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Abstract—We consider the problem of robust localization of
a set of underwater network nodes, based on pairwise distance
measurements. Localization plays a key role in underwater net-
work optimization, as accurate node positioning enables location-
aware scheduling, data routing, and geo-referencing of the col-
lected underwater sensor data. State-of-the-art graph localization
approaches include variations of the classical multidimensional
scaling (MDS) algorithm, modified to handle unlabelled, missing,
and noisy distance measurements. In this paper, we present MAD-
MDS, a robust method for graph localization from incomplete
and outlier corrupted pair-wise distance measurements. The
proposed method first conducts outlier excision by means of
Median Absolute Deviation (MAD). Then, MAD-MDS performs
rank-based completion of the distance matrix, to estimate missing
measurements. As a last step, MAD-MDS applies MDS to
the reconstructed distance matrix, to estimate the coordinates
of the underwater network nodes. Numerical studies on both
sparsely and fully connected network graphs as well as on data
from past sea experiments corroborate that MAD-MDS attains
high coordinate-estimation performance for sparsely connected
network graphs and high corruption variance.

Index Terms—Underwater acoustics; graph localization; ro-
bust MDS; missing data; corrupted distance measurements

I. INTRODUCTION

ADVANCES in marine technologies led to an increasing
number of remote sensing applications for underwater

exploration. Seabed mapping, water quality monitoring, re-
mote command-and-control of subsea vehicles, wireless diver-
to-diver communication and coordinated operation between
swarms of autonomous unmanned systems are just a few appli-
cations that can be supported by the deployment of underwater
wireless networks. Fundamental to the success of underwater
communications and networking is robust localization and
tracking of underwater network nodes.

Underwater acoustic localization is traditionally performed
locally at the tracked node. Common approaches rely on chan-
nel measurements such as received signal strength indicator
(RSSI) [1], time-of-arrival (ToA) [2] and time-difference of
arrival (TDoA) [3], or bearing measurements [4] –referred as
base-line approaches. Efforts have been carried out to com-
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pensate for multipath distortions [5], sound speed variations
[6], and anchors’ location mismatches [7].

Underwater networks are usually sparse and encompass a
few hop connections. Consequently, traditional long baseline
(LBL) techniques (cf. [8]) are not suitable due to localization
ambiguities that arise when a single node is not able to
connect to at least three neighbor nodes. Short baseline (SBL)
and ultra-short baseline (USBL) systems (cf. [9]) rely on
the deployment of multiple transponders (in the form of a
tetrahedral or pyramidal array) and utilize ToA and angle-
of-arrival (AoA) measurements to estimate the position of
an underwater source from a single point, however outlier
measurements due to long delays and non line-of-sight multi-
path propagation may significantly affect their accuracy [10],
[11]. An alternative solution for under-ranked localization is
to leverage the spatial diversity of mobile nodes in the network
[12] or collect acoustic channel fingerprints [13], [14] to
localize a node. Such methods rely on bathymetry and matched
field processing to estimate the position of a source yet, their
performance is sensitive to medium fluctuations [15] that may
create mismatches in sound speed or seabed maps.

In this work, we aim to resolve positioning ambiguities
that arise due to heavily corrupted ranging measurements
and sparse connectivity in an underwater acoustic network
by means of robust graph localization. Graph localization
considers a network of nodes as a connected graph and
leverages measurements or bounds on pairwise ranges to
estimate their relative positions. To achieve global positioning,
known coordinates from at least two reference/anchor nodes in
the network can be used to shift and rotate the estimated graph
and simultaneously estimate the coordinates of all network
nodes [16]. The most commonly used graph localization
technique is multidimensional scaling (MDS)– an eigenvalue-
decomposition based algorithm– that exploits the properties of
Euclidean distance matrices [17] to reconstruct node coordi-
nates from pairwise distance measurements. Variants of MDS
include embedding bounds on the link delays, and techniques
to reduce its sensitivity to link distance measurement errors
[17], [18], [19]. An alternative approach to MDS is to formal-
ize graph localization as a convex optimization problem with
proximity-imposed connectivity constraints [20], [21], [22]. In
[23] we use information about the relative locations of the
network nodes as bounds to link distance measurements to
increase the resilience of the positioning algorithm to sparsely
connected network graphs. Still, for large networks (of tens
of nodes) stationed over large areas (of several km), high-
complexity optimization based solutions do not allow for on-
line positioning. For this, we revert to dimensionality reduction
methods, while taking into consideration heavily corrupted
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distance measurements and sparse connectivity constraints
imposed on the network graph.

We propose to enhance the robustness of MDS to highly
corrupted and missing distance measurements by first imple-
menting an algorithm to detect and remove faulty ranging
measurements by means of median absolute deviation (MAD).
Then, we exploit the rank properties of Euclidean distance ma-
trices (EDMs) to complete the missing distance measurements.
Subsequently, after denoising and completing missing distance
measurements in the EDM, we reconstruct the coordinates of
the network nodes by eigenvalue decomposition. We evaluate
the coordinate-estimation performance of MAD-MDS in terms
of Root-Mean-Square-Error (RMSE) with numerical simula-
tions on both sparse and fully-connected ad-hoc mesh network
topologies as well as on data collected from past sea ex-
periments. Simulation results show considerable performance
gains over classical MDS and robust principal component anal-
ysis for MDS, especially when ranging errors and proximity-
imposed connectivity constraints result in highly corrupted and
missing distance measurements, respectively.

II. PROBLEM STATEMENT

We consider a set of N nodes, arranged in a mesh multi-hop
network. Each node is equipped with an underwater acoustic
modem. Network nodes exchange communication signals, thus
each node can estimate its distance from every other node
that is in close proximity. Then, distance measurements are
gathered at a centralized processing node, that is responsible
to conduct graph localization. Our goal is to estimate the D-
dimensional relative coordinates of each node in the network
graph. Given the geo-location of two (or more) nodes, the
estimated relative coordinates can also be translated to UTM
coordinates.

Underwater network nodes may experience diverse forms
of disturbance (due to the large geographical separation of the
network nodes), while the formed network graph may also
contain missing connections (i.e., missing graph edges) due
to proximity-imposed connectivity constraints. Consequently,
traditional centralized trilateration solutions do not directly
apply to the problem. We assume that nodes establish network
connectivity, e.g., through a topology discovery process [24],
such that multi-hop connectivity exists between any pair of
nodes. During this network initialization, each pair of nodes
evaluates the propagation delay of their joint transmission
(through e.g., [25]). This delay translates into an evaluation
of the distances between the graph’s vertices. However, in
practice, for a few pairs of nodes, distance measurements
may experience large errors due to multi-path propagation and
impulsive underwater noise [26], [27], [28] (sparse outliers) or
may be unavailable due to communication range limitations
(missing measurements).

The problem of retrieving network node coordinates from
pair-wise distance measurements has been long studied in the
literature and can be solved by means of Multi-Dimensional
Scaling (MDS) [29]. The problem has also been studied for
incomplete and noisy measurements [17]. Additionally, robust
reformulations of the problem have considered the case of
heavy/outlying corruption [30], [31], [32], [33], [34]. At this
point we notice, that while most works consider either missing
entries, or heavily corrupted data, it is the joint occurrence

Algorithm 1: Proposed MAD-MDS
Given: Ď, W

eD MAD(Ď,W, ⌧) . Remove corruptions
bD RBC(eD,W, D) . Complete missing entries
bX MDS(bD, D) . Estimated coordinates

of both events that makes the problem most challenging. The
reason is that apart from their direct impact to MDS, corrupted
entries can also significantly mislead the EDM completion
process. More recently, [35] addressed this problem, by jointly
conducting outlier removal and completion before MDS by
means of Robust Principal-Component Analysis (RPCA) [36].

III. SYSTEM MODEL

We denote by xi 2 RD⇥1 the D-dimensional coordinate
vector of node i 2 [N ] := {1, 2, . . . , N} and define the coor-
dinate matrix X := [x1,x2, . . . ,xN ] 2 RD⇥N . Accordingly,
we denote by D 2 RN⇥N

+ the true squared-distance matrix of
the graph, such that

[D]i,j := kxi � xjk2 (1)

for every i, j 2 [N ].
For every i 2 [N ], node i measures its distance from all

other nodes and sends them to the processing node, which
collects all distance measurements in Ď 2 RN⇥N . We assume
that X remains invariant during the formation of Ď.

We denote by W 2 {0, 1}N⇥N the graph connectivity map.
That is, [W]i,j is 1 if nodes i and j are connected (i.e.,
they lie within the communication range of each other) and 0
otherwise. Then, for every (i, j), it holds that

[Ď]i,j = [W]i,j(|[D]i,j + [E]i,j |) (2)

where E 2 RN⇥N is the matrix of distance-estimation errors.
For every (i, j), [E]i,j will be drawn from a distribution
determined by the interference profile of the link between
node i and node j. In this work, we are particularly interested
in the case that some of the entries of E are of very high
variance (i.e., incomplete Ď also contains sparse outliers). In
the following section, we propose a robust method to retrieve
X from Ď, in practice.

IV. PROPOSED GRAPH LOCALIZATION METHOD

In this work, we present MAD-MDS, a robust method for
graph-localization from possibly incomplete and severely cor-
rupted distance measurements. MAD-MDS works as follows.

First, we detect the corrupted distance measurements in
Ď by evaluating their Median Absolute Deviation (MAD)
[37], [38]. Then, we remove these measurements from Ď
(i.e., treat them as missing), and obtain the “outlier-free” but
incomplete distance matrix eD. Next, we apply to eD Rank-
Based Completion (RBC) [17] to recover the missing distances
(i.e., those not measured due to connectivity limitations and
those discarded as corrupted). The resulting matrix bD is, in
principle, completed and corruption-free.

The proposed algorithm is summarized in Alg. 1. In the
following, we present individually the three steps of the
proposed graph localization method (i.e., corruption removal
with MAD, completion with RBC, and coordinate estimation
with MDS) in mathematical detail.
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Algorithm 2: MAD corruption removal [37]
Given: Ď, W, ⌧
Initialize eD Ď
Form d . sorted measurements in eD (not diagonal)
µ median(d)
m median(abs(d� 1Mµ))
For every (i, j) 2 [N ]2 with j > i

If [W]i,j = 1 && |[eD]i,j � µ| > ⌧ ·m
Remove from eD entries (i, j) and (j, i)
[W]i,j  0, [W]j,i  0

Return eD and W

A. Step 1: Outlier Excision via MAD
Let 0 < M  (N2 � N)/2 be the number of collected

squared-distance measurements in Ď, sorted in vector d. We
start with computing the median of d, median(d). Then, for
each entry of d, we compute its absolute distance from the
median, forming vector

v = abs(d� 1Mmedian(d)) (3)

such that [v]i = |[d]i �median(d)|, for every i 2 [M ]. Next,
we compute the Median Absolute Deviation (MAD)

m = median(v) = median(abs(d� 1Mmedian(d))). (4)

Then, for the i-th distance measurement di, i 2 [M ], we decide
that it is outlying and remove it from Ď, if

|di �median(d)| > ⌧ ·m (5)

where ⌧ is a parameter of the MAD method, that is tuned
based on the expected sparsity of the heavily corrupted mea-
surements (typically, ⌧ takes values between 8 and 10). The
MAD step is also summarized in Alg. 2. The use of MAD for
outlier detection is presented in detail in [37], [38].

B. Step 2: EDM Completion and Denoising with RBC
This is an iterative method for matrix completion, based on

eigenvalue truncation [17] and the rank property of EDMs
(i.e., the rank of an EDM for points in RD is at most
D + 2). First, eD is initialized to 0N⇥N . Then, eD is set to
be equal to Ď, wherever Ď is non-empty. The next steps are
iteratively repeated until convergence in eD, or termination: (i)
Do eigenvalue decomposition (EVD) of eD EVD

= U⇤UT ; (ii)
Update eD = [U]:,1:D+2[⇤]1:D+2,1:D+2[U]T:,1:D+2; (iii) Set to
0 the diagonal and/or negative entries of eD. The RBC step is
summarized in Alg. 3.

C. Step 3: Classical MDS
As the last step, we apply MDS to the completed estimated

distance matrix bD (symmetric, with non-negative entries, and
zeros in the main diagonal). The method is presented in detail
in [29] and summarized here for completeness.

We define J = IN � 1
N 11T and, motivated by the fact that

XTX = � 1
2JDJ, we form an estimate of the Gram matrix

G = �1

2
JbDJ (6)

Algorithm 3: RBC [17]

Given: eD, W, D
Initialize bD 0N⇥N

For every (i, j) 2 [N ]2

If [W]i,j = 1, [bD]i,j  [eD]i,j
Repeat (until convergence or maximum iterations)

bD EVThreshold(bD, D + 2)
For every (i, j) 2 [N ]2

If [W]i,j = 1, [bD]i,j  [eD]i,j
If i = j or [bD]i,j < 0, [bD]i,j  0

Return bD

function EVThreshold (A, r)
{U,⇤} EVD(A)
[⇤]i,i  0, for every i > r

Return A  U⇤UT

Algorithm 4: Classical MDS [29]

Given: bD, D
J IM � 1

N 11T

G � 1
2J

bDJ
{U,⇤} EVD(G)
Return eX [⇤]1:D,1:D[U]T:,1:D

and obtain the estimated relative network node coordinates

bX = [⇤]1:D,1:D[U]T:,1:D (7)

where G
EVD
= U⇤UT (for UTU = UUT = IN and [⇤]1 �

. . . � [⇤]N � 0). Alg. 4 presents a pseudocode for MDS.
The obtained relative coordinates in bX correspond to the

original ones, up to some transformation (rotation, flipping,
translation), since the absolute position and orientation of the
points are lost when we operate on distances. For many appli-
cations, such as scheduling network node transmissions, the
relative coordinates within the graph suffice. For other tasks,
absolute coordinates are needed. This orientation/translation
ambiguity is resolved by aligning the obtained coordinates in
bX with a set of anchors (i.e., nodes whose coordinates are
fixed and known).

V. PERFORMANCE ANALYSIS

We evaluate the localization performance of the proposed
MAD-MDS graph localization approach in terms of RMSE
with numerical studies on (i) random ad-hoc mesh network
graphs and (ii) an underwater network topology from past
sea experiments. Additionally, we compare its performance
to state-of-the art approaches that apply MDS on missing [17]
and missing/corrupted distance data [35].

bX in (7) is an estimate of X, up to rotation/translation.
To compare the two coordinate matrices and evaluate RMSE
we need to “align” them. To accomplish that, we first zero-
center bXs = bX� bX 1

N 11T and X�X 1
N 11T . Then, we find

rotation matrix Q = UVT where U and V are the left- and
right-hand singular vectors of bXsXT

s . Finally, we form the
aligned coordinate estimates bXsr = QT bXs+X 1

N 11T . For all
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Fig. 1. Average RMSE performance (measured in km) for a network of
N = 5 underwater acoustic nodes and varying maximum communication
range from 600 m to 2.8 km.
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Fig. 2. Average RMSE performance (measured in km) for at-sea topology 1
[39] and different distance measurement error deviation.

methods, RMSE is calculated as RMSE =
q

1
N kbXsr �Xk2F ,

averaged over 1000 realizations.

A. Simulations with Synthetic Data
Our simulation setup considers 1000 Monte-Carlo real-

izations for 12 different network graphs, each considering
uniform deployment of N = 5 nodes in an area of 2000 m⇥
2000 m. The nodes are randomly arranged in different mesh
network configurations. Link connectivity is controlled by
setting a threshold on the proximity range between pairs of
nodes. In Fig. 1, we plot the average RMSE performance
(in km) versus the communication range of the nodes, for
the proposed MAD-MDS, RBC with MDS [17], and RPCA
with MDS [35]. As the communication range increases, the
distance measurement matrix Ď becomes denser and, accord-
ingly, the localization performance tends to improve for all
methods –most emphatically for range greater than 1.5km. An
estimated range between each pair of nodes in the network
is given to all algorithms with an error randomly set by a
generalized Gaussian distribution. Based on our prior work
[40], the selected modeling approach captures the wide range
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Fig. 3. Snapshot of true X vs reconstructed point coordinates bXsr for at sea
topology 1 [39] and distance measurement error standard deviation � = 10.

of error distributions that may appear during the construction
of the distance matrix. In particular, we consider that each
entry in the distance matrix is corrupted from low-variance
noise (modeled as zero-mean Gaussian with � = 0.05) with
probability 0.9 and high-variance Gaussian noise with � = 10
with probability 0.1. We observe that the proposed algorithm
exhibits superior RMSE performance for both sparse and
fully connected network graphs that contain sparse outlier
measurements.

B. Simulations with Data from Past Sea Experiments
In this section, we demonstrate the applicability of our ap-

proach to realistic conditions. In particular, we utilize the true
coordinates and time-varying binary topology of an underwater
mesh network that was deployed in a port area in Israel during
a past sea experiment [39]. The experiment involves four nodes
changing their position within the Haifa port to create different
topology setups, while communicating with a self-made under-
water acoustic modem. Experimental data logs can be down-
loaded from: https://sites.google.com/marsci.haifa.ac.il/asuna.
Fig. 2 depicts the average RMSE of MAD-MDS for topology
1 in [39], which considers a fully-connected network of four
nodes. We observe that MAD-MDS performs similar to MDS
after RBC completion, for small error variance, however for
as distance error measurement variance increase the proposed
algorithm keeps the error below 300 m. Fig. 3 shows the 2-
D coordinates of all network nodes for this topology. We
observe that MAD-MDS can still recover the positions of all
networks nodes (with an error of approximately 300 m) even
in the presence of high-variance error in the collected distance
measurements.

VI. CONCLUSIONS

We presented a method for robust graph localization in
underwater acoustic networks from incomplete and outlier
corrupted pair-wise distance measurements. The proposed
method conducts outlier excision, matrix completion, and
multi-dimensional scaling and it is shown to outperform state-
of-the-art counterparts, especially for the cases where network
connectivity is sparse (i.e. missing graph edges) and the
distance measurements experience high corruption variance.
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