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Abstract. Coral reefs are among the many communities believed to exhibit regime shifts between alter-
native stable states, single-species dominance, and coexistence. Proposed drivers of regime shifts include
changes in grazing, spatial clustering, and ocean temperature. Here, we distill the dynamic regimes of
coral–macroalgal interaction into a three-dimensional geometry based on stability, akin to thermodynamic
phase diagrams of state transitions, to facilitate analysis. Specific regime-shifting forces can be understood
as trajectories through the cubic regime geometry. This geometric perspective allows us to understand mul-
tiple forces simultaneously in terms of the stability and persistence of interacting species. For example, in a
coral–macroalgal community, grazing on macroalgae leads to alternative stable states when there is no spa-
tial clustering (e.g., high habitat connectivity), while warming decreases coexistence. However, with spatial
clustering, grazing promotes coexistence because of elevated local intraspecific competition. The geometry
of regime shifts provides a general framework to analyze two-species communities and can help conserva-
tion efforts navigate complexity and abrupt environmental changes.
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INTRODUCTION

Regime shifts and alternative stable states
have been implicated in many communities,
including coral reefs (Hughes et al. 2017), shal-
low lakes (Scheffer et al. 1993), kelp beds (Ling
et al. 2014), and terrestrial forests (Hirota et al.
2011). Discontinuous shifts in community
dynamics due to gradual environmental changes
imply that conservation and management may
have to anticipate and confront historical legacy
traps (Tekwa et al. 2019a). The potential for
regime shifts is a pressing concern in the

Anthropocene, as exemplified by recent heat-
waves driving coral reefs to a depauperate state
(Hughes et al. 2019). Coral reefs have been inten-
sely studied and share general features with a
wide range of other communities suggested to
exhibit regime shifts, particularly those that fea-
ture two species whose interactions are selec-
tively mediated by grazers, nutrients, fire, or
temperature (Mumby et al. 2007, Staver and
Levin 2012, Graham et al. 2015, Schmitt et al.
2019). However, there remains disagreement
about the evidence for regime shifts and
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alternative stable states among coral reefs (Bruno
et al. 2009, Dudgeon et al. 2010, Mumby et al.
2013) and other communities (Schröder et al.
2005). One possible explanation for this disagree-
ment is that there are different mechanisms lead-
ing to regime shifts even within one ecosystem
type such as coral reefs (van de Leemput et al.
2016), such that empirical examinations of one
mechanismwill yield negative results across sites.

In the coral literature, multiple regime shift
mechanisms have been modeled separately,
including interspecific competition among coral
species, interspecific competition between coral
and macroalgae, predator–prey interactions,
and grazer-mediated interactions (Knowlton
1992, Mumby et al. 2007, Petraitis and Hoff-
man 2010, van de Leemput et al. 2016). These
mechanisms hinge on space being a limiting
resource for benthic coral reef communities
(McCook et al. 2001, Sandin and McNamara
2012), as is evident by the common use of
coral cover (maximum of 100%) in the litera-
ture (Jokiel et al. 2015). However, models that
track coral cover often treat space as if it were
any other limiting nonspatial resource, without
explicitly incorporating spatial dynamics (Elm-
hirst et al. 2009, Anthony et al. 2011, Black-
wood et al. 2011, Baskett et al. 2014, Fabina
et al. 2015, McManus et al. 2019). However,
we know from the broader ecological literature
that spatial clustering, arising from low habitat
connectivity or limited dispersal, can strongly
determine species stability in communities
even with linear interaction responses (Bolker
and Pacala 1999, Chesson 2000). There is there-
fore a need to synthesize the variety of spatial
and nonspatial mechanisms of coral reef
regime shifts in general ecological terms.

Here, we propose simple modifications to a
bilinear mathematical model (Volterra 1926,
Lotka 1978, Neuhauser and Pacala 1999) so as to
use generic community ecological terms to syn-
thesize spatial, temperature, and grazing effects
on coral–macroalgal interactions. This model
reveals basic ingredients that lead to alternative
stable states or coexistence of corals and macroal-
gae on coral reefs, as well as what these species
stability outcomes mean for the community. We
then distill the model to three parameters that
completely define the possible dynamic regimes
and that can be visualized as a cubic volume. We

show how previously suggested bifurcating fac-
tors—such as grazing, spatial clustering, and
warming—are vectors traversing this volume.
The ultimate goal of this formalism is to let scien-
tists and conservation managers generate and
test regime shift hypotheses, without restriction
to a single mechanism, using a generic model
that is more widely applicable than existing sys-
tem-specific models.

METHODS

We first present the Lotka-Volterra competition
model as a foundation for two-species interac-
tions, and then, we show that a coral–macroalgal
model can be analyzed as a special case of this
framework. We then incorporate spatial cluster-
ing to obtain a general spatial Lotka-Volterra for-
mulation of dynamic regimes, representing a
more general two-species model than existing
coral models. Finally, we add temperature-depen-
dent growth. The specific spatial and temperature
dependence introduced for coral–macroalgal
interactions allows us to subsequently explore
how grazing, spatial clustering, and warming
affect coral reef communities’dynamic regimes.

Lotka-Volterra competition model
We first restate the classic two-species Lotka-

Volterra competition equations and their well-
known implications for bistability and coexis-
tence (Volterra 1926, Gause 1934, Lotka 1978,
Kingsland 2015). The species in these equations
can represent coral and macroalgae. The Lotka-
Volterra model assumes that each species has
growth (ri) and mortality (mi) that make up the
intrinsic rate of increase (ri − mi). In addition,
competition between species i and j results in
linear per capita growth rate changes (−riaij,
including when j ≠ i, indicating interspecific
rate, and when j = i, indicating intraspecific
rate). The dynamic equation is then

dNi

Nidt
¼ rið1� aiiNi� aijNjÞ�mi: (1)

Table 1 summarizes the coefficients, and
Table 2 shows symbol definitions for this and
subsequent models for comparison. There are
three nontrivial equilibria sets, including species 1
dominance, species 2 dominance, and coexistence
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(Appendix S1: Table S1). Stability analysis
(Appendix S1) shows that the single-species equi-
librium for species i is stable if:

aji
aii
>

rj�mj

rj

� �
=

ri�mi

ri

� �
: (2)

That is, if the ratio of interspecific competition
(of species j on i, aji) over intraspecific competi-
tion (of i, aii) is greater than the ratio of species j’s
isolated equilibrium density ((rj − mj)/rj) over
species i’s isolated equilibrium density ((ri − mi)/
ri) (when intraspecific competitions are equal,
a11 = a22), then the dominance of species i (with j
locally extirpated) is stable. If the condition (2) is
true for only i = 1 but not i = 2, then species 1
competitively excludes species 2 deterministi-
cally and vice versa for species 2 competitively
excluding species 1. If the condition is false for

both species, then coexistence is stable. However,
if (2) is true for i = 1 and for i = 2, then coexis-
tence is unstable and alternative stable states
occur, with either species dominating depending
on initial conditions.

Coral–macroalgal model
We next show that the Lotka-Volterra formula-

tion can help understand competitive exclusion,
bistability, and coexistence conditions in promi-
nent coral–macroalgal models. The Mumby
model (Mumby et al. 2007) and related models
(Li et al. 2014) consider coral (N1) and macroalgal
(N2) cover. These models exhibit bistability when
an implicit herbivore’s grazing rate on macroal-
gae (g) is at an intermediate value. The Mumby
model can be rewritten in Lotka-Volterra form,
with terms arranged according to the intrinsic

Table 1. Model equations. The dynamic equations are given in the form of dNi/(Nidt)=∑(coefficient ⨉ state).
Subscript i refers to the focal species and j ≠ i. Symbols are defined in Table 2.

Model
Species

(i)
Density
changes

Intrinsic
rate (⨉1)

Intraspecific
interaction (⨉Ni)

Interspecific
interaction (⨉Nj)

Higher-order interspecific
interaction (⨉(Nj

2 + Nj
3 + . . .))

Lotka-
Volterra

1 dN1/N1dt = Σ r1 − m1 −r1a11 −r1a12 0
2 dN2/N2dt = Σ r2 − m2 −r2a22 −r2a21 0

Mumby
model

1 coral dN1/N1dt = Σ r − d −r −(r + a) 0
2 algae dN2/N2dt = Σ γ − g −γ −(γ + g − a) −g

Spatial
Lotka-
Volterra

1 dN1/N1dt = Σ r1 − m1 −r1a11C11 −r1a12C12 0
2 dN2/N2dt = Σ r2 − m2 −r2a22C22 −r2a21C12 0

Table 2. Symbol definitions. Parameter values are for Figs. 2–4.

Definition
Species 1 (coral)
parameter values

Species 2 (macroalgae)
parameter values

Coral–macroalgal model (without spatial + temperature dependence)
Macroalgal overgrowth on coral a = 1.1
Coral mortality d = 0.5
Grazing rate g = [0.55–0.85]
Birth rate r = 1 γ = 1.1

Lotka-Volterra equivalent (with spatial + temperature dependence)
Intraspecific interaction effect a11 = C11 a22 = C22

Interspecific interaction effect a12 = (r1 + a)C12/r1 a21 = (r2 + g − a)C12/r2
Relative (intra-to-inter) clustering C11/C12 = [1, 2, 4] C22/C21 = [1, 2, 4]
Intraspecific clustering C11 = [1,1.19,1.41] C22 = [1,1.19,1.41]
Mortality m1 = d m2 = g
Density or cover 0 ≤ N1 ≤ 1 0 ≤ N2 ≤ 1
Intrinsic growth rate r�exp(−ΔT2/(2σ12)) γ�exp(−ΔT2/(2σ22))
Thermal tolerance σ1 = 1 σ2 = √2
Actual optimal temperature ΔT = [0, 1] ΔT = [0, 1]
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rate of increase, and intraspecific and inter-
specific interactions (Table 1, Appendix S2). For
coral and macroalgae, respectively, the intrinsic
growth rates are r − d and γ − g, where r and
γ are birth rates and d is the coral mortality
rate. The intraspecific competition rates are − r
and –(γ + g − a), where a is the rate at which
macroalgae overgrows coral. The interspecific
competition rates are −(r + a) and − γ. Parame-
ter values were chosen (Table 2) such that coral
cover would attain realistic levels (Darling
et al. 2019), and macroalgal competitiveness
relative to corals would be sensitive to a range
of realistic grazing rates that lead to bifurca-
tions (Mumby et al. 2007). The dynamic equa-
tions are

dN1

N1dt
¼ r�d� rN1�ðrþ aÞN2 (3a)

dN2

N2dt
¼ γ�g�ðγþg� aÞN1�γN2�gðN2

1þN3
1þ⋯Þ
(3b)

With this formulation, it becomes clear that the
Mumby model is a particular specification of the
Lotka-Volterra model in which grazing reduces
the intrinsic growth rate of macroalgae and
increases the interspecific competitive effect of
corals on macroalgae. This formulation also
reveals the implicit assumptions about competi-
tion in the model, namely that interspecific com-
petition is greater than intraspecific competition
for corals under any grazing rate. Interspecific
competition is also greater than intraspecific
competition for macroalgae when grazing rate is
sufficiently high (Appendix S2; Table 1). Thus,
the alternative stable states observed in the
model can be understood in terms of the Lotka-
Volterra terminology of interspecific vs.
intraspecific competition.

In addition, the Mumby model features a neg-
ative grazing effect on macroalgae that increases
in magnitude geometrically with coral cover
(N1

2 + N1
3 + . . . + N1

∞) (Appendix S2, Table 1).
Dropping these higher-order interactions shrinks
but does not eliminate the bistable region, and in
fact, the alternative stable states remain identical
(Appendix S2; see Table 2 for parameter values).
Therefore, the Lotka-Volterra model appears suf-
ficiently nuanced to represent alternative stable
state dynamics between coral and macroalgae.

We note that Lotka-Volterra-based models tra-
ditionally define species state (Ni) as density (bio-
mass or abundance per area), while the coral
literature tracks proportion of habitat covered by
biomass (maximum fractional cover of one or
100%) (Jokiel et al. 2015). By scaling density with
the appropriate unit area, it can be capped at 1
and thus becomes interchangeable with percent
cover for the subsequent results.
Having established the connection between

the Lotka-Volterra model and the Mumby model,
we now proceed to incorporate space into the
Lotka-Volterra model.

Spatial Lotka-Volterra model
Spatial competition is an implicit assumption

in the coral–macroalgal interaction literature
(McCook et al. 2001, Sandin and McNamara
2012). Here, we explicitly consider how spatial
dynamics affect coral and macroalgae using the
Lotka-Volterra formulation. The Lotka-Volterra
model can be changed into a spatial version
using the spatial moment framework (Durrett
and Levin 1994, Bolker and Pacala 1999, Lion
and Baalen 2008, Tekwa et al. 2015). According
to the spatial moment framework, interaction
neighbor densities for a focal species i in a non-
spatial model (Nj) can be replaced by the local
density Nij or CijNj (related to the second spatial
moment, see Appendix S3), where Cij is a contin-
uous-space clustering coefficient. The intraspeci-
fic and interspecific interaction rates are the same
as for the Lotka-Volterra competition model 1,
except they are multiplied by Cii and Cij, respec-
tively. These clustering coefficients are relevant
across a variety of ways of thinking about space,
including continuous space (with neighbors
weighted by distance through interaction ker-
nels), discrete space such as habitat networks or
metacommunities (with neighbors being within
a patch), or social networks (with neighbors
being connected nodes) (Lion and Baalen 2008,
Tekwa et al. 2015). Nij or CijNj expresses the aver-
age number of species j neighbors that an indi-
vidual of species i interacts with per area per
time, and can be different from Nj, the average
number of neighbors that an individual would
interact with if all were randomly distributed or
if the interaction neighborhood were the entire
community. In a continuous-space perspective,
Nij is the average number of j individuals within
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an i individual’s interaction kernel (circular
shades in Fig. 1). In social network terminology
with two species, Nii is the average node degree
in the within-species network, whereas Nij (i ≠ j)
is the average node degree in the bipartite net-
work (where the links are between species,
Fig. 1). In habitat network terminology, Nij is the
average number of j individuals within a patch
that contains at least one i individual, and links
between patches describe the individual migra-
tion rates that determine Nii (patches in Fig. 1).
The three perspectives on spatial configurations
may have different underlying spatial dynamics,
but they can all be described at any given time
using Nij (and hence also Cij).

The clustering coefficient is convenient
because it captures spatial clustering effects as a
single multiplicative factor, indicating how many
more (when Cij > 1) or fewer (when Cij < 1)
times an individual of species i encounters an

individual of species j than the global density of
j. The higher the value of Cij, the more clustered j
is around i. This also allows one to write an inter-
action effect on population growth rate (dNi/Nidt)
as aijCijNj. In this form, it is clear that the
dynamic equations are the same as the nonspa-
tial Lotka-Volterra equations, with interaction
coefficients aij replaced by aijCij. That is, spatial
clustering scales up the effective interaction
effects. By definition, Cij = Cji (Tekwa et al. 2015).
Spatial clustering can be due to either endoge-
nous (low dispersal and pattern formation) or
exogenous (habitat connectivity and matrix con-
straint) processes. In particular, low dispersal
leads to Cij being greater than one within species
(Cii> 1) and less than one between species (Cij <
1) because offspring tend to be near parents
(Bolker and Pacala 1999, Lion and Baalen 2008,
Tekwa et al. 2019b). Here, we assume that clus-
tering is constant through time and ignore

N1=N2=2.5 (per patch) 
C11=C22=N11/N1 

=((5x4+4x3)/10)/2.5=1.28 
C12=C21=N12/N2 

=((4x1+1x4)/10)/2.5=0.32 
C11/C12=C22/C21=4

patch 
(habitat network)

interaction kernel 
(continuous space)

link 
(social network)

Fig. 1. Descriptions of spatial clustering. The spatial clustering of individuals (circles) of two species can be
conceptualized in three different ways. First, patches (hexagons) in a habitat network can delimit which individ-
uals are interaction neighbors. Double arrow links indicate migration, which does not directly enter the cluster-
ing computation but can dynamically affect where individuals end up spatially. Second, links (thin lines) in a
social network can specify which pair of individuals interact at a given time. Third, interaction kernels (circular
shades) can weigh individuals within a certain distance as neighbors. The spatial clustering discussed in the main
text can be described under any of these three frameworks with clustering coefficients Cij. These coefficients can
be tallied in terms of the average number of neighbors (or node degree) j that i experiences (Nij) and the global
average number of individuals i per area or patch (Ni). Sample calculations of Ni, Nij, Cij, and relative clustering
(Cii/Cij) are obtained by taking averages and ratios of individual and neighbor counts (see box).
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possible dependencies on Ni or higher moments
(Bolker and Pacala 1999). Among species or
morphs that are very similar, as in an incremental
evolutionary process without population size
dynamics, it has been shown that relative cluster-
ing (Cii/Cij) is constant (Nathanson et al. 2009, Tar-
nita et al. 2009, Tekwa et al. 2015). In the more
general ecological case where species can be very
different, more habitat connectivity or higher
movement rates are still expected to create less
relative clustering (approaching one with the
highest connectivity or movement rates) (Bolker
and Pacala 1999, Tarnita et al. 2009, Tekwa et al.
2019b). However, in some systems, a bifurcation
is associated with dramatic changes in spatial
clustering (Kéfi et al. 2013, Nijp et al. 2019), which
may produce quantitatively different coupled
dynamics. Thus, the constant clustering assump-
tion is an approximation that roughly captures
spatial effects on regime dynamics, but real spa-
tially driven bifurcations may bemore complex.

Spatial clustering affects coral and macroalgal
competition terms under the spatial Lotka-Vol-
terra framework. By matching terms in the spatial
Lotka-Volterra model and the coral–macroalgal
model (Table 1), we find that intraspecific compe-
tition aii is 1 without spatial clustering (compare
[1] and [3]), and increases with within-species
clustering (Cii; Table 2). Interspecific competition
effects aij, on the other hand, are moderated by
space and other parameters (Cij, r, g, and a;
Table 2).

With spatial considerations, the stability crite-
rion for species i dominance is given as:

cijaji
ciiaii

>
rj�mj

rj

� �
=

ri�mi

ri

� �
: (4)

This inequality is hard to attain when relative
clustering (Cii/Cij) is high. Thus, clustering pro-
motes global coexistence, even when there tends
to be one species dominating locally. This
matches the well-known hypothesis that spatial
variation promotes coexistence (Chesson 2000).

Temperature dependence
Warming is recognized as one of the most dra-

matic factors affecting coral reefs (Hughes et al.
2019). As a simple and analytically tractable way
to consider temperature, we assume that intrinsic
growth rates ri are maximal when temperature

matches the historical temperature (equivalent to
r for corals and γ for macroalgae in the Mumby
et al. (2007) model) and that growth rates
decrease when temperature deviates from these
optima according to (nonstandardized) Gaussian
functions. A species’ thermal tolerance is the
standard deviation of each of these Gaussian
functions. Further, we assume that macroalgae
has a wider thermal tolerance (σ1) than corals (σ2,
Table 2), at values that would respond strongly
to a 1°C increase in temperature. Mortality rates
are assumed to be constant in temperature for
corals (d) and for macroalgae (g).

RESULTS

We use stability criteria in the spatial Lotka-
Volterra model to show how dynamic regimes in
two-species (e.g., coral–macroalgal) communities
can be generically described using simple geome-
try with only three parameters for competition
and growth. We then show how the effects of
grazing, spatial clustering, and warming trans-
late to changes in these three competition and
growth parameters to affect dynamic outcomes
in the coral–macroalgal system. We aim to show
that diverse mechanisms of community regime
shifts can be synthesized under a common, low-
dimensional geometric framework.

Geometry of dynamic regimes
The community dynamic regimes of a two-

species spatial Lotka-Volterra model are deter-
mined by two inequalities involving three
parameters. From Eq. 4, the three parameters are
(1) the local species 1 intra-to-interspecific cross-
competition ratio α1 = C11a11/(C21a21); (2) the
local species 2 intra-to-interspecific cross-compe-
tition ratio α2 = C22a22/(C12a12); and (3) the intrin-
sic growth inequality ratio between species 2 and
1, f21=(1 − m2/r2)/(1 − m1/r1) (see Table 3). The
competition ratios are called “cross-competi-
tion,” because they are ratios of the intraspecific
competition effect on the focal species relative to
the interspecific competition effect on the other
species. Competition ratios also encapsulate the
positive and multiplicative effects of spatial clus-
tering. Table 3 shows that the possible combina-
tions of inequalities produce the four dynamic
regimes of alternative stable states, species 1
only, species 2 only, and coexistence. The

 v www.esajournals.org 6 January 2021 v Volume 12(1) v Article e03319

MACROSYSTEMS ECOLOGY TEKWA ETAL.

 21508925, 2021, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecs2.3319, W

iley O
nline L

ibrary on [15/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



“quadruple points” (1/α1 = α2=f21, e.g., α1 = α2=-
f21 = 1) are where the four dynamic regimes col-
lide (named after the triple point in the
thermodynamic transition between solid, liquid,
and gas) (Maxwell and Harman 1990). Some
illustrative calculations made in terms of these
three parameters demonstrate that increases in
grazing shift the dynamics from “species 2 (i.e.,
macroalgae) only” to “alternative stable states”
to “species 1 (i.e., coral) only” (Appendix S2:
Table S1), while increases in relative clustering
shift the dynamics from “alternative stable
states” to “species 2 only” and eventually to
“coexistence” (Appendix S3: Table S1).

The three parameters constitute the coordinates
in which the stability of each species can change.
The planes 1/α1 = f21 and f21 = α2 bisect, respec-
tively, regions where species 1 and species 2 domi-
nance are marginally stable. In particular, in log-
space these planes are flat (because all dimensions
are ratios; Fig. 2A). Using these planes, we can
construct a volume with the three dimensions as
axes and dynamic regimes as categorical out-
comes coded by color (Fig. 2B). This cube com-
pletely describes all possible dynamic regimes
and their relationships with parameters in the
spatial Lotka-Volterra model. For pedagogical
purpose, the regime geometry (Fig. 2A) can be
constructed using origami paper as shown in
Fig. 3.

The dynamic regime geometry distills the spa-
tial Lotka-Volterra model into three bifurcation
dimensions that summarize competition and
intrinsic growth properties (α1, α2, f21). This is a
drastic dimensionality reduction from the origi-
nal spatial Lotka-Volterra model (11 dimensions:
a11, a12, a21, a22, C11, C12, C22, m1, m2, r1, and r2)
and the linearized coral–macroalgal model (5

dimensions: a, d, g, γ, and r) (Tables 1 and 2). The
dimensionality reduction also means that there
are multiple ways (multiple combinatorial
changes in the original parameters) to achieve
the same bifurcations. For example, equal
changes to either relative clustering C11/C21 or
the local competition ratio a11/a21 result in the
same change in α1 and therefore the same
sequence of regime shifts—either from coexis-
tence to species 1 only, or from species 2 only to
alternative stable states depending on f21 (Fig. 2
B).
We focused here on coral–macroalgal competi-

tion, but the results in this section apply to any
two species by virtue of the generic spatial
Lotka-Volterra formulation.

System-specific outcomes
The categorization of dynamic regimes and

dimensional reduction allows one to take a geo-
metric approach to reasoning. Here, we illustrate
the utility and limitation of geometric reasoning
by comparing it against species-level outcomes
for a particular set of parameters. In this system,
we explore how changes in grazing (Mumby
et al. 2007), spatial clustering (Bolker and Pacala
1999), and warming (Hughes et al. 2019) affect
dynamic regimes—quantities that should be
obtainable from geometric reasoning alone. We
also explore the effects on coral and macroalgal
covers or densities—quantities that are related to
but are more specific than categorical regimes
(see Appendix S3: Table S2 for parameter values
and numerical outcomes from this example).
First, we show how parameter changes can be

represented as trajectories or “bifurcation vec-
tors” corresponding to the geometric coordinates
of α1, α2, and f21 (series of circles in Fig. 2B). As
grazing increases, it decreases the relative growth
of macroalgae vs. coral (f21) and decreases the
cross-competition ratio (relative intraspecific
competition) for macroalgae (α1). A major effect
of relatively high grazing is to drive the system
toward the lower part of Fig. 2B. In contrast,
increases in spatial clustering increase the cross-
competition ratios for both species (α1, α2), driv-
ing the system toward the front left corner of
Fig. 2B.
The effects of warming are more complicated.

Warming decreases the cross-competition ratios
(α1, α2) independently of clustering and grazing.

Table 3. Conditions for each community dynamic
regime. The variables that determine dynamic
regimes are (1) intra-to-interspecific cross-competi-
tion ratio α1 = C11a11/(C21a21), (2) intra-to-interspeci-
fic cross-competition ratio α2 = C22a22/(C12a12), and
(3) intrinsic growth inequality f21=(1-m2/r2)/(1-m1/r1).

Conditions Community dynamic regimes

1/α1 > f21 > α2 Alternative stable states
1/α1 > f21 < α2 Species 1 only
1/α1 < f21 > α2 Species 2 only
1/α1 < f21 < α2 Coexistence
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Less intuitively, warming increases the growth
inequality (f21) at low grazing due to macroal-
gae’s wider thermal tolerance, but decreases the
growth inequality at high grazing where even a
slight drop in γ pushes macroalgae closer to
zero growth (see Table 1). The result is an
expanded range of f21 values traversed by graz-
ing variation when combined with warming,
which for instance leads to transitions from
coexistence to species 1 only that would other-
wise not occur.

We next compare coral and macroalgal cover
changes (Fig. 4) to corresponding regime shifts
from the geometric perspective (Fig. 2). Under
no warming and no spatial clustering, increases
in grazing transition the community from
macroalgal dominance to alternative stable
states to coral dominance (Fig. 4A). With more
clustering, macroalgal dominance is only real-
ized at low grazing, while coexistence becomes
more likely at high grazing (Fig. 4B, C). With

warming, the grazing parameter ranges that
lead to macroalgae (at low grazing) or coral
dominance (at high grazing) increase, while the
grazing ranges that lead to coexistence or alter-
native stable states decrease (Fig. 4D-F) when
compared to the case with baseline tempera-
tures (Fig. 4A-C). The geometrically predicted
alternative stable states and coexistence regimes,
corresponding to cases in Figure 4A, F, are con-
firmed with phase diagrams where transient
trajectories with different initial conditions con-
verge on the expected number of stable equilib-
ria (Fig. 5).
In summary, the outcomes for the specifically

parameterized coral–macroalgal system illus-
trate the levels of dynamic precision that cannot
be gleaned from geometric reasoning alone; but
the dynamic regime predictions from geometry
remain accurate. The most detailed features of a
dynamic system—transient trajectories (Fig. 5)
—are only partly captured by equilibrium
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Fig. 2. Geometric representation of the relationship between Lotka-Volterra parameters and the four possible
dynamic regimes. The dimensions are the species 1 intra-to-interspecific cross-competition log-ratio (log2(α1)),
the species 2 cross-competition log-ratio (log2(α2)), and the intrinsic growth log-inequality of species 2 over spe-
cies 1 (log2(f21)). (A) The two-species spatial Lotka-Volterra model’s dynamic regimes are separated by two planes
that define the marginal stability of each species’ dominance. These planes bisect each other and create four
dynamic regimes (B), which are illustrated using three two-dimensional cross-sections (colored regimes with
white text). Bifurcation vectors (black arrows and text) show the effects of grazing, warming, and spatial cluster-
ing. Letters A-F corresponding to subplots in Figure 4. Series of circles colored by regimes represent how equidis-
tant increments in grazing in a coral–macroalgal model traverse the regime geometry. The series start at three
different and fixed spatial clustering and two warming levels.
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analyses (Fig. 4). Equilibria, or expected coral
and macroalgal densities, are in turn not cap-
tured by regime geometry (Fig. 2). Nevertheless,
with only three coordinates α1, α2, and f21
(Fig. 2 vectors and matching color codes in
Fig. 4 and Appendix S3: Table S2), regime shifts
caused by multiple bifurcating forces including
grazing, warming, and spatial clustering can be
inferred using geometric reasoning alone (series
of circles in Fig. 4B).

DISCUSSION

Regime shifts have been a focus of conserva-
tion in an era of change (Steffen et al. 2015), and
coral reefs have served both as a model for
understanding such shifts and as an important
biome that is a focus of substantial conservation
efforts (Bellwood et al. 2004, Hughes et al. 2017).
Conservation efforts are, however, confounded
in part by the diverse and disparate proposals for

coral stability plane

macroalgae
self/other competition

macroalgae
stability plane

coral
self/other competition

A

B

Fig. 3. Regime shift origami. The community stability of (A) coral (yellow) vs. (B) macroalgae (green) can be
constructed using two pieces of single-sided color paper representing species stability planes (zero maximum
eigenvalue), with the colored side indicating negative maximum eigenvalues and stable single-species existence.
The result is a pyramid-like structure as in Fig. 2A, with the x- and y-axes labeled as illustrated (α1 and α2), and
the z-axis indicating f21.
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mechanisms that drive regime shifts in coral reefs
(Mumby et al. 2013, van de Leemput et al. 2016,
Hughes et al. 2019). Here, we provided a theoret-
ical synthesis that captures the essential dynam-
ics within coral reefs and other competitive
communities. Further, we found that the
dynamic regimes of alternative stable states, sin-
gle-species dominance, and coexistence can be
fully determined by only three synthetic parame-
ters. The reduced parameter set summarizes
intraspecific vs. interspecific spatial competition
effects (α1, α2), as well as intrinsic growth differ-
ences between species (f21). The three parameters
form a cubic volume that allows for a geometric
analysis of regime shifts. Ecologically realistic
bifurcations or regime-shifting forces, such as
grazing, spatial clustering changes, and warm-
ing, can be visualized as vectors through the
dynamic regime cube. These results were derived
for well-known systems with simple linear
Lotka-Volterra effects to illustrate the novel

geometric method. A similar approach of obtain-
ing geometry from marginal stability could yield
analogous insights for nonlinear effects such as
predation and parasitism (Holling 1959, Rosen-
zweig and MacArthur 1963).
The regime perspective produces conserva-

tion-relevant insights despite ignoring species-
specific outcomes. In a coral–macroalgal system,
we showed that grazing decreases the intrinsic
growth difference f21 and moves the system
away from macroalgal dominance. With warm-
ing, the regime geometry distance traversed by a
unit change in grazing rate increases, thereby
increasing the likelihood of either coral or
macroalgae dominating. Spatial clustering on the
other hand moves the system toward higher
intraspecific competition relative to interspecific
competition (α1 and α2), which promotes coexis-
tence and reduces the effectiveness of grazing for
inducing coral dominance. This geometric rea-
soning suggests that the protection of grazers
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Fig. 4. Regime shifts and coral–macroalgal density changes driven by changes in grazing. Results are from the
spatial Lotka-Volterra model (see Table 2 for parameterization). Plots show macroalgal cover or density (green
line), coral cover (yellow line), macroalgae or coral with the other artificially removed (dotted lines, to contrast
with coexistence effects), and total cover of both taxa during coexistence (maroon line). (A-C) Baseline tempera-
tures, with relative clustering (Cii/Cij) at 1, 2, or 4 (from left to right). (D-F) 1 °C warming, with relative clustering
being 1, 2, and 4. The shades indicate the regimes of macroalgal dominance (green), alternative stable states
(blue), coral dominance (yellow), and coexistence (red). Yellow and green dots in patch diagrams at the bottom
illustrate cases of low (left) vs. high (right) relative clustering.
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will have an enhanced positive effect on coral
conservation under warming in conjunction with
low spatial clustering (such as by maintaining
habitat connectivity between reefs). In contrast,
if grazer protection fails in the face of fishing
pressure (Costello et al. 2016, Tekwa et al.
2019a), then high clustering through low habitat
connectivity (e.g., greater distance between pro-
tected areas) may actually enhance coral persis-
tence through spatial coexistence mechanisms
(Chesson 2000), although at much lower levels
than if both grazers and habitat connectivity are
protected. These geometric results illustrate that
multiple management tools, such as controls on
grazing and connectivity, can interact to produce
alternative routes to achieve conservation goals.

The geometry of regime shifts resembles other
uses of graphical reasoning such as population
growth isoclines (Tilman 1980, Knowlton 1992,
McCann and Yodzis 1995) and grazing or eco-
nomic phase diagrams (Gordon 1954, Noy-Meir
1975). The novelty of our approach lies in its
basis in stability criteria, rather than flows, that
directly provide intuition regarding community

outcomes. Our approach also focuses on how
dynamic regimes shift with all possible parame-
ter changes, in contrast with traditional Lotka-
Volterra studies that often explored transient
dynamics and equilibria at fixed parameteriza-
tions or variations along one parameter (Bomze
1983, Neuhauser and Pacala 1999). Regime geom-
etry is most analogous to phase diagrams of
thermodynamic states, such as the p-v-T (pres-
sure–volume–temperature) diagram of a sub-
stance’s transitions between solid, liquid, and gas
states (Maxwell and Harman 1990). If regime
geometry and thermodynamic phase diagrams are
truly analogous, then dynamics deviating from the
spatial Lotka-Volterra model (nonlinear terms)
could appear as modified marginal planes and
regime volumes in the competition-growth space.
The success of thermodynamic phase diagrams for
different substances has facilitated engineering
advances such as the motor and refrigeration, sug-
gesting that regime geometry can provide a boost
for conservation and ecosystem engineering by
moving theoretical reasoning from mathematics to
amore intuitive visualization.
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Fig. 5. Phase diagrams of Lotka-Volterra coral-macroalgal dynamics. Trajectories (blue) are shown for 100 time

steps starting at evenly spaced initial densities, with darker color indicating densities at later times. Filled circles
are analytically derived stable equilibria, while open circles are unstable equilibria. (A) Trajectories correspond-
ing to baseline temperatures, no spatial clustering, and a grazing rate of 0.75 showing alternative stable states
(scenario in Fig. 3A). (B) Trajectories corresponding to an increased temperature, high spatial clustering, and a
grazing rate of 0.75 showing coexistence (scenario in Fig. 3F).
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The ability to geometrically represent system-
specific bifurcations in generic ecological terms
allows for a synthetic understanding of a wide
variety of ecological communities. Regime shifts
in lakes (Scheffer et al. 1993), kelp forests (Ling et al.
2014), and terrestrial forests (Hirota et al. 2011)
share both similarities and differences with coral
reefs, but can all be placed within the same geome-
try defined by the dimensions of competition and
growth. The spatial Lotka-Volterra model that the
geometry represents is also testable using data
from these diverse ecosystems, because it makes
specific predictions about when and what kinds of
shifts should occur as competition and growth
ratios vary. Such a cross-system empirical synthesis
can potentially facilitate the exchange of diverse
conservation experiences. Moreover, the geometry
highlights that regime shifts (Scheffer and Carpen-
ter 2003) should be considered more broadly to
include transitions between coexistence and single-
species dominance, rather than being solely associ-
ated with alternative stable states. Coral reefs
(Hughes et al. 2017, Darling et al. 2019) and other
ecosystems (Waters et al. 2016) face multiple stres-
sors and perturbations simultaneously in the
Anthropocene, resulting in conservation challenges
that seem impossibly complex unless ecological
theory sheds light on their commonalities and
interactions. The geometric perspective on stability
is one potential tool to distill complexity to an
accessible form, avoid simplistic explanations, and
open multiple management options for conserva-
tion success.
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