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Abstract
Deep Learning (DL) is combined with extreme value theory (EVT) to predict
peak loads observed in energy grids. Forecasting energy loads and prices is chal-
lenging due to sharp peaks and troughs that arise due to supply and demand
fluctuations from intraday system constraints. We propose a deep temporal
extreme value model to capture these effects, which predicts the tail behavior
of load spikes. Deep long-short-term memory architectures with rectified linear
unit activation functions capture trends and temporal dependencies, while EVT
captures highly volatile load spikes above a prespecified threshold. To illustrate
our methodology, we develop forecasting models for hourly price and demand
from the PJM interconnection. The goal is to show that DL-EVT outperforms
traditional methods, both in- and out-of-sample, by capturing the observed non-
linearities in prices and demand spikes. Finally, we conclude with directions for
future research.
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1 INTRODUCTION

Deep learning (DL) is used to predict wholesale prices and then DL is combined with extreme value theory (EVT) to
predict load on the energy grid. This is essential for the economic operation of resources as electricity grids operatewithout
large amounts of storage so generation of energy (supply) within the system must always match the demand of energy
(load). Our goal is to show that the combination of DL and EVT (DL-EVT) provides better predictions of tail behavior of
loads versus traditional methods. The traditional approach to electricity price and demand prediction has been applying
economicmodels based on firm behavior. More recently, data-driven analytics, using large datasets andmachine learning
techniques, has become popular as a tool to uncover price patterns.

Electricity price prediction is challenging due to a number of complex factors that impact intraday grid conditions,
which create highly volatile price spikes. Our approach is to develop multilayer deep networks to capture nonlinearities
and temporal patterns in energy prices and demand. EVT is used to provide an objective function that captures load
spikes above a prespecified threshold. As supply must constantly adapt to meet changes in load, accurate predictions are
essential for making informed short- and long-term generation decisions. Accurate anticipation of fluctuations in load,
especially sharp fluctuations, would remove certain flexibility constraints allowing for efficient deployment of generation
and grid resources.

The key to efficient electric grid management is understanding peak loads. At the day-to-day level, overestimating
or underestimating peak loads can be costly. Overestimating peaks causes the system to have too much generation in
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reserve, while underestimating peaks causes the system to call upon costly, but flexible, sources of energy to quickly meet
the demand. Day-to-day prediction is complicated by the increase in renewable energy, whose pattern of generation does
not always match the system's pattern of demand. This imbalance in supply and demand patterns adds to the volatility of
the system's energy prices and complicates predictions.1,2

Forecasting supply and demand with standard models, however, fails to address the importance of peak prediction.
Standardmodels aim to predict themean level of the price and load and typically do not capture any extreme spikes in the
data. Gaussian errors in the context of electricity markets neither captures the peaks nor the fat-tailed distribution seen
in practice. Up until now, data-driven models were not flexible enough to capture the extreme nonlinearities in the price
dynamics. Deep learners (DL) have recently been shown to have empirical success in large datasets forecasting problems
with high-dimensional nonlinearities. In practice, long-short-term memory (LSTM) provides a framework for building
spatiotemporal models.3,4

The rest of our article is organized as follows. Section 1.1 provides connections to previous work. Section 2 discusses
traditional DL models. Section 4 describes the energy market for electricity and the PJM (a regional transmission orga-
nization [RTO]) interconnection. Section 3 provides our contribution and combines DL models with EVT. Section 2.1
describes the optimization algorithmused to estimate parameters of ourDL-EVTmodel. Section 5 provides the algorithms
used for load and price prediction for PJM. Finally, Section 6 concludes with directions for future research.

1.1 Connection to previous work

Davison et al5 develops a spatial statisticalmodel for the extremes of a natural process. Peaks aremodeled as an exceedance
of a certain threshold. EVT provides the framework for the prediction of these exceedances, and it predicts the frequency
of energy price exceeding a certain threshold.6 The exceedance over a threshold allows to measure risk associated with
high prices.7 Incorporating EVT into DL allows us to capture the tail behavior of the price distribution. In particular, the
likelihood functions, defined using the EVT framework, allow us to properly model price spikes. In the context of energy
markets, capturing the spikes is a crucial as these are the central component of interest in the market. Furthermore, this
approach provides an improvement over traditional DL approaches, which typically only focus on capturing the mean of
a given distribution. Our work builds on that of Sigauke et al8, which develops probabilistic EVTmodel and Shenoy et al9
which uses generalized linear model, with EVT errors to model electricity demand.

Data-driven energy pricing models used to forecast hourly locational marginal prices (LMPs) have been studied
previously.10-13 LMP is simply a cost of electricity at different locations within a system. Those locations are special load
and generation nodes on electric grid. For example, PJM has 11 000 such nodes (4700 load nodes and 6300 generating
nodes) and LMPs is different from one node to another.

Hong et al12 proposes neural networks to predict LMPs in the PJM Interconnection. Manda et al14 uses neural net-
works to improve performance, and Catalao et al10 and Kim et al13 predict LMPs in Nord Pool, an electricity spot
market located across Northern Europe. Wang et al15 predicts prices at various hubs in the American Midwest with
a stacked denoising autoencoder, exploiting local information to improve its predictive performance. Modeling wind
generated-electricity is considered in Hering et al.16 Our analysis extends the functional data analysis approach for
electricity pricing developed by Liebl et al.17

Cottet et al18 and Wilson et al19 develop a random effect Bayesian framework to quantify uncertainty in whole-
sale electricity price projections. Jonsson et al20 forecasts electricity prices while accounting for wind power prediction.
Christensen et al21 forecasts spikes in electricity prices. Heavy tails in electricity prices are modeled using multivariate
skew t-distributions in Cottet et al.18 Benth et al22 addresses the non-Gaussian nature of price data using L'evy process.
Dupuis23 develops a detrended correlation approach to capture price dynamics within the New York section of the grid.
Garcia et al24 explains time-varying volatility in prices using GARCH effects for one-day price forecasting. Li et al25 devel-
ops a fuzzy inference system to forecast prices in LMP spot markets. Subbayya et al26 addresses the problem of model
selection.

2 DEEP LEARNING

DL models have two key advantages over other frameworks. First, DL models have the ability to analyze inputs of high
dimensionality, for example, in themillions or greater. Second,DLmodels provide a very flexible function that can approx-
imate complex relations between inputs and outputs. DL uses a composite of univariate semiaffine rather than traditional
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additive functions. DL models can efficiently approximate high-dimensional functions y = F(x). The following section
describes the DL models used in this article.

Let y denote a low-dimensional output and x = (x1,… , xp) a high-dimensional input. A deep network prediction,
denoted by ŷ(x), is defined by hierarchical layers

z0 = x, z1 = a1(W1z0 + b1),… , zL = aL(WLzL−1 + bL)
ŷ(x) = WL+1zL + bL+1, (1)

where Wl ∈ Rnl×nl−1 is the weight matrix, bl ∈ R is the bias term, and nl is the number of neurons in layer l. Here, we
apply nonlinear activation function al elementwise to the activation vectorsWlzl−1 + bl. Typical activation functions are
rectified linear unit (ReLU) a(u) = max(u, 0) and sigmoid a(u) = 1∕(1 + e−u).

Specifically, the DL approach employs a series of hierarchical predictors comprising L nonlinear transformations
applied to the input x. Each of the L transformations is referred to as a layer, where the original input is x, the output
of the first transformation is the first layer, and so on, with the output ŷ as the last layer. Layers 1 to L are called hidden
layers. The number of layers, L, represents the depth of our routine. Linear regression is a particular case of a DL model
with no hidden layers.

It is well known that shallow networks are universal approximators and thus can be used to identify any input-output
relations. The first result in this direction was obtained by Kolmogorov,27 who showed that any multivariate function
can be exactly represented using operations of addition and superposition on univariate functions. Formally, for input
x = (x1,… , xn) ∈ [0, 1]p defined inside an p-dimensional cube, there exist univariate continuous functions an,q, defined
on [0, 1] such that each continuous real function F defined on [0, 1]p is represented as

F(x1,… , xp) =
2p+1∑
q=1

aq

( p∑
n=1

an,q(xn)

)
,

where each aq is a real-value function. This representation is a generalization of earlier results.28,29 Kolmogorov28 showed
that every continuous multivariate function can be represented in the form of a finite superposition of continuous
functions of not more than three variables.

Recurrent neural network (RNN) is a specific type of architecture designed to analyze sequences, for example,
time-series data. RNNs can capture electricity prices' time series properties. Recurrent layers capture long-termdependen-
cies without much increase in the number of parameters. They learn temporal dynamics by mapping an input sequence
to a hidden state sequence and outputs via a recurrent relationship.

A hidden state variable ht is used by RNNs to represent information from past observations of the sequence and to
predict current observation yt. Given predictors xt, the observed data yt, and a hidden state ht, then

yt = 𝜎(W1ht + bz)
ht = 𝜎(W2[xt, ht−1] + bh).

Here 𝜎(x) = 1∕(1 + e−x) is the sigmoid function applied componentwise and is used for calculating both the hidden
vector ht and the output vector yt. The main difference between RNNs and feed-forward DL is the use of a hidden layer
with an autoregressive component, here ht−1. It leads to a network topology inwhich each layer represents a time step, and
we index it by t to highlight its temporal nature. Figure 1 shows graphically the processing performed by an RNNnetwork
for each element of the sequential data (time series). A particular type of RNN, called LSTM, was proposed to address the
issue of vanishing or exploding gradients in plain RNNs during training. A memory unit used in LSTM networks allows
a network to learn which previous states can be forgotten.30,31

F IGURE 1 Hidden layer of a recurrent neural network
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F IGURE 2 Hidden layer of a long-short-term
memory (LSTM) model. Input (ht−1, xt) and state output
(ht, ct)

The hidden state will be generated via another hidden cell state ct that allows for long-term dependencies to be
“remembered.” Then, we generate

Output: ht = ot ⋆ tanh(ct)

kt = tanh(Wc[ht−1, xt] + bc)

ct = ft ⋆ ct−1 + it ⋆ kt,

State equations:

( ft
it
ot

)
= 𝜎(W[ht−1, xt] + b).

where ⋆ denotes the pointwise multiplication. Then, ft ⋆ ct−1 introduces the long-range dependence. The states (it, ft, ot)
are input, forget, and output states. Figure 2 shows the network architecture.

The key addition versus RNN is the cell state ct, and the information is added or removed from the memory state via
gates defined via the activation function 𝜎(x) and pointwise multiplication⋆. The first gate ft ⋆ ct−1, called the forget gate,
allows to throw away some data from the previous cell state. The next gate it ⋆ kt, called the input gate, decides which
values will be updated. Then, the new cell state ct is a sum of the previous cell state ct−1 passed through the forgot gate
plus selected components of the kt vector, which is a filtered version of inputs (ht−1, xt). Thus, the vector ct provides a
mechanism for dropping irrelevant information from the past, and adding relevant information from the current time
step. At the last output layer, the filtered version of of the previous hidden state and input vectors ot is then combinedwith
tanh applied to the cell state ot ⋆ tanh(ct). The forget gate resolves the problem of vanishing gradient, which is the case
when values of the gradient vector are close to zero. Stochastic gradient descent (SGD) optimization algorithm is straight
forward to implement. See Section 2.1 for discussion.

Deep ReLU with LSTM cells have became popular architectures as they can capture long-range dependencies and
nonlinearities. Their popularity stems from the fact that they can efficiently approximate highly multivariate functions
with small number of neurons at each layer.32-34

2.1 Stochastic gradient descent

Once the activation functions depth L and size n1,… ,nL of the learner have been chosen, the parameters Ŵ and b̂ are
found by solving the following optimization problem

minimizeW ,b
∑
i∈C

l(yi,FW ,b (xi)) + 𝜙(W), (2)

which is a penalized loss function, where (yi, xi)i∈C is training data of input-output pairs, and 𝜙(W) is a regularization
penalty on the network weights. Most architectures employ regularization techniques to prevent the model from overfit-
ting training set data.35 This improves the model's predictive performance on data outside of the training set. Normally,
a regularization penalty allows to improve convergence rate of the optimization algorithms and to avoid overfitting.
Dropout, the technique of removing input dimensions in x randomlywith probability p, can also be used to further reduce
the change of overfitting during the training process.36

A typical choice for regression problems is the Gaussian loss function l(yi,FW ,b (xi)) = ||yi − FW ,b (xi) ||2, then we have
a traditional least-squares problem37 and 𝜙(W) = 𝜆||W||2.
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The common numerical approach to find the solution to this optimization problem (2) is SGD. It iteratively updates
the current iterated by taking a step in the direction opposite to the gradient vector

(W , b)+ = (W , b) − 𝜂∇
[
L(W , b) + 𝜙(W)

]
.

SGD then uses backpropagation algorithm to calculate the gradient at each iteration. Backpropagation is an implementa-
tion of chain rule applied to a function defined by a neural network. One caveat of SGD is the complexity of the system to
be optimized, resulting in slow convergence rates. As a result, DLmethods rely heavily on large computational power.38,39

3 DEEP LEARNING EXTREME VALUE THEORY

A traditional DL regression model uses least squared loss to estimate model parameters (weights and biases of each of
the neural network layers). This model is not appropriate for quantifying large values of y (spikes) that are a rare but very
crucial to the stable operations of electric grids. EVT approach allows to model the tail behavior of the distribution of
electricity loads.

3.1 Extreme value theory

We fit the generalized Pareto (GPar) distribution, parametrized by scale parameter 𝜎 and shape parameter 𝜉, using obser-
vations that exceed the threshold. Compared to the classical EVT that only models maximum values, each exceedance
is associated with a specific time point and it allows us to incorporate covariates, for example, when parameters 𝜎 and 𝜉

depend on input variable x.
Let each observation follow a common distribution yi ∼ G(yi) = Pr(Y ≤ yi) and letMn = max{y1,… , yn}. The central

result of the EVT is that regardless of the distribution G, the scaled value ofMn follows a limiting distribution K

Pr
{
Mn − bn
an

≤ y
}

= Gn(any + bn) → K(y).

Here an > 0 and bn are normalizing constants. Gnedenko40 provided a rigorous mathematical proof of existence of this
limiting distribution and characterized its functional form. Modeling the extreme values Mn limits the number of sam-
ples that can be used for estimation. For example, we can use monthly maximum loads but then we will have to discard
most of the samples. Furthermore, traditional EVT does not naturally allow for covariates (predictor inputs). It makes this
approach impractical. Smith41 proposed to model values of y that exceed some fixed threshold value u. The distribution
over the excess values has a limiting distribution as u + y approaches the right-hand endpoint of the underlying distri-
bution. Specifically, as u + y approaches the right-hand side endpoint of distribution G, for some normalizing constant
cn > 0, we have

Pr {Y ≤ cu(u + y)|Y > u} → H(y),

where

H(y |𝜎, 𝜉) = 1 −
(
1 + 𝜉

y − u
𝜎

)−1∕𝜉

+
, 𝜉 ≠ 0.

The distribution H(y) is generalized Pareto distribution with density

h(y |𝜎, 𝜉) = 1
𝜎

(
1 + 𝜉

y − u
𝜎

)−1∕𝜉−1
, 1 + 𝜉

y − u
𝜎

> 0, 𝜉 ≠ 0.

Here (u, 𝜎, 𝜉) are the location, scale, and shape parameters, 𝜎 > 0 and z+ = max(z, 0). The exponential distribution is
obtained by continuity as 𝜉 → 0, and we have

lim
𝜉→0

h(y |𝜎, 𝜉) = 𝜎 exp (−𝜎(y − u)) .

Under this distribution, the mean value of y is 𝜎 + u.
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3.2 Deep learning EVT

Suppose that we have data denoted by y(si, tj) at spatial locations si, 1 ≤ i ≤ n and time tj, 1 ≤ j ≤ T. We build an EVT-DL
input-output model for each location si and estimate it using the pairs {(y(si, tk), xk)}k∈C, where C = {j|y(si, tj) > u} and
xk = (y(si, tk), y(si, tk−1),… , y(si, tk−h)) are the recent observations of the output for the given location. We assume that
observations follow generalized Pareto distribution with parameters being functions of the input variables

y(si, tk+𝜂)|xk ∼ GPar(𝜎(xk), 𝜉(xk)),

where 𝜂 is the forecasting horizon. We model the functions 𝜎(x|W, b) and 𝜉(x|W, b) using a DL model parametrized by
weight matricesW = (W1,… ,WL+1) and biases b = (b1,… , bL+1). Linear regression generalized Pareto model was devel-
oped in Davison et al6 and Beitlant et al.42 To complete our specification for exceedance sizes, we assume a functional
form for 𝜎(x|W, b) that is a deep neural network. As shown in Equation (1), we introduce

(𝜉(x), 𝜎(x)) = FW ,b (x) ,where F = fl◦… ◦fL, fl(z) = 𝜎(Wlz + bl).

Here F is a deep learner constructed via superposition of semiaffine univariate functions, see Dixon et al,3 Polson et al,43
and Polson et al44 for further discussion.

To estimate the weights and bias parameters of the DLmodel, we use the negative log-likelihood loss function. Under
the assumption of Generalized Pareto distribution for our dependent variable, for a single observation, the negative
log-likelihood is given by

l(yi,FW ,b (xi)) = log 𝜎(xi) − (1∕𝜉(xi) + 1) log (1 + 𝜎(xi)𝜉((xi))(yi − u)) .

Then, the loss function for our DL model, which is the negative log-likelihood for a training data set, becomes

L(W , b) =
∑
i∈C

l(yi,FW ,b (xi)).

The weightsW and offsets b are learned by minimizing the loss function, using the SGD algorithm.

4 ENERGY PRICES IN PJM INTERCONNECTION

The PJM Interconnection is an RTO, which exists to create a competitive wholesale electricity market, coordinating
numerous wholesale electricity producers and consumers in all or parts of 13 states located in America's Mid-Atlantic
and Great Lakes Regions as well as the District of Columbia.

PJM is divided into 20 transmission zones. Each zone is owned and operated by separate transmission owners who
are responsible for designing and maintaining their portion of the system. Figure 3 shows PJM's load nodes and zone
boundaries. Individual utilities within PJM plan their use of resources around peak loads. Predicting the strength and
timing of these peaks is integral to improving both short- and long-term decision-making. Current methods used for
short-term prediction focus on neural networks (weather channel, PJM).

PJM acts as a guarantor of system reliability and is responsible for preventing outages within the system. PJM operates
the system at a cost-efficient level by coordinating generating plant operations, which are owned by various entities, to
match the system's demand. Operating the system includes ensuring real-time demand is met, maintaining a reserve
capacity of generation, andmonitoring transmission lines to prevent overloaded lines, which could cause system failure.45

The PJM Interconnection contains over 11 000 nodes for which hourly day-ahead (DA) or real-time (RT) prices are
reported. These nodes are specific generation or load locations, aggregates of various locations, regions, or points of inter-
connection with areas outside of PJM. Within the PJM Interconnection, nearly all wholesale electricity is bought or sold
through bilateral contracts. The remainder is bought or sold on the two bid-based electricity markets PJM operates: DA
and RTmarkets. In the DAmarket, market participants submit bids or offers to buy or sell energy to the scheduling oper-
ator (PJM). The operator uses the bid and offers to determine the DA LMP, which reflects the expected cost of energy,
congestion, and transmission loss needed to provide electricity at a location given the expected system constraints.
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F I GURE 3 PJM zone boundaries and node locations [Color figure can be viewed at wileyonlinelibrary.com]

The RT market operates similarly but reflects the actual cost of providing electricity at a location given actual system
constraints. Despite the smaller volume, the RTmarket plays a central role in determining the price of all futures contracts
as the futures contracts' prices depends on the expected of the RT market prices. The DA market is a futures market that
allows generators to agree to provide electricity for the upcoming day.

Generators can fulfill obligations to provide energy by either producing electricity or purchasing it on the RT market.
Multiple factors, such as unexpected maintenance, may cause a generator to fulfill their obligation through purchases on
the RT market rather than generation. These factors, or risks, cause significant volatility in RT markets compared to the
DA market.46

Prices in the RT market are a function of the cost to produce electricity and system constrains, such as congestion
in transmission lines. When these constraints are binding, prices differ across locations in the PJM Interconnection to
reflect the relative ease of delivering energy to a noncongested location and the relative difficulty of delivering energy to
a congested location. Therefore, each node (or location) has an associated LMP, which reflects the price of the marginal
unit of electricity delivered to that specific location. LMPs are important price signals in the DA and RT market, which
inform short-term decisions, as well as long-term investments and bilateral agreements.45

4.1 Local marginal price data (LMP)

Locational marginal pricing is used to price energy on the PJM market in response to changes in supply and demand
and the hardware's physical constraints. LMP accounts for the cost to produce the energy, the cost to transmit this energy

http://wileyonlinelibrary.com
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within PJM RTO, and the cost of energy lost due to resistance as the energy is transported across the system. LMP data
is available at www.pjm.com.47 Our study uses price data, which includes RT and DA hourly prices from 1 January 2017
to 31 December 2017. Load prices represent the cost of providing electricity at a given location. The price reflects the
system's load (demand), generation, and limits of the transmission system. The system's constraints can affect locations
asymmetrically, causing variations in price across different locations. Hub prices are a collection of these locational prices
and reflect the uncongested price of electricity.

LMPs have three components: energy, congestion, andmarginal loss. The energy component reflects the price of elec-
tricity, called systemmarginal price (SMP). SMP is calculated based on the current dispatch (supply) and load (demand).
SMP is calculated for both the day ahead and RTmarkets. The congestion component is greater than zero whenever con-
gestion occurs at a node. Constraints occur when delivery limitations prevent the use of least-cost generator, for example,
a higher cost generator located closer to load must be used to meet the demand if transmission constraints are present.
The congestion price is calculated using the shadow price, which is the value of the dual variable (price of violating a
binding constrain) in the optimization problem that governs the grid. When none of the constraints are active, all the
congestion prices are zero.

The marginal loss component reflects the cost of transmission and other losses at a given location. Losses are priced
according to marginal loss factors, which are calculated at a bus and represent the percentage increase in system losses
caused by a small increase in power injection or withdrawal.

5 EMPIRICAL RESULTS

In this section, we begin with exploratory data analysis and then compare temporal neural network architecture with
more traditional Fourier and ARIMA models to predict electricity prices. Furthermore, we demonstrate our DL-EVT
approach to predict peak loads on the PJM interconnect.

5.1 PJM price forecasting

We start with exploratory data analysis. First, we plot correlation matrix for prices at different zones to show spa-
tial correlations of prices at different locations. Zone is a collection of several nodes bounded by a polygon. Figure 3
shows geographical boundaries of each of the zones. Figure 4 shows correlations between prices aggregated to zone
level. The red-to-green color scheme was used, red indicates −1, green +1, and yellow indicates 0 (no correlation).
The top part of the figure shows the color key. Each cell of the bottom part of the plot is the correlation between
prices at two different zones. We used hourly observations from August 2017, a total of 651 observations at each
zone to calculate the correlations. Figure 4 shows that there are strong spatial correlations among prices at different
zones. Thus, prices at nodes will be correlated as well. Thus, we included prices at other locations as predictors for
our models.

To show the nonlinear nature of relations between predictors and the price, we use several exploratory plots. We use
data measured at a load node 48666 in Clifton, NJ. We used hourly data from first seven days of August 2017 (168 hourly
observations).

Figure 5A shows hourly time series plots of price and load (demand). Load ismeasured inmegawatt (MW) and price is
measured in dollars permegawatt-hours (MWh). Figure 6B compares time series plots of price and temperature,measured
in Celsius.

Figure 6 plots price observations against lagged values of price during the first seven days of August 2017. We used a
6-hour lag. Figures 5 and 6 show that relations between price, demand, and weather, and temporal relations in price data
are nonlinear.

We build an individual model to predict price at each load point using observations of temperature, load, and price
from the past 6 hours as predictors. Although Figure 4 shows that there is spatial correlation between observed prices
at different locations, we found that by including price observations from other locations as predictors did not improve
quality of forecast.

We show our forecasting model for predicting price at node 48666. Data from other nodes on the system can be mod-
eled in the same way. Data from the same node were used for the exploratory plots above. First, we try traditional model
for electricity prices, which uses Fourier series to describe the seasonal patterns and short-term time series dynamics
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F I GURE 4 Correlation
in marginal prices among
zones. Each cell of the bottom
plot indicates price correlation
between a pair of zones. Red
indicates −1, green +1, and
yellow indicates 0 (no
correlation). The top part of the
figure shows the color key and
histogram for correlation
values, each bar is the count of
occurrences of specific value
[Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 5 Time series plots of price and load (A) and price and temperature (B). This plot shows relations between dependent
variable price and independent variables load and temperature [Color figure can be viewed at wileyonlinelibrary.com]

modeled using ARIMA model. Here yt (price at node 48666 at time t) is decomposed as a sum of a deterministic Fourier
term f(t), and regression term 𝛽Txt, and the stochastic component, Nt, leading to

yt = 𝛽Txt + f (t) + Nt, where f (t) =
K∑
k=1

[
𝛼k sin(2𝜋kt∕m) + 𝛽k cos(2𝜋kt∕m)

]
, (3)

where Nt is an ARIMA process. For predictors xt, we use load, price, and temperature observations over the last 6 hours.
Thus, we have 18 predictors. During prediction, we use naive forecasting schema for predictors and use values of the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


204 POLSON and SOKOLOV

F IGURE 6 Temporal patterns in price data. Scatter plot of
pairs od prices ($/MWh) at time t and t − 6 [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 7 In-sample prediction by our Fourier-ARIMA
model with predictors, described by Equation (3). Black solid line is
the hourly price for the first 30 days of August 2017. Red dashed line
is the predicted price for the same period [Color figure can be viewed
at wileyonlinelibrary.com]

predictors from the past. For example, whenwe predict price for tomorrow at 5 PM, we assume that temperature and load
will be the same as today at 5 PM. We develop a 2-day forecast. The time lag of 6 hours was chosen empirically. Using
more than 6 recent hourly observations did not lead to any improvement in predictive power of our models.

The number of terms K was chosen by minimizing the cross-validation error. Fourier term allows: (a) any length sea-
sonality and (b) several seasonality periods. Smoothness of the seasonal term is governed by value K. The short-term
dynamics is handled with an ARIMA error. The only real disadvantage (compared to a seasonal ARIMA model)
is that the seasonality is assumed to be fixed—the pattern is not allowed to change over time. In practice, sea-
sonality is usually remarkably constant so assumption generally holds except in applications with very long time
series.

We use first 30 days of August 2017 to train ourmodel. The in-sample fit of our Fourier-ARIMAmodel with predictors,
described by Equation (3) is shown in Figure 9. This model captures the cyclical patterns in the prices but does not
accurately capture the levels of the peak prices. The model predicts the time of the peaks but not the amplitude. For
example, for August 17 at 5 PM (point marked by dashed vertical line on Figure 7) the actual price is 116 $ per MWh.
Although our model does predict the time of the peak (5 PM), the predicted price is $78 per MWh. Thus, the value of the
peak price is mispredicted.

Figure 8 shows the out-of-sample prediction for the next two days (August 31 and September 1 of 2017) of price for
Fourier model with weather and demand predictors. Inclusion of predictors does not change the quality of forecasting
peak prices. As we noted in our exploratory plots, demand is not a good predictor of a peak price.

We compare the Fourier model given by Equation 3 with temporal neural network (LSTM) model. Table 1 shows
several out-of-sample fit metrics. Specifically, we show Mean Squared Error (MSE), Root Mean Square Error (RMSE),
mean absolute error (MAE), and mean absolute percent error (MAPE).

While LSTMmodel shows an improved out-of-sample performancewhen compared to traditional ARIMAmodelwith
Fourier predictors, as shown in Figure 9, both the traditional ARIMA and LSTM neural networkmodel are not capable to
capture the peak in the price value at 5 PM of 31 August (hour 17 in Figure 9). Furthermore, the peak price lies outside of
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(A) Demand + Weather (B) Only weather

F IGURE 8 Out-of-sample prediction of price from linear model with ARIMA(2,0,0) errors and Fourier predictors with K = 5. Yellow line
is actual price (data) and the blue line is the forecast. Purple and grey areas are the 95% and 99% confidence intervals, respectively. y-axis is
price in $ and x-axis is day from 1 August 2017. A, Demand +weather. B, Only weather [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Out-of-sample performance of DL and
Fourier models

MSE RMSE MAE MAPE

Fourier + ARIMA 26.6 5.1 4 0.19

LSTM 16.8 4.1 2.4 0.09

Abbreviations: DL, deep learning; LSTM, long-short-term memory; MAE, mean
absolute error; MAPE, mean absolute percent error; MSE, mean squared error;
RMSE, root mean square error.
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F IGURE 9 Comparison of Fourier and DL models. Black line is price in $/MWh for the period of 31 August-1 September 2017. Red
line is price predicted by the long-short-term memory (LSTM) model, and blue line is the ARIMA model, which is given by Equation 3 Grey
lines show confidence interval predicted by the ARIMA model [Color figure can be viewed at wileyonlinelibrary.com]

the 95% confidence interval of our ARIMAmodel. On the other hand, prediction of the peak values is of high importance.
In the next section, we show how EVT combined with DL (DL-EVT) addresses this problem and captures the peak values
of the demand time series.

5.2 Demand forecasting

Electricity load forecasting is essential for designing operational strategies for electric grids. In presence of renewable
energy sources, short-term forecasts are becoming increasingly important. Many decisions, such as dispatch scheduling
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F IGURE 10 Hourly electricity load on PJM interconnect in MW. The x-axis is the hour since 1 January 2016 and the y-axis is the load
measured in MW. A, 1 January-29 February 2016. B, 1 January 2016-17 April 2018 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Neural network architecture used for
deep learning extreme value theory (DL-EVT) model

and demandmanagement strategies, are based on load forecasts.48 One hour-ahead forecasts are a key input for transmis-
sion companies on a self-dispatching markets.49 Hourly behavior of electricity load is known to be nonstationary.50 Since
there is not much of a change in meteorological variables, it is typical to use univariate time series data for short-term
load forecasting.51

In this section, we analyze an hourly electricity load observations on the PJM interconnection. The data are avail-
able at https://www.dropbox.com/sh/1dczb673bx9kxzl/AABII5ePMWdFhAk-dEcRGS1La?dl=0. We use hourly data for
January 2016-May 2018 period. We use data from 1 January 2016-26 April 2018 for training and then 27 April-7 May
2018 for testing our model. Figure 10A shows first three months of hourly observations of training load data and shows
daily and weekly cycles. Figure 10B shows our hourly training load time series data from 1 January 2016 to 17 April
2018. We can see that demand during summer months is higher compared to winter months. Figure 10A shows the
shorter period (January-February 2016) of the same data. We can see that weekends have lower load levels compared to
work days.

We develop a feed forward neural network to predict the load for the 5-hour horizon and use previous 24 observations
(one day) as predictors. We develop two models, the first is DL model with Gaussian loss function (MSE Loss) and the
second is DL-EVT with generalized Pareto loss function (GPar loss). Figure 11 shows the architecture used to model the
relations between previous load observations (x) and the scale parameter of the Generalize Pareto distribution 𝜎 and 𝜉.
We use recent 24 hours of load values as our predictor vector x.

whereW1 ∈ Rp×3 andW2 ∈ R2×3, and x ∈ Rp is the vector of recent observations of electricity demand, we used p = 24
(1 day).We use tanh to constrain values of 𝜉 to be in the (−1,1) interval. One of the properties of generalized Pareto random
variable is that it has infinite kth moment when 𝜉 ≥ 1∕k. Thus, it has infinite mean when 𝜉 ≥ 1. Models with infinite
mean are applicable for risk analysis52 and it can be shown53 that estimated value of 𝜉 can be greater than 1, even when
underlying data-generating distribution has finite mean. However, we use expected value as our point forecast of load
peaks, and thus, we require 𝜉 < 1 to guarantee that we have a finite mean. Furthermore, we require 𝜉 > −1 to guarantee
that the likelihood function is bounded.

To train the EVTmodel, we only used the observations yi > uwith u = 31 000. We used the mean 𝜎∕(1 − 𝜉) + u of the
generalized Pareto distribution as the point estimate for plotting Figure 12B.

Our DL-EVT model is compared with a vanilla DL model with standard MSE loss function. Figure 12 shows the
resulting out-of-sample forecasts. We can see that while a standard DL model captures both ups and downs in the load
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F I GURE 12 Hourly electricity load and its forecast for the period from Friday, 27 April 2018 to Monday, 7 May 2018. The x-axis is the
hour since 27 April 2018 and the y-axis is the load measured in MW. A, DL (MSE Loss). B, DL-EVT (GPar Loss) [Color figure can be viewed at
wileyonlinelibrary.com]

levels, the DL-EVTmodel does capture the location and level of the peak loads more accurately compared to the standard
DL model.

6 DISCUSSION

DL, combined with EVT, can predict peaks in electricity prices and demand. With the availability of RT data, computa-
tional power, and machine learning pattern recognition tools, such as DL, we have the ability to more accurately predict
andmanage energy generation and distribution. One of our goals is to demonstrate that an EVT extension of the standard
DL framework is a viable option and is applicable to electricity data. DL-EVT performed well on in- and out-of-sample
forecasting of electricity prices and load. We demonstrated empirical performance of our models by predicting price and
load for a single node of the PJM system.

We demonstrated our DL-EVT model is more accurate at forecasting peak values that exceed a given threshold when
compared to a Gaussian likelihood-basedmodel. The EVTmodel predicts peak values conditional on the exceedance over
the threshold. One of the artifacts of our model is that prediction for time points when a threshold is not expected to be
exceeded is a constant value. An extension of our approach could include a binary classifier that predicts the probability of
crossing a specific threshold. Another extension is to include a Gaussian likelihood-based model to forecast values below
a threshold. Naveau et al54 demonstrates that a similar approach can be used for successful environmental modeling.

Forecasting electricity prices are challenging because they can spike due to supply-demand imbalances, yet have
long-range dependence. Deep ReLU LSTM models capture spikes with nonlinear activation functions, are scalable, and
can efficiently fit using SGD. For a grid of 4786 electricity load nodes, we show how such models can fit in-sample with
better accuracy than traditional time series models. There are a number for directions of future research. For extensions
to multivariate time series data with spatiotemporal dynamics, see Dixon et al.3
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