8 1 32 54_ 128 158
= Crosshar size = Crossbar size Crossbar sire
£ 1 . 70 w ¥ mo f o1 T 70
E % E o 8 &0
a8 , OR o Ena o %08 ai
b= 50 ¥ 8 50 @
ma.s s Bos “'E 5 06 w0 5
- -3
Eoa 08 =ons 0o §oa ol
0 = 08 = 3]
Foz x“‘-——. o = = 02 = w P
=0 o & 5 0 £ o o
E 8 16 32 &4 128 256 % B 18 32 64 128 756 E 8 16 32 6564 128 256
= Crosshar size g Crossbar siie Crosshar she

Fig. 7: Area-Power-Zero storage trade-offs for different crossbar configurations.

Table 2: Specifications of the proposed 3D manycore ReRAM architecture

No. of planar layers 4

No. of total PEs 1024

Area of each PE 0.37 mm’
Area of each planar layer 10 x 10 mm*
Clock frequency 2.5 GHz
Value of LRS 14.7 KQ
Value of HRS 167 KQ
Capacity of eEDRAM 36 MB
ReRAM cell size 2-bits per cell

ACM Trans. Des. Autom. Electron. Syst.

5.1 Selection of Crossbar Size

While storing the graph in crossbars, the adjacency matrix is decomposed into multiple non-overlapping
N X N segments to map on to N X N shaped ReRAM crossbars. Current graph PIM architectures use
relatively small crossbars (8 X 8) to reduce the storage of zeros [3]. However, this also negatively impacts
the area and power as those terms are dominated by peripheral circuits [14]. To reduce area and power, as
well as to minimize the overall number of required ReRAM crossbars, a larger size becomes more desirable,
and experimentation is needed to evaluate this tradeoff. In other words, when considering total area,
power and zero storage, it boils down to two choices: (a) smaller size implies a greater number of crossbars
and fewer zeros, and (b) larger size implies fewer crossbars and more zeros. We conducted an experiment
to evaluate this tradeoff with multiple inputs. Fig. 7 shows the normalized area, power and zero storage by
varying the crossbar size from 8 X 8 to 256 X 256 for all the graph datasets considered in this work. We
can see that the area and power continuously decrease with increasing crossbar size. However, beyond
128 x 128 both area and power show saturating trends, while the zero storage increases: Consequently,
we select the 128 X 128 crossbar configuration as our default for all our experiments. This also implies

setting the value of parameter parameter X in CARE reordering (Fig. 2) to 128.
m{ARE B Spar EraphSAR = .";'.il‘ull.ih'tl

1M 2 . ® ﬁ
b E 3 o
=z] E=i 1] = = . éﬁ
: 2 o B | ! o P
= E“. .E 2 .RH - g z
=z ral= = = = i
T = g -] | : = -
B =2 o - g — o
= = = [= = - -
: 2 = 8 2 T im g z
EE I« M8 g8 B SE QB GE
2 5 " == = = =8
| Eli 338 uaI= 3 (N
- 1 o B =1 = o = 7] = - = = =
P = = = = B =
o1 1.l1=lzil=l=l=nl=
GH DY KM OK FB LD = : ;
GH D, RM OR Fi LI
e it

Fig. 8: (a) Normalized no. of active blocks (relative to CARE) for Spara, GraphSAR and natural, (b)
Normalized reordering time of CARE, GraphSAR and Spara.

5.2 Performance of Reordering Scheme

Due to the sparsity in most real-world graph datasets, vertex reordering schemes help to reduce number of
active blocks (i.e., matrix blocks with at least one non-zero element). Hence, we compare the number of
active blocks generated using CARE to that of GraphSAR, Spara, and natural orderings. Fig. 8 (a) shows
that all the ReRAM-based accelerators (CARE, GraphSAR and Spara) outperform natural. Furthermore, we
observe that CARE significantly outperforms GraphSAR and Spara, by up to 23.8x and 18.3x respectively.
Note that the storage improvements achieved expectedly vary with inputs as it is tied to the structural
organization of the underlying graphs. For instance, CARE reduces the number of active blocks for RM by
9.5x compared to natural, whereas the gains are varying from 27.7x to 58.4x for the other social media
datasets (e.g., GH, DZ, OR, FB and LJ) considered in this work. It should be noted that the reduction in the
number of active blocks for RM is much lower than the other social media datasets with power-law
characteristics. This is because the RM dataset’s natural ordering already had a good locality to start with.

ACM Trans. Des. Autom. Electron. Syst.

Hence, there is less room for improving the locality towards the goal of reducing the number of active
blocks.

60 = 2D Mesh ®3D Mesh = 3D_SWNoC
b - 1
5 e
£ .50 -
EI £ S o 0.8
S E Zzo
= 40 § S |
s = 07
i e BB
30 s 06 i :
2D Mesh 3D Mesh . D% B YRGS
S :~;
{.ﬂ} “’ ﬂ(‘ {!,}

Fig. 9. (a) Percentage of total traffic that is long-range, under different NoC architectures for PageRank with
GH, (b) Normalized execution time w.r.t 2D Mesh for PageRank.

Next, to assess the cost of the reordering time (preprocessing), we compared the reordering times for
CARE, GraphSAR, and Spara (Fig. 8 (b)). In all the cases, the CARE reordering times were the smallest,
with the other two schemes taking considerably longer (up to over 10x more in some cases). In summary,
these experiments demonstrate that CARE reordering outperforms both GraphSAR and Spara on both zero
storage as well as preprocessing cost.

®2D Mesh ®3D Mesh 0 3D_SWNalC

60 1
0.
L 50
E ﬁ 0.
40 0.
30 P 0.6

2D Mesh 31 Mesh 3D GH DZ EM OR
{a) SWNol ()

- -] L -]

= |

% of Long-range
Normalized execution

Fig. 10. (a) Percentage of total traffic that is long-range, under different NoC architectures for SSSP with
GH, (b) Normalized execution time w.r.t 2D Mesh for SSSP.

5.3 Full System Performance Evaluation

Using CARE as the chosen reordering scheme, we analyzed hop count distribution of the proposed 3D
SWNoC and compared that with 2D and 3D Mesh-based designs. For evaluation purposes, we refer to
traffic with more than three 2D mesh hops as “long-range”. Fig. 9(a), Fig. 10(a), and Fig. 11(a) show the
percentage of long-range traffic for the 2D Mesh, 3D Mesh and 3D SWNoC. The traffic shown is for
PageRank, SSSP and CC, respectively with GH input as an example. We observe similar characteristics for
other datasets as well. The results show that long-range traffic for 3D SWNoC is 40% of total traffic,
compared to 57% and 47.3% for 2D Mesh and 3D Mesh respectively. It should be noted that introduction of

ACM Trans. Des. Autom. Electron. Syst.

the 3D structure helps in the reduction of long-range traffic due to the presence of shorter vertical links.
As mentioned earlier the PEs that are separated by long distance on a 2D Mesh can be placed in different
planar layers and connected through vertical links. As vertical links are smaller in length compared to
their planar counterparts, they can establish one-hop data exchange. Hence, it is evident from Fig. 9(a), Fig.
10(a), and Fig. 11(a) that the traffic within three hops has been increased and the amount of long-range
traffic has been reduced. Fig. 9(b), Fig. 10(b), and Fig. 11(b) show the normalized execution time for the
three NoC architectures running PageRank, SSSP and CC. Fig. 9(b), Fig. 10(b), and Fig. 11(b) show that 3D
SWNoC achieves the lowest execution time, and that improvement is also input-dependent. For instance,
more savings are achieved on the power-law graphs with 3D SWNoC (26% to 32.5% savings) than with RM
(17%). As mentioned above, the reduction in savings is least for RM because it is a road network with a

uniform degree distribution.
® 2D Mesh @ 3D Mesh o 3D_SWhhoU

" 60 g 1
= 2 oo
ZE ~ Bos :
o 40 ?-'] -
= = ‘ |
& 30 E Ll : . ‘ i ;
) = :) : T :
2D Mesh 3D Mesh 3D £ 0.6 ; ; :
SWNoC GH DZ RM ©OR FB LI
(a)]

Fig. 11. (a) Percentage of total traffic that is long-range, under different NoC architectures for CC with GH,
(b) Normalized execution time w.r.t 2D Mesh for CC.

1o . ™ s GraphSAR =Spara v CARE_ " 1
s & & y & & g B
Eu 2 2 B o Y o % g & o
u g o B 0 :] = B B
& = E - B . E:
i 8 R o B B] 2 B] = 8 8 R’
a1 ﬁ > E%, ;S 1] = 1 = 2
N =
ol e % 0l i1
H (1} EAl (813 FRB I H {LFA EAl (5154 FB LI LH i ¥ KAl (8 FB L1
() (L) ()

Fig. 12. Speedup of Spara and CARE in total execution time compared to GraphSAR for (a) PageRank, (b)
SSSP and (c) CC.

In Fig. 12 and Fig. 13, we compare the speedups achieved in full-system execution time by the proposed
manycore architecture using CARE and Spara against GraphSAR (baseline). To ensure a fair and direct
comparison, we tested the graph applications with the datasets reordered by Spara and GraphSAR
reordering schemes, on our proposed architecture. The full-system execution time includes the
computation time, inter-PE communication time and the data transfer time from the host. It should be
noted that we show preprocessing cost separately from this analysis because we execute the reordering
process once offline and then the reordered graph is being used multiple times for various applications
(e.g. SSSP, PageRank, CC). Hence, the preprocessing cost is being amortized over multiple runs of the

ACM Trans. Des. Autom. Electron. Syst.

accelerator. The same strategy is adopted in other related works such as GraphSAR and Spara as well. For
comparing these preprocessing times, we have reported the preprocessing timings, which are in seconds,
for CARE along with GraphSAR and Spara in Fig. 8 (b). It should be noted that reordering not only helps to
achieve speed up in graph computation on ReRAM, but also reduces the storage requirement. For example,
the CARE reordering takes 89.2x more time than the processing time of PageRank with L] on ReRAM-
based manycore system. However, by paying that amount of preprocessing cost once, the proposed
reordering scheme, CARE reduces on-chip storage requirement by 58.4x and achieves 84.2x speed up
compared to that of natural (i.e., without any preprocessing). This speed up compared to natural is valid
for executing the application on the ReRAM-based system as many times as the user requires. So, we pay
the one-time offline processing cost to achieve this huge speed up multiple times.

“hraphSAR = Spara 8 CARE
LiHy Fik

=10 1
|
W] i g
oq B - : B 0.1 It | =
GH (1A KM OR FB Ll GH D¥E RM OR
{a) (b

Fig. 13. Speedup of Spara and CARE in total execution time compared to GraphSAR for (a) BFS, (b)
Triangle counting.

N BCARE =Spara #GraphSAR

g 10

E 5

= - ;

= 1 -

%]

o

=

E 0.1 BEE:

7 DZ EM OR
(c)

Fig. 14. Normalized energy of (a) PageRank, (b) SSSP and (c) CC for CARE, Spara and GraphSAR.

We can see from Fig. 12 and Fig. 13 that the SWNoC-enabled manycore architecture incorporating
CARE achieves highest speedup (2.87x to 49.4x) compared to GraphSAR. This was clearly superior to the
speedups achieved by Spara, which ranged from 1.3x to 16.3x. Another key observation is that the speedup
gains realized by the proposed architecture with CARE is higher for the larger datasets (where it matters

ACM Trans. Des. Autom. Electron. Syst.

more) — e.g., CARE achieves peak speedups (41x to 49.4x) for the largest input tested (LJ: 4.8M vertices and
68.9M edges). This is because CARE significantly reduces the number of active blocks and on-chip data
movement, and thereby also reducing the time taken for data transfer, on-chip traffic, and computation.
Furthermore, if we were to exclude the contribution from the inter-PE on-chip communication in total
execution time, the speedup for CARE with respect to GraphSAR would reduce (ranging from 1.29x to 14x)
relative to its counterpart with communication time (2.87x to 49.4x). Excluding on-chip communication
compromises the achievable performance gain significantly, which reinforces the necessity of designing an
efficient NoC.

BCARE Spara # GraphSAR
n:-l‘. 110 =
£ g
E 5
E
?. =
“0.l
GH DZ RAM OR GH DX RM OR L]
{a) (b)

Fig. 15. Normalized energy of (a) BFS, (b) Triangle Counting for CARE, Spara and GraphSAR.

Figs. 14 (a), (b), and (c) illustrate the comparison of full-system energy consumption for CARE with
respect to GraphSAR and Spara for PageRank, SSSP, and CC respectively. Similarly, Figs. 15 (a) and (b)
show the comparison of full-system energy consumption for CARE with respect to GraphSAR and Spara
for BFS and Triangle counting respectively. Fig. 14 and Fig. 15 show that CARE consumes 1.3x to 16.3x less
energy compared to GraphSAR and 1.1x to 10.3x less energy compared to Spara for the inputs tested. As
mentioned above, CARE is more efficient in reducing the number of active blocks and on-chip data
movement. Also, due to high energy efficiency of ReRAM-based PEs, the peak temperature of the system
remains below 85°C for all the configurations tested.

6 CONCLUSION

In this paper, we presented a 3D manycore ReRAM architecture well suited for accelerating graph
applications. We introduce a crossbar-aware node reordering scheme called CARE that reduces the storage
requirement and on-chip traffic volume on ReRAM. However, even after applying CARE, the contribution
of inter-PE communication in total execution time for all the datasets is high (63.4% to 89.7%) except for
RM (16.6%), which motivates the need of an efficient NoC for inter-PE communication. To reduce latency
of communication on the chip, we presented an optimized 3D SWNoC architecture that reduces the
network latency incurred by the long-range traffic in graph workloads. This combination of CARE
reordering in software coupled with SWNoC yields drastic reductions in both runtime and energy cost,

ACM Trans. Des. Autom. Electron. Syst.

also consistently outperforming two state-of-the-art ReRAM-based graph accelerators. We have also

demonstrated that the speed up and energy improvement of our proposed architecture vary with the

datasets. For social network inputs, vertex reordering and NoC architecture, both contribute noticeably to

the overall performance and energy improvement whereas they are comparatively less for Road Map. This

dichotomy in the results goes to show that the input characteristics could have a pronounced impact on

what can be achieved through the combination of CARE reordering in software coupled with the proposed
3D SWNoC-based manycore ReRAM architecture.

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation (NSF) grant CCF-1815467.

REFERENCES

(1]

[21]

K A. Kalyanaraman and P. Pande. 2019. A Brief Survey of Algorithms, Architectures, and Challenges toward Extreme-scale Graph Analytics. Proc.
Design, Automation & Test in Europe Conference & Exhibition. 1307-1312.

L. Zheng et al. 2020. Spara: An Energy-Efficient ReRAM-Based Accelerator for Sparse Graph Analytics Applications. Proc. IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 696-707.

G. Dai et al. 2019. GraphSAR: a sparsity-aware processing-in-memory architecture for large-scale graph processing on ReRAMs. Proc. Asia and
South Pacific Design Automation Conference. 120-126.

A. A. Maashri et al. 2009. 3D GPU architecture using cache stacking: Performance, cost, power and thermal analysis. IEEE International
Conference on Computer Design, Lake Tahoe, CA. 254-259.

M. M. Ozdal et al. 2016. Energy Efficient Architecture for Graph Analytics Accelerators. Proc. International Symposium on Computer
Architecture, pp. 166-177.

L. Song et al. 2018. GraphR: Accelerating Graph Processing Using ReRAM. Proc. IEEE International Symposium on High Performance Computer
Architecture. 531-543.

T. Huang et al. 2018. HyVE: Hybrid vertex-edge memory hierarchy for energy-efficient graph processing. Proc. Design, Automation & Test in
Europe Conference & Exhibition, pp. 973-978.

K. Duraisamy et al. 2017. Accelerating graph community detection with approximate updates via an energy-efficient NoC. 54th ACM/IEEE Design
Automation Conference (DAC). 1-6.

R. Barik et al. 2020. Vertex Reordering for Real-World Graphs and Applications: An Empirical Evaluation. IEEE International Symposium on
Workload Characterization (ISWC). 240-251.

L Safro, D. Ron and A. Brandt. 2009. Multilevel algorithms for linear ordering problems. ACM J. Exp. Algorithmics 13, Article 4.

S. Das et al. 2017. Design-Space Exploration and Optimization of an Energy-Efficient and Reliable 3-D Small-World Network-on-Chip. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. vol. 36, no. 5, 719-732.

B. K. Joardar et al. 2019. Learning-Based Application-Agnostic 3D NoC Design for Heterogeneous Manycore Systems. IEEE Transactions on
Computers, vol. 68, no. 6, 852-866.

S. Bandyopadhyay et al. 2008. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary
Computation. vol. 12, no. 3, 269-28.

A. Shafiee et al. 2016. ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 14-2.

A. L Arka et al. 2021. ReGraphX: NoC-enabled 3D Heterogeneous ReRAM Architecture for Training Graph Neural Networks. Design, Automation
& Test in Europe Conference & Exhibition (DATE). 1667-1672.

N. Jiang et al. 2013. A Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator. In Proceedings of IEEE International Symposium on
Performance Analysis of Systems and Software. 86-96.

Xiangyu Dong et al. 2014. Nvsim: A circuit-level performance, energy, and area model for emerging non-volatile memory. In Emerging Memory
Technologies. Springer. 15-50.

http://snap.stanford.edu/; data accessed: September 2021
http://networkrepository.com/; data accessed: September 2021

A . Sridhar et al. 2010. 3D-ICE: Fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling. Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 2010, pp. 463-470.

W. Lee et al., “Varistor-type bidirectional switch JMAX > 107 A/cm2, selectivity~104) for 3D bipolar resistive memory arrays,” in Proc. Symp.
VLSI Technol., Jun. 2012, pp. 37-38

ACM Trans. Des. Autom. Electron. Syst.

[22] L. Zhang et al. 2015. On the Optimal ON/OFF Resistance Ratio for Resistive Switching Element in One-Selector One-Resistor Crosspoint
Arrays. IEEE Electron Device Letters, vol. 36, no. 6, pp. 570-572.

[23] T. Schultz, R. Jha, M. Casto and B. Dupaix. 2020. Vulnerabilities and Reliability of ReRAM Based PUFs and Memory Logic. IEEE Transactions on
Reliability, vol. 69, no. 2, pp. 690-698.

[24] D. Choudhury, A. S. Rajam, A. Kalyanaraman and P. Pande. 2022. High-Performance and Energy-Efficient 3D Manycore GPU Architecture for
Accelerating Graph Analytics. ACM Journal on Emerging Technologies in Computing Systems. Volume 18, Issue 1, January 2022, Article No: 18,
pp 1-19.

[25] D. Choudhury, R. Barik, A. S. Rajam, A. Kalyanaraman and P. Pande. 2021. Software/Hardware Co-design of 3D NoC-based GPU Architectures for
Accelerated Graph Computations. ACM Transactions on Design Automation of Electronic Systems.

ACM Trans. Des. Autom. Electron. Syst.

