

1 **Title: Ocean planning for species on the move provides substantial
2 benefits and requires few tradeoffs**

3 **Authors:** M. L. Pinsky^{a*}, L. A. Rogers^{b,c}, J. W. Morley^d, and T. L. Frölicher^{e,f}

4 **Affiliations:**

5 ^aDepartment of Ecology, Evolution and Natural Resources, Rutgers University, The State
6 University of New Jersey, 14 College Farm Rd., New Brunswick, NJ 08901, USA. ORCID
7 0000-0002-8523-8952

8 ^bThe Natural Capital Project, Stanford University, Stanford, CA 94305, USA.

9 ^cAlaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600
10 Sand Point Way NE, Seattle, WA 98115, USA.

11 ^dDepartment of Biology, East Carolina University, Coastal Studies Institute, 850 NC 345,
12 Wanchese, NC 27981

13 ^eClimate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-
14 3012 Bern, Switzerland.

15 ^fOeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern,
16 Switzerland.

17 *Correspondence to: malin.pinsky@rutgers.edu, +1 848-932-8242

18

19 **Keywords:** conservation planning, species redistribution, tradeoff analysis, climate adaptation

20

21 **Teaser:** Proactively preparing for climate change produces more effective ocean plans and
22 imposes few tradeoffs.

23

24

25 **Abstract:**
26 Societies increasingly use multi-sector ocean planning as a tool to mitigate conflicts over space
27 in the sea, but such plans can be highly sensitive to species redistribution driven by climate
28 change or other factors. A key uncertainty is whether planning ahead for future species
29 redistributions imposes high opportunity costs and sharp tradeoffs against current ocean plans.
30 Here, we use more than 10,000 projections for marine animals around North America to test the
31 impact of climate-driven species redistributions on the ability of ocean plans to meet their goals.
32 We show that planning for redistributions can substantially reduce exposure to risks from climate
33 change with little additional area set aside and with few tradeoffs against current ocean plan
34 effectiveness. Networks of management areas are a key strategy. While climate change will
35 severely disrupt many human activities, we find a strong benefit to proactively planning for long-
36 term ocean change.

37
38
39

40 **Introduction**

41 The coastal ocean is a crowded landscape that supports diverse and expanding human
42 uses, from fishing and recreation to energy development, transportation, aquaculture, and
43 conservation (1–3). Governance that historically focused on individual activities or species has
44 often allowed substantial and negative cumulative impacts on ocean ecosystems, including the
45 decline of coral reefs and the collapse of both fishery and non-fishery species (1, 4, 5). In
46 addition, many ocean and coastal uses impact and conflict with each other, such as scenic views
47 and wind turbines or conservation and fishing (2, 6). As a result, ecosystem-based management
48 (EBM) efforts to coordinate among marine activities have become common, often expressed as
49 coastal and marine spatial planning (CMSP) or ocean planning (1, 2, 4, 7).

50 Ecological principles for ocean planning are built upon the spatial distribution of species,
51 habitats, and ecological communities (8, 9). Even though species and biogenic habitats are
52 rapidly shifting geographically as climate changes (10) and despite calls for greater consideration
53 of these climate change impacts (7, 11), species redistributions are not a central consideration in
54 the current principles, legal frameworks, or examples of ocean planning (7, 11, 12). A major
55 impediment has been uncertainty about the difficulty of and tradeoffs required for incorporating
56 long-term change into multi-sector ocean plans (3, 12).

57 Periodic revisions of ocean plans could enable climate adaptation over time, though
58 revisions are challenging given the substantial negotiations among stakeholders inherent to ocean
59 planning and the long-term legal agreements and impacts involved in offshore energy, mineral
60 extraction, and other development or habitat-modifying activities (13). Alternatively, ocean plans
61 could be designed around climate change impacts from the start (14), but the extent to which
62 advance planning across multiple sectors can help in this regard remains unclear. One proposal
63 in the context of conservation alone has been to identify areas that are likely to be consistently
64 important through time (15). Even more importantly, it is unknown whether planning for the
65 future requires setting aside substantially more area for ocean plans, or if there are strong
66 tradeoffs between plans that are effective in the near-term versus those that are effective in the
67 long-term. One heuristic approach for climate adaptation may be to designate networks of
68 management areas that could act like stepping-stones as species shift (14). The extent to which
69 networks can help in this regard, however, has not been quantified.

70 In this paper, we use nine regions on the continental shelves of North America (Fig. 1) to
71 study these issues. Ocean planning efforts have occurred and are underway to varying degrees
72 across this geography (6). We simulated the multi-sector ocean planning process to site zones for
73 conservation, fishing, or energy development within each region. Inspired by the Convention on
74 Biological Diversity's (CBD) Aichi Target 11, we designed conservation zones to protect at least
75 10% of the locations with occurrences of each species in a region. In contrast, we designed
76 fishery zones to include locations that had, in sum, at least 50% of the biomass of each of the top
77 ten fishery species in each region. Energy zones included at least 20% of the value from wind
78 and wave energy resources, consistent with the ~20% of offshore energy potential proposed to be
79 captured as part of a roadmap to 100% clean energy (16, 17).

81 **Results and Discussion**

82 We first developed myopic “present-only” plans that only considered species current
83 geographic distributions for evaluating whether conservation and fishery zones met their goals
84 through time. We then evaluated these plans against 11,776 projections of future species habitat
85 distributions: 736 species across eight climate models following a low (RCP2.6) and a high
86 (RCP8.5) greenhouse gas emissions scenario. This evaluation revealed substantial declines in
87 effectiveness of the present-only plans that implied difficulty meeting societal targets for fishing
88 and conservation (Fig. 2). By the middle of the 21st century (2041-2060), an average of $63\% \pm$
89 16% (± 1 SD across climate models and scenarios) of goals were met (Fig. 2). Only $50\% \pm 18\%$
90 of goals were met on average by the end of this century (2081-2100) under a high greenhouse
91 gas emissions scenario ($64\% \pm 16\%$ under a low emissions scenario). Plans were especially
92 sensitive to species habitat redistribution in the Eastern Bering Sea, Northeast U.S., and the
93 Canadian Maritimes (Fig. 2), where plans met less than half of the goals by the end of this
94 century.

95 We contrasted these results with a “proactive” approach that explicitly planned for future
96 species redistributions. The plans were developed to meet the conservation, fishing, and energy
97 goals both under current species habitat distributions and under future habitat distributions (see
98 Methods). The species projections that were used for planning were not used for plan evaluation.
99 Compared to present-only plans, proactive plans were substantially different and changed the
100 zone designation for $22\% \pm 7\%$ of the area across the nine regions (Fig. 3). However, proactive
101 solutions included only marginally more area (0-7% more per region, mean $2\% \pm 0.07\%$
102 standard error) in conservation, fishing, or energy zones than did present-only plans (Fig. 3).
103 Ocean plans that require less area also leave more space (more opportunities) available for other
104 ocean uses, both including and beyond the three activities we considered. The small increase in
105 area required for the proactive plans implies that there was relatively little opportunity cost of
106 planning for the future. In contrast, some ocean plans have high opportunity costs. An inefficient
107 designation of marine conservation areas in South Australia, for example, has been described as
108 an opportunity cost that may impede the expansion of marine conservation (18).

109 We then evaluated the proactive plans under 16 sets of redistribution projections (eight
110 climate models across two emissions scenarios) that had not been used in planning. Despite this
111 constraint, the plans met $75\% \pm 15\%$ (± 1 SD) of goals by the middle of the century (Fig. 2).
112 Under a high greenhouse gas emissions scenario, the plans met $64\% \pm 19\%$ of goals by the end
113 of the century, or $76\% \pm 14\%$ under low emissions scenario (Fig. 2). This was significantly more
114 goals met than the present-only plans (odds ratio 1.9 [95% confidence interval 1.86 - 1.97], $p = 2$
115 $\times 10^{-16}$, $n = 1440$, generalized linear mixed-effects model with binomial errors). Some
116 conservation and fishing goals could not be met by the end of this century even with careful
117 planning because species were expected to be extirpated from a region by then. Proactive plans,
118 however, were also relatively robust to uncertainty in species redistributions across emissions
119 scenarios and global climate models. With a proactive plan, we found a 42% chance of not
120 meeting at least seven in every ten planning goals by the end of the 21st century across regions.
121 In contrast, present-only plans had a 72% chance of not meeting at least seven in every ten
122 planning goals by the end of this century.

123 Many of the benefits of proactive planning as compared to present-only plans appeared
124 well before the end of this century (Fig. 2), consistent with substantial spread in species
125 distribution projections under different global climate models in all time windows (19). Planning

126 for long-term species redistribution therefore appears to have the added benefit of hedging
127 against near-term uncertainty.

128 To more explicitly examine tradeoffs, we plotted tradeoff curves (6, 20) for ocean plans
129 in terms of their ability to meet conservation (10% of all species' occurrences) and fishing (50%
130 of fishery species biomass) goals in the present time vs. goals at the end of the century. Tradeoff
131 curves, also called constraint envelopes or Pareto efficiency frontiers, are visualization tools
132 from microeconomics that represent the maximum extent to which one goal can be met for a
133 given value of another goal, and vice versa, subject to constraints like a limited budget (20). The
134 shape of the curve indicates the type of tradeoff between two goals, which in our case are goals
135 for the present and for the future (Fig. 4). A plan that designates larger conservation and fishing
136 zones in effect costs more because it restricts ocean uses across a wider area, so we defined the
137 budget in terms of the total area used for the ocean plan. For plotting the tradeoff curves, we then
138 limited the plans to only use 75% of the total area that would have been needed to meet all of the
139 ocean plan goals. The curves revealed little to no tradeoff between present and future (Fig. 4). In
140 four regions (Gulf of Alaska, West Coast U.S., Maritimes, and Newfoundland), right-angle lines
141 on the curves indicated that present and future goals did not interact (no tradeoff) and that plans
142 could maximize both future and present goals at the same time. In the other five regions, small
143 angled corners indicated a minimal tradeoff among future and present goals. The largest tradeoff
144 was in the Northeast U.S., where 9% more future goals could be met in exchange for a 9%
145 decrease in present goals met, or vice versa (Fig. 4). Tradeoff curves for plans with areas limited
146 to 50% or 90% of the area needed to meet all goals revealed similarly small tradeoffs (Fig. S1).

147 We also examined the benefits of heuristic planning approaches such as designing
148 management zones in spatial networks, a concept that has been applied to date through networks
149 of protected areas (4, 14). We found that existing marine spatial management areas are expected
150 to experience substantial change in species composition by the end of this century, including the
151 extirpation of $29\% \pm 7\%$ of existing species and overall $84\% \pm 2\%$ species dissimilarity (Fig. 5)
152 under a high greenhouse gas emissions scenario (RCP8.5). However, networks of management
153 zones were expected to experience half the loss of species ($16\% \pm 4\%$) and substantially less
154 species turnover ($11\% \pm 3\%$ dissimilarity), as compared to individual management areas under
155 the RCP8.5 scenario (Fig. 5, $p = 2 \times 10^{-16}$, paired Mann-Whitney U test, $n = 32$). Each network
156 spanned a range of temperatures, and species often shifted within rather than into or out of a
157 network. Simulated networks revealed that network size and thermal range were both important
158 for minimizing turnover (Fig. S2). While corridors are central to conservation on land, stepping-
159 stones of MPAs are important in the ocean because many species disperse as larvae in the water
160 column.

161 While the reduction of local stressors can delay extirpation of local populations, such
162 measures cannot maintain populations pushed far beyond their thermal tolerances. Instead,
163 updating local conservation and management goals to adapt to change will often be necessary.
164 Our results suggest that explicit consideration of future species distributions, even in static ocean
165 plan designs, can be an effective approach to adapt to shifting species. In particular, our finding
166 that proactive plans require little additional designated area suggests that proactive planning need
167 not involve substantial tradeoffs for other ocean users or substantial opportunity costs in terms of
168 additional ocean plan areas, thereby lowering potential barriers to implementation. An additional
169 benefit of planning for long-term shifts in species distributions is that such plans may also be
170 helpful for coping with seasonal, annual, and decadal shifts (21).

171 Our study tests the value of proactive planning from a biophysical perspective, but does
172 not represent all relevant steps or considerations for ocean planning, including stakeholder
173 interactions or adaptive management to learn from experience, to address non-climate-driven
174 changes in ocean biodiversity, or to address changing societal goals, technologies, and ocean
175 uses (2, 13). Our evaluation also considers only three of the many (and growing) human ocean
176 activities (22), though we note that the value of ocean planning often increases as more activities
177 are considered (6). Even with proactive planning, ecological and social surprises are inevitable
178 and will require resilient and adaptive systems informed by ongoing monitoring, evaluation, and
179 anticipation (13, 23, 24). For example, changes in ship traffic, water quality, habitat availability,
180 population abundance, and other factors will also alter species ranges in the future, in addition to
181 climate change impacts. Some of these may be predictable in a way that allows proactive
182 planning similar to what we demonstrate for climate, while others will be surprises for which
183 adaptive management, such as through dynamic ocean management, is the best or only realistic
184 approach. We also note that the species habitat distribution projections that we used capture the
185 major changes in biogeographic patterns that are expected in each region and exhibit good out-
186 of-sample predictive skill (19), but do not reflect evolutionary processes, acclimation, or
187 potential changes in species interactions that may cause species to occupy new thermal
188 conditions or disappear from previously occupied conditions. The projections also do not
189 consider changes in salinity, oxygen, acidification, or primary productivity that may further
190 contract and fragment species geographic ranges (25). Global climate models do not resolve fine-
191 scale oceanographic features that may be important for modulating oceanographic changes in
192 some regions, particularly upwelling regions like the west coast of the U.S. (26). However,
193 ensembles of global climate models help to bracket uncertainty in regional climate responses
194 (26).

195 The ocean is changing rapidly, and warming is expected to continue (27). Climate change
196 mitigation can substantially reduce the impact on ocean ecosystems and human activities,
197 including the probability and magnitude of undesirable outcomes (27). However, major
198 questions also surround how to adapt human activities—from coastal infrastructure to shipping,
199 aquaculture, conservation, fisheries, and other uses—to expected changes over the coming
200 decades. Resistance to proactive adaptation, however, can become the default when the benefits
201 and costs are unclear. Our demonstration that ocean plans are more effective and can require few
202 tradeoffs among ocean activities when they consider shifting species distributions is a timely
203 contribution to ongoing adaptation efforts and the transition towards ecosystem-based
204 management. While complete climate-proofing is impossible, proactively planning for long-term
205 ocean change across a wide range of sectors is likely to provide substantial benefits.

206
207

208 **Materials and Methods:**

209 Our overall approach was to simulate the ocean planning process for conservation,
210 fishery, and offshore energy goals, then evaluate these goals against future shifts in species
211 habitat distributions. We conducted planning that only considered species' current distributions
212 ("present-only") and planning that considered species current and future distributions
213 ("proactive"). The sections below describe the input data (*Resource distribution data*), the
214 planning and evaluation process (*Marine spatial planning*), and a comparison of networks of

215 spatial management zones against shifts in species distributions (*Analysis of management area*
216 *networks*).

217

218 *Resource distribution data*

219 Marine spatial planning integrates across sectors, and so our methods are by necessity
220 interdisciplinary. For simulating the marine spatial planning process, we used information on
221 species distributions and on the distribution of wave and wind energy resources. Species habitat
222 distributions were used for conservation goals (species presence or absence) and for fisheries
223 goals (species biomass), while wave and energy spatial distributions were used for energy goals.

224

225 *Species habitat distributions*

226 For species habitat distributions, we used an existing set of distribution projections for
227 fish and invertebrates on the continental shelves of North America (19). The species habitat
228 distribution models had been fit to species biomass data from 136,044 sampling events 1963-
229 2015 during scientific surveys in Canada and the U.S. by considering seasonal bottom and
230 surface temperatures, annual minimum and maximum temperatures, seafloor rugosity, and
231 sediment grain size. Model selection procedures had been used to trim the number of explanatory
232 variables used for each species. The models consisted of two parts: a first part that projected
233 probability of species occurrence and a second part that projected species biomass conditional on
234 presence. The product of the two parts provided projections of biomass (19).

235 The species distribution models had been projected at a grid size of 0.05 °longitude x
236 0.05 °latitude under a low and a high greenhouse gas emissions scenario (Representative
237 Concentration Pathway RCP 2.6 and RCP 8.5) using ocean temperature projections from sixteen
238 global climate models (19). We randomly selected eight of the climate models, averaged them
239 into ensemble means for present (2007-2020, both RCP2.6 and RCP8.5) and end-of-century
240 (2081-2100, only RCP8.5) time periods, and used the ensemble means for ocean planning (Table
241 S1). We set aside projections under the other eight climate models across each of two RCPs for
242 evaluating the ocean plans (Table S1).

243 To match the spatial scale of the projections to the 0.25 ° ocean planning grid, we
244 averaged probabilities of occurrence (for conservation goals) or biomass (for fishery goals). We
245 then converted probability of occurrence into projections of species presence and absence by
246 applying a species-specific threshold that maximized Cohen's kappa (28). Kappa measures the
247 extent to which the agreement between observed and projected values is higher than expected by
248 chance alone, considering both omission and commission errors (28).

249

250 *Wave and wind energy*

251 We used the InVEST 3.7.0 toolkit (29) to calculate the spatial distribution of offshore
252 wind and wave power in each region. InVEST is a decision-support tool for ecosystem services
253 that was developed for and is commonly used in marine spatial planning efforts (12, 29),
254 including for wave and wind energy (30-32).

255 The InVEST Offshore Wind Energy Production tool estimates wind power density from
256 data on wind statistics (a probability density of wind speeds) at each location, then uses wind
257 turbine characteristics (hub height, cut-in wind speed, cut-out wind speed, rated power, rated
258 wind speed, etc.) to calculate the harvestable energy (30) (Table S3). We used global wind
259 statistics at 30 arc-minute spatial resolution that are distributed with InVEST. These statistics
260 were calculated from a global WAVEWATCH III hindcast reanalysis of winds globally for
261 1999-2012 (30). We did not consider changes in energy resources over the 21st century because
262 the anthropogenic climate change signal appears small relative to natural variability (33).

263 Harvestable energy was calculated for wind farms composed of 16 turbines of 5.0 MW
264 each. While wind farm designs can vary greatly in size and design (31), we chose a standard
265 design to ensure comparability across different locations (Table S3). A size of sixteen turbines
266 was chosen to achieve a density of approximately two per km², following proposals of this
267 magnitude in the U.S. (6). Turbines were sited in locations 0 to 200 km from shore and 3 to 60 m
268 depth using the ETOPO1 depth dataset (34) and a high resolution global shoreline dataset (35).
269 We used the default turbine design parameters distributed with InVEST for a 5.0 MW turbine.
270 Finally, installation and maintenance costs as well as electricity prices were used to calculate the
271 net present value (NPV) of offshore wind at each location, following (31). The default costs
272 included in InVEST were based on a detailed review of stated project costs from existing
273 offshore wind development (31). Energy prices were set at \$0.161/kWh to match approximate
274 wholesale energy prices in the U.S., as has been used for other wind energy planning calculations
275 (6). Overall, the offshore wind tool outputs a raster map of NPV across the continental shelf. The
276 absolute values of these calculations are not of interest, but rather the relative value of one
277 location compared to another so that areas particularly valuable to energy production can be
278 designated for such uses.

279 Similarly, the InVEST Wave Energy Production tool estimates potential wave power
280 from data on significant wave height and peak wave period, then calculates harvested wave
281 energy from information on the performance of wave energy conversion devices (32, 36). We
282 used global wave statistics at 30 arc-minute spatial resolution that are also distributed with
283 InVEST and that had been calculated from a global WAVEWATCH III reanalysis (36). We then
284 calculated harvested energy from wave farms composed of 100 attenuator-type Pelamis wave
285 energy conversion devices (36) (Table S3). These devices are in a relatively advanced stage of
286 development (36), and so they provide a consistent method for comparing wave energy potential
287 across different locations. The number of devices was based on recommended densities in the
288 literature (32). The tool then calculates the NPV of a wave energy conversion facility using
289 information on the price of electricity, discount rate, and costs that had been derived for a wave
290 energy planning project on the West Coast of Vancouver Island (36). Because no commercial-
291 scale wave energy projects currently exist, the economic parameters are uncertain (32, 36).
292 However, the calculations are useful for comparing the relative (not absolute) value of different
293 ocean locations for wave energy capture, which is what we need for this ocean planning exercise.

294 Calculated NPV values for wind and wave energy were averaged separately within
295 planning grid cells for incorporation into marine spatial planning. We then summed positive
296 NPV values across wind and wave energy for a combined offshore energy NPV for each
297 planning grid cell.

298

299 *Marine spatial planning*

300 *Plan development*

301 Marine spatial planning is a multi-stakeholder, multi-objective process by which areas of
302 the ocean are designated for different uses. Here, we simulated that process by defining three
303 types of planning zones for our North American case study: fishery, conservation, and energy
304 development. Fishery, conservation, and energy zones each had their own planning goals. Our
305 approach implicitly assumed that fishery, conservation, and energy development are mutually
306 exclusive ocean uses, though in reality, not all ocean uses are incompatible (2). Our planning
307 units consisted of 14,588 grid cells at 0.25 °latitude x 0.25 °longitude resolution across the
308 continental shelves (Fig. 1). We divided these into nine regions (Fig. 1, Table S2), since ocean
309 planning is typically conducted at a regional scale (2).

310 We set conservation zone goals to protect at least 10% of the occurrences of each species
311 in a region, in line with the Convention on Biological Diversity's (CBD) Aichi Target 11 to
312 protect at least 10% of coastal and marine areas by 2020. We set conservation goals for all
313 species present in at least 5% of the area of each region, which resulted in 29 to 165 conservation
314 goals per region (Table S2). We set fishery zone goals to protect at least 50% of the biomass of
315 each of the top ten fishery species in each region, inspired by simple fisheries models which
316 estimate maximum sustainable yield (MSY) at 50% of unfished biomass. We defined the top
317 fishery species in each region using fishery landings for 1995-2014 by Large Marine Ecosystem
318 (Table S4) (37). Large fishery landings are a useful indicator of importance to fisheries, but also
319 identify species caught incidentally in large quantities, like Arrowtooth Flounder (*Atheresthes*
320 *stomias*). In the energy zone, the goal was to include at least 20% of the total net present value
321 (NPV) from wind and wave resources in each region. This goal was inspired by the projection
322 that the U.S. needs 781 GW of offshore wind turbines installed (of 4200 GW potential, i.e.,
323 ~20%) as part of a roadmap to 100% clean energy (16, 17).

324 We simulated two different planning approaches. In the “present-only” approach, we
325 developed plans that met our goals for the current distributions of marine animals. For
326 consistency with our proactive approach (described next), we used species distributions
327 (occurrence and biomass, see *Resource distribution data*) projected onto 2007-2020 temperatures
328 as our current distributions. Occurrence information was used for conservation goals, biomass
329 information was used for fishery goals, and the combined NPV of wind and wave energy was
330 used for meeting energy goals.

331 In the “proactive” planning approach, we set goals for both the current (2007-2020) and
332 the end-of-century (2081-2100) species distributions. We used ensemble projections under the
333 RCP 8.5 greenhouse gas emissions scenario (a high emissions scenario). The proactive approach
334 doubled the number of goals to be met in the conservation and fishery zones (i.e., both current
335 and future distributions for each species). We kept the energy goals the same because we did not
336 project future wind or wave conditions.

337 After defining the input data and goals, we then solved the 'minimum set problem' of
338 allocating grid cells to conservation, fishery, or energy zones to meet the goals while minimizing
339 the area of each zone. We solved the problem using prioritizr (38) in R v3.5.3 (39) with the
340 Gurobi solver v8.1.1 (40). Prioritizr uses integer linear programming (ILP) techniques to solve
341 spatial planning problems. It is guaranteed to find optimal solutions given sufficient time and
342 supports multiple zones. We specified an efficiency gap of 1% (following the program's

343 recommendations) and specified a uniform cost of including any planning grid cell in a zone.
344 This choice was equivalent to assuming that the primary concern was minimizing the area
345 included in conservation, fishing, or energy zones.

346

347 *Plan evaluation*

348 We then evaluated the present-only and the proactive marine spatial plans in each region
349 by testing whether each zoning goal (species representation goals in conservation zones, percent
350 of biomass in fishing zones, and percent of NPV in energy production zones) was met in future
351 time-periods as species habitat distributions shifted. We evaluated each of the future climate
352 scenarios in each time period independently against the same single set of goals (i.e., we tested
353 whether each plan met conservation, fishing, and energy goals in a given time period). We
354 considered a wide range of future scenarios in each region by using the 16 projected distributions
355 for each species (i.e., for each of two RCPs in each of the eight global climate models reserved
356 for testing, Table S1) for 2021-2040, 2041-2060, 2061-2080, and 2081-2100. This analysis
357 approach allowed us to consider uncertainty in both emissions scenarios as well as in climate
358 models.

359 We used a generalized linear mixed model (GLMM) with binomial errors to test whether
360 the proactive planning approach met more goals than the present-only approach:

361

362 $(numgoalsmet_{p,g,r,m,d}, numtotalgoals_{p,g,r,m,d}) \sim plantype_p + region_g/rcp_r/model_m/period_d$

363

364 The response variable was the proportion of goals met (coded as the number of goals met,
365 *numgoalsmet*, and the total number of goals, *numtotalgoals*). The fixed effect was the planning
366 approach (*plantype*). Random effects were time period (*period*) nested within climate model
367 (*model*), nested within RCP (*rcp*), nested within region (*region*). We used the *lme4* package
368 v1.1-21 in R 3.6.1 to fit the model (39, 41).

369

370 *Tradeoff curves*

371 We also calculated tradeoff curves (Pareto efficiency frontiers) (20) between present and
372 future planning goals for conservation and fishing by setting a constrained plan area such that all
373 present and future goals could not be met. We set the constrained area (the "budget") as 50%,
374 75%, or 90% of the total area needed to meet all conservation and fishing goals. The input data
375 were the same as for the proactive planning approach described in section *Plan development*,
376 though for simplicity we did not include energy goals. In other words, we used the ensemble
377 mean species occurrence and biomass information for 2007-2020 and 2081-2100 (see *Species*
378 *habitat distributions*).

379 We then used prioritizr to solve the 'fixed budget problem' of meeting as many goals as
380 possible, subject to the constrained area. We ran prioritizr multiple times, each time applying a
381 different set of weights to either future goals or present goals. The weights specified how
382 important it was to meet future vs. present goals. Weights for present goals were varied from 0

383 (no attempt to meet present goals) to 100, while weights for future goals were set as 100 minus
384 the weight assigned to present goals.

385

386 *Analysis of management area networks*

387 *Existing management areas*

388 To evaluate the climate sensitivity of existing marine spatial plans and the value of
389 networks, we examined marine designations within the August 2019 version of the World
390 Database on Protected Areas (WDPA) (42). These are not formal marine spatial plans, but they
391 do represent areas of the ocean that have been set aside for particular purposes. The management
392 areas included in this database have been designated for a wide range of purposes, including
393 fisheries management or conservation. The Greater Farallones National Marine Sanctuary in
394 California, for example, regulates construction, discharge, and research activities, but does not
395 restrict fishing activities. The Great South Channel Restricted Gillnet Area in the Northeast U.S.
396 restricts gillnet fishing gear in certain seasons, but allows other kinds of fishing. The full set of
397 areas, therefore, provides an example of regions of the ocean set aside for spatial management
398 and helps provide an example of existing (though largely uncoordinated) efforts towards marine
399 spatial planning in North America.

400 We then compared ecological turnover within individual management areas and within
401 networks of management areas driven by shifting species distributions. Within each management
402 area, we evaluated the fraction of species habitats that were lost from the initial (2007-2020) to
403 final (2081-2100) time period, the fraction gained, and Sørenson's similarity index between the
404 initial and final species assemblages within each management area. Our input data were the high-
405 resolution distribution projections described in *Species habitat distributions* above (0.05 x 0.05 °
406 for each global climate model and RCP).

407 We took a probability-based approach to these calculations to account for potential
408 differences in scale between the projections and the reserves (43). We first calculated the
409 probability ($p_{i,t}$) of each species i appearing in each management area in time period t ,
410 accounting for the fact that a given management area might span portions of multiple species
411 projection grid cells:

$$412 \quad p_{i,t} = 1 - \prod_{x=1}^X (1 - r_x p_{i,t,x})$$

413 where $p_{i,t,x}$ was the probability of species i being present in time period t in grid cell x , r_x was the
414 fraction of grid cell x contained within the management area, and X was the total number of grid
415 cells overlapping the management area. The logic of this equation combines two ideas. First, the
416 probability of a species being present in an area smaller than a grid cell is equal to the proportion
417 of the grid cell covered by the smaller area ($r_x p_{i,t,x}$) (43). Second, the combined probability of
418 presence across multiple grid cells is the inverse of the probability that the species is not present
419 in any of the grid cells.

420 To test this approach, we compared our calculations against data on whether or not
421 species had been observed in each management area during bottom trawl surveys 2016-2018
422 (i.e., data that were not used to fit species distribution models by (19)). The trawl data were
423 downloaded from OceanAdapt version March 25, 2019 (44). We calculated the fraction of

424 management areas that were observed to have a species when it was predicted to be present
 425 (Positive Predictive Value, also called precision) and the fraction of management areas that were
 426 not observed to have a species when it was predicted to be absent (Negative Predictive Value)
 427 (28, 45). We bootstrapped across management areas and species to derive standard errors. We
 428 found relatively high values of both quantities, with $PPV = 0.51 \pm 0.007$ (± 1 S.E.) and $NPV =$
 429 0.81 ± 0.009 . These values compare favorably to distribution models for phytoplankton (PPV
 430 0.15 to 0.77 and NPV 0.7 to 1) and trees (PPV 0 to 0.6) (45, 46). Most management areas had
 431 only four or fewer sampling events (trawl tows) in our dataset (Fig. S3a), increasing the chance
 432 that some observed absences were in fact presences (i.e., false absences). When we trimmed out
 433 management areas with few sampling events, PPV increased towards 0.8, though NPV also
 434 decreased somewhat (Fig. S3b).

435 We then calculated the probabilistic number of species gained, lost, or shared within
 436 individual management areas between the first (2007-2020) and second (2081-2100) time-
 437 period:

$$438 \quad n_{lost} = \sum_{i \in \{i | p_{i,2} < p_{i,1}\}} (p_{i,1} - p_{i,2})$$

$$439 \quad n_{gained} = \sum_{i \in \{i | p_{i,2} > p_{i,1}\}} (p_{i,2} - p_{i,1})$$

$$440 \quad n_{shared} = \sum_{i=1}^n p_{i,1} p_{i,2}$$

441 where n was the total number of species. From these, we then calculated the fraction of species
 442 lost, the fraction of species gained, and the Sørensen dissimilarity index:

$$443 \quad f_{lost} = \frac{n_{lost}}{\sum_{i=1}^n p_{i,1}}$$

$$444 \quad f_{gained} = \frac{n_{gained}}{\sum_{i=1}^n p_{i,2}}$$

$$445 \quad S = 1 - \frac{2n_{shared}}{2n_{shared} + n_{gained} + n_{lost}}$$

446

447 We then repeated these calculations of turnover statistics (gain, loss, and similarity) for
 448 networks of management areas. We defined three networks from the WDPA database: 1) areas in
 449 California managed by the California Department of Fish and Game ($n = 55$), 2) areas in U.S.
 450 state waters east of 100°W (Atlantic Coast, $n = 342$), and 3) areas in Alaska state waters (Alaska,
 451 $n = 35$). The California areas are managed together as a network (4), while we defined the other
 452 networks as illustrative sets potentially connected through species dispersal or range shifts.

453 For a statistical test of similarity within networks and within the individual management
 454 areas of those networks, we first averaged similarity within each management area or network
 455 across the RCPs and climate models. We then conducted a non-parametric Mann-Whitney

456 (Wilcoxon two-sample signed rank) test of the null hypothesis that the two distributions share the
457 same location with *wilcox.test()* in R 3.6.3 (39).

458

459 *Simulated networks*

460 Finally, we simulated management networks in each region by randomly choosing 0.25°
461 $\times 0.25^{\circ}$ grid cells within each region to designate. The simulated networks were constrained to
462 cover only a designated area (eleven levels from 1% to 50% of the grid cells in each region) and
463 to span a limited range of temperatures (eleven levels from 1% to 100% of the thermal range in a
464 region). To define the thermal range and to guide site selection, we used the bottom temperature
465 climatology for the North American continental shelf developed by (19). This climatology
466 integrated data from the Simple Ocean Data Assimilation (SODA) reanalysis product (47). We
467 repeated the process of randomly selecting areas with a network three times at each combination
468 of area and thermal range constraints, for a total of 363 random networks in each of the nine
469 regions. We then evaluated ecological similarity between the beginning and end of the 21st
470 century following the procedure in section *Existing management areas*.

471

472 **Acknowledgments:**

473 We thank the many people at the National Marine Fisheries Service, Department of Fisheries and
474 Oceans, and affiliated organizations that maintained the continental shelf survey data
475 used in this project, particularly H. Benoît, B. Brodie, D. Clark, J. Hare, B. Horness, B.
476 Lauth, S. Lucey, and J. Rester. We thank M. Fogarty, R. Griffin, K. Holsman, S. Levin,
477 M. Payne, M. Ruckelshaus, J. Samhouri, J. Sarmiento, R. Seagraves, C. Stock, M.
478 Tingley, M. Watts, and D. Wilcove for helpful conversations and suggestions during our
479 research. We acknowledge the World Climate Research Programme's Working Group on
480 Coupled Modelling and thank the groups that contributed.

481 MLP acknowledges support from a David H. Smith Conservation Research Fellowship, an
482 Alfred P. Sloan Research Fellowship (BR2014-044), U.S. National Science Foundation
483 OCE-1426891 and DEB-1616821, the Pew Charitable Trusts (#28295), the Lenfest
484 Ocean Program (00032755), the Mid-Atlantic Fisheries Management Council, NOAA's
485 Climate Program Office (OAR-CPO-2014-2004106), NOAA's Office of Science and
486 Technology (NA14OAR4320158), the Nippon Foundation–University of British
487 Columbia Nereus Program, GreenMAR (Nordforsk #61582), and an sDiv synthesis
488 sabbatical fellowship from the German Centre for Integrative Biodiversity Research
489 (iDiv) Halle-Jena-Leipzig (funded by DFG FZT 118) during the course of this research.
490 LAR acknowledges support from the Gordon & Betty Moore Foundation and NOAA's
491 North Pacific Climate Regimes and Ecosystem Productivity program. TLF acknowledges
492 financial support from the Swiss National Science Foundation (PP00P2_170687) and the
493 European Union's Horizon 2020 research and innovation programme under grant
494 agreement No 820989 (project COMFORT, Our common future ocean in the Earth
495 system -- quantifying coupled cycles of carbon, oxygen, and nutrients for determining
496 and achieving safe operating spaces with respect to tipping points). JWM was supported
497 by North Carolina Sea Grant (projects: R/18-SFA-2; 2016-R/16-HCE-3) and the North
498 Carolina Policy Collaboratory. This research is contribution EcoFOCI-0871 to NOAA's

499 Ecosystems and Fisheries-Oceanography Coordinated Investigations. The findings and
500 conclusions in the paper are those of the authors and do not necessarily represent the
501 views of the National Marine Fisheries Service or the Lenfest Ocean Program.

502

503 **Data and Code Availability:**

504 Data and code from our analyses are available at <https://doi.org/10.5281/zenodo.3991884>.

505 **Author Contributions:**

506 Conceptualization: MLP; Methodology: MLP, LAR, JWM; Software: MLP, LAR, and JWM;
507 Formal Analysis: MLP; Resources: TLF and JWM; Data Curation: MLP and JWM;
508 Writing - Original Draft: MLP; Writing - Review & Editing: MLP, LAR, TLF, and
509 JWM; Visualization: MLP; Project Administration: MLP; Funding Acquisition: MLP,
510 TLF, JWM, LAR.

511 **Competing Interests:**

512 MLP serves as an Oceana science advisor and is a visiting research collaborator at Princeton
513 University and a guest researcher at the University of Oslo.

514

515 **References:**

- 516 1. L. B. Crowder, *et al.*, Resolving mismatches in U.S. ocean governance. *Science* **313**, 617–
517 618 (2006).
- 518 2. C. N. Ehler, F. Douvere, “Marine Spatial Planning: A step-by-step approach toward
519 ecosystem-based management” (UNESCO, 2009).
- 520 3. B. S. Halpern, *et al.*, Near-term priorities for the science, policy and practice of Coastal and
521 Marine Spatial Planning (CMSP). *Mar. Policy* **36**, 198–205 (2012).
- 522 4. M. H. Ruckelshaus, T. Klinger, N. Knowlton, D. P. DeMASTER, Marine ecosystem-based
523 management in practice: scientific and governance challenges. *BioScience* **58**, 53 (2008).
- 524 5. S. E. Lester, *et al.*, Science in support of ecosystem-based management for the US West
525 Coast and beyond. *Biol. Conserv.* **143**, 576–587 (2010).
- 526 6. C. White, B. S. Halpern, C. V. Kappel, Ecosystem service tradeoff analysis reveals the
527 value of marine spatial planning for multiple ocean uses. *Proc. Natl. Acad. Sci. U. S. A.*
528 **109**, 4696–701 (2012).
- 529 7. C. Frazão Santos, *et al.*, Ocean planning in a changing climate. *Nat. Geosci.* **9**, 730–730
530 (2016).
- 531 8. M. M. Foley, *et al.*, Guiding ecological principles for marine spatial planning. *Mar. Policy*
532 **34**, 955–966 (2010).
- 533 9. L. B. Crowder, E. A. Norse, Essential ecological insights for marine ecosystem-based
534 management and marine spatial planning. *Mar. Policy* **32**, 772–778 (2008).
- 535 10. E. S. Poloczanska, *et al.*, Global imprint of climate change on marine life. *Nat. Clim.
536 Change*, 1–7 (2013).
- 537 11. R. K. Craig, Ocean governance for the 21st century: Making marine zoning climate change
538 adaptable. *Harv. Environ. Law Rev.* **36**, 305–350 (2012).
- 539 12. E. Gissi, S. Fraschetti, F. Micheli, Incorporating change in marine spatial planning: A
540 review. *Environ. Sci. Policy* **92**, 191–200 (2019).
- 541 13. F. Douvere, C. N. Ehler, The importance of monitoring and evaluation in adaptive maritime
542 spatial planning. *J. Coast. Conserv.* **15**, 305–311 (2011).
- 543 14. E. McLeod, R. Salm, A. Green, J. Almany, Designing marine protected area networks to
544 address the impacts of climate change. *Front. Ecol. Environ.* **7**, 362–370 (2009).
- 545 15. A. Makino, *et al.*, Spatio-temporal marine conservation planning to support high-latitude
546 coral range expansion under climate change. *Divers. Distrib.* **20**, 859–871 (2014).
- 547 16. M. Z. Jacobson, *et al.*, 100% clean and renewable wind, water, and sunlight (WWS) all-
548 sector energy roadmaps for the 50 United States. *Energy Env. Sci* **8**, 2093 (2015).
- 549 17. A. Lopez, B. Roberts, D. Heimiller, N. Blair, G. Porro, “U.S. renewable energy technical
550 potentials: A GIS-based analysis. Technical Report NREL/TP-6A20-51946” (National
551 Renewable Energy Laboratory, 2012).
- 552 18. R. Stewart, T. Noyce, H. Possingham, Opportunity cost of ad hoc marine reserve design
553 decisions: an example from South Australia. *Mar. Ecol. Prog. Ser.* **253**, 25–38 (2003).
- 554 19. J. W. Morley, *et al.*, Projecting shifts in thermal habitat for 686 species on the North
555 American continental shelf. *PLOS ONE* **13**, e0196127 (2018).
- 556 20. S. E. Lester, *et al.*, Evaluating tradeoffs among ecosystem services to inform marine spatial
557 planning. *Mar. Policy* **38**, 80–89 (2013).
- 558 21. D. Tommasi, *et al.*, Managing living marine resources in a dynamic environment: The role
559 of seasonal to decadal climate forecasts. *Prog. Oceanogr.* **152**, 15–49 (2017).
- 560 22. D. J. McCauley, *et al.*, Marine defaunation: Animal loss in the global ocean. *Science* **347**,

561 1255641–1255641 (2015).

562 23. L. Gunderson, Resilience, flexibility and adaptive management -- antidotes for spurious
563 certitude? *Conserv. Ecol.* **3**, art7 (1999).

564 24. E. Boyd, B. Nykvist, S. Borgström, I. A. Stacewicz, Anticipatory governance for social-
565 ecological resilience. *Ambio* **44**, S149–S161 (2015).

566 25. J. McHenry, H. Welch, S. E. Lester, V. Saba, Projecting marine species range shifts from
567 only temperature can mask climate vulnerability. *Glob. Change Biol.* **25**, 4208–4221
568 (2019).

569 26. M. A. Alexander, S. Shin, J. D. Scott, E. Curchitser, C. Stock, The response of the
570 Northwest Atlantic Ocean to climate change. *J. Clim.* **33**, 405–428 (2019).

571 27. J.-P. Gattuso, *et al.*, Contrasting futures for ocean and society from different anthropogenic
572 CO₂ emissions scenarios. *Science* **349**, aac4722–aac4722 (2015).

573 28. C. Liu, M. White, G. R. Newell, Measuring and comparing the accuracy of species
574 distribution models with presence absence data. *Ecography* **34**, 232–243 (2011).

575 29. A. D. Guerry, *et al.*, Modeling benefits from nature: using ecosystem services to inform
576 coastal and marine spatial planning. *Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.* **8**, 107–121
577 (2012).

578 30. R. Griffin, *et al.*, Incorporating the visibility of coastal energy infrastructure into multi-
579 criteria siting decisions. *Mar. Policy* **62**, 218–223 (2015).

580 31. R. Griffin, B. Buck, G. Krause, Private incentives for the emergence of co-production of
581 offshore wind energy and mussel aquaculture. *Aquaculture* **436**, 80–89 (2015).

582 32. M. L. Plummer, B. E. Feist, Capturing energy from the motion of the ocean in a crowded
583 sea. *Coast. Manag.* **44**, 464–485 (2016).

584 33. S. C. Pryor, R. J. Barthelmie, Climate change impacts on wind energy: A review. *Renew.*
585 *Sustain. Energy Rev.* **14**, 430–437 (2010).

586 34. C. Amante, B. W. Eakins, “ETOPO1 1 arc-minute global relief model: procedures, data
587 sources, and analysis. NOAA Technical Memorandum NESDIS NGDC-24” (National
588 Geophysical Data Center, NOAA, 2009).

589 35. P. Wessel, W. H. F. Smith, A global self-consistent, hierarchical, high-resolution shoreline
590 database. *J. Geophys. Res. Solid Earth* **101**, 8741–8743 (1996).

591 36. C.-K. Kim, *et al.*, Catching the right wave: Evaluating wave energy resources and potential
592 compatibility with existing marine and coastal uses. *PLoS ONE* **7**, e47598 (2012).

593 37. D. Pauly, D. Zeller, Eds., *Sea Around Us*. <http://seararoundus.org>. Accessed 25 October
594 2019 (2019).

595 38. H. L. Beyer, Y. Dujardin, M. E. Watts, H. P. Possingham, Solving conservation planning
596 problems with integer linear programming. *Ecol. Model.* **328**, 14–22 (2016).

597 39. R Core Team, *R: A Language and Environment for Statistical Computing*. <https://www.R-project.org/>. (R Foundation for Statistical Computing, 2019).

599 40. Gurobi Optimization, LLC, *Gurobi optimizer reference manual*. <http://www.gurobi.com>
600 (Gurobi Optimization, LLC, 2019).

601 41. D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using
602 lme4. *J. Stat. Softw.* **67**, 1–48 (2015).

603 42. UNEP-WCMC, “World Database on Protected Areas user manual 1.5” (UNEP-WCMC,
604 2015).

605 43. D. Alagador, M. J. Martins, J. O. Cerdeira, M. Cabeza, M. B. Araújo, A probability-based
606 approach to match species with reserves when data are at different resolutions. *Biol.*

607 *Conserv.* **144**, 811–820 (2011).

608 44. M. L. Pinsky, M. R. Stuart, OceanAdapt update2019, <http://oceanadapt.rutgers.edu/> and
609 <https://doi.org/10.5281/zenodo.3890214>. Rutgers University, New Brunswick, NJ, USA.
610 (2019) <https://doi.org/10.5281/zenodo.3890214>.

611 45. P. Brun, T. Kiørboe, P. Licandro, M. R. Payne, The predictive skill of species distribution
612 models for plankton in a changing climate. *Glob. Change Biol.* **22**, 3170–3181 (2016).

613 46. J. M. Drake, C. Randin, A. Guisan, Modelling ecological niches with support vector
614 machines. *J. Appl. Ecol.* **43**, 424–432 (2006).

615 47. J. A. Carton, G. A. Chepurin, L. Chen, SODA3: a new ocean climate reanalysis. *J. Clim.*
616 **31**, 6967–6983 (2018).

617

618

619

620

621 **Figure Legends**

622 **Fig. 1.** Study areas for simulating the ocean planning process, shown with projected species
623 turnover (Sørenson dissimilarity) 2007 to 2100 on the continental shelf.

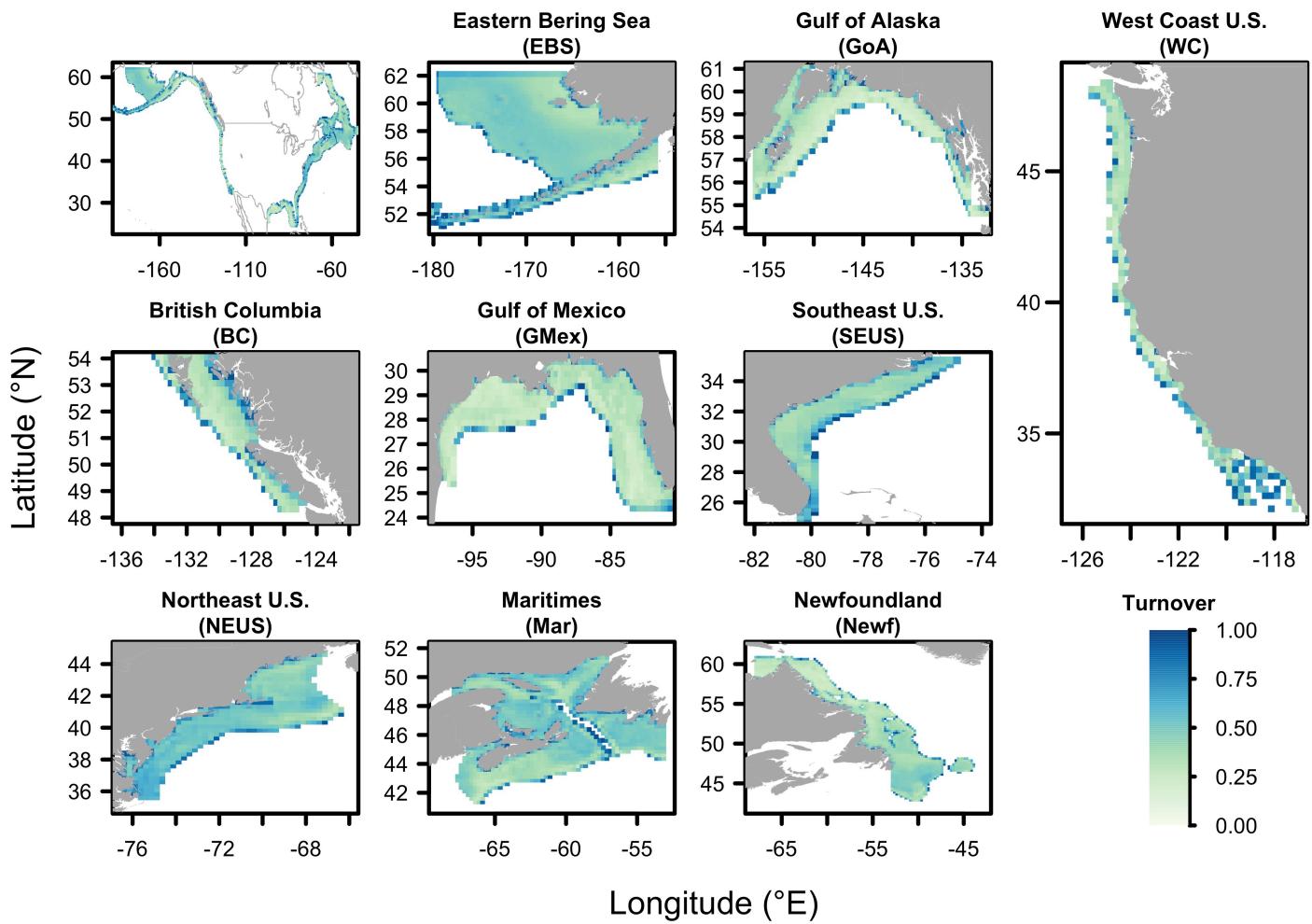
624

625 **Fig. 2.** Comparison of “present-only” plans that only consider current conditions (orange) and
626 “proactive” ocean plans that also consider species redistributions (purple). Success is expressed
627 as the fraction of planning goals that are met by each plan at a given time. Thick lines show
628 averages, thin lines show individual projections, and shading shows ± 1 standard deviation
629 across the projections from eight global climate models used for testing and two greenhouse gas
630 emissions scenarios (RCP2.6 and RCP8.5).

631

632 **Fig. 3.** Cost and impact on ocean plans that result from planning for future shifts in species
633 distributions, as opposed to planning only for the present ocean state. a) Fraction of each region
634 included in conservation, fishing, or energy zones for “proactive” plans (blue colors) is only
635 slightly higher than under “present-only” plans (warm colors). b) Despite similar total areas, a
636 substantial fraction of planning grids change zones between the two plans. Region abbreviations
637 are defined in Fig. 1.

638

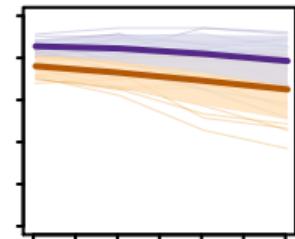
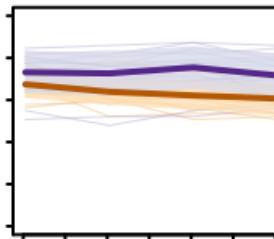
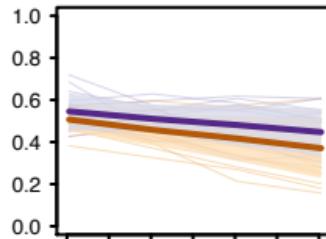

639 **Fig. 4.** Curves that delineate the tradeoff between the ability to meet planning goals in the
640 present (x-axis) or in the future (y-axis). Left-hand images illustrate (from top to bottom) curves
641 that have no tradeoff, a direct tradeoff, and a concave tradeoff (20). Main figure shows curves for
642 the nine regions around North America. Points on each line are generated by weighting present
643 vs. future goals to a greater or lesser extent with a limited total plan area (75% of the area needed
644 to meet all present and future goals at once). The ends of each line indicate no attempt to meet
645 one of the goal types. Areas of 50% or 90% are shown in Fig. S1.

646

647 **Fig. 5.** Average ecological turnover across existing individual management areas or in networks
648 by 2081-2100, including a) fraction of species lost, b) fraction of species gained, and c) Sørenson
649 dissimilarity. Beanplots show density distributions across projections from 16 global climate
650 models under a low (RCP2.6) or a high (RCP8.5) emissions scenario. Thick lines show means
651 within each group.

652

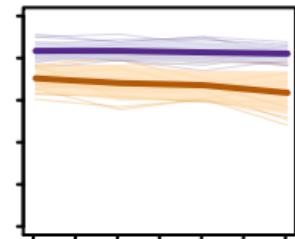
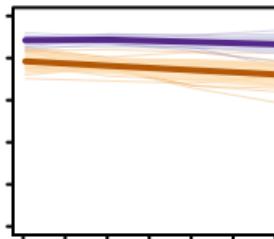
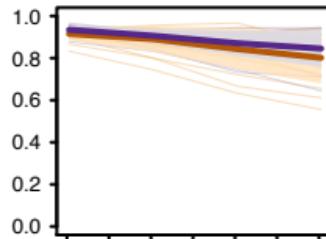
653




Figure 1

Fraction goals met

Eastern Bering Sea

Gulf of Alaska




British Columbia

West Coast U.S.

Gulf of Mexico

Southeast U.S.

Northeast U.S.

Maritimes

Newfoundland

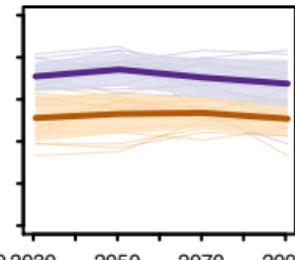
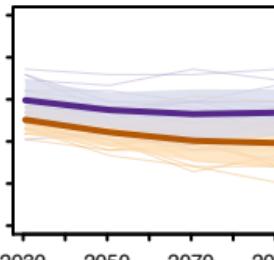
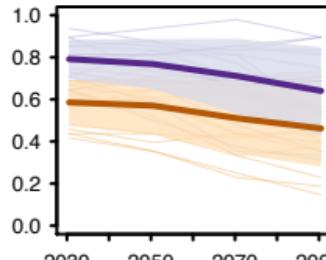




Figure 2

Year

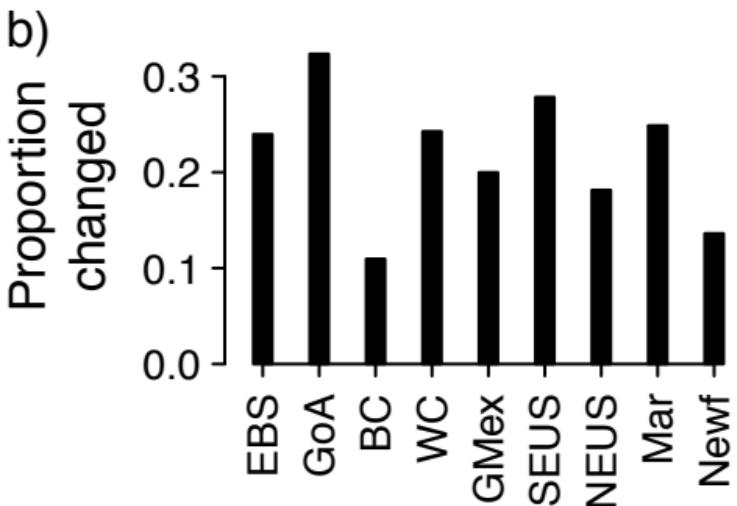
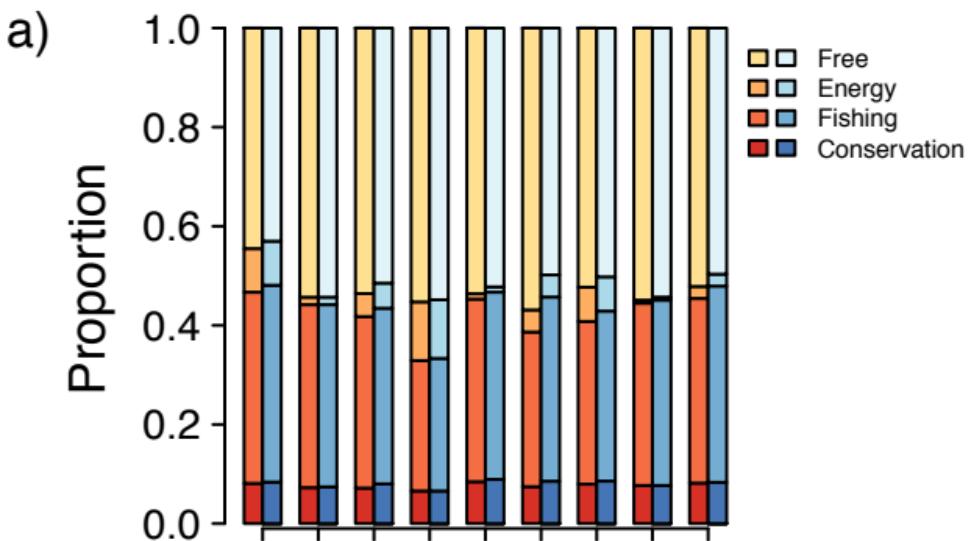
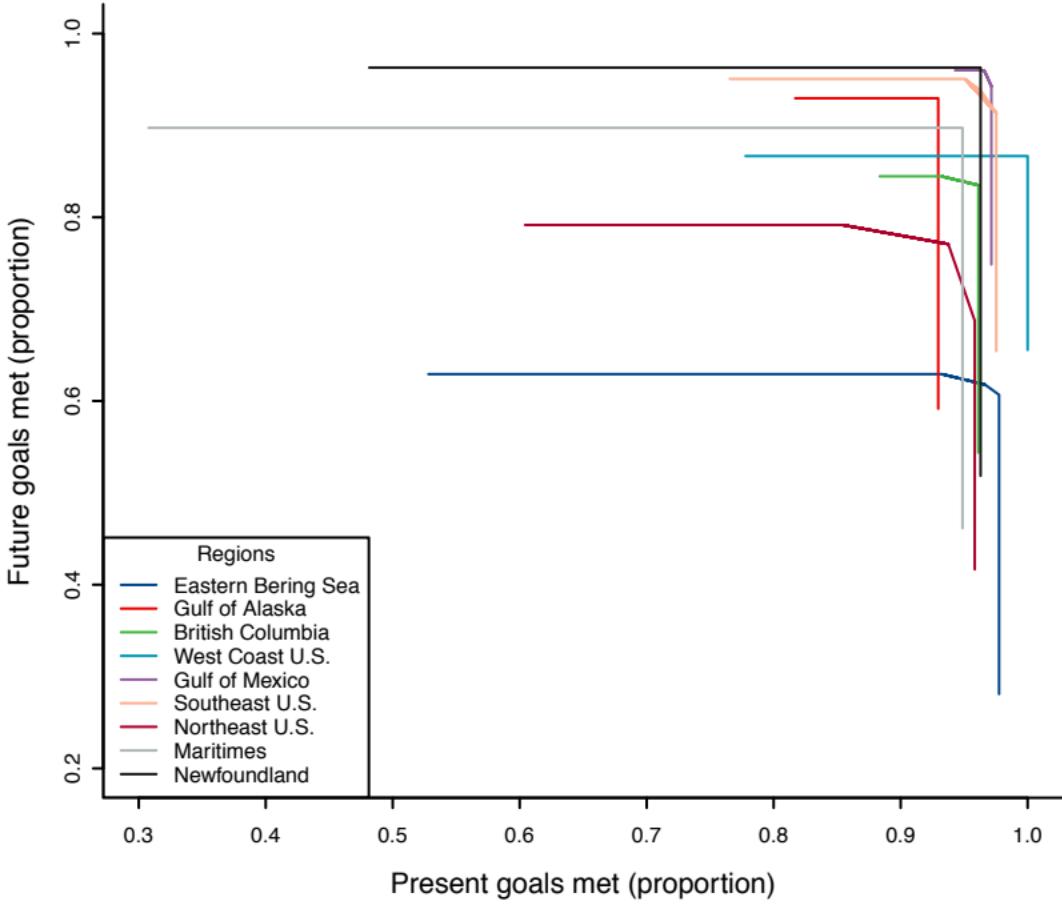
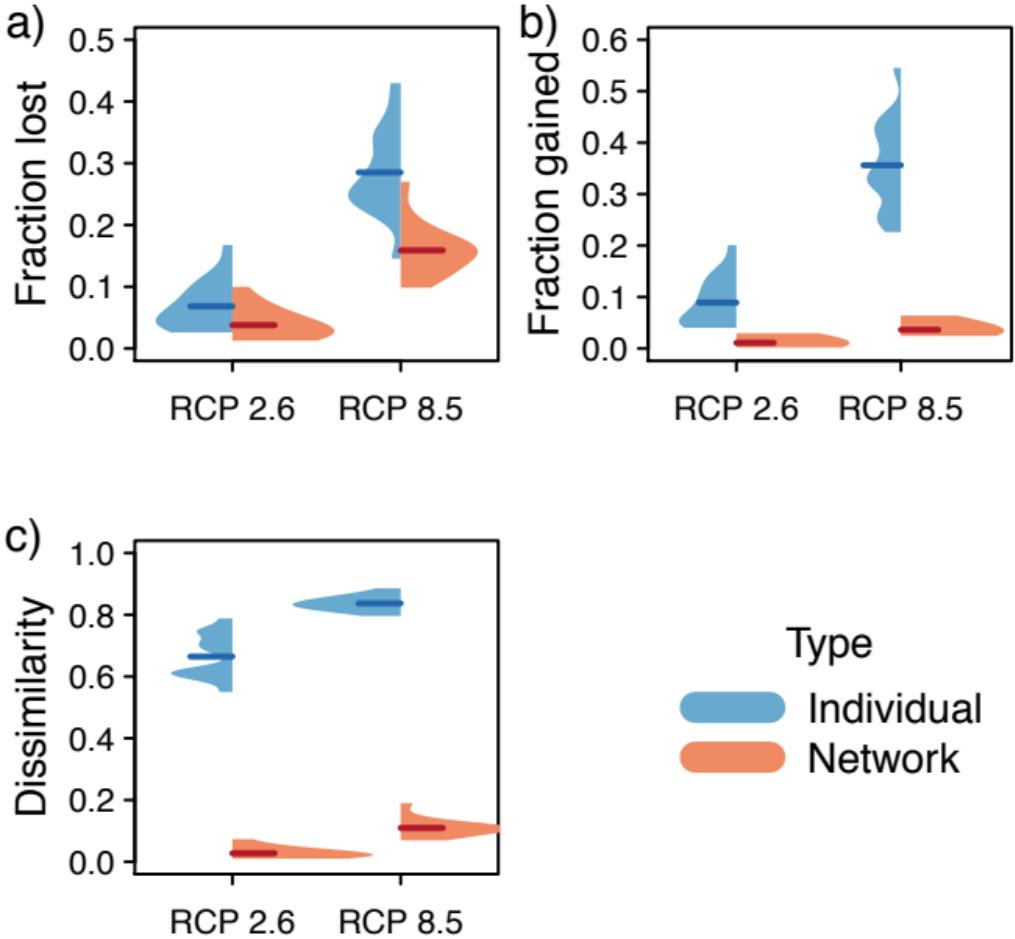





Figure 3

Figure 4

Figure 5

654 **Supplementary Materials:**

655 Figures S1-S3

656 Tables S1-S4

Supplementary Materials for
**Ocean planning for species on the move provides substantial benefits
and requires few tradeoffs**

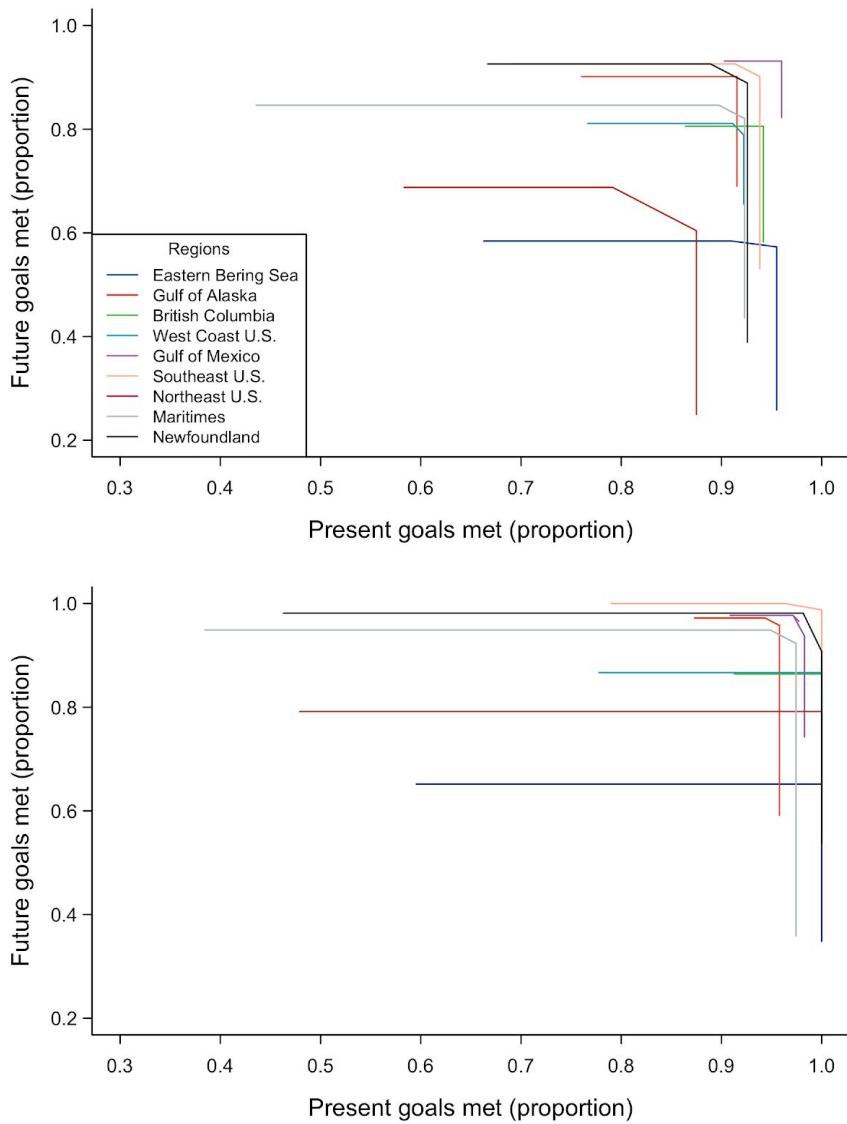
Authors: M. L. Pinsky^{a*}, L. A. Rogers^{b,c}, J. W. Morley^d, and T. L. Frölicher^{e,f}

Affiliations:

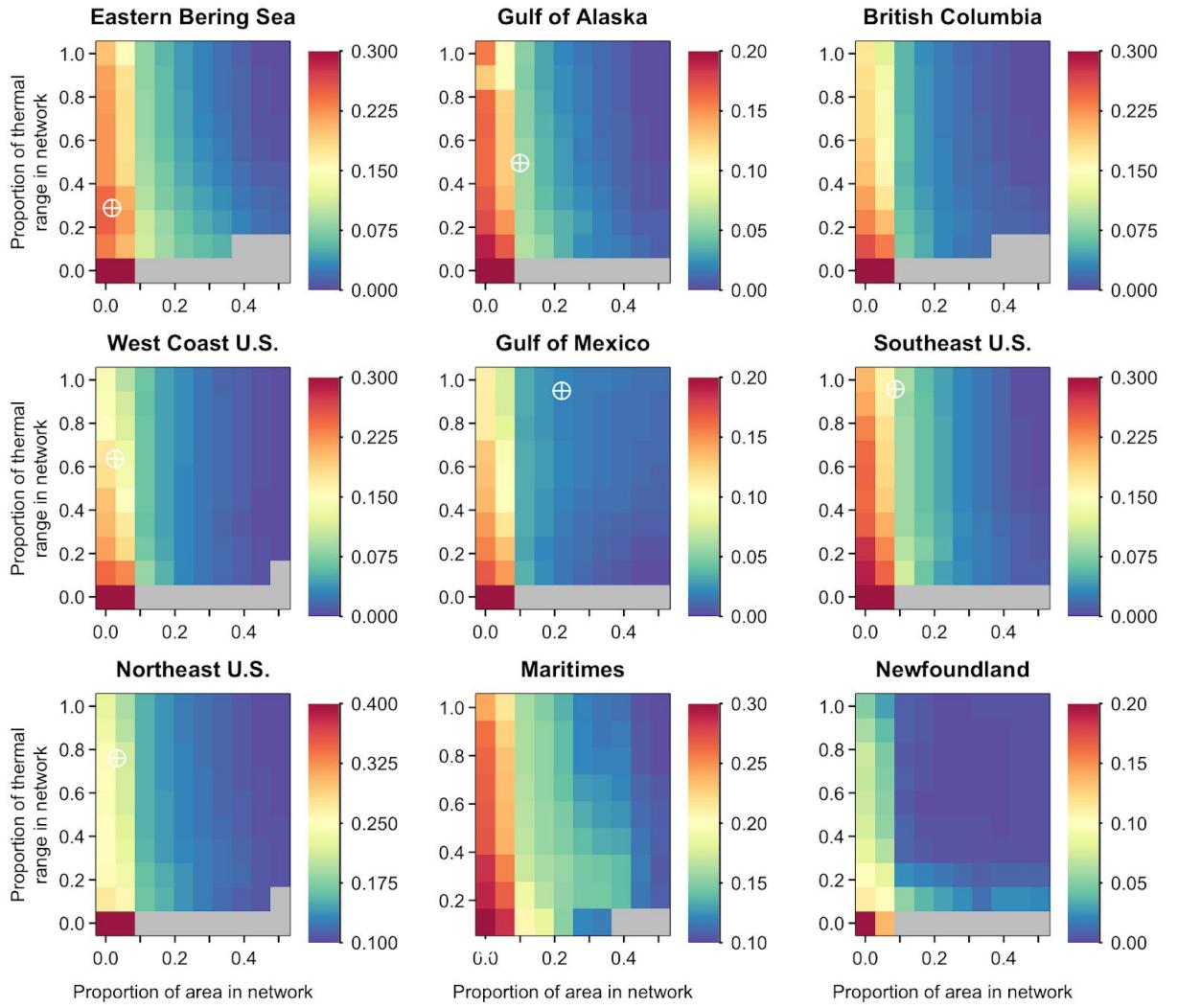
^a Department of Ecology, Evolution and Natural Resources, Rutgers University, The State University of New Jersey, 14 College Farm Rd., New Brunswick, NJ 08901, USA. ORCID 0000-0002-8523-8952

^b The Natural Capital Project, Stanford University, Stanford, CA 94305, USA.

^c Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA.


^d Department of Biology, East Carolina University, Coastal Studies Institute, 850 NC 345, Wanchese, NC 27981

^e Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland.


^f Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern, Switzerland.

*Correspondence to: malin.pinsky@rutgers.edu, +1 848-932-8242

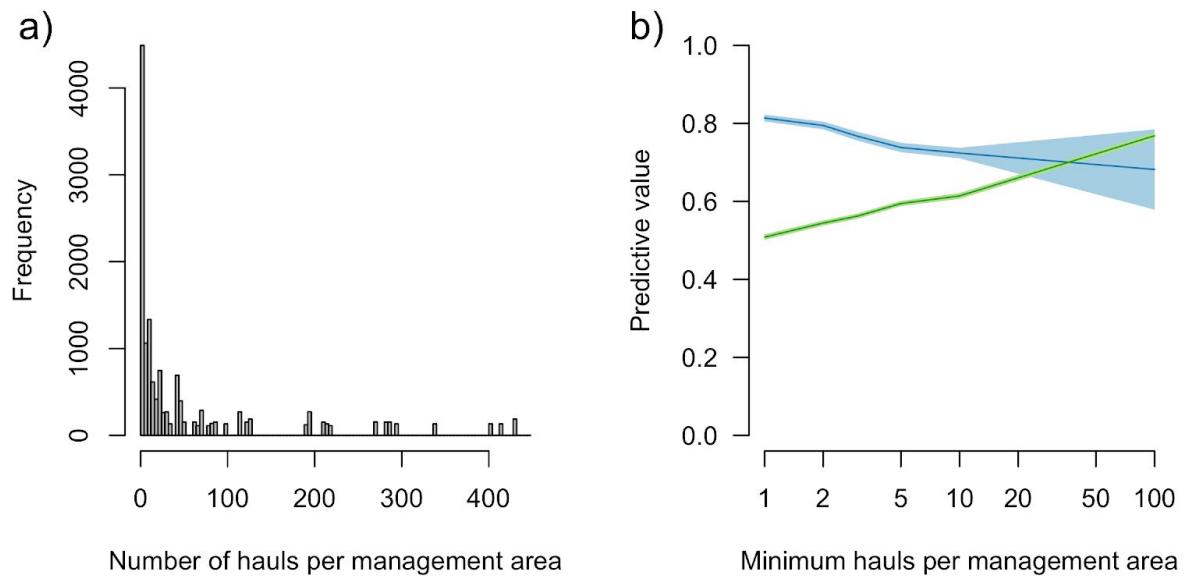

Supplementary Figures

Figure S1. Tradeoff curves with constrained plan areas of 50% (top) or 90% (bottom). Compare to Fig. 4 with a 75% constrained plan area. Curves delineate the tradeoff between the ability to meet planning goals in the present (x-axis) or in the future (y-axis). Points on each line are generated by weighting present vs. future goals to a greater or lesser extent with a limited plan area (a percentage of the plan area that would be needed to meet all present and future goals at once). The ends of each line indicate no attempt to meet one of the goal types.

Figure S2. Ecological turnover expected in simulated management area networks. Networks vary in size (fraction of total cells selected in a region) and thermal range (fraction of total temperature range in a region selected within the network). Ecological turnover is expressed as the Sørenson dissimilarity index, where high numbers (red colors) indicate high species turnover between the beginning and end of the 21st century and low numbers (blue colors) indicate the opposite. The relative area and thermal ranges of the empirical networks examined in Fig. 5 are indicated with white symbols (California state, Alaska state, and Atlantic coast U.S. states).

Figure S3. Comparison of species presence-absence projections in management areas against independent bottom trawl observations (2016-2018) in those same areas. a) Most management areas had few sampling events, as shown by a histogram of sampling events per management area with a bin size of four. b) Positive Predictive Value (green) and Negative Predictive Value (blue) after trimming out management areas with few sampling events. The x-axis shows the minimum number of hauls per management area retained in the dataset before calculating Positive and Negative Predictive Values. Shading shows standard errors.

Supplementary Tables

Table S1. Global climate models used in projections of surface and bottom temperatures over the 21st century. A randomly selected subset of half the models was used for simulated ocean planning, while the other half was used for testing the ocean plans.

Organization	Model	Use
Beijing Climate Center, China	bcc-csm1-1-m	Planning
Beijing Climate Center, China	bcc-csm1-1	Planning
Canadian Centre for Climate Modelling and Analysis, Canada	CanESM2	Planning
National Center for Atmospheric Research, USA	CCSM4	Planning
National Science Foundation, Department of Energy, National Center for Atmospheric Research, USA	CESM1-CAM5	Testing
Centre National de Recherches Météorologiques, France	CNRM-CM5	Testing
Geophysical Fluid Dynamics Laboratory, USA	GFDL-CM3	Testing
Geophysical Fluid Dynamics Laboratory, USA	GFDL-ESM2M	Planning
Geophysical Fluid Dynamics Laboratory, USA	GFDL-ESM2G	Planning
NASA Goddard Institute for Space Studies, USA	GISS-E2-R	Planning
NASA Goddard Institute for Space Studies, USA	GISS-E2-H	Testing
L'Institut Pierre-Simon Laplace, France	IPSL-CM5A-LR	Testing
L'Institut Pierre-Simon Laplace, France	IPSL-CM5A-MR	Testing
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, Japan	MIROC-ESM	Planning
Max-Planck-Institut für Meteorologie, Germany	MPI-ESM-LR	Testing
Norwegian Climate Centre, Norway	NorESM1-ME	Testing

Table S2. Area (number of grid cells) and number of species included in each region for meeting conservation goals or for meeting fishery goals.

Region	Area	Conservation	Fishery
Eastern Bering Sea	2195	79	10
Gulf of Alaska	661	61	10
British Columbia	237	93	10
West Coast	228	80	10
Gulf of Mexico	651	165	10
Southeast U.S.	269	71	10
Northeast U.S.	478	38	10
Maritimes	1131	29	10
Newfoundland	1444	44	10

Table S3. InVEST parameters for wind and wave energy net present value (NPV) calculations. Values marked as * are default for InVEST 3.7.0.

Parameter	Value	Reference
Discount rate	0.05	(6)
<i>Wave model</i>		
Wave data	WAVEWATCH III global	(36) *
Machine type	Pelamis	(36) *
Number of machines	100	(32)
<i>Wind model</i>		
Wind data	Global wind statistics derived from WAVEWATCH III reanalysis	(30) *
Minimum depth	3 m	*
Maximum depth	60 m	*
Minimum distance from shore	0 km	*
Maximum distance from shore	200 km	*
Turbines per farm	16	(6)
Energy price	0.161 \$/kWh	(6)
Turbine rated power	5.0 MW	*

Table S4. Commercially important fishery species considered in each region for marine spatial planning.

Region	Species name	Common name
Eastern Bering Sea	<i>Gadus chalcogrammus</i>	Alaska pollock
Eastern Bering Sea	<i>Gadus macrocephalus</i>	Pacific cod
Eastern Bering Sea	<i>Limanda aspera</i>	Yellowfin sole
Eastern Bering Sea	<i>Pleurogrammus monopterygius</i>	Atka mackerel
Eastern Bering Sea	<i>Oncorhynchus keta</i>	Chum salmon
Eastern Bering Sea	<i>Hippoglossoides elassodon</i>	Flathead sole
Eastern Bering Sea	<i>Anoplopoma fimbria</i>	Sablefish
Eastern Bering Sea	<i>Glyptocephalus zachirus</i>	Rex sole
Eastern Bering Sea	<i>Atheresthes stomias</i>	Arrowtooth flounder
Eastern Bering Sea	<i>Sebastes alutus</i>	Pacific ocean perch
Gulf of Alaska	<i>Metacarcinus magister</i>	Dungeness crab
Gulf of Alaska	<i>Sebastes alutus</i>	Pacific ocean perch
Gulf of Alaska	<i>Merluccius productus</i>	North Pacific hake
Gulf of Alaska	<i>Gadus macrocephalus</i>	Pacific cod
Gulf of Alaska	<i>Gadus chalcogrammus</i>	Alaska pollock
Gulf of Alaska	<i>Clupea pallasii pallasii</i>	Pacific herring
Gulf of Alaska	<i>Hippoglossus stenolepis</i>	Pacific halibut
Gulf of Alaska	<i>Oncorhynchus keta</i>	Chum salmon
Gulf of Alaska	<i>Pleurogrammus monopterygius</i>	Atka mackerel
Gulf of Alaska	<i>Limanda aspera</i>	Yellowfin sole
British Columbia	<i>Metacarcinus magister</i>	Dungeness crab
British Columbia	<i>Sebastes alutus</i>	Pacific ocean perch
British Columbia	<i>Merluccius productus</i>	North Pacific hake
British Columbia	<i>Gadus macrocephalus</i>	Pacific cod
British Columbia	<i>Gadus chalcogrammus</i>	Alaska pollock
British Columbia	<i>Clupea pallasii pallasii</i>	Pacific herring
British Columbia	<i>Hippoglossus stenolepis</i>	Pacific halibut
British Columbia	<i>Oncorhynchus keta</i>	Chum salmon
British Columbia	<i>Pleurogrammus monopterygius</i>	Atka mackerel

British Columbia	<i>Limanda aspera</i>	Yellowfin sole
West Coast	<i>Merluccius productus</i>	North Pacific hake
West Coast	<i>Pandalus jordani</i>	Pink shrimp
West Coast	<i>Microstomus pacificus</i>	Dover sole
West Coast	<i>Anoplopoma fimbria</i>	Sablefish
West Coast	<i>Engraulis mordax</i>	California anchovy
West Coast	<i>Clupea pallasii pallasii</i>	Pacific herring
West Coast	<i>Sebastes entomelas</i>	Widow rockfish
West Coast	<i>Atheresthes stomias</i>	Arrowtooth flounder
West Coast	<i>Sardinops sagax</i>	Pacific sardine
West Coast	<i>Scomber japonicus</i>	Chub mackerel
Gulf of Mexico	<i>Penaeus setiferus</i>	Northern white shrimp
Gulf of Mexico	<i>Argopecten gibbus</i>	Atlantic calico scallop
Gulf of Mexico	<i>Penaeus aztecus</i>	Northern brown shrimp
Gulf of Mexico	<i>Scomberomorus maculatus</i>	Atlantic Spanish mackerel
Gulf of Mexico	<i>Brevoortia patronus</i>	Gulf menhaden
Gulf of Mexico	<i>Opisthonema oglinum</i>	Atlantic thread herring
Gulf of Mexico	<i>Penaeus duorarum</i>	Pink shrimp
Gulf of Mexico	<i>Scomberomorus cavalla</i>	King mackerel
Gulf of Mexico	<i>Sicyonia brevirostris</i>	Brown rock shrimp
Gulf of Mexico	<i>Xiphopenaeus kroyeri</i>	Atlantic seabob
Southeast U.S.	<i>Argopecten gibbus</i>	Atlantic calico scallop
Southeast U.S.	<i>Brevoortia tyrannus</i>	Atlantic menhaden
Southeast U.S.	<i>Callinectes sapidus</i>	Blue crab
Southeast U.S.	<i>Carcharhinus plumbeus</i>	Sandbar shark
Southeast U.S.	<i>Leiostomus xanthurus</i>	Spot
Southeast U.S.	<i>Micropogonias undulatus</i>	Atlantic croaker
Southeast U.S.	<i>Paralichthys dentatus</i>	Summer flounder
Southeast U.S.	<i>Penaeus setiferus</i>	Northern white shrimp
Southeast U.S.	<i>Placopecten magellanicus</i>	American sea scallop
Southeast U.S.	<i>Sicyonia brevirostris</i>	Brown rock shrimp

Northeast U.S.	<i>Placopecten magellanicus</i>	American sea scallop
Northeast U.S.	<i>Clupea harengus</i>	Atlantic herring
Northeast U.S.	<i>Homarus americanus</i>	American lobster
Northeast U.S.	<i>Brevoortia tyrannus</i>	Atlantic menhaden
Northeast U.S.	<i>Gadus morhua</i>	Atlantic cod
Northeast U.S.	<i>Merluccius bilinearis</i>	Silver hake
Northeast U.S.	<i>Doryteuthis pealeii</i>	Longfin inshore squid
Northeast U.S.	<i>Limanda ferruginea</i>	Yellowtail flounder
Northeast U.S.	<i>Melanogrammus aeglefinus</i>	Haddock
Northeast U.S.	<i>Scomber scombrus</i>	Atlantic mackerel
Maritimes	<i>Clupea harengus</i>	Atlantic herring
Maritimes	<i>Homarus americanus</i>	American lobster
Maritimes	<i>Gadus morhua</i>	Atlantic cod
Maritimes	<i>Chionoecetes opilio</i>	Snow crab
Maritimes	<i>Scomber scombrus</i>	Atlantic mackerel
Maritimes	<i>Melanogrammus aeglefinus</i>	Haddock
Maritimes	<i>Cancer irroratus</i>	Atlantic rock crab
Maritimes	<i>Mallotus villosus</i>	Capelin
Maritimes	<i>Pandalus borealis</i>	Pink shrimp
Maritimes	<i>Placopecten magellanicus</i>	American sea scallop
Newfoundland	<i>Chionoecetes opilio</i>	Snow crab
Newfoundland	<i>Homarus americanus</i>	American lobster
Newfoundland	<i>Mallotus villosus</i>	Capelin
Newfoundland	<i>Placopecten magellanicus</i>	American sea scallop
Newfoundland	<i>Clupea harengus</i>	Atlantic herring
Newfoundland	<i>Pandalus borealis</i>	Northern prawn
Newfoundland	<i>Gadus morhua</i>	Atlantic cod
Newfoundland	<i>Reinhardtius hippoglossoides</i>	Greenland halibut
Newfoundland	<i>Melanogrammus aeglefinus</i>	Haddock
Newfoundland	<i>Scomber scombrus</i>	Atlantic mackerel