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Abstract 24	

Projections of climate change impacts on living resources are being conducted frequently, and 25	

the goal is often to inform policy. Species projections will be more useful if uncertainty is 26	

effectively quantified. However, few studies have comprehensively characterized the 27	

projection uncertainty arising from greenhouse gas scenarios, Earth system models, and both 28	

structural and parameter uncertainty in species distribution modeling. Here we conducted 29	

8964 unique 21st century projections for shifts in suitable habitat for seven economically 30	

important marine species including American lobster, Pacific halibut, Pacific ocean perch, 31	

and summer flounder. For all species, both the Earth system model used to simulate future 32	

temperatures and the niche modeling approach used to represent species distributions were 33	

important sources of uncertainty, while variation associated with parameter values in niche 34	

models was minor. Greenhouse gas emissions scenario contributed to uncertainty for 35	

projections at the century scale. The characteristics of projection uncertainty differed among 36	

species and also varied spatially, which underscores the need for improved multi-model 37	

approaches with a suite of Earth system models and niche models forming the basis for 38	

uncertainty around projected impacts. Ensemble projections show the potential for major 39	

shifts in future distributions. Therefore, rigorous future projections are important for 40	

informing climate adaptation efforts.  41	
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Introduction 47	

Earth system model (ESM) simulations are frequently used to forecast climate change 48	

impacts on natural resources (Stock et al., 2011; Pacifici et al., 2015). Projecting climate 49	

impacts on species generally requires the coupling of species distribution models with ESM 50	

simulations of future environmental conditions. Such studies are computationally complex 51	

and expensive, and they often simulate climate impacts on hundreds of species simultaneously 52	

(Thuiller et al., 2004 and 2019; Cheung et al., 2009; Diniz-Filho et al., 2009; Morley et al., 53	

2018). The interpretation of projected climate impacts on natural resources, and in particular 54	

the incorporation of such information into policy decisions, is still in its infancy (Guisan et 55	

al., 2013; Bonebrake et al., 2018; Miller et al., 2018). However, it is clear that the effective 56	

quantification of uncertainty in projected climate impacts is critical for assessment of such 57	

forecasts by end users (Thuiller et al., 2004 and 2019; Araujo and New, 2006; Buisson et al., 58	

2010; Cheung et al., 2016a).  59	

 Despite broad recognition that quantifying uncertainty in species projections is 60	

important, relatively few studies have comprehensively characterized uncertainty (but see, 61	

Dormann et al., 2008; Buisson et al., 2010; Thuiller et al., 2019). Projection uncertainty 62	

comes from multiple sources and—depending on the spatial and temporal scope of the study 63	

and the biological data used—any one of them may be important (Hawkins and Sutton, 2009; 64	

Cheung et al., 2016a). For instance, several options are available for future scenarios of socio-65	

economic developments and associated greenhouse gas emissions (Riahi et al., 2017). Also, a 66	

suite of different ESMs are available that each simulate future climates based on inputs from 67	

future greenhouse gas emission scenarios. The structure of ESMs vary in many ways, 68	

including spatial and temporal resolution, and how fine scale oceanographic features like 69	



oceanic currents are parameterized (Stock et al., 2011). Finally, structural uncertainty from 70	

biological models can impact projections because there are often multiple options available 71	

for representing species habitat associations or population dynamics (Thuiller et al., 2004; 72	

Diniz-Filho et al., 2009; Buisson et al., 2010; McHenry et al. 2019; Brodie et al. 2020). 73	

Further, parameter uncertainty within biological models may represent an important source of 74	

variation (Hare et al., 2012b). Another important consideration is that the characteristics of 75	

uncertainty may vary spatially, such that confidence in a species’ projection may be high in 76	

one geographic area and poor in another (Diniz-Filho et al., 2009; Buisson et al., 2010; 77	

Raybaud et al., 2017).      78	

 Collectively, climate projection studies show the potential for major impacts on living 79	

resources and regional or global threats to biodiversity during the 21st century (Pereira et al., 80	

2010; Pörtner et al., 2014; Jones and Cheung, 2015; Molinos et al., 2015; Lotze et al., 2019). 81	

Management structures that are designed to promote sustainable use of natural resources will 82	

be challenged. For example, the effectiveness of conservation areas may be compromised 83	

with the redistribution of habitats (Araujo et al., 2011), and there will be significant 84	

challenges faced by all sectors of the fishing industry as species shift and regional 85	

productivity changes (Cheung et al., 2010 and 2016b; Pinsky et al., 2018; Lotze et al., 2019). 86	

Therefore, there is a critical need for studies that conduct detailed characterizations of 87	

projection uncertainty in order to inform the implementation of climate-adaptive resource 88	

management (Araujo and New, 2006; Cheung et al., 2016a; Thuiller et al., 2019).  89	

 We conducted a comprehensive analysis of projection uncertainty with seven 90	

economically important species. Specifically, we simultaneously investigated the relative 91	

importance of four sources of uncertainty, including future greenhouse gas emissions 92	



scenario, ESM model structure, niche modeling approach, and parameter uncertainty in the 93	

species environmental relationships. For each species, we conducted 8964 high resolution 94	

(~30 km2) projections of suitable habitat shifts during the 21st century over a geographically 95	

broad spatial grid that encompassed over 1.1 million km2 for Pacific coast species and over 96	

1.8 million km2 for Atlantic coast species (including the Gulf of Mexico). We show that the 97	

most important sources of uncertainty vary among species, future time periods, geographic 98	

regions within a species’ range, and metrics used to quantify projected changes.  99	

 100	

Methods 101	

 The projections for shifts in habitat conducted here are based on the framework that 102	

was developed in Morley et al. (2018), where projections for more than 680 marine species on 103	

the North American continental shelf are examined. Therefore, we provide a briefer 104	

description of aspects of the methodology that were similar to Morley et al. (2018). Here we 105	

used the same biological dataset for species distribution modeling. The climate projection data 106	

that we used represents an expanded set of future simulations compared to our previous study.  107	

Modeled species 108	

 We conducted our analysis with seven species, although the results from three of these 109	

are primarily in the supplemental material. From the Pacific we analyzed Pacific halibut 110	

(Hippoglossus stenolepis), Pacific ocean perch (Sebastes alutus), sablefish (Anoplopoma 111	

fimbria), and California market squid (Doryteuthis opalescens). From the Atlantic we 112	

analyzed summer flounder (Paralichthys dentatus), American lobster (Homarus americanus), 113	

and black sea bass (Centropristis striata). All of these species are of substantial economic 114	

importance. For instance, American lobster is presently the most valuable species to U.S. 115	



commercial fisheries, while Pacific halibut and sablefish are two of the most valuable finfish 116	

(National Marine Fisheries Service, 2018). Further, summer flounder and black sea bass are 117	

valuable recreational fisheries. We chose Pacific ocean perch to represent a species from the 118	

diverse Sebastes complex, and California market squid were chosen because it is the most 119	

valuable U.S. squid fishery. These seven species also represent a range of thermal niches on 120	

each coast and a range in number of survey observations available (Table 1 and 121	

Supplementary Table S1).   122	

Survey and environmental data 123	

 Species occurrence and biomass data were taken from a curated dataset of 135,254 124	

bottom trawl hauls from twenty long-term surveys that encompassed most of the continental 125	

shelf area of the United States and Canada (Morley et al., 2018). Each trawl haul was coupled 126	

with a suite of environmental data based on the date and geographic location of each sample. 127	

Sea surface temperature (SST) and sea bottom temperature (SBT) variables were obtained 128	

from the Simple Ocean Data Assimilation (SODA3.3.1 for 1980-2015 and SODA2.2.4 for pre 129	

1980) reanalysis of ocean climate, which provides a global reconstruction of past ocean 130	

temperatures (Carton et al., 2016). Two variables were used to describe seafloor 131	

characteristics at the location of each trawl. Rugosity, which measured spatial variation in 132	

depth at a ~5.6 km spatial scale, was calculated using depth data from the GEBCO gridded 133	

bathymetric data set (Becker et al., 2009). Sediment grain size was used to describe benthic 134	

habitat and consisted of either geographic point values or polygon-based maps (Morley et al., 135	

2018). Point values were interpolated using inverse distance weighting to obtain sediment 136	

data that matched the resolution of the rugosity data.    137	

Species niche modeling 138	



 To model species realized niches we used three approaches with R software version 139	

3.5.0 (R Core Team, 2018). First, generalized linear models (GLM) were used in which all 140	

continuous predictor variables were modeled with both linear and quadratic terms. GLMs 141	

represent a relatively simple modeling approach with low risk of overfitting. Further, the 142	

GLMs assume that species relationships with environmental variables are relatively simple 143	

(e.g., dome shaped). Second, generalized additive models (GAM) were fit with the mgcv R-144	

package (Wood, 2011), which represent an approach of intermediate complexity. More 145	

complex relationships with predictors can be achieved with GAMs, although there is greater 146	

risk of overfitting than with GLMs. To reduce overfitting, we applied a gamma penalty 147	

against model complexity that was equal to the log of the number of samples divided by two. 148	

Also, a shrinkage penalty was used which acts on individual model terms such that they can 149	

be removed from the model. 150	

The third niche modeling approach was boosted regression trees (BRT) with the gbm 151	

R-package (Ridgeway, 2017), which are based on a machine learning algorithm to build 152	

ensemble models by sequentially fitting regression trees from subsets of data. Processing time 153	

is relatively high for BRTs and model overfitting can be more prevalent. However, BRTs 154	

implicitly include important interactions between variables and may have greater predictive 155	

power than GLMs or GAMs (Elith et al., 2006). The settings for each BRT (number of trees, 156	

learning rate, and interaction depth) was optimized using 10-fold cross validation repeated 157	

three times using the caret package (Table S2; Kuhn, 2018). The minimum number of 158	

observations in terminal nodes was set to ten.    159	

With each of the above approaches, we developed separate models either for 160	

probability of occurrence or for biomass. The probability of occurrence models were based on 161	



presence and absence data and assumed a binomial error distribution. The biomass models 162	

used log transformed biomass along with Gaussian errors for observations where biomass was 163	

greater than zero. To allow biomass models to include a larger range of environmental 164	

conditions, we added near-zero biomass values (1.0-10) for each species for a fraction of hauls 165	

in survey regions where a species was never observed (Morley et al., 2018). These near-zero 166	

values amounted to 10% of total observations or 10% of the total hauls in a region, whichever 167	

was smaller. As a result, all species projections could be conducted on an identical coast-wide 168	

scale and not just within environmental boundaries where a species has been historically 169	

observed. The use of near-zero values are similar to the “pseudoabsences” used in presence-170	

only distribution models (Jones et al., 2012). This approach assumes that climate variables are 171	

what restricts a species from a survey region. This assumption is supported by an analysis of 172	

global fish distributions showing that marine ectotherms generally fill their thermal niches 173	

(Sunday et al. 2012). Several species were observed in all survey regions on a given coast, so 174	

no near-zero values were added for these species (Table 1 and Supplementary Table S1). 175	

California market squid represented a unique case because two survey regions had fewer than 176	

three observations, so we also included near-zero values for those regions.  177	

Final predictions of habitat suitability based on biomass models were calculated using 178	

a delta modeling approach, which uses the product of the predicted probability of occurrence 179	

and the exponentiated prediction of log-biomass (Barry and Welsh, 2002). We emphasize that 180	

predictions of delta-biomass in this context represent a relative value in habitat suitability and 181	

not actual future biomasses. In total, six niche models were fitted for each species, a 182	

probability of occurrence and a delta-biomass model for the GLM, GAM, and BRT 183	

approaches. Models were fit to the combined survey data from either the Pacific or the 184	



Atlantic (including the Gulf of Mexico) coasts, depending on the species. Predictor variables 185	

included seasonal SST and SBT based on a three month mean, annual minimum and 186	

maximum SBT that was based on the preceding 12 months, maximum SST, seafloor rugosity, 187	

sediment grain size, and a categorical indicator for ecological survey (Morley et al., 2018). 188	

The categorical variable was included as an intercept term in order to account for differences 189	

in sampling gear and methodology between surveys.  190	

 To assess differences in predictive power among the six approaches, we fit a separate 191	

set of niche models using a training dataset that consisted of the initial 80% of hauls that 192	

occurred within each survey region. These training models were then used to compare 193	

predicted versus observed values for the remaining 20% of the most recent data. Four metrics 194	

were used for comparison. First, for both probability of occurrence and delta-biomass models, 195	

we calculated mean annual values (i.e., mean of all hauls) for each survey with the testing 196	

data. Multiple annual values were calculated for survey regions where more than one season 197	

was sampled each year (Morley et al., 2018). Linear regression was used to compare 198	

predicted versus observed annual mean values, and associated R2 values were used to 199	

compare the ability of niche models to represent large scale patterns in species distribution.  200	

 The other three metrics for comparing niche model performance with independent test 201	

data only pertained to probability of occurrence models and used the dismo R-package 202	

(Hijmans et al., 2017). For these metrics the modeled probability of occurrence was converted 203	

into a binary response (i.e., presence or absence), based on an estimated threshold value 204	

between 0 and 1. The kappa and true skill statistic (TSS; Allouche et al., 2006) were 205	

calculated at all potential threshold values and then the maximum value for each of these 206	

metrics was recorded (i.e., kappamax and TSSmax; Elith et al., 2006). Also, we calculated the 207	



area under the receiver operator curve (AUC). We chose these three threshold-independent 208	

statistics, which compute across a range of possible threshold values, because we ultimately 209	

modeled probability of occurrence and not a binary response for projections.  210	

Projecting species habitat distribution 211	

 Output from eighteen Earth system models that participated in the Coupled Model 212	

Intercomparison Project 5 (CMIP5) were used to generate a range of ocean temperature 213	

change projections over the 21st century (Table S3). From each ESM, we used output from 214	

simulations that were run under three future greenhouse gas emissions scenarios (i.e., 215	

Representative Concentration Pathways, RCP): a “strong mitigation” (RCP 2.6), a “midrange 216	

mitigation” (RCP 4.5), and a “business as usual” scenario (RCP 8.5). These three scenarios 217	

represent roughly one, two, and four degrees Celsius of global mean atmospheric surface 218	

temperature change during this century, respectively (Collins et al., 2013).  219	

The ocean temperature projections used here represent an expanded version of the data 220	

set used in Morley et al. (2018). The additions were the RCP 4.5 scenario and two additional 221	

ESMs, which were treated identically to the projection data from the previous study. Briefly, 222	

we used the delta method to downscale ESM projections for the summer season (July – 223	

September). The delta values were added to a mean temperature climatology that was 224	

developed from the SODA3.3.1 data for 1995-2014. The climate projection grid (~0.25° 225	

latitude and longitude) was refined to 0.05° latitude and longitude based on the spatial 226	

resolution of the seafloor data (Fig. 1). Depth of the projection grid was limited to 400m or 227	

shallower. The resulting projection grid consisted of 65,826 individual cells on the Pacific 228	

coast, 69,209 on the Atlantic coast, and 13,383 in the Gulf of Mexico.  229	



 For each species, a set of 324 “baseline” projection time series (3 RCP × 18 ESM × 6 230	

niche models) of annual-summer thermal habitat distributions from 2007 to 2100 were 231	

conducted (Figure 1). Annual grid cell values were aggregated by averaging projections 232	

within five twenty-year bins, which were 2007-2020, 2021-2040, 2041-2060, 2061-2080, and 233	

2081-2100. The baseline projections for each species are available in the Dryad Digital 234	

Repository, at https://doi.org/10.5061/dryad.44j0zpcbc. In addition to this set of baseline 235	

projections that used the original parameterized niche models, we also conducted a second set 236	

of projections to quantify the role of parameter uncertainty within niche models. Examining 237	

parameter uncertainty was done by resampling parameter values for forty iterations from a 238	

multivariate normal distribution, based on the variance of individual parameters in the GLMs 239	

or GAMs (Degeling et al., 2017; Wong et al., 2011), using the MASS package (Venables and 240	

Ripley, 2002). We did not include BRTs with this analysis, as they already represent an 241	

ensemble model and they could not be easily adapted to an analogous method for parameter 242	

resampling. Thus, using this method we created 8640 projection time series (3 RCP × 18 243	

ESM × 4 niche models × 40 parameter iterations) of annual thermal habitat distributions for 244	

each species, which were aggregated into twenty-year bins as was done for the baseline 245	

projections (Figure 1).  246	

Analyses 247	

 For each species we summarized all of the projection time series by calculating the 248	

latitudinal centroid during each twenty-year time interval, and also by calculating the 249	

percentage change in thermal habitat quantity during the 21st century. For both of these 250	

analyses, calculations were adjusted for grid cell area, which declines as latitude increases. 251	

Centroids were calculated as mean latitude, weighted by either delta-biomass or probability of 252	



occurrence depending on the niche model (Pinsky et al., 2013; Morley et al., 2018). Centroids 253	

were calculated across the entire North American coastline, excluding the far-north which was 254	

outside of our projection grid. Generally, changes in the centroid over time represent an 255	

effective way to quantify shifts in the modeled niche across the majority of a species’ 256	

geographic range, but do not provide information on changes in overall habitat quantity.  257	

We analyzed projections of thermal habitat quantity as a percentage change between 258	

the initial time period (2007-2020) and each future time interval. For each species, our 259	

analysis of habitat quantity was restricted to a northern and southern geographic region, which 260	

was done to examine how uncertainty varies regionally. The boundaries of these regions 261	

differed among species and—with the exception of market squid—were restricted to the U.S. 262	

exclusive economic zone (EEZ). For all Pacific species except market squid, the northern 263	

region represented Alaskan waters and the southern region represented the west coast of the 264	

contiguous U.S. Market squid were similar to other Pacific species, but the northern region 265	

represented the EEZ of western Canada. For lobster the northern region consisted of the Gulf 266	

of Maine and Georges Bank (east of -70° longitude) and the southern region represented the 267	

remaining U.S. continental shelf north of Cape Hatteras, North Carolina (NC). For summer 268	

flounder and black sea bass the northern and southern regions were divided by Cape Hatteras, 269	

NC and did not include the Gulf of Mexico. Average annual thermal habitat quantity was 270	

calculated as the sum of all projected delta-biomass or probability of occurrence values from 271	

the northern and southern regions of the projection grid within each aggregated twenty-year 272	

time interval (Morley et al., 2018). From these habitat quantity values, we calculated 273	

percentage change from the initial time period. Our approach with habitat quantity contrasted 274	

somewhat with our analysis of centroid, which was not calculated as a percentage change or 275	



shift from the initial time period. The reason for using percentage change with habitat quantity 276	

analysis was to allow the niche models that projected probability of occurrence to be analyzed 277	

on the same scale as the delta-biomass models.    278	

 For each species, we quantified the sources of projection uncertainty during each 279	

future time period using general linear models (GLM) 280	

y ~ RCP + ESM + SDM + RCP*ESM*SDM + ei 281	

where y is either the centroid or percentage change in habitat quantity for the northern or 282	

southern region for a given time period, SDM refers to the four different niche models used 283	

(not including BRTs), and residual error e indicates variation associated with the ith set of 284	

parameter values for a given SDM. To characterize uncertainty, we partitioned the sum of 285	

squares (SS) in the GLMs (Hare et al. 2012a and b). We used the proportion of the total SS 286	

that was explained by residual error to quantify parameter uncertainty. To partition the 287	

remaining SS (i.e., SStotal - SSresidual) among RCP, ESM and SDM we used dominance analysis 288	

(Azen and Budescu, 2003). Dominance analysis uses R2 values from all possible model 289	

subsets to quantify the relative importance of each predictor variable.     290	

 Our examination of baseline projections (i.e., no resampling of parameter values) was 291	

used to compare niche models. We restricted our analysis of baseline projections to RCP 8.5 292	

because this high emission scenario had the most substantial changes in species distribution 293	

and more divergence among the niche models compared to RCP 2.6 and 4.5. To compare 294	

niche models, we calculated the ensemble mean and standard deviation of centroid and 295	

percentage change in habitat quantity across ESMs for each time period.  296	

Ensemble projections across all ESMs and niche models (including BRTs) were also 297	

conducted using the baseline projections with RCP 8.5. To calculate the ensemble mean, we 298	



first needed to transform the projections based on delta-biomass niche models to match the 299	

scale of the probability of occurrence projections (i.e., range between 0 and 1) so that 300	

weighted means could be calculated across niche models. We used the following equation: 301	

biomassijkl = log10(∆biomassijkl) / max(log10(∆biomassl)) 302	

where rescaled delta-biomass biomass in grid cell i, projection year j, ESM k, and niche 303	

model l is calculated as the log transformed biomass divided by the grid cell with the highest 304	

log projected value within projections for niche model l across all years and ESMs. The delta-305	

biomass values were first log transformed, because some species had a small number of grid 306	

cells with high biomasses and without a transformation these values were highly influential 307	

when projected biomass was rescaled and did not resemble observed biomass distributions 308	

within historical data. We then calculated the ensemble mean within each grid cell for the 309	

2007-2020 and 2081-2100 time periods. This was done by first calculating weighted means 310	

across niche models within each ESM and time period, using R2 values from mean survey-311	

year relationships (Table 1) for weights. Then means were calculated across ESMs for each 312	

grid cell and time period. The ensemble habitat projection map for 2007-2020 was compared 313	

with a map showing the change in habitat suitability for the end of the century. The scale of 314	

change was standardized to range between -1 and 1, where all values were proportional to the 315	

grid cell experiencing the greatest change (positive or negative). Finally, we calculated the 316	

standard deviation among ESMs in projected change in habitat suitability between the two 317	

time periods in each grid cell.  318	

To examine how our projections for the present time period (2007-2020) resembled 319	

observations of species distributions, we plotted species occurrence records, which were taken 320	

from the Ocean Biogeographic Information System (OBIS, 2019) and trawl survey data from 321	



the present study. For both datasets we considered each record (i.e., unique date and location 322	

of a sample) as a single occurrence, because commercial fishery observer data are included in 323	

OBIS and can include large numbers of individuals per record. For some species, the OBIS 324	

data also contained trawl survey data from the present study, and when this occurred, we 325	

removed the duplicate data. Occurrence data were aggregated to a 0.25° latitude and longitude 326	

spatial grid and we plotted logged values to reduce the importance of heavily sampled areas 327	

(Figure S1).  328	

 329	

Results 330	

Partitioning projection uncertainty 331	

 General patterns in the sources of uncertainty and amount of variation were evident for 332	

halibut (Figure 2), ocean perch (Figure 3), summer flounder (Figure 4), and lobster (Figure 5). 333	

In most cases, the total sum of squares increased with projections that were farther into the 334	

future (Figures 2-5, panels a-c). One major reason for this was an increasing variance 335	

component for greenhouse gas emission scenario (i.e., RCP) towards the end of the century 336	

(e.g., Figures 2a and 4c). The amount of variation due to ESMs and niche model also tended 337	

to increase for projections that were later in the century (e.g., Figures 4b and 5b), but the 338	

increases were proportionally less than for RCP.  339	

The increasing amount of uncertainty at later time periods was also evident in the 340	

distributions of projections by time period (Figures 2-5, panels d-f). For example, halibut and 341	

ocean perch had relatively narrow ranges for southern habitat loss projections by 2021-2040, 342	

and both species had a prominent mode in the distribution of outcomes for this time period 343	

(Figures 2f and 3f). In contrast, for these two species at the end of the century, the distribution 344	



of projections was more evenly spread across almost a full range of negative outcomes from 0 345	

to 100% loss. Indeed, long-tailed distributions were common among projections towards the 346	

end of the century, which indicated that more extreme outcomes occurred with certain 347	

combinations of RCP, ESM and niche model.  348	

There were some exceptions to the above patterns. For example, variation for the 349	

projected centroid of ocean perch was relatively stable throughout the 21st century, due to a 350	

reduction in variation among ESMs for later projections and little increase in variation among 351	

RCPs (Figure 3a). This pattern for ocean perch was due to more variation in projected 352	

southern habitat quantity among ESMs during the early 21st century. Similarly, market squid 353	

exhibited convergence in niche model centroid projections through time, leading to a general 354	

decline in sum of squares (Supplementary Figure S3a). Another exception from the general 355	

patterns occurred for projections of the change in thermal habitat quantity for market squid 356	

and black sea bass (Supplementary Figures S3b, S4b and c). Both of these species had 357	

pronounced increases in the sum of squares across niche models, ESMs, and RCPs towards 358	

the end of the century.  359	

 Two additional patterns across species were evident. First, parameter uncertainty was 360	

relatively unimportant compared to the other three factors examined (Figures 2-5). Second, 361	

projected centroids increased in latitude through time and northern thermal habitat quantities 362	

increased while southern habitat decreased, despite uncertainty (Figures 2-5, panels d-f). This 363	

pattern varied among species and in some cases projected changes stabilized towards the end 364	

of the century (e.g., Figures 2e and 3e). Some species showed less projected change over 365	

time, including mean change in habitat quantity for lobster in their northern region (Figure 366	

5e).  367	



 Within species, the characteristics of uncertainty varied depending on what metric was 368	

examined. For example, niche model contributed little to sum of squares for halibut centroid 369	

projections, but for change in northern habitat quantity niche model was more important than 370	

greenhouse gas emissions scenario (Figure 2a and b). Similar contrasts could be made for all 371	

seven species.  372	

Niche model comparisons with RCP 8.5 373	

All of the niche models that projected probability of occurrence performed well when 374	

tested with independent data (Table 1 and Supplementary Table S1). For example, AUC 375	

scores for all species and niche models were greater than 0.85. Further, when examining 376	

survey-year relationships, (i.e., mean of all hauls annually for each survey using independent 377	

data) all r2 values were above 0.47 (mean = 0.77). This suggests that at the spatial scales at 378	

which trawl surveys are conducted (e.g., Gulf of Alaska; southeast U.S.), the probability of 379	

occurrence niche models effectively represent variation in species distributions. The ability of 380	

the delta-biomass models to reflect survey-year variation in mean catch was more variable 381	

across niche modeling approaches than the probability of occurrence approach (mean r2 = 382	

0.48; Table 1 and Supplementary Table S1). For example, the GLM and GAM delta-biomass 383	

niche models for summer flounder performed poorly when predicting regional scale annual 384	

catch per unit effort (Table 1), but the BRT models for summer flounder was strongly related 385	

to observed values. These results underscore how much niche models can differ in 386	

performance. The predictive performance of delta-biomass models was not related to how 387	

much deviance was explained by biomass GAMs when comparing across species (Table 1 388	

and Supplementary Table S1). In particular, biomass GAMs for species that included near-389	



zero values during model fitting had a greater proportion of deviance explained due to the 390	

replicated-identical data points added to the margins of species’ niche space. 391	

For all species there were important differences among the six niche modeling 392	

approaches for projecting centroid or percent change in habitat quantity (Figure 6 and 393	

Supplementary Figure S5). Differences among niche models were apparent in both the mean 394	

projection values and the standard deviation among the ESM ensemble members. However, 395	

while niche models often varied in magnitude of projected change, the overall direction of 396	

change was typically similar with only a few exceptions. For example, black sea bass had 397	

poor agreement among niche models in terms of percentage change in suitable habitat 398	

(Supplementary Figure S5f and i), and the more divergent niche models also had poor 399	

agreement among ESMs as indicated by the large standard deviations.  400	

The projection trends for the niche models that were based on probability of 401	

occurrence tended to cluster more closely together than the delta-biomass models (Figure 6 402	

and Supplementary Figure S4). Further, the delta-biomass and probability of occurrence 403	

models often differed considerably within a modeling approach (i.e., GLM, GAM, and BRT; 404	

e.g., Figure 6f and g), although for some species the presence-absence and biomass models 405	

were similar within approaches (e.g., Figure 6i and j). Finally, of the six niche model 406	

approaches, the GLM delta-biomass based projections most commonly had results that 407	

differed substantially from other niche modeling approaches (e.g., Figure 6e and h, 408	

Supplementary Figure S5c and e). These instances of divergent projections based on GLM 409	

delta-biomass models were typically associated with high uncertainty among ESMs.  410	

Ensemble projections with RCP 8.5 411	



For all species the ensemble projection for 2007-2020 (Figure 7 and Supplementary 412	

Figure S6) represented historical occurrence data well (Supplementary Figure S1). Some of 413	

the minor differences between the projected and observed distributions may be due projected 414	

shifts in suitable habitat from the historical occurrence record. Also, the occurrence data were 415	

taken from all seasons, while our projections represent summer habitat. For example, summer 416	

flounder (Figure 7e) and black sea bass (Supplementary Figure S6e) are projected to be at 417	

higher densities nearshore in the mid-Atlantic region of the U.S., but occurrence data occur 418	

from across the shelf and include overwintering habitat.  419	

Under RCP 8.5, all species were projected to experience major declines in thermal 420	

habitat suitability over large areas of their southern distribution during the 21st century (Figure 421	

7 and Supplementary Figure S6), with the exception of market squid, which had a mix of 422	

negative, neutral, and positive projections off of the southern west coast (Supplementary 423	

Figure S6d). Conversely, there were increases in habitat suitability at northern regions of 424	

species’ present distributions and poleward shifts of the northern geographic range limits. The 425	

projected shift in thermal habitat for halibut and lobster were particularly severe, because 426	

much of their existing range for the 2007-2020 time period showed major declines in habitat 427	

suitability, suggesting the potential for near complete displacement into new geographic areas 428	

(Figure 7a-b and g-h).  429	

An examination of the projection maps revealed several important subregional scale 430	

shifts in habitat. For example, while a majority of niche models for halibut and lobster showed 431	

a net neutral change in northern region habitat quantity (Figure 6e and h), there were 432	

significant shifts in habitat distribution. For halibut, a stark contrast existed between the 433	

Eastern Bering Sea, where there was a gain in thermal habitat, and the Gulf of Alaska and the 434	



Aleutian Islands where habitat suitability declined (Figure 7b). For northern region lobster 435	

(Figure 6h), thermal habitat shifted into deeper habitats within U.S. EEZ waters and away 436	

from Georges Bank and coastal areas within the Gulf of Maine (Figure 7h and Supplementary 437	

Figure S6d).  438	

 The spatial distribution of projection uncertainty among ESMs was different for each 439	

species (Supplementary Figure S7), which reflects the unique way species’ niche model 440	

ensembles interacted with ESMs. Generally, there was stronger agreement among ESMs in 441	

southern regions where species’ habitat declined (e.g., Supplementary Figure S7b and c). 442	

Some species had high variability among ESMs at their northern expanding range edge, 443	

including Pacific halibut and market squid (Supplementary Figure S7a and f).  444	

Discussion 445	

 This study represents one of the most comprehensive examinations of uncertainty to 446	

date for the projection of species’ habitat or distribution in the coming century. Generally, 447	

there has been an inadequate treatment of uncertainty with species projections (Planque et al., 448	

2011; Cheung et al., 2016; Freer et al., 2018), even though a number of previous studies have 449	

included more limited—but still very useful—uncertainty analyses with projections of habitat 450	

(e.g., Thuiller, 2004; Hare et al., 2012b; Jones and Cheung, 2015). We used 54 projections of 451	

future climate (3 RCPs × 18 ESMs) and within each of these futures we projected six niche 452	

modeling approaches, including unique sets of parameter values within four of these niche 453	

models that reflected the uncertainty in species habitat associations. We found major 454	

differences in projection uncertainty among species. This result is similar to previous work, 455	

which found that species vary in the relative amount of uncertainty in projected shifts in 456	

habitat based on the level of agreement among a suite of ESMs (Morley et al., 2018). In the 457	



present study we have expanded on previous work by showing that the sources of uncertainty 458	

differ among species. Further, within each species, we found regional differences in 459	

uncertainty characteristics (i.e., north vs. south), and also differences between modeled 460	

responses (i.e., centroid vs. habitat quantity). Even pairs of species with similar present-day 461	

geographic ranges had major differences in uncertainty characteristics (e.g., summer flounder 462	

vs. black sea bass). This suggests that features of individual species niche models can interact 463	

in unique ways with climate projections. 464	

Characterizing uncertainty in species projections 465	

 We examined four major sources of uncertainty in projecting species habitat shifts: 466	

greenhouse gas emission scenario, Earth system model, niche model, and parameter 467	

uncertainty. For greenhouse gas emissions, the relative importance of RCP scenario increased 468	

with projections on longer timescales, which is consistent with previous research (Hare et al., 469	

2012a and b; Goberville et al., 2015; Thuiller et al., 2019). This is due to ocean temperature 470	

projections from different RCPs becoming increasingly divergent throughout the 21st century. 471	

For example, by 2050 there is about a 0.5°C difference among RCPs in ensemble mean 472	

projections of global sea surface temperature, but by the end of the century, SST projections 473	

for the RCPs 2.6 and 8.5 differ by around 2°C (Frölicher et al., 2016). It follows that the 474	

magnitudes of projected shifts in habitat are strongly influenced by RCP scenario at the 475	

century scale (Cheung et al., 2009; Morley et al., 2018). In the present study, the uncertainty 476	

due to greenhouse gas emissions scenario was important for all species by the end of the 477	

century. Therefore, it is not surprising that the distributions of projection results spread out in 478	

later time periods (e.g., Figure 1f). However, for all species there were projection metrics 479	

where RCP was not the most important source of uncertainty at the end of the century.   480	



 The suite of 18 ESMs used in this study represented an important source of projection 481	

uncertainty for all species. However, there was not a consistent pattern among species in the 482	

characteristics of ESM uncertainty. Further, for a given species, ESM uncertainty may have 483	

been important for one metric, such as shifts in the centroid, but have relatively strong 484	

agreement when examining changes in habitat quantity. These results illustrate how projected 485	

climate conditions can vary significantly among ESMs at regional scales (i.e., northern vs. 486	

southern half of range; Frölicher et al., 2016), which are the most relevant for anticipating 487	

climate change impacts on living resources (Stock et al., 2011; Cheung et al., 2016). Thus, 488	

our results illustrate the importance of conducting ensemble projections, based on multiple 489	

ESMs, in order to avoid over-interpretation of regional biases that may be associated with 490	

specific models.  491	

 A potentially important source of uncertainty that was beyond the scope of our 492	

analysis was internal variability inherent in the climate system (Stock et al., 2011). Internal 493	

variability reflects variability associated with climate modes such as El Nino-Southern 494	

Oscillation or the Atlantic Multidecadal Oscillation, or natural variability on small spatial 495	

scales unrelated to climate modes. Our analysis assumes that variation among the 18 ESMs 496	

represents a more important source of projection uncertainty than internal variation within the 497	

climate system. Nevertheless, we recognize that internal variability can be important, or even 498	

dominant, at regional scales (Stock et al., 2011; Cheung et al., 2016; Frölicher et al., 2016; 499	

Freer et al., 2018). Our projections were aggregated into 20-year time intervals, which may 500	

reduce the importance of inter-annual variation among ensemble members of each ESM. 501	

However, the role of internal variability in projection studies deserves more attention in future 502	

studies. 503	



 Similar to ESM uncertainty, niche model choice was important for all species 504	

projections, and also varied in its contribution to uncertainty across modeled response metrics 505	

within each species. Other studies have also shown the importance of niche model selection in 506	

projecting species distribution (Thuiller, 2004; Diniz-Filho et al., 2009; McHenry et al. 2019; 507	

Thuiller et al., 2019). Buisson et al. (2010) conducted future projections of stream fish 508	

distributions in France and characterized uncertainty across the same four modeled 509	

components as our study. They found that choice of species distribution model was the 510	

dominant source of uncertainty. Therefore, we recommend that future studies also conduct 511	

projections using an ensemble of species distribution models, in addition to a suite of ESMs, 512	

to reduce bias in any one approach (Araujo et al., 2011; Jones and Cheung, 2015).  513	

 While numerous projection studies have examined structural uncertainty from species 514	

distribution models (Thuiller, 2004; Diniz-Filho et al., 2009; Buisson et al., 2010; Jones and 515	

Cheung, 2015; McHenry et al. 2019), few have simultaneously compared niche models that 516	

project biomass with those that project probability of occurrence. We found important 517	

differences between these two approaches. For the majority of species analyzed here, 518	

predictions based on probability of occurrence were more accurate at projecting geographic 519	

distributions than the delta-biomass models, when applied to independent test data (Table 1 520	

and Supplementary Table S1). Further, projections of habitat from the probability of 521	

occurrence models for the 2007-2020 time period were often qualitatively more similar to 522	

expected distributions based on occurrence records. We found that projections with the delta-523	

biomass method consistently resulted in more geographically restricted distributions of 524	

suitable habitat than the probability of occurrence models. In several cases this restriction of 525	

habitat was unrealistic based on occurrence records and contrasted greatly with the probability 526	



of occurrence approach, which is surprising considering that the delta-biomass approach 527	

represents the product of the two model predictions. Therefore, the biomass component of the 528	

coupled delta-biomass niche modeling approach might have a disproportionate effect on 529	

projections for some species. Nevertheless, the delta-biomass approach was effective for 530	

multiple species, suggesting that for some species a probability of occurrence model can be 531	

overly inclusive of habitat.   532	

 Uncertainty in the parameter values of our niche models generally contributed little to 533	

variation in our projection output. Similarly, Buisson et al. (2010) examined parameter 534	

uncertainty by fitting multiple models to subsets of data and they found that the different 535	

model parameterizations had a relatively small impact on projection uncertainty. The 536	

relatively small contribution of parameter uncertainty may be due to our use of niche models 537	

with multiple environmental predictors, and thus no single habitat feature determined a 538	

species distribution. Support for this conclusion comes from projections that are based on 539	

mechanistic distribution models, which are based on more specific aspects of a species’ niche 540	

and thus might be more sensitive to parameter values (Pacifici et al., 2015). For example, 541	

Hare et al. (2012b) showed that a majority of projection uncertainty for gray snapper range 542	

expansion along the southeast U.S. coast was due to error around estimates of low-543	

temperature tolerance.  544	

Projected shifts in habitat for important resource species 545	

 All of the species analyzed in this study are of economic importance to U.S. fisheries, 546	

and a majority of them are also important in Canada. Under a high greenhouse gas emissions 547	

future, all seven species were projected to experience major northward shifts in suitable 548	

habitat, which will pose challenges to fisheries governance as these resources shift across 549	



jurisdictional boundaries (Pinsky et al., 2018). The three Atlantic species included in our 550	

analysis have already experienced major range shifts and for two of these species—black sea 551	

bass and lobster—recent shifts have been linked to changes in ocean temperatures (Bell et al., 552	

2015; Le Bris et al., 2018). The Atlantic region of the North American shelf contains some of 553	

the most rapidly increasing areas of ocean temperatures globally (Thomas et al., 2017), which 554	

has led to relatively large distribution shifts among marine species in that region (Nye et al., 555	

2009; Pinsky et al., 2013). Interestingly, the drivers of historical shifts in summer flounder 556	

distribution have been difficult to identify and have not been attributed to temperature (Bell et 557	

al., 2015; Perretti and Thorson 2019). While more research is clearly needed on the 558	

mechanisms behind summer flounder shifts, we still believe that our projections for this 559	

species are valuable. In particular, our regional impact projections (i.e., north vs. south 560	

regions) were conducted at a broad geographic scale, and historical shifts have largely 561	

occurred within our defined “northern” region for summer flounder (Perretti and Thorson 562	

2019).  563	

Recent historical shifts in resource species have already challenged existing 564	

management regulations and have led to conflict over regional allocation (Gaichas et al., 565	

2016; Dubik et al., 2019) and also major changes in fishermen behavior and fleet 566	

characteristics (Pinsky and Fogarty, 2012; Young et al., 2018). Projections for shifts in habitat 567	

suggest that these challenges to management will only become more common in the 21st 568	

century in all regions of coastal North America (Morley et al., 2018). Even under a strong 569	

mitigation scenario for greenhouse gas emissions, we can still expect significant surface ocean 570	

warming during the first half of the 21st century (Frölicher et al., 2016). Further, the 571	

probability of an ocean warming scenario consistent with RCP 2.6 may be low (Raftery et al., 572	



2017). Thus, the development of more climate-adaptive fisheries management frameworks is 573	

critical (Pinsky et al., 2018). Species projections, such as the ones in this study, are 574	

immediately relevant to management efforts and can be incorporated into existing risk 575	

assessment frameworks (Gaichas et al., 2016), species vulnerability reports (Hare et al., 576	

2016), and as objective negotiation tools for reallocation strategies (Dubik et al., 2019). The 577	

projections in suitable habitat for the seven species in this study serve to illustrate some of the 578	

challenges to fisheries governance that are likely to occur.  579	

 The lobster fishery in the U.S. is of high economic importance. Our projections for 580	

this species under RCP 8.5 can be compared with a population dynamics model used to 581	

project lobster population size at mid 21st century, which included fishery, ecosystem and 582	

climate effects (Le Bris et al., 2018). For the southern portion of the lobster geographic 583	

range—where the stock is presently depleted—our results for lobster projections are in 584	

agreement with Le Bris et al. (2018) and suggest that future climate change will inhibit 585	

recovery of the fishery to historic levels. In the northern region Le Bris et al. (2018) also 586	

project declines in the population due to a reduction in recruitment and increased predation on 587	

juveniles, which were not factors included in our niche modeling approach. Our projections 588	

for the northern region of lobster within U.S. waters differs somewhat from Le Bris et al. 589	

(2018) because a majority of our niche models projected either a small increase in habitat 590	

quantity or a zero net change by mid century. However, our ensemble projection showed that 591	

nearshore habitat, which are important for lobster reproduction and recruitment, are projected 592	

to decline in habitat suitability. Further, our results suggest lobster may shift into deeper 593	

waters within the Gulf of Maine. Considering that ocean acidification is also expected to have 594	



a negative impact on this species (Fay et al., 2017), lobster appear to represent a priority 595	

fishery to develop policy that mitigates economic loss to the region. 596	

 Other species in our analysis are projected to have major negative impacts from 597	

climate change within areas of important fishery investment. For instance, black sea bass are 598	

one of the most commonly targeted species for bottom-line commercial fisherman in the 599	

southeast U.S. (MacLauchlin, 2018). Our projections for black sea bass suggest that the 600	

dynamics of this multi-species fishery may dramatically change as habitat becomes less 601	

suitable for this key species. On the Pacific coast, shifts in sablefish and halibut distribution 602	

out of areas of historic abundance would also pose important challenges to fisherman and 603	

resource managers. The management challenges that are associated with shifting populations 604	

will be compounded by the potential for stocks to become less productive and more 605	

vulnerable to overfishing in regions of declining habitat quality (Bell et al., 2018; Le Bris et 606	

al., 2018).  607	

 Preparing for emerging fisheries will also be an important aspect of climate-adaptive 608	

resource management. For example, our projections suggest that suitable habitat for market 609	

squid will expand throughout the Gulf of Alaska. While such opportunities may help offset 610	

economic loss from other fisheries, it will be important for resource managers to regulate new 611	

fisheries conservatively as there is often a lack of critical data to assess stocks at their 612	

expanding edge (Pinsky and Mantua, 2014; Pinsky et al., 2018). These uncertainties were 613	

taken into consideration when the multi-nation moratorium on arctic fishing was established 614	

(Hoag, 2017). It is noteworthy that several of the Pacific species analyzed in our study have 615	

the potential to shift northward and off our projection grid. In particular, halibut have been 616	

projected to expand into the Arctic during the 21st century under RCP 8.5 (Wisz et al., 2015).  617	



 618	

Conclusion 619	

 Projections of climate change impacts on natural resources will probably become more 620	

available to resource managers in the near future. There are also a number of promising 621	

developments in this field that may refine projections of marine resources and create new 622	

opportunities, including high resolution ocean models that better represent shallow areas of 623	

the continental shelf and that resolve mesoscale eddies (e.g. Saba et al., 2016). Such high-624	

resolution climate data will also enhance our ability to include additional niche dimensions, 625	

such as salinity and indicators of ocean currents, which were not included in the present 626	

analysis (McHenry et al. 2019).  Further, ensemble climate projections may be refined using 627	

model weighting techniques that are based on regional performance (Eyring et al., 2019). The 628	

development of species projections based on other approaches to characterize biological 629	

responses, such as population dynamics models (Le Bris et al., 2018), ecosystem models that 630	

include fishing impacts (Lotze et al., 2019), and species distribution models that better 631	

account for survey and spatial autocorrelation effects (Perretti and Thorson 2019; Brodie et 632	

al., 2020) may help quantify direct mechanisms behind climate impacts and also incorporate 633	

other potential constraints on species distributions.  634	

The results from our uncertainty analysis are applicable to many forms of climate 635	

impact projection studies and serve to illustrate the importance of key deficiencies among 636	

projection studies (Planque et al., 2011; Cheung et al., 2016). First, while greenhouse gas 637	

emission scenario is an important source of variation for long-term projections, other sources 638	

of uncertainty can remain important even when projecting at the century scale. Second, 639	

conducting projections with a suite of ESMs and species distribution models is critical, 640	



because individual ESMs can interact with species temperature preferences in complex ways 641	

at regional scales. In addition, broad distributions of projected outcomes were common. Thus, 642	

climate impact projection studies that are based on few ESMs or a single type of niche model 643	

may not effectively quantify the amount of uncertainty around results. Third, projections from 644	

different types of niche model can vary substantially. We found that basing projections on an 645	

ensemble of niche modeling approaches, which are weighted based on predictive performance 646	

with independent data, can be an effective and subjective method to project climate impacts 647	

on habitat. Finally, the dominant sources of uncertainty differed among species, and for most 648	

species the uncertainty characteristics varied within different geographic regions.  649	

 650	
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 884	

 885	

 886	

 887	



Table 1.   Evaluation of six niche models for four species, including the proportion of 888	

deviance explained for a probability of occurrence and a biomass model for each of three 889	

statistical approaches: GLM (generalized linear model), GAM (generalized additive model), 890	

and BRT (boosted regression trees). Also shown are evaluation metrics where niche models 891	

were applied to independent test data, which includes R2 values for relating predicted versus 892	

observed survey-year mean values.  893	

 Deviance explained Test data metrics R2 survey-year means 

Model 
Prob. 
Occ. Biomass AUC TSS(max) kappa(max) 

Prob. 
Occ. 

Delta- 
biomass 

Pacific halibut (N = 19437 observations; N = 0 near-zero values added) 
  
  GLM 0.32 0.28 0.86 0.57 0.57 0.84 0.71 

GAM 0.33 0.28 0.87 0.59 0.59 0.87 0.72 

BRT 0.39 0.34 0.89 0.63 0.63 0.88 0.75 

Pacific ocean perch (N = 8340 observations; N = 0 near-zero values added) 
  
  GLM 0.36 0.21 0.89 0.65 0.60 0.89 0.97 

GAM 0.38 0.22 0.89 0.64 0.58 0.89 0.98 

BRT 0.47 0.34 0.92 0.68 0.62 0.94 0.91 

Summer flounder (N = 12200 observations; N = 2954 near-zero values added) 
  
  GLM 0.43 0.74 0.93 0.76 0.59 0.86 0.01 

GAM 0.46 0.86 0.94 0.79 0.60 0.83 0.00 

BRT 0.54 0.97 0.95 0.82 0.64 0.82 0.73 

American lobster (N = 11994 observations; N = 3157 near-zero values added) 
  
  GLM 0.27 0.76 0.89 0.68 0.45 0.75 0.80 

GAM 0.31 0.85 0.90 0.67 0.47 0.75 0.28 

BRT 0.42 0.94 0.93 0.73 0.57 0.80 0.85 
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 899	
Figure 1.   Modeling approach used for each species to project shifts in habitat suitability and to quantify 900	
uncertainty among niche modeling approach, parameter uncertainty within niche models, RCP climate 901	
scenario, and climate simulation model. Biological data and models are in blue, static and historical 902	
environmental data are in gray, and projected climate data are in yellow.  903	
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 924	
Figure 2.   Sources of projection uncertainty for Pacific halibut Hippoglossus stenolepis. Partitioning of the 925	
sum of squares (a, b, c) with general linear models and distributions of projection results (d, e, f) by time 926	
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020) 927	
time period for the northern region (b, e) and the southern region (c, f). Circles in d, e, and f are mean 928	
values.  929	
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 944	
 945	
Figure 3.   Sources of projection uncertainty for Pacific ocean perch Sebastes alutus. Partitioning of the 946	
sum of squares (a, b, c) with general linear models and distributions of projection results (d, e, f) by time 947	
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020) 948	
time period for the northern region (b, e) and the southern region (c, f). Circles in d, e, and f are mean 949	
values.  950	
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 969	
Figure 4.   Sources of projection uncertainty for summer flounder Paralichthys dentatus. Partitioning of the 970	
sum of squares (a, b, c) with general linear models and distributions of projection results (d, e, f) by time 971	
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020) 972	
time period for the northern region (b, e) and the southern region (c, f). Circles in d, e, and f are mean 973	
values.  974	
 975	
 976	
 977	
 978	
 979	
 980	
 981	
 982	
 983	
 984	
 985	
 986	



 987	

 988	
 989	
Figure 5.   Sources of projection uncertainty for American lobster Homarus americanus. Partitioning of the 990	
sum of squares (a, b, c) with general linear models and distributions of projection results (d, e, f) by time 991	
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020) 992	
time period for the northern region (b, e) and the southern region (c, f). Circles in d, e, and f are mean 993	
values.  994	
 995	
 996	
 997	
 998	
 999	
 1000	
 1001	
 1002	
 1003	
 1004	
 1005	
 1006	
 1007	
 1008	



 1009	
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Figure 6.   Ensemble mean projections for the RCP 8.5 scenario using six different niche models including 1011	
generalized linear models (blue), generalized additive models (dark gray) and boosted regression trees (red) 1012	
for probability of occurrence (dashed line) or for delta-biomass (solid line). Error bars are one standard 1013	
deviation and represent uncertainty among 18 Earth system models. Columns represent mean latitudinal 1014	
centroid (a, b, c, d), and percentage change in suitable habitat from the initial time period (2007-2020) in 1015	
the northern (b, f, g, h) and southern (c, j, k, l) regions for Pacific halibut (a, e, i), Pacific ocean perch (b, f, 1016	
j), summer flounder (c, g, k) and American lobster (d, h, l). Note that the full extent of error bars are not 1017	
shown in g and l.  1018	
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Figure 7.   Ensemble mean projections across 18 Earth system models and 6 niche models for the RCP 8.5 1022	
scenario for Pacific halibut (a, b), Pacific ocean perch (c, d), summer flounder (e, f) and American lobster 1023	
(g, h). For each species the left panel shows projected suitable habitat for the initial time period of 2007-1024	
2020, and the intensity of the blue represents habitat suitability while gray represents areas of the projection 1025	
grid that are not suitable. The right panels show projected change in habitat suitability between the 2081-1026	
2100 time period and 2007-2020. For the right panels, red represents a decline in habitat suitability, blue 1027	
represents increases in habitat suitability and gray represents areas of no change; increasing intensity of 1028	
blue (red) represents a proportionally greater increase (decrease) in habitat suitability.  1029	


