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Abstract
We study stationary free boundary configurations of an ideal incompressible
magnetohydrodynamic fluid possessing nested flux surfaces. In 2D simply con-
nected domains, we prove that if the magnetic field and velocity field are never
commensurate, the only possible domain for any such equilibria is a disk, and
the velocity and magnetic field are circular. We give examples of non-symmetric
equilibria occupying a domain of any shape by imposing an external magnetic
field generated by a singular current sheet charge distribution (external coils).
Some results carry over to 3D axisymmetric solutions. These results highlight
the importance of external magnetic fields for the existence of asymmetric
equilibria.
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We consider an ideal incompressible magnetohydrodynamic fluid occupying a domain
Ω ⊂ Rd, d = 2, 3 with free boundary ∂Ω as a model for plasma equilibria. We assume
that the region Ω is surrounded by vacuum containing a current Jext (scalar valued in dimen-
sion two and vector valued in dimension three) supported away from Ω. The external field Bext

satisfies

curl Bext = Jext in Rd\Ω, (1)

∇ · Bext = 0 in Rd\Ω, (2)

where curl = ∇⊥· with ∇⊥ := (−∂2, ∂1) in two dimensions. Plasma equilibria are then gov-
erned by

u · ∇u − B · ∇B = −∇p in Ω, (3)

u · ∇B − B · ∇u = 0 in Ω, (4)

∇ · B = 0 in Ω, (5)

∇ · u = 0 in Ω, (6)

p =
1
2
|Bext|2 on ∂Ω, (7)

B · n̂ = Bext · n̂ on ∂Ω, (8)

u · n̂ = 0 on ∂Ω, (9)

where n̂ is the unit outward normal to the boundary. The conditions (7)–(9) arise from demand-
ing that (3)–(6) hold globally in the weak sense. Specifically, condition (7) comes from noting
that away from the support of Jext, the external magnetic field satisfies

−Bext · ∇Bext = −1
2
∇|Bext|2 in Rd\supp(Jext). (10)

Therefore, the pressure pext in the vacuum is simply 1
2 |Bext|2 and (7) comes from demanding

that the jump [p] := p− pext in the pressure across the free boundary is zero. The condition
(8) forces the penetrative component of the magnetic field to be continuous across the surface.
We will consider here only the case where the external field does not penetrate the plasma,
i.e.

Bext · n̂ = 0 on ∂Ω. (11)

The reason we restrict to this case is that, according to (8), B · n̂ = 0 on the boundary so that
these free boundary equilibria are, in fact, a subclass of fixed boundary equilibria on a given
domain.

In the formulation (1)–(9), we have allowed for an external magnetic field sourced by an
imposed current distribution Jext. The motivation for including such effects comes from the
plasma confinement fusion program. Free boundary plasma equilibria which are confined
to finite volumes and surrounded by vacuum are the principal objects in this study. Their
creation and maintenance is a huge scientific and engineering challenge, with the tokamak,
spheromak and stellarator being the most popular designs to accomplish this. In all situ-
ations, but in particular the stellarator, it is necessary to keep the plasma in a contoured
shape which may not naturally be stable or even stationary. As such, it is necessary to
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impose external currents driven through coils surrounding the device to hold the configuration
steady.

In this work, we address the question of which configurations are naturally stationary
without external coils (theorem 2) and how to prescribe or a coil geometry (theorem 3) in
order to hold contortions of these steady. All of this is done primarily in two dimensions
and included possible non-trivial flow velocity. Some of the results can be extended to cer-
tain three-dimensional geometries with symmetries. For z-independent axisymmetric solutions
occupying infinite cylindrical domains, we prove a similar rigidity result as in 2D (theorem 4).
For ϕ-independent axisymmetric solutions possibly occupying toroidal domains, we prove the
solution and domain must have up–down symmetry (theorem 5)4.

Finally we mention a conjecture of Grad [11–13] which asserts that in three dimensions,
the only stationary equilibria, fibered by flux surfaces and without flow velocity, must inherit
Euclidean symmetries (e.g. axisymmetry in the context of a toroidal plasma body). We prove
the analogous statement is, in fact, true in two-dimensions for free boundary solutions with
a single magnetic nullpoint if one does not impose external currents (theorem 2). However,
fixed boundary configurations (which can be made free boundary with the use of appropriate
coils according to theorem 3) are flexible, see [3]. If similar results hold in three-dimensions,
it would provide theoretical justification for the stellarator program.

1. Two dimensions

In this section, we consider simply connected bounded domainsΩ ⊂ R2. In light of the incom-
pressibility of u and B, equations (5) and (6), we can introduce a scalar streamfunction ψ and
magnetic potential A

u = ∇⊥ψ, B = ∇⊥A. (12)

Note that, in order to enforce the tangency of the velocity and magnetic field at the free bound-
ary, (8) and (9), we require that ∂Ω is an isosurface of ψ and A simultaneously. An equiv-
alent dynamical formulation consists of the vorticity equation and the advection–diffusion
equation for the magnetic potential. In this formulation, equations (3)–(6) are replaced
by

{ψ,Δψ} − {A,ΔA} = 0, (13)

{ψ, A} = 0, (14)

where {a, b} :=∇⊥a · ∇b is the usual Poisson bracket, which is anti-symmetric in its argu-
ments. Our first result is a characterization of non-degenerate stationary solutions, with either
free or fixed boundary.

4 We remark that there are well known ‘virial’ theorems (see appendix C) which also expose a certain form of rigidity.
In particular, these results can be used to rule out any nontrivial solutions without external forcing if one makes the
additional assumption that the pressure is non-negative. In particular, for a compressible gas (magnetized or not), the
pressure is given by an equation of state involving the density and is thus positive. As such, this theorem implies non-
existence of free boundary equilibria. On the other hand, for the incompressible medium studied here, the assumption
that the pressure is positive is not natural and there indeed exist many free boundary steady states.
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Proposition 1. Let Ω be a simply connected bounded domain. Let u = ∇⊥ψ and B = ∇⊥A
be a Ck with k � 2 steady solution of the system (3)–(9) without requiring the free bound-
ary condition (7). Suppose that B is non-vanishing except at a single point with k-times
differentiable travel time

μ(a) :=
∮
{A=a}

d�
|∇A| . (15)

Then, there exists a Ck function G : R→ R such that

ψ = G(A), (16)

and there exist a Ck−1 function F : R→ R such that ψ solves(
1 − |G′(A)|2

)
ΔA − G′(A)G′′(A)|∇A|2 = F(A) in Ω, (17)

A = 0 on ∂Ω. (18)

Moreover, there exists a Ck−1 function H : R→ R such that the pressure satisfies

p+
1
2
|u|2 − 1

2
|B|2 = H(A). (19)

Remark 1 (Assumption on the travel-time). Away from the unique null point, the
assumption on the travel time (15) is automatic from the assumed regularity on the solution.
The content of the assumption lies in the order of degeneracy of the critical point of A—we
exclude solutions which degenerate too rapidly. In the radial case, this amounts to consider-
ing streamfunctions which vanish no faster that r2. See remark 7 for more discussion. More
generally, for C∞ streamfunctions, it is proved that any such satisfying our assumptions on the
travel time must be Morse functions (theorem 2.4 of [22]). Moreover, for Ck streamfunctions
which are Morse, the travel time will be of class C	 k

2 
−1 which follows from the finite-regularity
extension of Vey’s theorem appearing in appendix D of [17]. These rates of degeneracy, and
therefore the regularity of μ, are important in deducing the existence of G and F above in the
claimed regularity classes. This is the content of lemma 5 of the appendix.
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Proof of proposition 1. The existence of a function G such that the relation (16) holds
follows from lemma 5. In order to obtain (17), using (16) we find that

{ψ,Δψ} = {G(A),ΔG(A)}

= G′(A)∇⊥A · ∇ΔG(A)

= ∇⊥A · ∇
(
G′(A)ΔG(A)

)
.

Thus from the vorticity equation (13) we find

∇⊥A · ∇
(
ΔA − G′(A)ΔG(A)

)
= 0. (20)

Whence, appealing again to lemma 5, we deduce the existence of an F such that

ΔA − G′(A)ΔG(A) = F(A). (21)

Expanding by chain rule gives the claimed equation (17).
To find the pressure formula, we note that one rewrite the steady momentum equation as

u⊥ω − B⊥η = −∇
(

p+
1
2
|u|2 − 1

2
|B|2

)
, (22)

where ω = ∇⊥ · u and η = ∇⊥ · B. Since u⊥ = G′(A)B⊥ as a consequence of (16), dotting
with B we obtain

B · ∇
(

p+
1
2
|u|2 − 1

2
|B|2

)
= 0. (23)

Thus by, lemma 5, equation (19) follows. �

Proposition 1 is a structure theorem for steady states with non-degenerate magnetic fields.
An immediate corollary is

Corollary 1. Let Ω be a simply connected bounded domain. The fields u = ∇⊥ψ, B = ∇⊥A
and Ω form a Ck steady free boundary solution of the system (3)–(9) with the property that B
is non-vanishing except at a single point with k-times differentiable travel time if there is a Ck

function G and some Ck−1 functions F and H, such that A solves(
1 − |G′(A)|2

)
ΔA − G′(A)G′′(A)|∇A|2 = F(A) in Ω, (24)

A = 0 on ∂Ω, (25)

1
2

(|G′(0)|2 − 1)|∂nA|2 = H(0) − 1
2
|Bext|2 on ∂Ω. (26)

Corollary 1 exposes the overdetermined nature of free boundary MHD solutions with the
stipulated structure (the field A must satisfy a nonlinear elliptic equation with both Dirichlet
and Neumann data). We recall the seminal result of Serrin [21] about overdetermined elliptic
problems.
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Theorem 1 (Theorem 2 of [21]). Let Ω be a C2 simply connected domain and f , g :
R2 → R be given C1 functions. Suppose ψ is a C2 solution of

g(ψ, |∇ψ|)Δψ + f (ψ, |∇ψ|) = 0 in Ω, (27)

ψ = 0 on ∂Ω, (28)

∂nψ = (const.) on ∂Ω. (29)

If ψ > 0 or ψ < 0 in Ω then Ω is a ball and ψ is radially symmetric.

As a result, we expose the following rigidity of solutions of the free boundary problem

Theorem 2. Let k � 4 and Ω be a simply connected bounded domain. Let u = ∇⊥ψ,
B = ∇⊥A and Ω be a Ck steady free boundary solution of the system (3)–(9) with trivial exter-
nal field and current Bext = jext = 0. Suppose that B is non-vanishing except at a single point
with k-times differentiable travel time. Suppose additionally that |B| �= |u| away from the null
point p of B and that limx→p|u(x)|/|B(x)| �= 1. Then Ω = BR(0) with R such that vol(BR(0)) =
vol(Ω0) and the velocity and magnetic field are circular (i.e.A :=A(r) andψ :=ψ(r)).

Remark 2 (Magnetohydrostatic (MHD) equilibria). In the special case of u = 0
(G = 0), we deduce that the self-supporting magnetic field must be radial. This result was
obtained recently by Hamel and Nadirashvili [14] (theorem 1.10 therein) and is meaningful
in the context of Grad’s conjecture concerning rigidity of MHD equilibria, see discussion
in [3, 4].

Proof of theorem 2. Our assumptions put us in the setting of corollary 1. Note that, by our
assumption that the velocity and magnetic field are never commensurate, we have the existence
of a c0 > 0 such that

∣∣1 − |G′(A)|2
∣∣ � c0. Since, by assumption, F, G′′ ∈ C2, A = 0 on the

boundary and |∇A| vanishes only at one point in the interior, it follows that A has a single
sign in Ω we are in the setting of theorem 1. Applying this completes the proof. �
Remark 3 (Breaking symmetry using flow velocity). We remark that, for any given
flux function A, if G′(A)2 = 1 identically then equation (24) is a tautology (with F = 0) and
(26) is satisfied with H(0) = 0 and Bext = 0. This corresponds taking u = B where B is chosen
to be an arbitrary divergence free vector field tangent to a closed curve. In this way, one can
generate a free boundary steady state (u, B) on any desired domain.
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1.1. Breaking symmetry using external fields

We now show how an external magnetic field can be used to shape the plasma in any desired
configuration. Outside of the plasma body, there is a given steady magnetic field in this region
generated by an imposed current distribution Jext. Despite (17)–(26) being an overdetermined
system, it can be hoped that by varying a designer external field Bext, one can obtain solutions
occupying any desired geometry. Indeed, it is this expectation that fuels hope in the scientific
program surrounding stellarator confinement fusion.

We now show that this expectation is indeed the case here by constructing such free bound-
ary steady states on any given domain by designing a special imposed current. The strategy is
as follows. Fix a simply connected domain Ω, along with smooth functions G, F and H such
that the elliptic problem (17)–(25) is solvable. The additional condition (26) will be fixed after
the fact by designing the external field. The external field can be represented by Bext = ∇⊥Aext

where

ΔAext = Jext in R2\Ω, (30)

Aext = 0 on ∂Ω, (31)

Aext → 0 as |x| →∞. (32)

Condition (26) becomes an additional Neumann condition on the potential:

|∂nAext|2 = H(0) +
1
2

(1 − |G′(0)|2)|∂nA|2, (33)

and we would therefore like to choose Jext so that given A, the resulting potential Aext satisfies
(33). Construction of a solution Aext of the above by an appropriate choice of the current Jext

leads to a simple inverse problem. We solve this problem in the class of singular current sheet
distributions, which provide a simple model for thin but densely packed coils surrounding the
plasma body.

Lemma 1. Let Ω be any simply connected domain with real analytic boundary and f :
∂Ω→ R be a given analytic function with f > 0. Then, there exists a smooth Jordan curve Γ
surrounding Ω and a scalar function j : Γ→ R such that there is a solution Aext : R2\Ω→ R

to

ΔAext = jδΓ in R2\Ω, (34)

Aext = 0 on ∂Ω, (35)

∂nAext = f on ∂Ω, (36)

∇Aext → 0 as |x| →∞. (37)

We offer two proofs of this lemma. The first uses the Cauchy–Kovalevskaya theorem as
in [10]. The second is more explicit and relies on a representation formula for solutions of
Poisson problems in exterior domains. These approaches have the possible drawback that the
curve Γ constructed by the argument must be taken close to the domain. We defer the details
of these arguments to appendix B. The assumption that f is analytic is essentially sharp. In the
simple case that Ω is taken to be the unit disk, if the problem (34)–(37) has a solution for some
C1 curve Γ and L1(Γ) function j, then the Fourier coefficients of f need to decay exponentially
fast and this implies analyticity. See lemma 7. A more general result that holds for analytic
domains Ω and allows for penetrative fields is proved in a forthcoming work of [9].
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With lemma 1 in hand, we prove.

Theorem 3. Let Ω ⊂ R2 be any simply connected domain with real analytic boundary. Let
u = ∇⊥ψ, B = ∇⊥A and Ω be an analytic fixed boundary steady MHD solution (e.g. solution
of the system (3)–(9) without the free boundary condition (7)) with B non-vanishing except at
a single point and such that

|B|2 > − 2H(0)
1 − |G′(0)|2 on ∂Ω, (38)

where G and H are defined in proposition 1. Then there exists an external magnetic field gen-
erated by a singular charge distribution (current sheet) making (u, B,Ω) into a free boundary
equilibrium.

Remark 4 (Structural assumption). We first remark that the condition (38) is auto-
matic for any solution with positive plasma pressure H > 0 having the additional property that
|u| < |B| on the boundary of the domain (in particular, for MHD solutions which have u = 0).

Remark 5 (Structure of coils). We make a few remarks about the realizability of the
external currents. First, the singular nature of the external charge distribution is not necessary
and it can be made smooth. Second, in practice it may be desirable to prescribe a constant
current density along the coil. Imposing this requirement results in the more complicated
problem of finding an appropriate curve Γ to realize this constraint. We do not address
this interesting issue here. Finally, it may be desirable to have current localized to points
(in 2D) or curves (in 3D). In this direction, heuristically one expects that the current sheet
could be approximated by many point charges allowing one to create free boundary configura-
tions on a domain nearby some target by using a sufficiently large but finite collection of ‘point
coils’:

Jext =

N∑
i=1

j(xi)δxi ≈ jδΓ. (39)

Of course, this replacement incurs an error and to make the Cauchy datum (35) and (36) hold
exactly for a nearby fixed boundary steady state requires a non-trivial argument.
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Remark 6 (Construction of MHS equilibria and ‘2D stellarator program’). The
main result of [3] provides a method of constructing fixed boundary solutions with the desired
‘laminar’ structure of MHSs on domains which are slight deformations of disks. Specifically,
consider an MHD solution with u = 0 and B satisfying MHS on a given domain Ω ⊂ R2

B · ∇B = ∇p in Ω, (40)

B · n̂ = 0 on ∂Ω. (41)

Theorem 1.3 of [3] guarantees that solutions of the above which satisfy the Arnold stabil-
ity conditions are deformable to arbitrary close domains. Their magnetic field line topology
is preserved by this deformation. If B = ∇⊥A and η :=∇⊥ · B = ΔA, this concerns station-
ary solutions of the form η = F(A) where F : R→ R satisfies F′(A) > −λ1 where λ1 :=λ1(Ω)
is the first eigenvalue of the Dirichlet Laplacian on Ω. We remark that, on a convex domain
Ω, all Arnold stable flows have a single stagnation point in the interior. See theorem 1.4 of
[19]. This result also holds for the first Dirichlet eigenfunction of the Laplacian. Note also
that if Ω = B1(0) is the disk, then any radial potential A = A(r) defines a stationary solu-
tion and if A(r) is monotone decreasing away from r = 0 then the stability condition above
is satisfied. Provided the travel time of these solutions is bounded at their centers, theorem 1.3
applies to deform any member of this large class of stationary solutions to nearby analytic
domains. Theorem 3 herein then applies and such solutions can be realized as free boundary
equilibria supported by suitable external currents. As such, one may regard this as a com-
plete version of the (static) stellarator problem in two-dimensions—to identify asymmetric
equilibria and give a constructive prescription for how to support them with external coils. In
three dimensions, this static problem has been approached numerically [15, 18] but there are
issues related to the possible non-existence of suitable equilibria outside symmetry (Grad’s
conjecture). If identified, the dynamical problem of driving the physical plasma system to
such a configuration by designing a control procedure involving running time varying currents
through fixed external coils is a major open issue, even in two dimensions.

2. Three dimensions with axial symmetry

There are results analogous to those in the previous section in three space dimensions for
symmetric configurations. In this setting it is convenient to rewrite (3) as

ω × u − J × B = −∇P, (42)

where J = curl B and where we have introduced the Bernoulli function

P = p+
1
2
|u|2 − 1

2
|B|2. (43)

Note also that the induction equation (4) can be understood simply as Lie transport

LBu = 0, (44)

where LBu = [B, u] denotes the Lie derivative. With (r,φ, z) the standard cylindrical coordi-
nates, we will consider solutions (u, B) which are either independent of z or φ, meaning that

Lez B = Lez u = 0 or LeφB = Leφu = 0, (45)

with ez, eφ the usual basis vectors. Such solutions may occupy infinite cylinders or compact
tori wrapping around the z-axis.
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2.1. z-independent solutions

Here we consider solutions which satisfy Lez B = Lez u = 0. As such, these solutions occupy
infinite cylindrical domains and contain the 2D setting as a special case. By the elementary
identity

curl(X × Y) = X div Y − Y div X + LY X, (46)

and div B = div u = 0 we have

Lez B = curl(ez × B). (47)

We therefore make the following ansatz for B,

B = C(A)ez + ez ×∇A, A = A(r, θ), (48)

and similarly for u we take

u = F(ψ)ez + ez ×∇ψ, ψ = ψ(r, θ). (49)

Here C, F are arbitrary functions. The vector fields in (48) and (49) are automatically
divergence free.

The induction equation is

LBu = 0. (50)

Using (46) and that div u = div B = 0, we have LBu = curl(u × B) and consequently

u × B = C(A)∇ψ − F(ψ)∇A + (ez · (∇ψ ×∇A)) ez.

If we take ψ = G(A) for a function G this last term vanishes. Taking the curl we then find

curl(C(A)∇ψ − F(ψ)∇A) =
(
C′(A) + F′(ψ)

)
∇A ×∇ψ = 0. (51)

We therefore see that if we take B, u as in (48) and (49) with ψ = G(A) the induction equation
holds automatically. We now consider the momentum equation (42). Using

curl(C(A)ez) = C′(A)∇A × ez, curl(∇A × ez) = −ΔA ez, (52)

we find

B × curl B = (C(A)ez + ez ×∇A) × (C′(A)∇A × ez +ΔAez)

=
(
CC′(A) +ΔA

)
∇A, (53)

and in the same way

u × curl u = (FF′(ψ) +Δψ)∇ψ, (54)

and the momentum equation (42) reduces to(
FF′(ψ) +Δψ

)
∇ψ −

(
CC′(A) +ΔA

)
∇A = −∇P. (55)
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Provided ∇A is non-vanishing except at possibly a single point with k-times differentiable
travel time this gives P = P(A), and we then find the Grad–Shafranov equation

(1 − |G′(A)|2)ΔA − G′′(A)G′(A)|∇A|2 + FF′(A) − CC′(A) = −P′(A), (56)

abusing notation and writing FF′(A) = FF′(G(A)). We then have an analog of corollary 1.

Lemma 2. Define B, u as in (48) and (49) where ψ = G(A) for a function G and where
∇A is non-vanishing except at possibly a single point with k-times differentiable travel time.
Then u, B,Ω ⊂ {z = 0} form a Ck steady solution to the free boundary problem (3)–(9) with
Bext · n̂ = 0 provided A solves

(1 − |G′(A)|2)ΔA − G′′(A)G′(A)|∇A|2 + FF′(A) − CC′(A) = −P′(A), in Ω, (57)

A = 0, on ∂Ω, (58)

1
2

(|G′(0)|2 − 1)|∂nA|2 = H(0) − 1
2
|Bext|2, on ∂Ω, (59)

where H(A) = P(A) − 1
2 F(G(A))2 + 1

2 C(A)2.

Lemma 2 puts us again in the setting of Serrin [21] and so just as in theorem 2 we have

Theorem 4. Let k � 4 and let B, u, A,Ω be as in lemma 2, a Ck steady free boundary solu-
tion of the system (3)–(9) with trivial external field and current Bext = jext = 0. Suppose that
B is non-vanishing except at a single point with k-times differentiable travel time. Suppose
additionally that |B| �= |u| away from the null point p of B and that limx→p|u(x)|/|B(x)| �= 1.
Then Ω = BR(0) with R such that vol(BR(0)) = vol(Ω0) and the velocity and magnetic field
are circular (i.e. A :=A(r) and ψ :=ψ(r)).

2.2. φ-independent solutions

These solutions can either occupy cylindrical domains or toroidal domains which wrap around
the z-axis (e.g. the tokamak). In the first case the equilibrium occupies an unbounded domain
in R3 but in the second case it occupies a bounded domain, theorem 1 can still be used to get
a rigidity statement, but it is far weaker than the rigidity in the cylindrical or 2D case. To get
this result, we make the ansatz

B =
1
r

C(A)eφ +
1
r

eφ ×∇A, A :=A(r, z), (60)

and

u =
1
r

F(ψ)eφ +
1
r

eφ ×∇ψ, ψ :=ψ(r, z). (61)

These are both divergence-free and axisymmetric, LreφB = Lreφu = 0. We also have

u × B =
C(A)

r2
∇ψ − F(ψ)

r2
∇A +

1
r

(
eφ · (∇ψ ×∇A)

)
eφ. (62)
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Taking ψ = G(A) as in the z-independent case the last term drops out. Taking the curl, we get

curl(u × B) = ∇
(

C(A)
r2

)
×∇ψ −∇

(
F(ψ)

r2

)
×∇A

=
1
r2

(
C′(A) + F′(ψ)

)
∇A ×∇ψ

+
1
r3

(F(ψ)∇r ×∇A − C(A)∇r ×∇ψ) . (63)

The first term vanishes when ψ = G(A). To get the second term to vanish we must take
additionally

F(G(A)) − C(A)G′(A) = 0. (64)

In other words, thinking of F, C as given, to satisfy the induction equation, G must be chosen
so

G′(A)
F(G(A))

= C(A). (65)

As for the momentum equation (42), we compute

1
r

eφ ×∇A =
1
r
∂zAer −

1
r
∂rAez, (66)

and

curl

(
1
r

eφ ×∇A

)
=

(
∂r

(
∂rA

r

)
+

1
r
∂2

z A

)
eφ = Δ∗A

eφ
r

, (67)

where we have introduced the Grad–Shafranov operator Δ∗ = ∂2
r + ∂2

z − 1
r ∂r. Since

curl
(

1
r eφ

)
= 0,

curl B = C′(A)∇A × eφ
r
−Δ∗A

eφ
r
. (68)

Performing a similar calculation for u we find

B × curl B =
(
Δ∗A + CC′(A)

) ∇A
r2

, u × curl u =
(
Δ∗ψ + FF′(ψ)

) ∇ψ

r2
. (69)

As a result, the momentum equation reads

−
(
Δ∗A + FF′(A)

)
∇A +

(
Δ∗ψ + CC′(ψ)

)
∇ψ = −r2∇P, (70)

which, just as in the z-independent case, leads to the Grad–Shafranov equation

(1 − |G′(A)|2)Δ∗A − G′′(A)G′(A)|∇A|2 + CC′(A) − FF′(A) = r2P′(A). (71)

As a consequence we have

Lemma 3. Define B, u as in (48) and (49) where ψ = G(A) for a function G and take
P = P(A). Then u, B,Ω form a Ck steady solution to the free boundary problem (3)–(9) with
Bext · n̂ = 0 provided G is chosen to satisfy
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G′(A) = C(A)F(G(A)), (72)

and A is a solution to

(1 − |G′(A)|2)Δ∗A − G′′(A)G′(A)|∇A|2 + CC′(A) − FF′(A) = r2P′(A), in Ω,

(73)

A = 0, on ∂Ω,

(74)

1
2r2

(|G′(0)|2 − 1)|∂nA|2 = H(0, r) − 1
2
|Bext|2, on ∂Ω,

(75)

where H(A, r) = P(A) − 1
2r2 F(G(A))2 + 1

2r2 C(A)2.

In the case of u = 0, this result appears as lemma 1.1 in [7]. The above equation and bound-
ary condition are not invariant under arbitrary reflections and so there is not such a strong
rigidity result in this setting. They are however invariant under reflections z �→ −z and so the
arguments from [21] give

Theorem 5. Let k � 4 and let B, u, A,Ω be as in lemma 3, a Ck steady free boundary solution
of the system (3)–(9) with trivial external field and current Bext = jext = 0. Suppose addition-
ally that B �= u along any magnetic field line. Then Ω, the velocity, and magnetic field are
symmetric with respect to the reflection z �→ −z.

This theorem restricts the shape of the tori in which a free boundary equilibrium without
external forcing can possibly reside. As in our 2D construction, external coils could be used
to impose external fields to bend these equilibria at will. We remark that theorem 1.2 of the
recent work [7] constructs solutions of the overdetermined problem (73)–(75), resulting in
axisymmetric free boundary Euler solutions exhibiting this up–down symmetry. We remark
that breaking of up–down symmetry plays an important role in enhancing turbulent transport
in tokamaks [2, 20].

2.3. Breaking symmetry using external fields

Here we show how a current sheet enveloping the toroidal plasma can be designed to produce
free boundary equilibria. We have the following lemma

Lemma 4. Let Ω ⊂ R2 be any simply connected domain with real analytic boundary which
corresponds to the cross-section in the {φ = 0} plane of an axisymmetric toroidal domain
T. Let f : ∂Ω→ R (extended as a φ-independent function on T) be a given analytic function
with f > 0. Then, there exists a toroidal surface T′ with cross-section Ω′ surrounding T and a
scalar function j : Γ→ R such that there is a vector potential Aext : R2\T → R3 to

ΔAext = jeφδT ′ in R3\T, (76)

n̂ · curl Aext = 0 on ∂T, (77)

|τ̂ · curl Aext| = f on ∂T, (78)

eφ · curl Aext = 0 on ∂T, (79)

∇Aext → 0 as |x| →∞, (80)
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where n̂ is a normal vector field to Ω in the {φ = 0} half-plane and τ̂ is a unit tangent vector
tangent to Ω in the {φ = 0} half-plane.

The proof (using Cauchy–Kovalevskaya) of this lemma is similar to that of lemma 1 due to
the assumption of axisymmetry. With it, we obtain.

Theorem 6. Let Ω ⊂ R2 be any simply connected domain with real analytic boundary
which corresponds to the cross-section in the {φ = 0} plane of an axisymmetric toroidal
domain T. Let u, B and T be an axisymmetric analytic fixed boundary steady MHD solution
of the type described in lemma 3 and such that

|∂nA|2 > − 2H(0)
1 − |G′(0)|2 on ∂Ω, (81)

where n is the normal to Ω in the {φ = 0} plane and where A, G, and H are defined in lemma
3. Then there exists an external magnetic field generated by a singular charge distribution
(toroidal current sheet) making (u, B, T) into a free boundary equilibrium.
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Appendix A. Reconstruction lemma

Lemma 5. Let ψ be Ck+1(Ω). Suppose that |∇ψ| is non-vanishing except at a single point
in Ω, occurring on the level {ψ = c∗}. Suppose moreover that the particle travel time satisfies

μ(c) :=
∮
{ψ=c}

d�
|∇ψ| ∈ Ck(rang(ψ)), (82)

and that w is a Ck(Ω) solution of

∇⊥ψ · ∇w = 0. (83)

Then, there exists a Ck function F : R→ R such that

w = F(ψ). (84)
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Remark 7 (Travel time for radial streamfunctions). To understand better the
assumption (82), we discuss the case where the domain is a disk and the streamfunction is
radial ψ(x) = f (|x|) for f invertible. Without loss of generality, we identify the stagnation
point as the set {ψ = 0}. Then

μ(c) =
∮
{r= f−1(c)}

d�
| f ′(r)| =

2π f −1(c)
| f ′( f −1(c))| = π

d
dc

| f −1(c)|2. (85)

Thus, the condition (82) is that ( f −1)2 ∈ Ck+1(rang(ψ)). If f (r) = rn, then this requirement is
that n � 2. The regularity assumption of ψ ∈ Ck+1(Ω) then implies n = 2. More generally, if
f (r) = r2 + g(r) a calculation shows that if h(r) = g′(r)

r is Ck near r = 0, then μ ∈ Ck+1.

Proof of lemma 5. We introduce angle action coordinates (x, y) �→ (ψ, θ) as follows. Under
our assumptions, the level sets {ψ = c} are Jordan curves. This system allows for a canonical
transformation to action-angle variables, (x, y) �→ (ψ, θ) where ψ is the ‘radial coordinate’ and
the ‘angular coordinate’ is

θ(x) =
2π

μ(ψ(x))

∫
Γx0(ψ),x

d�
|∇ψ| , (86)

where d� is the arc length differential. In the above, fixing a point x ∈ Ω, the line inte-
gral is taken counterclockwise from a point x0(ψ) = x0(ψ(x)) (defined directly below) on
the curve {ψ = ψ(x)} to the point x. Here, x0 is defined in the following way: fix a y ∈ ∂Ω
and flow transversally to the levels of ψ via Ẏ s(y) = ∇ψ(Ys(y)) with Y0(y) = y. Since ∇ψ �= 0
except at a single point p, the curve Ys(y) crosses each level set of ψ exactly once and tends to
the stagnation point at infinite s. Therefore, there exists a unique point x0(ψ) such that Ys(y)
crosses the level set with value ψ. This choice of x0 is differentiable in ψ. Then θ(x) is a 2π-
periodic parametrization of the streamline with value ψ(x). In these coordinates, (83) becomes

μ(ψ)∂θw = 0, (87)

whence we conclude that w :=F(ψ) locally, for some function F ∈ C1 (away from the stagna-
tion point) and continuous on the whole range (see proof of theorem 1.10 in [14]). To prove
that F can be defined globally, we use flow by the transverse direction ∇ψ from the boundary
to the stagnation point {ψ = c∗} using the fact that |∇ψ| is non-zero except at {ψ = c∗}. See
proof of lemma 2.1 in [3]. Away from the stagnation point, regularity of F follows. For global
regularity, note that

∇ =
1

|∇ψ|
(
∇̂⊥ψμ(ψ)∂θ + ∇̂ψ∂ψ

)
. (88)

This fact, together with w ∈ Ck(Ω) and μ ∈ Ck(rang(ψ)), imply F ∈ Ck(rang(ψ)). �

Appendix B. The coil problem

We first present the proof by Cauchy–Kovalevskaya.
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Proof of lemma 1. Since ∂Ω and f are both real analytic, by the Cauchy–Kovalevskaya
theorem there exists a collar neighborhood of ∂Ω, call it N and a scalar function AH : N → R

such that

ΔAH = 0 in N , (89)

AH = 0 on ∂Ω, (90)

∂nAH = f on ∂Ω. (91)

Since f > 0, (90) and (91) imply that the level sets of AH are closed Jordan curves surround-
ing ∂Ω in a possibly smaller collar neighborhood of the boundary (this follows from the fact
that f > 0 implies that there is a non-zero component of ∇AH near ∂Ω and so it follows
by the implicit function theorem that the level sets must be diffeomorphic to the boundary).
These level curves foliate that neighborhood and AH is strictly monotone across them. By
possibly shrinking the neighborhood, we redefine N to be any such collar region. In light
of this, consider now any a0 ∈ R such that the level curve Γ := {AH = a0} lies in N . Define
Aext : R2\Ω→ R to be

Aext =

{
χ(AH(x)) x ∈ N

a0 x ∈ N c\Ω
, where χ(z) =

{
z z � a0

a0 z > a0

. (92)

Since AH is harmonic it is easy to check (and make rigorous by an approximation argument)
that

ΔAext =

{
|∇AH|2χ′′(AH) x ∈ N

0 x ∈ N c\Ω
= −|∇AH|2δΓ, (93)

in the sense of distributions. Thus Aext satisfies (34)–(37) with Γ := {AH = a0},
j = −|∇AH|2. �

Now we provide result which is similar in spirit to lemma 1 and which is proved using
a different method which has the advantage of giving an essentially explicit formula for the
solution. We first consider the case that the domain Ω is the unit disk.

Lemma 6. Let Ω be the unit disk and let f : ∂Ω→ R be a given analytic function. Let Γ
be a C1 perturbation of a circle of radius R for any R > 1. Then there exists a scalar function
j : Γ→ R such that there is a solution Aext : R2\Ω→ R to

ΔAext = jδΓ in R2\Ω, (94)

Aext = 0 on ∂Ω, (95)

∂nAext = f on ∂Ω, (96)

∇Aext → 0 as |x| →∞. (97)

The difference between this and lemma 1 is that for this lemma, we can prescribe the shape
of the coilΓ ahead of time and in particular the coil can be taken arbitrarily far from the domain.
The tradeoff is that as stated, the result only applies when Ω is the unit disk. We briefly discuss
how it can be used to prove an analog of lemma 1 which handles more general domainsΩ at the
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cost of no longer being able to fix the geometry of the coils ahead of time. If Ω is an arbitrary
simply connected bounded domain, there is a conformal transformation

Φ : Ω→ D, (98)

mapping Ω to the unit disk. Since the boundary of Ω is analytic, there is an open set U with
smooth boundary ∂U so that Φ can be extended to U so that the extension is C1 up to the
boundary and is conformal in U. The image of U under the extended conformal map, still
denoted Φ, Φ(U) is an open set containing D. We can then argue as above to construct a circle
Γ of radius R > 1 and a solution a in the conformally transformed plane, solving (94)–(97)
there. Composing with Φ−1 as above gives a solution to the problem (34)–(37) which is defined
only in U. We can then argue as in the proof of lemma 1 to extend this solution to R2.

Proof of lemma 6. Fixing j,Γ for the moment, we start by giving an explicit representation
formula for any C2 solution to the exterior Poisson problem

Δa = JδΓ in R2\Ω, (99)

a|∂Ω = 0 lim
|x|→∞

∇a(x) = 0. (100)

For this it is convenient to work in complex variables. We parametrize the curve Γ = {z =
ζ(θ)} for a function ζ(θ) and write j(θ) = J(ζ(θ)). Define the quantities

c0 =
1

2π

∫ 2π

0
j(θ) log |ζ(θ)||ζ ′(θ)|dθ, (101)

and for k �= 0,

ck =
1

2π

∫ 2π

0

1
k

(ζ(θ))−k j(θ)|ζ ′(θ)|dθ. (102)

Let us note for later use that with minθ∈[0,2π]|ζ(θ)| = R, for k �= 0, the coefficients ck satisfy

|ck| � CΓ, j
1
|k|

1
Rk

, (103)

where

CΓ, j =
1

2π

∫ 2π

0
| j(θ)||ζ ′(θ)|dθ. (104)

Using the expansion

log |1 − z| =
∫ 1

0

d
dt

log |1 − tz|dt = −Re

(∫ 1

0

z
1 − tz

dt

)
, (105)

we write the Newton potential applied to the right-hand side of (99) in the form

N(z) =
1

2π

∮
Γ

log |z − ζ|J(ζ)dS(ζ)

=
1

2π

∫ 2π

0
log |z − ζ(θ)| j(θ) |ζ ′(θ)|dθ = c0 −Re

∞∑
k=1

ckzk. (106)
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We remark that the last identity holds for |z| < R while the first two hold for all z ∈ C. We now
compute the harmonic extension of the restriction of N to ∂Ω = {z = eiθ}. We first define

g(θ) = N(eiθ) = c0 −Re

∞∑
k=1

ckeikθ = c0 −
∑
k �=0

gkeikθ, (107)

where the coefficients gk are given by

gk =
1
2

ck, for k > 0, gk =
1
2

c−k, for k < 0. (108)

The harmonic extension of g to the exterior of Ω is obtained by noting that the function

−Re

∞∑
k=1

ck(z)−k = −Re

∞∑
k=1

ckz−k = −ReF(z), (109)

where

F(z) =
∞∑

k=1

ckz−k, (110)

is holomorphic in the exterior and decays at infinity. It follows that the function

G(z) = c0 −ReF(z), (111)

is harmonic, is constant at infinity, and satisfies G|∂Ω = g. Let

a(z) = c0 −ReF(z) − N(z) +
fave

2π
log |z|, (112)

where fave :=
∮
∂Ω f d�. It follows that a satisfies

Δa(z) = −
∮

δ(z − ζ)J(ζ)dS(ζ), (113)

in |z| > 1 and

a(eiθ) = 0. (114)

We now want to choose j(θ) so that with a given in (112), a satisfies the Neumann condition
(96). The external normal derivative at ∂Ω is −∂r and using the above formulas we compute

−∂ra(z)|z=eiθ = −Re

∞∑
k=1

kckeikθ −Re

∞∑
k=1

kcke−ikθ +
fave

2π
, (115)

where recall ck = ck[ j] is given in (102). Letting fk denote the Fourier coefficients of f , the
equation to solve is

ck =

⎧⎪⎪⎨⎪⎪⎩
− 1
|k| fk for k > 0,

− 1
|k| f̄−k for k < 0.

(116)
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When the curve Γ is a circle of radius R > 1 so that ζ(θ) = Reiθ we compute directly

ck =
1
k

R1−|k| jk, (117)

where jk denote the Fourier coefficients of j, j =
∑

jkeikθ. Provided the Fourier coefficients
of f satisfy the bound

| fk| � CΓ, j|k|R−|k|, (118)

with CΓ, j as in (104), the equation (116) can be solved directly for jk.
If instead Γ is a perturbation of the circle of radius R, then the equation for j is∫ 2π

0
j(θ)wk(θ)dθ = R|k|−1kck, where wk(θ) =

|ζ ′(θ)|
ζ(θ)k

. (119)

Under our hypotheses, wk is a perturbation of ei(1−k)θ. Writing

Ek( j) =
∫ 2π

0
j(θ)(ei(1−k)θ − wk(θ))dθ, (120)

we would like to find j satisfying the equation

j − 2π
∑

k

Ek( j)e−ikθ = 2π
∑

k

R|k|−1kcke−ikθ. (121)

This can be solved by Neumann series provided the sequence of operators {Ek} has sufficiently
small �2 norm, where ‖{Ek}‖2

�2 = sup‖ j‖L2=1

∑
k‖Ek( j)‖2

L2 . This condition holds provided Γ is
a sufficiently small perturbation of a circle. �

The above construction actually shows that the requirement that f is analytic is essentially
sharp, in the sense that when Ω is the unit disk, under only mild assumptions on j and Γ, if
there is a solution to the above problem then the Fourier coefficients of f decay exponentially
fast.

Lemma 7. Let Ω be the unit disk and suppose that Γ is parametrized by z = ζ(θ) = R(θ)eiθ

where R(θ) is a periodic C1 function with R(θ) > 1. Suppose that j satisfies∮
Γ

| j| < ∞. (122)

Then the problem (34)–(37) does not admit a solution Aext ∈ C2(R2\Ω) unless the Fourier
coefficients of f, fk =

1
2π

∫ 2π
0 f (θ)eikθ dθ satisfy

| fk| � C(1 + |k|)
(

max
θ∈[0,2π]

R(θ)

)−|k|
, (123)

for some constant C > 0. Thus, f must be real analytic.

Proof. Following the above calculation we find that any C2 solution a to the problem (99)
and (100) can be represented as in (112) and under our hypotheses the coefficients ck from
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(102) satisfy the bound (103). The Fourier coefficients of f are related to ck from (116) and it
then follows from (103) that fk satisfies (123). The fact that (123) implies that f is analytic is
classical, see for example exercise 4 from section 1.4 of [16]. �

Finally, we sketch the construction of an toroidal current sheet to hold steady a φ-
independent axisymmetric plasma configuration.

Proof of lemma 4. From the computations in section 2.2, since the domain T and the data f
are axisymmetric, we seek an external field Bext = curl Aext of the form

Bext =
1
r

eφ ×∇aext, (124)

for a scalar function aext : R3\T → R which satisfies a := a(r, z). If aext is constant on
the boundary ∂Ω then ∇aext = |∇aext|n̂ on the boundary so the field is non-penetrative
Bext · n̂ = 0. Moreover, it follows that Bext =

1
r |∇aext|τ̂ on the boundary where recall τ̂ is the

unit tangent vector.
The ansatz 124 is automatically divergence-free. Its curl can be computed as

ΔAext =
1
r
Δ∗aexteφ, (125)

where we recall the Grad–Shafranov operatorΔ∗ = ∂2
r + ∂2

z − 1
r ∂r.Thus to produce a solution

of (76)–(80), we must to solve the following planar (in r − z) problem

1
r
Δ∗aext = jδ∂Ω′ in R2\Ω, (126)

aext = 0 on ∂Ω, (127)

1
r
∂naext = f on ∂Ω, (128)

∇aext → 0 as |(r, z)| →∞. (129)

The remainder of the argument follows exactly as in lemma 1 (by the Cauchy–Kovalevskaya
argument) since the difference between the Laplacian and the Grad–Shafranov operator is a
first order term. Thus Cauchy–Kovalevskaya can be used to obtain a solution of Δ∗aGS = 0
in a collar neighborhood of ∂Ω. Cutting aGS on a level set (which again is diffeomorphic
to ∂Ω by the implicit function theorem) gives a solution aext on the whole plane with the
addition of a current sheet force. Flowing said level set by reφ yields the toroidal surface T ′ in
the statement. �

Remark 8. We note that the operator 1
rΔ

∗ has an explicit Green’s function

G(r, z; r′, z′) :=

√
r′r
πk

[(
1 − k2

2

)
K(k2) − E(k2)

]
where k2

=
4r′r

(r + r′)2 + (z − z′)2
, (130)

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds, respec-
tively. See e.g. appendix A of [1]. In principle, one could use this explicit formula to solve
(34)–(37) with a singular current distribution as in the proof of lemma 6.
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Appendix C. The virial theorem

We include, for the sake of completeness, what is known as the ‘virial theorem’ in the plasma
physics literature (see section 4.3 of [8]). Similar considerations have been used to rigorously
establish non-existence results for fluid equilibria with suitable decay at infinity [5, 6]. Here
we consider functions (ρ, u, q, B) in a domain Ω which satisfy5

∇ · (ρu ⊗ u) − (∇B − (∇B)T) · B = −∇q in Ω, (131)

q = 0 at ∂Ω, (132)

ρu · n̂ = B · n̂ = 0 at ∂Ω. (133)

free boundary equilibria of incompressible MHD (when ρ = 1, q = p) and compressible MHD
when ρ is the density and q = P for a given equation of state P = P(ρ), satisfy (131)–(133).
We prove

Proposition 2. Suppose that Ω ⊂ Rd is a compact domain with C1 boundary. If (ρ, u, B)
satisfy (131)–(133) then∫

Ω

(
dq +

(
d
2
− 1

)
|B|2 + ρ|u|2

)
dx = 0. (134)

In particular, if d � 2 and
∫
Ω q > 0 then there are no (ρ, u, B) which satisfy (131)–(133).

Proof. Defining p = q + 1
2 |B|2, (131) can be written in divergence form,

∇ · (ρu ⊗ u − B ⊗ B) +∇p = 0. (135)

We claim that if Ω is compact with C1 boundary, the for any j = 1, . . . , d we have∫
Ω

(
p− |B j|2 + ρ|u j|2

)
dx = 0. (136)

Summing (136) over j = 1, . . . , d we obtain (134).
To prove (136), for each j = 1, . . . , d, we contract the jth component of (135) with the

vector w( j) = x je j (note that e j is the unit vector along the jth coordinate axis). We have

0 = ∂i(−ρuiu j + BiB j − δi
jp)w( j)

= ∂i

(
−ρuiu jw

( j) + BiB jw
( j) − δi

jpw
( j)
)
+ ρ|u j|2 − |B j|2 + p. (137)

Integrating the above over Ω and using the boundary conditions (132) and (133) gives
(136). �
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5 Note that (∇B − (∇B)T) · B =

⎧⎨
⎩

JB⊥ d = 2

J × B d = 3
where J = curl B if d = 3 and J = ∇⊥ · B if d = 2.
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