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Abstract

Machine learning models are known to perpetuate and even amplify the biases present in the data. However, these data biases
frequently do not become apparent until after the models are deployed. Our work tackles this issue and enables the preemptive
analysis of large-scale datasets. REvealing VIsual biaSEs (REVISE) is a tool that assists in the investigation of a visual dataset,
surfacing potential biases along three dimensions: (1) object-based, (2) person-based, and (3) geography-based. Object-based
biases relate to the size, context, or diversity of the depicted objects. Person-based metrics focus on analyzing the portrayal of
people within the dataset. Geography-based analyses consider the representation of different geographic locations. These three
dimensions are deeply intertwined in how they interact to bias a dataset, and REVISE sheds light on this; the responsibility
then lies with the user to consider the cultural and historical context, and to determine which of the revealed biases may be
problematic. The tool further assists the user by suggesting actionable steps that may be taken to mitigate the revealed biases.
Overall, the key aim of our work is to tackle the machine learning bias problem early in the pipeline. REVISE is available at

https://github.com/princetonvisualai/revise-tool.
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1 Introduction

Computer vision dataset bias is a well-known and much-
studied problem. Torralba and Efros (2011) highlighted the
fact that every dataset is a unique slice through the visual
world, representing a particular distribution of visual data.
Since then, researchers have noted the under-representation
of object classes (Oksuz et al., 2019; Ouyang et al., 2016;
Yang et al., 2014; Salakhutdinov et al., 2011; Buda et
al., 2017; Liu et al., 2009), object contexts (Choi et al.,
2012; Rosenfeld et al., 2018), object sub-categories (Zhu
et al., 2014), scenes (Zhou et al., 2017), gender (Kay et
al., 2015), gender contexts (Zhao et al., 2017; Burns et al.,
2018), skin tones (Buolamwini & Gebru, 2018; Wilson et al.,
2019), geographic locations (Shankar et al., 2017) and cul-
tures (DeVries et al., 2019). The downstream effects of these
under-representations range from the more innocuous, like
limited generalization of car classifiers (Torralba & Efros,
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2011), to the much more serious, like having deep soci-
etal implications in automated facial analysis (Buolamwini
& Gebru, 2018; Hill, 2020). Efforts such as Datasheets for
Datasets (Gebru et al., 2018) have played an important role
in encouraging dataset transparency through articulating the
intent of the dataset creators, summarizing the data collection
processes, and warning downstream dataset users of poten-
tial biases in the data. However, this alone is not sufficient,
as there is no algorithm to identify all biases hiding in the
data, and manual review is not a feasible strategy given the
scale of modern datasets.

Bias Detection Tool To mitigate this issue, we provide
an automated tool for REvealing VIsual biaSEs (REVISE)
in datasets (Fig. 1). REVISE is a broad-purpose tool that
uses a combination of existing annotations and automated
tools for surfacing the under- and different- representations
hiding within visual datasets. For the current exploration we
limit ourselves to three sets of metrics: (1) object-based, (2)
person-based and (3) geography-based.

Object-based analysis is most familiar to the computer
vision community (Torralba & Efros, 2011), as many of the
popular visual recognition datasets are object-centric (Ever-
ingham et al., 2010; Russakovsky et al., 2015). Thus, these
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Fig. 1 Our tool takes in as input a visual dataset and its annotations,
and outputs metrics, seeking to produce insights and possible actions

analyses focus on considering statistics about object fre-
quency, scale, context, or diversity of representation.

Person-based analyses began to gain attention with research
showing unequal performance for people of different genders
and skin tones (Gebru et al., 2018; Zhao et al., 2017). This
line of analysis considers the representation of people of dif-
ferent demographics within the dataset, and allows the user
to assess what potential downstream consequences this may
have in order to consider how best to intervene. It also builds
on the object-based analysis by considering how the repre-
sentation of objects with people of different demographic
groups differs.

Finally, geography-based analysis considers the portrayal
of different geographic regions within the dataset; this is a
relatively new but very important conversation within the
community (Shankar et al., 2017; DeVries et al., 2019). This
axis of analysis is deeply intertwined with the previous two,
as geography influences both the types of objects that are
represented, as well as the different people that are pictured.

We imagine two primary use cases for our tool: (1) dataset
builders can use the actionable insights produced by our tool
during the process of dataset compilation to guide the direc-
tion of further data collection, and (2) dataset users who train
models can use the tool to understand what kinds of biases
their models may inherit as a result of training on a particular
dataset.

Tool Inputs Our tool takes in as input a collection of
images and their corresponding annotations. Which met-
rics can be computed depend on the annotations available,
e.g., geolocation annotations are required to compute statis-
tics about different geographical representation. To perform
analyses beyond just the annotations provided, we also
use external tools and pretrained models, such as Fast-
text language detection (Joulin et al., 2016a,b), Places
scene detection (Zhou et al., 2017), and automatic feature
extraction (Idelbayev, 2019) to derive some of our metrics.
Of course, both human (van Miltenburg et al., 2018) and
model (Buolamwini & Gebru, 2018) annotations will contain
their own sets of biases, such as being systematically more
accurate for one group over another. By incorporating tools
which are external to the input dataset, we are potentially
introducing additional confounding biases into the analyses.

However, this is still worth doing in order to generate more
insightful analyses beyond the set of data and annotations
immediately available to us. It is important to acknowledge
and understand the biases that annotations, whether collected
or automatically detected, will surely bring with them. For
example, if the language classifier used on image labels
to infer the locality of the photographer is over-predicting
English, then one should understand these limitations and
interpret their results accordingly, perhaps by performing
additional manual verification. Thus, the presence of model
cards to accompany any such models would help users under-
stand the limitations and assumptions that come with their
use (Mitchell et al., 2019). As with all findings surfaced by
REVISE, the user will need to integrate their own under-
standing of annotation biases, and apply a critical lens in
interpreting and acting on any results.

Tool Outputs REVISE automatically surfaces a variety
of metrics that highlight unrepresentative or anomalous pat-
terns in the dataset. To validate the usefulness of the tool,
we have used it to analyze several datasets commonly used
in computer vision: COCO (Lin et al., 2014), Openlm-
ages (Krasin et al., 2017), YFCC100m (Thomee et al., 2016),
and BDD100OK (Yu et al., 2020). Some examples of the kinds
of automatic insights our tool has found include:

— In the object detection dataset COCO (Lin et al.,
2014), we use object bounding boxes to find that some
objects, e.g., airplane, bed and pizza, are fre-
quently large in the image. This is because fewer images
of airplanes appear in the sky (far away; small) than
on the ground (close-up; large). This may be a problem
since object size plays a key role in recognition accuracy.
One mitigation is to query for images of airplane
appearing in scenes of mountains, desert, sky.

— In the Openlmages dataset (Krasin et al., 2017) we lever-
age gender annotations and people bounding boxes to
find that labels exist for a large number of people who are
too small in the image for human annotators to determine
their gender; nevertheless, we found that annotators infer
that they are male 69% of the time, especially in scenes
of outdoor sports fields, parks.Computer
vision researchers might want to exercise caution with
these gender annotations so they don’t propagate into the
model.

— In the computer vision and multimedia dataset
YFCC100m (Yahoo Flickr Creative Commons 100 mil-
lion) (Thomee et al., 2016) we use geolocation anno-
tations to find that images come from 196 different
countries. However, we estimate that for around 47% of
those countries—especially in developing regions of the
world—the images are predominantly photos taken by
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visitors to the country rather than by locals, potentially
resulting in a stereotypical portrayal.

A benefit of our tool is that a user doesn’t need to have spe-
cific biases in mind, as these can be hard to enumerate. Rather,
the tool automatically surfaces unusual patterns. REVISE
cannot automatically say which of these patterns, or lack of
patterns, are problematic, and leaves that analysis up to the
user’s judgment and expertise. We note that “bias” is a con-
tested term, and while our tool seeks to surface a variety of
findings that are interesting to dataset creators and users, not
all may be considered forms of bias by everyone.

Extension from Conference Version (Wang et al.,
2020a) This work is an extension of prior work pub-
lished at ECCV 2020 (Wang et al., 2020a). Our original
work has raised awareness on the biases encoded in visual
datasets (Steed & Caliskan, 2021; Fabbrizzi et al., 2021), as
well as been used on new datasets (Zhao et al., 2021) that con-
sider skin tone as the protected attribute. At the time of Zhao
etal. (2021)’s analysis, our person-based measurements only
worked for binary attributes, and thus their findings on skin
tone are restricted to considering individuals as belonging to
the categories of having either darker or lighter skin tone.
However, with our new feature update that allows for ordinal
attributes, we are able to measure more nuanced insights, as
seen in Figs. 6 and 8. The major changes we have made in
this extended work are as follows:

— Geography-based analyses are extended to incorporate
external data sources like income and weather, with
results on new BDD100k dataset in Sects. 6.1.5 and 6.1.6.
They are also combined with the people-based analyses,
with results in Sect. 6.1.3.

— Geography-based analyses now use customizable Geol-
SON files to create a user-friendly interactive geographic
interface, as shown in Fig. 3. Other user experience
improvements include a video demonstration of select
features on the Github repository, and the automatic gen-
eration of a static PDF to summarize the key findings on
a dataset to accompany the dynamic tool.

— Person-based analyses are generalized to work beyond
binary attributes. In addition, there is added functionality
to perform regression analyses for attributes that are also
ordinal, such as quantized age or skin tone, with results
in Sects. 5.1.1, 5.1.2, and 5.1.3.

— Previous analyses have been strengthened: added auto-
matic categorization of object labels to a corresponding
supercategory with word embedding distances in order
to make analyses more tractable to interpret (beginning
of Sect. 4.1); incorporated permutation tests for statis-
tical significance in person-based and geography-based
analyses (Sect. 5.1.4).
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2 Related Work

Data Collection Visual datasets are constructed in vari-
ous ways, with the most common being through keyword
queries to search engines, whether singular (e.g., Ima-
geNet Russakovsky et al., 2015) or pairwise (e.g., COCO Lin
et al., 2014), or by scraping websites like Flickr (e.g.,
YFCC100m Thomee et al., 2016, Openlmages Krasin et al.,
2017). There is extensive preprocessing and cleaning done
on the datasets. Human annotators, sometimes in conjunc-
tion with automated tools (Zhou et al., 2017), then assign
various labels and annotations. Dataset collectors put in sig-
nificant effort to deal with problems like long-tails to ensure a
more balanced distribution, and intra-class diversity by doing
things like explicitly seeking out non-iconic images beyond
just the object itself in focus.

Dataset Bias Rather than pick a single definition, we adopt
an inclusive notion of bias and seek to highlight ways in
which the dataset builder can monitor and control the distri-
bution of their data. Proposed ways to deal with dataset bias
include cross-dataset analysis (Torralba & Efros, 2011) and
having the machine learning community learn from data col-
lection approaches of other disciplines (Jo & Gebru, 2020;
Brown, 2014). Recent work Prabhu and Birhane (2020)
has looked at dataset issues related to consent and jus-
tice; the authors advocate for enforcing Institutional Review
Board (IRB) approval for large scale datasets. Beyond vision
datasets, biases in datasets from other domains have also
been interrogated, such as those from criminal justice (Bao
et al. 2021), the U.S. Census (Ding et al., 2021), and vision
language (Birhane et al., 2021). Although we have limited
the scope of our work to the contents of visual datasets itself,
there are much broader questions of fairness and justice to be
considered regarding the role that datasets play (Denton et al.,
2020; Paullada et al., 2020; Scheuerman et al., 2021; Peng et
al., 2021). Constructive solutions will need to combine auto-
mated analysis with human judgement as automated methods
cannot yet understand things like the historical context that
led to an observed statistical imbalance in the dataset. Our
work takes this approach by automatically supplying a host
of new metrics for analyzing a dataset along with actions
that can be taken to mitigate these findings. However, the
responsibility lies with the user to select next steps. The tool
is open-source, lowering the resource and effort barrier to
creating ethical datasets (Jo & Gebru, 2020).

Computer Vision Tools Hoiem et al. (2012) built a tool to
diagnose the weaknesses of object detector models in order to
help improve them. More recently, there have been tools like
TIDE (Bolya et al., 2020) which also surfaces object detec-
tion errors, as well as tools in the video domain (Alwassel et
al.., 2018) looking into forms of dataset bias in activity recog-
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nition (Sigurdsson et al., 2017). We similarly in spirit hope
to build a tool that will, as one goal, help dataset curators be
aware of the patterns and biases present in their datasets so
they can iteratively make adjustments.

Algorithmic Fairness In addition to looking at how
models trained on one dataset generalize poorly to oth-
ers (Tommasi et al., 2015; Torralba & Efros, 2011), many
more forms of dataset bias are being increasingly noticed
in the fairness domain (Caliskan et al., 2017; Mehrabi et
al., 2019; Yang et al., 2020). There has been significant
work looking at how to deal with this from the algorithm
side (Dwork et al., 2012; Khosla et al., 2012; Dwork et al.,
2017; Wang et al., 2020b) with varying definitions of fair-
ness (Kilbertus et al., 2017; Zhang et al., 2018; Pleiss et al.,
2017; Gajane & Pechenizkiy, 2017; Hardt et al., 2016) that
are often deemed to be mathematically incompatible with
each other (Chouldechova, 2017; Kleinberg et al., 2017), but
in this work, we look at the problem earlier in the pipeline
from the dataset side.

Automated Bias Detectors To make the measurement
of bias tractable, there have been many proposals of auto-
mated bias detectors. Many focus on measuring the outputs
of models, for example, Facebook’s Fairness Flow (Face-
book, 2021) focuses on assessing model predictions for their
contextual fairness, though also looks at the labels them-
selves. Similarly, IBM’s Al Fairness 360 (Bellamy et al.,
2018) discovers biases in machine learning models, and also
looks into the datasets. However, its look into dataset biases
is limited in that it first trains a model on that dataset, then
interrogates this trained model with specific questions. Steed
& Caliskan, (2021) is another work that quantifies bias in a
model, in the form of biased associations present in unsuper-
vised model representations. An increasingly popular line of
work additionally uses Generative Adversarial Networks to
create counterfactuals for the sake of quantifying bias in mod-
els (Denton et al., 2019; Sattigeri et al., 2019; Sharmanska et
al., 2020; Balakrishnan et al.., 2020). Swinger et al. (2019)
look at automatic detection of biases in word embeddings,
but we look at patterns in visual images and their annota-
tions. RUBI is an automated method for detecting unimodal
model biases, but specifically for models trained in the Visual
Question Answering (VQA) domain (Cadene et al., 2019).
Different from much of this work, REVISE looks directly at
the dataset and its annotations to discover more generaliz-
able, model-agnostic patterns.

In terms of work that measures the bias of datasets, the
Dataset Nutrition Label (Holland et al., 2018) is a recent
project that assesses machine learning datasets. Differently,
our approach works on visual rather than tabular data which
allows us to use additional computer vision techniques, and
goes deeper in terms of presenting a variety of graphs and sta-

tistical results. Amazon SageMaker Clarify (Amazon, 2021)
also works to detect bias in training data, but only along the
person-based axis, and not object nor geography. Similarly,
Google’s Know Your Data (Google People + AI Research,
2021) also aims to help mitigate bias issues in image datasets.
However, their tool currently only works on TensorFlow
image datasets, whereas REVISE will work for any local
image dataset. This has the benefit of allowing dataset cre-
ators to iteratively query our tool during the development
process of their dataset, as well as dataset users to apply it to
a private or proprietary dataset.

3 Tool Overview

REVISE is a general tool intended to yield insights at varying
levels of granularity. As input, it requires an image dataset
and its associated annotations. Depending on the types of
annotations available, the tool automatically computes a host
of metrics, to be described in Sects. 4.1, 5.1, and 6.1, broken
down by the axes of object, person, and geography.

The metrics are often situated to provide a user with
anomalous patterns, such as when the size distribution of
an object class is highly non-uniform, and correspondingly
provide automatic data-driven insights on how one might
correct for this distribution. However, a metric itself has no
normative claim on its own; ultimately it is up to the user to
determine whether the automatically-surfaced patterns devi-
ate enough from an intended distribution that this would be
a problem for the downstream application of models trained
on the dataset.

Tool Practically, REVISE takes the form of a Jupyter note-
book interface that allows interactive exploration, as shown
in Figs. 2 and 3. For privacy reasons, all analyses are run
on a user’s local machine. By default, the code to compute
the metrics are largely abstracted away. However, all code
is open-sourced such that a user can perform any personal
customization to the metrics to fit their intended use-case.
After multiple rounds of iterations with potential users, we
have added a number of features to increase adoptability and
usability of the tool. For one, we have created a video that will
demonstrate to potential users what the interface of the tool
looks like, and allow them to get a sense of whether this would
be useful for their purposes. We have also included a feature
that automatically generates a summary PDF as a result of
running the tool and exploring the notebook. This supple-
ments the dynamic nature of the tool with a static component
that summarizes the key findings. Additionally, the biggest
hurdle for a user to get started with their own dataset is the
process of setting their dataset up to be in the standardized
format that our tool requires. To this end, we have created a
comprehensive testing script that provides informative feed-
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Fig. 3 Interface for exploring datasets with geography annotations.
Interactive features allow viewing both image distribution by geogra-
phy, as well as a bubble showing the labels of a specific image

back to ensure a user has inputted their dataset in the proper
format before it is run through the tool.

Axes of Analyses The analyses that can ultimately be
performed depend on the annotations available:

1. Object-based insights require instance labels and, if
available, their corresponding bounding boxes and object
category. Datasets are frequently collected together with
manual annotations, but we also use automated com-
puter vision techniques to infer some semantic labels,
like scenes.

2. Person-based insights require sensitive attribute labels
of the people in the images. The tool is general enough
that given labels of any grouping of people, such as racial
groups, the corresponding analyses can be performed. If
the attribute labels are ordinal, such as quantized age or
skin tone, additional regression analyses are available.

3. Geography-based insights flexibly allow for labels in
two possible formats: (1) region labels as strings, e.g.,
“Portugal”, “Nigeria”, or (2) GPS latitude and longitude
coordinates. By default the tool will use a global map, but
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previously mentioned object and demographic labels, as
well as external data source annotations. These can be at
either the image-level, e.g., language of an image caption
or region level, e.g., population size.

In the rest of the paper we will describe some insights
automatically generated by our tool on various datasets, and
potential actions that can be taken. Because of the interacting
nature of biases along different axes, taking action through
mitigation or rebalancing along one axis, e.g., gender, is
likely to change the makeup of the dataset along another axis,
e.g., geography. The user will need to exercise caution and
determine which are the relevant axes to investigate, poten-
tially applying the tool iteratively to observe for unintended
side effects of interventions on the dataset. The metrics are
all run fully automatically, but based on the statistically sig-
nificant results that are surfaced by the tool, we pick out the
interesting findings to present in this paper that demonstrate
the flavor of insight each metric will provide.

4 Object-Based Analysis

We begin with an object-based approach to gain a basic
understanding of a dataset. Much visual recognition research
has centered on recognizing objects as the core build-
ing block (Everingham et al., 2010), and a number of
object recognition datasets have been collected e.g., Cal-
tech101 (Fei-Fei et al., 2004), PASCAL VOC (Everingham
et al., 2010), ImageNet (Russakovsky et al., 2015; Deng et
al., 2009). In Sect. 4.1 we introduce the metrics reported by
REVISE; in Sect. 4.2 we dive into the actionable insights we
surface as a result, all summarized in Table 1.

4.1 Object-Based Metrics

Of the metrics we will introduce, several (e.g., object counts,
duplicate annotations, object scale) are commonly used by
dataset collectors; others (e.g., scene or appearance diversity)
are sometimes used during ad-hoc dataset examination but
rarely quantified.

When the number of labels is very large (e.g., Openlm-
ages contains 19,995) dataset analysis at the object level
can be intractable to interpret. This motivates the need for
higher-level supercategories: e.g., an appliance super-
category encompasses the more granular instances of oven,

1 GeoJSON is a JSON-based standard for encoding boundary and
region information through GPS data. GeoJSON files for many geo-
graphic regions are easily downloadable online, and can be readily
converted from shapefiles, another type of geographic boundary file.
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Table 1 Object-based summary: for image content and object annotations of COCO

Metric

Example insight

Example action

Object counts
(Sect. 4.1.1)

Duplicate annotations
(Sect. 4.1.2)

Object scale
(Sect. 4.1.3)

Object co-occurrences
(Sect. 4.1.4)

Scene diversity
(Sect. 4.1.5)

Appearance diversity
(Sect. 4.1.6)

Within the supercategory appliance,
oven and refrigerator are
overrepresented and toaster is
underrepresented

The same object is frequently labeled as
both doughnut and bagel

Airplane is overrepresented as very
large in images, as there are few images
of airplanes smaller and flying in the sky

Person appears more with unhealthy
food like cake or hot dog than
broccoli or orange

Baseball glove doesn’t occur much
outside of sports fields

The appearance of furniture objects
become more varied when they come
from scenes like water, ice,
snow and outdoor sports

Query for more toaster images

Manually reconcile the duplicate
annotations

Query more images of airplane with
kite, since they’re more likely to have
asmall airplane

Query for more images of people with a
healthier food

Query images of baseball glovein
different scenes like a sidewalk

Query more images of furniture in
outdoor sports fields,
parks, since this scene is more
common than water, ice, snow,

fields, parks rather than

and still contributes appearance diversity

predominantly from home or

hotel.

refrigerator, and microwave in COCO (Lin et al.,
2014). Most datasets, however, do not contain explicit
mappings from labels to supercategories like COCO does.
REVISE automatically bins labels to a set of predefined
supercategories using the cosine similarity of word embed-
dings (Honnibal et al., 2020). Results of auto-generated
mappings are returned to the user, sorted by confidence, and
the user is free to override any of the mappings. In a ran-
dom sample of labels from the Openlmages dataset mapped
to the COCO supercategories, human validation finds this
automatic binning strategy to be appropriate on 44 of 50
labels.

4.1.1 Object Counts

Object counts in the real world tend to naturally follow a
long-tail distribution (Ouyang et al., 2016; Yang et al., 2014,
Salakhutdinov et al., 2011). As for object counts in datasets,
there are two main views: reflecting the natural long-tail dis-
tribution (e.g., in SUN Xiao et al., 2010) or approximately
equal balancing (e.g., in ImageNet Russakovsky et al., 2015).
Either way, the first-order statistic when analyzing a dataset
is to compute the per-category counts and verify that they are
consistent with the target distribution. By computing how fre-
quently an object is represented both within its supercategory,
as well as among all objects, this allows for a fine-grained
look at frequency statistics: for example, while the oven
and refrigerator objects fall below the median number
of instances for an object class in COCQ, it is nevertheless

Supercategories Within "appliance"
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Fig. 4 Oven and refrigerator counts fall below the median of
object classes in COCO; however, they are actually over-represented
within the appliance category

notable that both of these objects are around twice as frequent
as the average object from the appliance class (Fig. 4).

4.1.2 Duplicate Annotations

A common issue with object dataset annotation is the label-
ing of the same object instance with two names (e.g., cup
and mug), which is especially problematic in free-form anno-
tation datasets such as Visual Genome (Krishna et al., 2016).
In datasets with closed-world vocabulary, image annotation
is commonly done for a single object class at a time causing
confusion when the same object is labeled as both t rumpet
and trombone (Russakovsky et al., 2015). While these
occurrences are manually filtered in some datasets, auto-
matic identification of such pairs is useful for both dataset
curators (to remove errors) and to dataset users (to avoid over-
counting of either object). REVISE automatically identifies
such object instances. In the Openlmages dataset (Krasin
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et al., 2017) some examples of automatically detected pairs
include bagel and doughnut, jaguar and leopard,
and orange and grapefruit.Ineach case, the two labels
are distinct (although visually similar) concepts, suggesting
annotation errors.

4.1.3 Object Scale

It is well-known that object size plays a key role in object
recognition accuracy (Russakovsky et al., 2015; Hoiem et
al., 2012), as well as semantic importance in an image (Berg
et al., 2012). While many quantizations of object scale have
been proposed (Lin et al., 2014; Hoiem et al., 2012), we aim
for a metric that is both comparable across object classes
and invariant to image resolution to be suitable for differ-
ent datasets. Thus, for every object instance we compute the
fraction of image area occupied by this instance, and quantize
into 5 equal-sized bins across the entire dataset. This binning
reveals, for example, that rather than an equal 20% for each
size, 77% of airplanes and 73% of pizzas in COCO
are extra large (> 9.3% of the image area).

4.1.4 Object Co-occurrence

Object co-occurrence is a known contextual visual cue
exploited by object detection models (Galleguillos et al.,
2008; Oliva & Torralba, 2007), and thus can serve as an
important measure of the diversity of object context. We
compute all pairwise object class co-occurrence statistics
within the dataset, and use them both to identify surpris-
ing co-occurrences as well as to generate potential search
queries to diversify the dataset, as described in Sect. 4.2.
For example, we find that in COCO, person appears in
43% of images containing the food category; however,
person appears in a smaller percentage of images con-
taining broccoli (15%), carrot (21%), and orange
(29%), and conversely a greater percentage of images con-
taining cake (55%), donut (55%), and hot dog (56%).

4.1.5 Scene Diversity

Building on quantifying the common context of an object, we
additionally strive to measure the scene diversity directly. To
do so, for every object class we consider the entropy of scene
categories in which the object appears. We use a ResNet-
18 (He et al., 2016) trained on Places (Zhou et al., 2017)
to classify every image into one of 16 scene groups,” and

2 Because top-1 accuracy for even the best model on all 365 scenes is
55.19%, but top-5 accuracy is 85.07%, we use the less granular scene
categorization at the second tier of the defined scene hierarchy here. For
example, aquarium, church indoor, and music studio fall
into the scene group of indoor cultural.
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identify objects like person that appear in a higher diversity
of scenes versus objects like baseball glove thatappear
in fewer kinds of scenes (almost all baseball fields). This
insight may guide dataset creators to further augment the
dataset, as well as guide dataset users to want to test if their
models can support out-of-context recognition on the objects
that appear in fewer kinds of scenes, for example baseball
gloves in a street.

4.1.6 Appearance Diversity

Finally, we consider the appearance diversity (i.e., intra-class
variation) of each object class, which is a primary challenge in
object detection (Yao et al., 2017). We use a ResNet-110 net-
work (Idelbayev, 2019) trained on CIFAR-10 (Krizhevsky,
2009) to extract a 64-dimensional feature representation of
every instance bounding box, resized to 32 x 32 pixels. We
first validate that distances in this feature space correspond
to semantically meaningful measures of diversity. To do so,
on the COCO dataset we compute the average distance with
n = 500,000 between two object instances of the same class
(5.91 &+ 1.44), and verify that it is smaller than the average
distance between two object instances belonging to differ-
ent classes but the same supercategory (6.24 £ 1.42), with
a Cohen’s D effect size of .23 and further smaller than the
average distance between two unrelated objects (6.48+£1.44),
with a Cohen’s D effect size of .17. This metric allows us to
identify individual object instances that contribute the most
to the diversity of an object class, and informs our interven-
tions in the next section.

4.2 Object-Based Actionable Insights

The metrics of Sect. 4.1 help surface biases or other issues,
but it may not always be clear how to address them. We strive
to mitigate this concern by providing examples of meaning-
ful, actionable, and useful steps to guide the user.

For duplicate annotations, the remedy is straight-forward:
perform manual cleanup of the data, e.g., as in “Appendix
E” of Russakovsky et al. (2015). For the others the path
is less straight-forward. For datasets that come from web
queries, following the literature (Everingham et al., 2010;
Russakovsky et al., 2015; Lin et al., 2014) REVISE defines
search queries of the form “XX and YY,” where XX corre-
sponds to the target object class, and YY corresponds to a
contextual term (another object class, scene category, etc.).
REVISE ranks all possible queries to identify the ones that
are most likely to lead to the target outcome, and we investi-
gate this approach more thoroughly in “Appendix C”.

For example, within COCO, airplanes have low diver-
sity of scale and are predominantly large in the images.
Our tool identifies that smaller airplanes co-occurred with
objects like surfboard and scenes like mountains,


http://places2.csail.mit.edu/scene_hierarchy.html

International Journal of Computer Vision (2022) 130:1790-1810

1797

21.01 ewater, ice, snow
£0.8

g™ outdoor sports
5 0.6 °: fields, parks
004"

20.2 o o home or
D . ¢ hotel
x 0.0 . i

0.0 0.2 0.4 0.6 0.8 1.0
Relative Commonness

outdoor
sports |
fields,
parks

home
or
hotel

EA =

Fig.5 The top shows the tradeoff for furniture in COCO between
how much scenes increase appearance diversity (our goal) and how
common they are (ease of collecting this data). To maximize both,
outdoor sports fields, parks would be the most efficient
way of augmenting this category. Water, ice, snow provides the
most diversity but is hard to find, and home or hotel is the easiest
to find but provides little diversity. On the bottom are sample images of
furniture from these scenes

desert, sky (which are more likely to be photographed
from afar). In other words, size matters by itself, but a
skewed size distribution could also be a proxy for other types
of biases. Dataset creators aiming to diversify their dataset
towards a more uniform distribution of object scale can use
these queries as a guide. These pairwise queries can simi-
larly be used to diversify appearance diversity. Furniture
objects appear predominantly in indoor scenes like home
or hotel,soquerying for furniture in scenes like water,
ice, snow would diversify the dataset. However, this
combination is quite rare, so we want to navigate the trade-
off between a pair’s commonness and its contribution to
diversity. Thus, we are more likely to be successful if we
query for images in the more common outdoor sports
fields, parks scenes, which also brings a significant
amount of appearance diversity. The tool provides a visual-
ization of this tradeoff (Fig. 5), allowing the user to make the
final decision.

5 Person-Based Analysis

We next look into discrepancies in various aspects of how
people of differing demographic attributes are represented,
summarized in Table 2. The datasets we consider here are
COCO (Lin et al., 2014), for which we have gender and skin
tone annotations, and Openlmages (Krasin et al., 2017), for
which we have gender annotations. In Sect. 5.1 we explain

some of the metrics that we collect, and in Sect. 5.2 we discuss
possible actions.

Gender Labels The gender labels in COCO are from Zhao
et al. (2017), and their methodology in determining the gen-
der for an image is that if at least one caption contains the
word “man” and there is no mention of “woman”, then it
is a male image, and vice versa for female images. Zhao
et al. (2021) compares the results of this schema to labels
derived from external annotators. We use the same method-
ology along with other gendered labels like “boy” and “girl”
on Openlmages’ pre-existing annotations of individuals. It
is important to acknowledge that the labels we are using are
those of perceived binary gender, which is not inclusive of
all gender categories. We will use the terms male and female
to refer to binarized socially-perceived gender expression,
and not gender identity nor sex assigned at birth, neither of
which can be inferred from an image. In “Appendix A.1” we
consider some of the problems that arise from using gender
labels that have been inferred in this way.

Skin Tone Labels Our skin tone annotations for COCO
come from Zhao et al. (2021), and are numbered 1-6 accord-
ing to the Fitzpatrick scale (Fitzpatrick, 1988), where 1 is the
lightest and 6 is the darkest. We use perceived skin tone as
a poor proxy for race, and acknowledge that this risks reify-
ing a particular inaccurate conception of race (Hanna et al.,
2020). We consider skin tone as an ordinal variable, and ana-
lyze trendlines that result as we increase or decrease along
this axis.

5.1 Person-Based Metrics

In this section, we will give representative findings for each
metric that demonstrate the kind of insight our tool can pro-
vide. We start out by considering both gender and skin tone
for COCO in Sects. 5.1.1 and 5.1.2, before transitioning to
gender in Openlmages in Sects. 5.1.3 and 5.1.4.

5.1.1 Person Prominence

As our first line of analysis regarding how people of differ-
ent demographic attributes are represented, we consider the
proportion of an image a person takes up, as well as their
distance from the center. We treat these two measures as a
proxy for importance (Berg et al., 2012), where people who
are larger and more to the center of an image are the focal
point. We run the analysis for COCO on people differentiated
both by gender and by skin tone. For gender, people who are
male tend to take up more of the image (.268 &-.213 for male
vs .138 & .148 for female, with a Cohen’s D effect size of
.709) and be closer to the center (.363 + .218 for male vs
.510+.250 for female, with a Cohen’s D effect size of .627).
For people of different skin tones, in Fig. 6 we see that as
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Table 2 Person-based summary: investigating representation of people with different demographic attributes

Metric

Example insight

Example action

Person Prominence
(Sect. 5.1.1)

Contextual
representation
(Sect. 5.1.2)

Instance counts
and distances

As the skin tone of the person in an image
increases in darkness, the person is more
likely to be smaller and further from the
center.

Male people occur in more outdoors
scenes and with sports objects.
Female people occur in more indoors
scenes and with kitchen objects

In images with musical instrument
organ, male people are more likely to

Collect more images of people of different
skintones as the subject of an image
rather than in the background

Collect more images of female people in
outdoors scenes with sports objects,
and vice versa for male people

Collect more images of female people
playing organs

Collect more images of each gender with
sports uniformin their
underrepresented scenes

intervening to break these associations, there are often too
many proxy features to robustly do so. Thus it can be useful
to intervene at the dataset creation stage.

Then, we consider these analyses in COCO along the
ordinal variable of skin tone. In Fig. 8 we see statistically

(Sect. 5.1.3) be actually playing the organ
Appearance differences Male people in sports uniforms
(Sect. 5.1.4) tend to be playing outdoor sports, while
female people in sports uniforms
are often indoors or in swimsuits.
0.20 Median Person Size Median Person Distance from Center
0.37
018 So.36
() =
N ©
0.16 7035
Q0.34
0.14 0.33
i 2 3 4 5 6 i 2 3 4 5 6
Skin Tone Skin Tone

Fig.6 Inthe COCO dataset, as a person’s skin tone increases in dark-
ness, that person is more likely to be smaller and further from the center.
This indicates that people of darker skin tones are more likely to be in
the background of an image rather than featured prominently. We used
Jonckheere’s trend test (Jonckheere, 1954) to show there is an a pri-
ori ordering to size and distance values by skin tone with p values of
2.11e—7 and .014, respectively

skin tone increases in darkness, the person is more likely to
take up less of the image, as well as be further from the cen-
ter. This indicates a bias against female people and people of
darker skin tones as being less likely to be the focal point of
an image.

5.1.2 Contextual Representation

Looking beyond just the person themselves, we consider the
contexts that people with different demographic attributes
tend to be featured in through the object groups they cooccur
with, and the scenes they appear in. We first consider peo-
ple of two different genders in COCO, and in Fig. 7 see that
images with female people tend to be more indoors in scenes
like shopping and dining and with object groups like
furniture,accessory,and appliance. On the other
hand, male people tend to be in more outdoors scenes like
sports fields and water, ice, snow, and with
object groups like sports and vehicle. These trends
reflect gender stereotypes in many societies and can propa-
gate into the models. While there is work on algorithmically

@ Springer

significant trends according to the Wald test on a non-
zero slope of regression lines where people with lighter
skin tones are more likely to be in home or hotel
scenes and with object groups like furniture, and people
with darker skin tones are more likely to be in outdoor
transportation scenes and with object groups like
vehicle. In the next metric we dig deeper into these object
categories by considering the particular objects themselves.

5.1.3 Instance Counts and Distances

Analyzing object instances allows a more granular under-
standing of biases in the dataset. For example, in the previous
metric on COCO we found vehicle objects to occur more
with people of darker skin tones, and furni ture with peo-
ple of lighter skin tones. The specific vehicle objects that
fit this trend are motorcycle and bus, while the specific
furniture objects are bed and couch.

In Openlmages we find that objects like cosmetics,
doll, and washing machine are overrepresented with
female people, and objects like rugby ball, beer,
bicycle are overrepresented with male people. However,
beyond just looking at the number of times objects appear,
we also look at the distance an object is from a person. We
use a scaled distance measure as a proxy for understanding if
a particular person, p, and object, o, are actually interacting
with each other in order to derive more meaningful insight
than just quantifying a mutual appearance in the same image.
The distance measure we define is
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Fig.7 Contextual information of images in COCO by gender, represented by fraction that are in a scene (left) and have an object from the category

(right)

distance between p and o centers
dist = P 1)

/area, * area,

to estimate distance in the 3D world, where area,, is mea-
sured on a normalized image of total area 1. In “Appendix
B” we validate this notion that our distance measure can be
used as a proxy interaction. We consider these distances in
order to disambiguate between situations where a person is
merely in an image with an object in the background, rather
than directly interacting with the object, revealing biases that
were not clear from just looking at the frequency differences.
For example, organ (the musical instrument) did not have
a statistically significant difference in frequency between the
genders, but does in distance, or under our interpretation,
relation. In Fig. 9 we investigate what accounts for this dif-
ference and see that when a male person is pictured with an
organ, he is likely to be playing it, whereas a female person
may just be near it but not necessarily directly interacting
with it. Through this analysis we discover something more
subtle about how an object is represented.

For these kinds of qualitative analyses, our tool necessarily
can only serve as a focusing heuristic, as quantitative results
such as the number of objects that have a statistically signifi-
cant difference would be largely meaningless without human
interpretation. In other words, we cannot automate the pro-
cess of saying a statistical significant difference in distance is
the result of a meaningful bias. However, by focusing atten-
tion on these statistically significant cases, our tool makes it
actually tractable to measure for these biases.

5.1.4 Appearance Differences

We also look into the appearance differences in images
of each gender with a particular object. This is to further

Images with this Scene

= home or hotel
= outdoor transport

Images that contain this Object Category

= furniture
~ vehicle

—
o

®
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w
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Skin Tone

Skin Tone

Fig. 8 We fit regression lines between co-occurrences of people with
particular skin tones, and scenes and object categories. We show in
the figure example categories where the Wald test has p < .05 that
the slopes are non-zero, revealing trends that appear in image con-
text as skin tone changes. On the left, we see that as an individual’s
skin tone increases in darkness, they are less likely to be pictured in
home or hotel scenes, and more likely to be pictured in outdoor
transportation scenes. On the right, we see that for object cate-
gories, people with darker skin tones are less likely to be pictured with
furniture objects, and more likely to be pictured with vehicle
objects

Median Quartile 3

Quartile 1

Fig. 9 5 images from Openlmages for a person (red bounding box)
of each gender pictured with an organ (blue bounding box) along the
gradient of inferred 3D distances. Male people tend to be featured as
actually playing the instrument, whereas female people are oftentimes
merely in the same space as the instrument (Color figure online)

disambiguate situations where occurrence counts, or even
distances, aren’t telling the whole story. This analysis is done
by (1) extracting FC7 features from AlexNet (Krizhevsky
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Fig. 10 Qualitative interpretation of what the visual model has learned
for the sports uniform and flower objects between the two
genders in Openlmages. “Confident Correct” are the images with the
highest confidence scores

et al., 2012) pretrained on Places (Zhou et al., 2017) on
a randomly sampled subset of the images to get scene-
level features, (2) projecting them into /number of samples
dimensions (as is recommended in Hua et al., (2005), Jain &
Waller, (1978)) to prevent over-fitting, and then (3) fitting a
Linear Support Vector Machine with Sklearn’s Pedregosa et
al., (2011) default L2 regularization to see if it is able to learn
a difference, as defined by classification accuracy of gender,
between images of the same object with different genders. To
make sure the female and male images are actually linearly
separable and the classifier is not over-fitting, we randomly
shuffle the data labels and use a permutation test to get sta-
tistical significance on our results (Ojala & Garriga, 2010).
Our tool allows customizable sorting by both strength of the
difference as well as statistical significance. In Fig. 10 we can
see what the Linear SVM has learned on OpenImages for the
sports uniformand f£lower categories. For sports
uniform, male people tend to be represented as playing
outdoor sports like baseball, while female people tend to be
portrayed as playing an indoor sport like basketball or in a
swimsuit. For £lower, we see another drastic difference in
how male and female people are portrayed, where the former
are pictured with a £1ower in formal, official settings, and
the latter are in staged settings or paintings.

5.2 Person-Based Actionable Insights

Compared to object-based metrics, the actionable insights
for person-based metrics are less concrete and more nuanced.
There is a tradeoff between attempting to represent the visual
world as it is versus as we think it should be. For example,
in contemporary societies, gender representation in various
occupations, activities, etc. is unequal, so it is not obvious
that aiming for gender parity across all object categories is
the right approach. Biases that are systemic and historical
are more problematic than others (Bearman et al., 2009), and
this analysis cannot be automated. Further, the downstream
impact of unequal representation depends on the specific
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models and tasks. Nevertheless, we provide some recom-
mendations.

A trend that appeared in the metrics is that images
frequently fell in line with common gender and racial stereo-
types. Each group of people was under- or over-represented
in a particular way, and dataset collectors may want to adjust
their datasets to account for these by augmenting in the direc-
tion of the underrepresentations. Dataset users may want to
audit their models, and investigate to what extent their mod-
els have learned the dataset’s biases before they are deployed,
as stereotypical correlations in the training data are likely to
be amplified in model outputs (Zhao et al., 2017; Wang &
Russakovsky, 2021).

6 Geography-Based Analysis

Finally, we turn to the geography of the images. We consider
geography in the context of the object-based and person-
based analyses from before, as well as additional axes.
Geography uniquely interacts with both the types of objects
that appear in images, as well as the demographics of the
people. Because of these interactions, biases and problems
around generalization have been shown to appear (Shankar
et al., 2017; Gebru et al., 2017; DeVries et al., 2019).

In addition to COCO, for which we can derive geography
labels on a subset of the images by querying the source of the
images, i.e., Flickr, we also consider the global YFCC100m
dataset® (Thomee et al., 2016), and the New York-centric
BDDI100K (Yu et al., 2020) self-driving car dataset.*

In Sect. 6.1 we present findings from our metrics, and in
Sect. 6.2 we discuss what can be done about them (Table 3).

6.1 Geography-Based Metrics

In this section we analyze geography in the context of objects
and people appearances, but also language, income, and
weather. For distribution (Sect. 6.1.1), objects (Sect. 6.1.2),
and language (Sect. 6.1.4) we look at the YFCC100m dataset,
for people (Sect. 6.1.3) we look at COCO, and then for
income (Sect. 6.1.5) and weather (Sect. 6.1.6) we look
at BDD100K. Additionally, our analysis on geography by
income is a case study into what our automated analyses
in conjunction with an external data source of region-level
labels may look like. One could also imagine plugging in a
different external data source, e.g., region-level population
size, and the tool would automatically run the same metrics
along this axis instead.

3 We use different subsets of the YFCC100m dataset depending on the
particular annotations required by each metric.

4 We consider the subset of the BDD100K dataset with images in New
York City, which is a majority of the dataset.
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Table 3 Geography-based summary: looking into the geo-representation of a dataset, and how that differs between different regions

Metric

Example insight

Example action

Geography distribution

Most images are from the USA, with very

(Sect. 6.1.1) few from the countries of Africa
Geography by object Wildlife is overrepresented in Kiribati,
(Sect. 6.1.2) and mosque in Iran
Geography by people Underrepresented regions like Africa and
(Sect. 6.1.3) South Asia contain many of the images
of people with darker skin tones
Geography by language Countries in Africa and Asia that are
(Sect. 6.1.4) already underrepresented are frequently
represented by non-locals rather than
locals
Geography by income Normalized by square mile, wealthier zip
(Sect. 6.1.5) codes have more images, which also
contain a different distribution of labels
Geography by weather Northern California has significantly less
(Sect. 6.1.6) snowy images than New York City

Collect more images from the countries of
Africa

Compare dataset frequencies to real-world
frequencies; consider collecting other
kinds of images representing these
countries

Collect more images from
underrepresented regions to also
diversify the people of different skin
tones being represented

Collect more images taken by locals

rather than visitors in underrepresented
countries

Collect more images from zip codes with
lower incomes

Finetune a model on a weather
distribution most similar to that in which

it will be deployed

Dataset Representation Normalized by Population,
Logarithmic Scale

Fig. 11 Geographic distribution normalized by population in
YFCC100m

6.1.1 Geographic Distribution

The first line of analysis is to look at the overall geo-
graphic distribution of a dataset. Researchers have looked
at Openlmages and ImageNet and found these datasets to
be Amerocentric and Eurocentric (Shankar et al., 2017),
with models dropping in performance when being run on
images from underrepresented locales. In Fig. 11 it imme-
diately stands out that in the global YFCC100m dataset, the
USA is drastically overrepresented compared to most other
countries, with the continent of Africa being very sparsely
represented. This can lead to generalization problems where
a model may perform worse on image from a region it has
not seen as much of Devries et al. (2019).

6.1.2 Geography by Object

In the YFCC100m dataset, we have access to image tags,
which we treat as object labels. We combine our object-
based analysis techniques with this geography data, allowing
us to discern if certain labels are over- or under-represented
between different areas. We then begin by considering the
frequency with which each image tag appears in the set of
a country’s tags, compared to the frequency that same tag
makes up in the rest of the countries. Some examples of over-
and under-representations include Kiribati withwildlife
at 86x, Iran with mosque at 30x, Egypt with politics
at 20x, and United States with safari at .92x. We note
that, as seen in the previous metric, this dataset is so skewed
in terms of representation that most statistically significant
underrepresentations are in the United States, as no other
country has a high enough sample size. Additionally, whether
these over- or under-representations are problematic enough
to warrant intervention is entirely up to the user and their
downstream task. We have normalized these tags by num-
ber of tag occurrences, and not by real-world distributions of
the objects they mention, e.g., perhaps there are simply more
mosques in Iran than other countries and this overrepresen-
tation is innocuous and in fact a representative depiction of
the country—it is up to the user to verify this.

We also look beyond the numbers themselves into the
appearances of how different subregions, as defined by the
United Nations geoscheme (United Nations Statistics Divi-
sion, 2019), represent certain tags. Devries et al. (2019)
showed that object-recognition systems perform worse on
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Fig. 12 A qualitative look at YFCC100m for what the visual model
confidently and correctly classifies for images with the dish tag as in
Eastern Asia, and out

images from countries that are not as well-represented in
the dataset due to appearance differences within an object
class, so we look into such appearance differences within
a Flickr tag. We perform the same analysis as in Sect. 5.1
where we run a Linear SVM on the featurized images, this
time performing 17-way classification between the different
subregions. In Fig. 12 we show an example of the dish tag,
and what images from the most accurately classified subre-
gion, Eastern Asia, look like compared to images from the
other subregions. Images with the dish tag tend to refer
to food items in Eastern Asia, rather than a satellite dish or
plate, which is a more common practice in other regions.
This example is telling of a more pernicious problem than
mis-identifying dishes, which is that of dialect differences
between regions, and how that might affect the semantic
meaning of a label. Disentangling homonyms will require
computer vision systems to pay attention to the more subtle
nuances of linguistics (Roll et al., 2018). It may be important
to know if tags are represented differently across subregions
so that models do not overfit to one particular subregion’s
representation of an object.

6.1.3 Geography by People

Next, we combine our COCO demographic skin tone anno-
tations with geography labels. In Fig. 13 we see that images
of people with darker skin tones tend to come from South
Asia and Africa, but neither of these regions are very well-
represented compared to images from the United States and
Europe. In fact, while 85.5% of images of people with
lighter skin tones (values 1-3) come from North America
and Europe, this number is 58.2% for people with darker skin
tones (values 4—-6). Models that use this dataset may develop
an understanding of people with darker skin tones that will
be primarily informed by people from North America and
Europe, which is a very small sample of people with darker
skin tones in the world. Cultural practices differ among
people across regions, and depending on the downstream
application, it could be important that an understanding of a
group not be informed only by the people in one geographic
region.

For this particular dataset, we can additionally customize
our tool to incorporate an external data source. Looking at the
images only within the United States and binning by urban
centers, as defined by the U.S. Census, we find that while
84.4% of images of people with lighter skin tones 1-3 are
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Fig. 13 Geographical distribution of COCO images based on skin tone
annotations. Images from South Asia and Africa tend to contain people
of darker skin tones, although the majority of images are coming from
the United States and Europe

located in an urban area, 92.7% of images of people with
darker skin tones 4—6 are located in an urban area.

6.1.4 Geography by Language

When we looked at the global distribution of the
YFCC100m dataset, we saw an uneven distribution, with
few images coming from countries in Africa and Asia. How-
ever, the locale of an image can be misleading, since if all
the images taken in a particular country are only by tourists,
this would not necessarily encompass the geo-representation
one would hope for. Thus, here we combine our geography
labels with language annotations. Fig. 14 shows the percent-
age of images taken in a country and captioned in something
other than the national language(s), as detected by the fast-
Text library (Joulin et al., 2016a,b). We use the lower bound
of the binomial proportion confidence interval in the figure
so that countries with only a few images total which happen
to be mostly taken by tourists are not shown to be dispro-
portionately imaged as so. Even with this lower bound, we
see that many countries that are represented poorly in num-
ber are also under-represented by locals. To determine the
implications in representation based on who is portraying a
country, we categorize an image as taken by a local, tourist, or
unknown, using a combination of language detected and tag
content as an imperfect proxy. Harmful downstream effects
of a lack of geographically diverse representation presented
by locals has been shown in prior work (DeVries et al.,
2019), which demonstrates how object recognition systems
have trouble identifying common household items like soap
and spices when they are not pictured in the traditionally
Western way. We thus investigate if there are appearance
differences in how locals and tourists portray a country by
automatically running visual models. Although our tool does
not find any such notable difference in the

YFCC100m data, this kind of analysis can be useful on other
datasets where a local’s perspective is dramatically different
than that of a tourist’s.
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Fig. 14 Percentage of tags in a non-local language in YFCC100m.
Even when underrepresented countries are imaged, it is not necessarily
by someone local to that area
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Fig. 15 ZIP codes with higher income are more represented in the
BDD100K New York data

6.1.5 Geography by Income

Next, we consider how geography interacts with income.
For this analysis, we focus on the portion of the BDD100K
dataset in New York, and use income statistics by ZIP
code (The United States Census Bureau, 2019; Keeping
Track Online, 2019). This dataset was collected by crowd-
sourcing videos uploaded by drivers, a collection process that
has the potential to introduce geographic or socioeconomic
biases due to the self-selection of drivers.

To test whether this is the case, we divide the ZIP codes
into deciles based on average income, and visualize how rep-
resentation varies by income decline (Fig. 15). We see that
there is a large difference in the number of images per square
mile between the two wealthiest deciles and the rest. It is
possible that some of this may be explained by the wealthier
ZIP codes being in boroughs with a greater density of roads.
Accordingly, we also visualize the mean images per capita
rather than per square mile, and find that a large difference
persists.

Such differences in representation can introduce biases
or performance disparities in models trained on the data,
because areas with different socioeconomic attributes are
known to have systematic appearance differences (Gebru et
al., 2017). As evidence of such appearance differences in
the BDD100K data, we highlight in Fig. 16 that income
correlates with the presence of both the bicycle and
pedestrian label.
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Fig. 16 ZIP codes with higher income are more likely to contain bicy-
cles and pedestrians in the BDD100K New York data

6.1.6 Geography by Weather

In the BDD10OK self-driving car dataset, we have access
to weather tags on each image. Weather is a very relevant
factor for this context of automated driving, as oftentimes
datasets only contain weather in clear conditions (Sheeny et
al.,2021), and thus have trouble generalizing to other weather
conditions. Unsurprisingly, there are discrepancies between
the weather distributions of images in the Northern Califor-
nia and New York City portions of this dataset, especially
when looking at the snowy label, which is present at 0.3%
for the former and 10% for the latter. It is important to be
aware of these differences when deploying models in a set-
ting different from the one they were trained in. We note that
while we have distinguished between geography analyses by
object and by weather, both are automatically run through
the same technical functionality of the tool, as they are con-
sidering how the variation of per-image tags, i.e., object and
weather labels, vary by region.

6.2 Geography-Based Actionable Insights

Much like the demographic-based actionable insights, those
for geography-based are also more general and dependent
on what the model trained on the data will be used for. Con-
textual knowledge about additional axes that may need to
be considered, e.g., weather and language, can be easily
incorporated into the tool as long as the appropriate anno-
tations exist. This same contextual knowledge can help to
navigate tensions that may occur if mitigation techniques
for two different axes conflict with each other. Addition-
ally, as we demonstrated with income, geography may often
serve as a proxy for other characteristics, e.g., religion. In
the absence of these kinds of annotations, geolocation can
serve as a useful surrogate that may alert us to a socially sig-
nificant discrepancy. Under- and over- representations can
be approached in ways similar to before by augmenting the
dataset, an important step in making sure we do not have
a one-sided perspective of a region. Dataset users should
validate that their models are not overfitting to a particular
region’s representation and image distribution by testing on
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more geographically diverse data, especially on that which is
representative of where a model will be deployed. The geo-
graphic distribution of a dataset is intricately linked to the
representations of objects and the people in them. Because
of this, we note that not all instances of distribution differ-
ences are problematic and certain findings of the tool, such as
an underrepresentation of safari inthe United States, may
be entirely expected and not warrant any action to be taken.
This will all depend on the use-case of the tested dataset.

It is clear that as we deploy more and more models into
the world, there should be some form of either equal or equi-
table geo-representation. This emphasizes the need for data
collection to explicitly seek out more diversity in locale,
and specifically from the people that live there. Technology
has been known to leave groups behind as it makes rapid
advancements, and it is crucial that dataset representation
does not follow this trend and base representation on dig-
ital availability. It requires more effort to seek out images
from underrepresented areas, but as Jo & Gebru, (2020) dis-
cuss, there are actions that can and should be taken, such as
explicitly collecting data from underrepresented geographic
regions, to ensure a more diverse representation.

7 Discussion

REVISE is effective at surfacing and helping mitigate many
kinds of biases in visual datasets. But we make no claim that
REVISE will identify all visual biases. Creating an “unbi-
ased” dataset may not be a realistic goal. The challenges
are both practical (the sheer number of categories in mod-
ern datasets; the difficulty of gathering images from parts of
the world where few people are online) and conceptual (how
should we balance the goals of representing the world as it
is and the world as we want it to be)?

The kind of interventions that can and should be performed
in response to discovered biases will vary greatly depending
on the dataset and applications. For example, for an object
recognition benchmark, one may lean toward removing or
obfuscating people that occur in images since the occurrence
of people is largely incidental to the scientific goals of the
dataset (Prabhu & Birhane, 2020; Yang et al., 2021). But
such an intervention wouldn’t make sense for a dataset used
as part of a self-driving vehicle application. Rather, when a
dataset is used in a production setting, interventions should
be guided by an understanding of the downstream harms
that may occur in that specific application (Barocas et al.,
2019), such as poor performance in some neighborhoods.
Making sense of which representations are more harmful for
downstream applications may require additional data sources
to help understand whether an underrepresentation is, for
example, a result of a problem in the data collection effort,
or simply representative of the world being imaged. Further,
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dataset bias mitigation is only one step, albeit an important
one, in the much broader process of addressing fairness in
the deployment of a machine learning system (Green & Hu,
2018; Birhane, 2021).

We also note that much of our analyses necessarily
involves subdividing people along various socially-constructed
dimensions. By operationalizing dynamic and non-discrete
concepts such as gender and using skin tone as a proxy for
race, we reify certain conceptions of these concepts (Hanna
et al., 2020; Jacobs & Wallach, 2021) that harm certain
groups, e.g., non-binary individuals (Scheuerman et al.,
2020; Hamidi et al., 2018).

8 Conclusion

In conclusion, we present the REVISE tool, which automates
the discovery of potential biases in visual datasets and their
annotations. We perform this investigation along three axes:
object-based, person-based, and

geography-based, and note that there are many more axes
along which biases live. What cannot be automated is deter-
mining which of these biases are problematic and which are
not, so we hope that by surfacing anomalous patterns as well
as actionable next steps to the user, we can at least bring these
biases to light.
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A Appendices
A.1 Gender Label Inference

An additional person-based metric we consider is gender
label inference. Specifically, we note two especially con-
cerning practices of assigning gender to a person who is
too small to be identifiable, or no face is detected in the
image. This is not to say that if these cases are not met it
is acceptable to assign gender, as gender cannot be visu-
ally perceived by an annotator, but merely that assigning
gender when one of these two cases is applicable is a partic-
ularly egregious practice. For example, it’s been shown that
in images where a person is fully clad with snowboarding
equipment and a helmet, they are still labeled as male (Burns
et al., 2018) due to preconceived stereotypes. We investigate
the contextual cues annotators rely on to assign gender, and
consider the gender of a person unlikely to be identifiable
if the person is too small (below 1000 pixels, which is the
number of dimensions that humans require to perform cer-
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Fig.17 Examples from Openlmages where annotators assigned gender
to the person, but they should not have. The criteria used are that the
person is either too small or has no face detected

tain recognition tasks in color images Torralba et al., 2008)
or if automated face detection (we used Amazon Rekogni-
tion (“Amazon Rekognition” , n.d.), but note that any other
face detection tool can be used) fails. For COCO, we find
that among images with a human whose gender is unlikely to
be identifiable, 77% are labeled male. In Openlmages,’ this
fractionis 69%. Thus, annotators seem to default to labeling a
person as male when they cannot identify the gender; the use
of male-as-norm is a problematic practice (Moulton, 1981).
Further, we find that annotators are most likely to default to
male as a gender label in outdoor sports fields,
parks scenes, which is 2.9x the rate of female. Similarly,
the rate for indoor transportation scenes is 4.2x
and outdoor transportation is 4.5x, with the clos-
est ratio being in shopping and dining, where male
is 1.2x as likely as female. This suggests that in the absence
of gender cues from the person themselves, annotators make
inferences based on image context. In Fig. 17 we show exam-
ples from Openlmages where our tool determined that gender
definitely should not be inferred, but was. Because attributes
like skin tone can be inferred from parts of the image, such
as a person’s arm, we do not consider that attribute in this
analysis.

This metric of gender label inference also brings up a
larger question of which situations, if any, gender labels
should ever be assigned (Scheuerman et al., 2020; Hamidi
et al., 2018). However, that is outside the scope of this work,
where we simply recommend that dataset creators should
give clearer guidance to annotators, and remove the gender
labels on images where gender can definitely not be deter-
mined. We note that while we picked out two criteria of when
a person is too small and when there is no face detected to
be instances in which gender inference is particularly egre-
gious, there are many other situations that users may wish to
delineate for their own purposes.

A.2 Validating Distance as a Proxy for Interaction

In Sect. 5.1, Instance Counts and Distances, we make the
claim that we can use distance between a person and an

5> Random subset of size 100,000.

object as a proxy for if the person, p, is actually inter-
acting with the object, o, as opposed to just appearing in
the same image with it. This allows us to get more mean-
ingful insight as to how genders may be interacting with
objects differently. The distance measure we define is dist =

distance between p and o centers s . sps
, which is a relative measure within
\/areap xareag

each object class because it makes the assumption that all
people are the same size, and all instances of an object are
the same size. To validate the claim we are making, we look at
the SpatialSense dataset (Yang et al., 2019); specifically, at 6
objects that we hope to be somewhat representative of the dif-
ferent ways people interact with objects: ball, book, car,
dog, guitar, and table. These objects were picked over
ones such as wall or £loor, in which it is more ambigu-
ous what counts as an interaction. We then hand-labeled the
images where this object cooccurs with a human as “yes” or
“no” based on whether the person of interest is interacting
with the object or not. We pick the threshold by optimizing
for mean per class accuracy, where every distance below it
as classified as a “yes” interaction and every distance above
it as a “no” interaction. The threshold is picked based on the
same data that the accuracy is reported for.

As can be seen in Table 4, for all 6 categories the mean
of the distances when someone is interacting with an object
is lower than that of when someone is not. This matches our
claim that distance, although imperfect, can serve as a proxy
for interaction. From looking at the visualization of the distri-
bution of the distances in Fig. 18, we can see that for certain
objects like ball and table, which also have the lowest
mean per class accuracy, there is more overlap between the
distances for “yes” interactions and “no” interactions. Intu-
itively, this makes some sense, because a ball is an object
that can be interacted with both from a distance and from
direct contact, and for table in the labeled examples, peo-
ple were often seated at a table but not directly interacting
with it.

A.3 Pairwise Queries

In Sect. 4.2, another claim we make is that pairwise queries of
the form “[Desired Object]and[Suggested Query
Term]” could allow dataset collectors to augment their
dataset with the types of images they want. One of the exam-
ples we gave is that if one notices the images of airplane
in their dataset are overrepresented in the larger sizes, our
tool would recommend they make the query “airplane
and surfboard” to augment their dataset, because based
on the distribution of training samples, this combination is
more likely than other kinds of queries to lead to images of
smaller airplanes.

However, there are a few concerns with this approach.
For one, certain queries might not return any search results.
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Table 4 Distances are classified as “yes” or “no” interaction based on a threshold optimized for mean per class accuracy

Object # Labeled Ex.’s Mean Per Class Acc (%) “Yes” Distance mean =+ std “No” Distance mean =+ std Threshold
Ball 107 67 6.16 £ 2.64 8.54 +4.15 7.63
Book 27 78 2.45+1.99 4.84+£2.24 3.88
Car 135 71 2.94 +3.20 4.59£2.97 2.74
Dog 58 71 1.08 £ 1.12 2.07+£1.79 0.60
Guitar 40 88 0.90 £ 1.77 213+ 1.21 1.61
Table 76 67 1.88 £ 1.19 3.28+£2.45 2.47

Visualization of the classification in Fig. 18. Distances for “yes” interactions are lower than “no” interactions in all cases, in line with our claim

that smaller distances are more likely to signify an interaction

This is especially the case when the suggested query term
is a scene category, such as indoor cultural, in which
the query “pizza and indoor cultural” mightnotbe
very fruitful. To deal with this, we can substitute the scene cat-
egory, indoor cultural,for more specific scenes in that
category, like classroom and conference, so that the
query becomes something like “pizza and classroom”.
When the suggested query term involves an object, there
is another approach we can take. In datasets like PASCAL
VOC (Everingham et al., 2010), the set of queries used to
collect the dataset is given. For example, to get pictures of
boat, they also queried for barge, ferry, and canoe.
Thus, in addition to querying, for example, “airplane and
boat”, one could also query for “airplane and ferry”,
“airplane and barge”, etc.

Another concern is there might be a distribution difference
between the correlation observed in the data and the correla-
tion in images returned for queries. For example, just because
cat and dog cooccur at a certain rate in the dataset, does
not necessarily mean they cooccur at this same rate in search
engine images. However, our query recommendation rests
on the assumptions that datasets are constructed by query-
ing a search engine, and that objects cooccur at roughly the
same relative rates in the dataset as they do in query returns;
for example, that because train cooccurring with boat
in our dataset tends to be more likely to be small, in images
returned from queries, train is also likely to be smaller if
boat is in the image. We make an assumption that for an
image that contains a train and boat, the query “train
and boat” would recover these kinds of images back, but
it could be the case that the actual query used to find this
image was “coastal transit.” If we had access to the actual
query used to find each image, the conditional probability
could then be calculated over the queries themselves rather
than the object or scene cooccurrences. It is because we don’t
have these original queries that we use cooccurrences to serve
as a proxy for recovering them.

To gain some confidence in our use of these pairwise
queries in place of the original queries, we show qualitative
examples of the results when searching on Flickr for images
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Fig. 18 Distances for the objects that were hand-labeled, orange if
there is an interaction, and blue if there is not. The red vertical line is
the threshold along which everything below is classified as “yes”, and
everything above is classified as “no”

that contain the tags of the object(s) searched. We show the
results of querying for (1) just the object (2) the object and
query term that we would hope leads to more of the object
in a smaller size, and (3) the object and query term that we
would hope leads to more of the object in a bigger size. In
Figs. 19 and 20 we show the results of images sorted by
relevance under the Creative Commons license. We can see
that when we perform these pairwise queries, we do indeed
have some level of control over the size of the object in the
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Fig. 19 Screenshots of top results from performing queries on Flickr
that satisfy the tags mentioned. For train, when it is queried with
boat, the train itself is more likely to be farther away, and thus
smaller. When queried with backpack, the image is more likely to
show travelers right next to, or even inside of, a train, and thus show
it more in the foreground. The same idea applies for pizza where it’s
imaged from further in the background when paired with an indoor
cultural scene, and up close with broccoli

resulting images. For example, “pizza and classroom”
and “pizza and conference” queries (scenes swapped
in for indoor cultural) return smaller pizzas than the
“pizzaand broccoli” query, which tends to feature big-
ger pizzas that take up the whole image. This could of course
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Fig. 20 Screenshots of top results from performing queries on Flickr
that satisfy the tags mentioned. For bed, sink provides a context that
makes it more likely to be imaged further away, whereas cat brings
bed to the forefront. The same is the case when the object of interest
is now cat, where a pairwise query with sheep makes it more likely
to be further, and suitcase to be closer

create other representation issues such as a surplus of pizza
and broccoli images, so it could be important to use
more than one of the recommended queries our tool surfaces.
Although this is an imperfect method, it is still a useful tactic
we can use without having access to the actual queries used
to create the dataset.®

6 We also looked into using reverse image searches to recover the query,
but the “best guess labels” returned from these searches were not par-
ticularly useful, erring on both the side of being much too vague, such
as returning “sea” for any scene with water, or too specific, with the
exact name and brand of one of the objects.
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