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Abstract
Projections of climate change impacts on living resources are being conducted frequently, and
the goal is often to inform policy. Species projections will be more useful if uncertainty is
effectively quantified. However, few studies have comprehensively characterized the
projection uncertainty arising from greenhouse gas scenarios, Earth system models, and both
structural and parameter uncertainty in species distribution modeling. Here we conducted
8964 unique 21st century projections for shifts in suitable habitat for seven economically
important marine species including American lobster, Pacific halibut, Pacific ocean perch,
and summer flounder. For all species, both the Earth system model used to simulate future
temperatures and the niche modeling approach used to represent species distributions were
important sources of uncertainty, while variation associated with parameter values in niche
models was minor. Greenhouse gas emissions scenario contributed to uncertainty for
projections at the century scale. The characteristics of projection uncertainty differed among
species and also varied spatially, which underscores the need for improved multi-model
approaches with a suite of Earth system models and niche models forming the basis for
uncertainty around projected impacts. Ensemble projections show the potential for major
shifts in future distributions. Therefore, rigorous future projections are important for

informing climate adaptation efforts.

Keywords: black sea bass, market squid, climate change, sablefish, species distribution

modeling



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Introduction

Earth system model (ESM) simulations are frequently used to forecast climate change
impacts on natural resources (Stock et al., 2011; Pacifici ef al., 2015). Projecting climate
impacts on species generally requires the coupling of species distribution models with ESM
simulations of future environmental conditions. Such studies are computationally complex
and expensive, and they often simulate climate impacts on hundreds of species simultaneously
(Thuiller et al., 2004 and 2019; Cheung et al., 2009; Diniz-Filho et al., 2009; Morley et al.,
2018). The interpretation of projected climate impacts on natural resources, and in particular
the incorporation of such information into policy decisions, is still in its infancy (Guisan et
al., 2013; Bonebrake et al., 2018; Miller et al., 2018). However, it is clear that the effective
quantification of uncertainty in projected climate impacts is critical for assessment of such
forecasts by end users (Thuiller ef al., 2004 and 2019; Araujo and New, 2006; Buisson et al.,
2010; Cheung et al., 2016a).

Despite broad recognition that quantifying uncertainty in species projections is
important, relatively few studies have comprehensively characterized uncertainty (but see,
Dormann et al., 2008; Buisson et al., 2010; Thuiller et al., 2019). Projection uncertainty
comes from multiple sources and—depending on the spatial and temporal scope of the study
and the biological data used—any one of them may be important (Hawkins and Sutton, 2009;
Cheung et al., 2016a). For instance, several options are available for future scenarios of socio-
economic developments and associated greenhouse gas emissions (Riahi et al., 2017). Also, a
suite of different ESMs are available that each simulate future climates based on inputs from
future greenhouse gas emission scenarios. The structure of ESMs vary in many ways,

including spatial and temporal resolution, and how fine scale oceanographic features like
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oceanic currents are parameterized (Stock et al., 2011). Finally, structural uncertainty from
biological models can impact projections because there are often multiple options available
for representing species habitat associations or population dynamics (Thuiller ez al., 2004;
Diniz-Filho et al., 2009; Buisson et al., 2010; McHenry et al. 2019; Brodie et al. 2020).
Further, parameter uncertainty within biological models may represent an important source of
variation (Hare et al., 2012b). Another important consideration is that the characteristics of
uncertainty may vary spatially, such that confidence in a species’ projection may be high in
one geographic area and poor in another (Diniz-Filho et al., 2009; Buisson et al., 2010;
Raybaud et al., 2017).

Collectively, climate projection studies show the potential for major impacts on living
resources and regional or global threats to biodiversity during the 21st century (Pereira et al.,
2010; Portner et al., 2014; Jones and Cheung, 2015; Molinos et al., 2015; Lotze et al., 2019).
Management structures that are designed to promote sustainable use of natural resources will
be challenged. For example, the effectiveness of conservation areas may be compromised
with the redistribution of habitats (Araujo et al., 2011), and there will be significant
challenges faced by all sectors of the fishing industry as species shift and regional
productivity changes (Cheung et al., 2010 and 2016b; Pinsky et al., 2018; Lotze et al., 2019).
Therefore, there is a critical need for studies that conduct detailed characterizations of
projection uncertainty in order to inform the implementation of climate-adaptive resource
management (Araujo and New, 2006; Cheung et al., 2016a; Thuiller et al., 2019).

We conducted a comprehensive analysis of projection uncertainty with seven
economically important species. Specifically, we simultaneously investigated the relative

importance of four sources of uncertainty, including future greenhouse gas emissions



93  scenario, ESM model structure, niche modeling approach, and parameter uncertainty in the
94  species environmental relationships. For each species, we conducted 8964 high resolution
95  (~30 km?) projections of suitable habitat shifts during the 21 century over a geographically
96  broad spatial grid that encompassed over 1.1 million km? for Pacific coast species and over
97 1.8 million km? for Atlantic coast species (including the Gulf of Mexico). We show that the
98  most important sources of uncertainty vary among species, future time periods, geographic
99  regions within a species’ range, and metrics used to quantify projected changes.

100

101 Methods

102 The projections for shifts in habitat conducted here are based on the framework that
103  was developed in Morley et al. (2018), where projections for more than 680 marine species on
104  the North American continental shelf are examined. Therefore, we provide a briefer

105  description of aspects of the methodology that were similar to Morley et al. (2018). Here we
106  used the same biological dataset for species distribution modeling. The climate projection data
107  that we used represents an expanded set of future simulations compared to our previous study.
108  Modeled species

109 We conducted our analysis with seven species, although the results from three of these
110  are primarily in the supplemental material. From the Pacific we analyzed Pacific halibut

111  (Hippoglossus stenolepis), Pacific ocean perch (Sebastes alutus), sablefish (Anoplopoma

112 fimbria), and California market squid (Doryteuthis opalescens). From the Atlantic we

113  analyzed summer flounder (Paralichthys dentatus), American lobster (Homarus americanus),
114  and black sea bass (Centropristis striata). All of these species are of substantial economic

115 importance. For instance, American lobster is presently the most valuable species to U.S.
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commercial fisheries, while Pacific halibut and sablefish are two of the most valuable finfish
(National Marine Fisheries Service, 2018). Further, summer flounder and black sea bass are
valuable recreational fisheries. We chose Pacific ocean perch to represent a species from the
diverse Sebastes complex, and California market squid were chosen because it is the most
valuable U.S. squid fishery. These seven species also represent a range of thermal niches on
each coast and a range in number of survey observations available (Table 1 and
Supplementary Table S1).
Survey and environmental data

Species occurrence and biomass data were taken from a curated dataset of 135,254
bottom trawl hauls from twenty long-term surveys that encompassed most of the continental
shelf area of the United States and Canada (Morley et al., 2018). Each trawl haul was coupled
with a suite of environmental data based on the date and geographic location of each sample.
Sea surface temperature (SST) and sea bottom temperature (SBT) variables were obtained
from the Simple Ocean Data Assimilation (SODA3.3.1 for 1980-2015 and SODA2.2.4 for pre
1980) reanalysis of ocean climate, which provides a global reconstruction of past ocean
temperatures (Carton ef al., 2016). Two variables were used to describe seafloor
characteristics at the location of each trawl. Rugosity, which measured spatial variation in
depth at a ~5.6 km spatial scale, was calculated using depth data from the GEBCO gridded
bathymetric data set (Becker et al., 2009). Sediment grain size was used to describe benthic
habitat and consisted of either geographic point values or polygon-based maps (Morley et al.,
2018). Point values were interpolated using inverse distance weighting to obtain sediment
data that matched the resolution of the rugosity data.

Species niche modeling
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To model species realized niches we used three approaches with R software version
3.5.0 (R Core Team, 2018). First, generalized linear models (GLM) were used in which all
continuous predictor variables were modeled with both linear and quadratic terms. GLMs
represent a relatively simple modeling approach with low risk of overfitting. Further, the
GLMs assume that species relationships with environmental variables are relatively simple
(e.g., dome shaped). Second, generalized additive models (GAM) were fit with the mgcv R-
package (Wood, 2011), which represent an approach of intermediate complexity. More
complex relationships with predictors can be achieved with GAMs, although there is greater
risk of overfitting than with GLMs. To reduce overfitting, we applied a gamma penalty
against model complexity that was equal to the log of the number of samples divided by two.
Also, a shrinkage penalty was used which acts on individual model terms such that they can
be removed from the model.

The third niche modeling approach was boosted regression trees (BRT) with the gbm
R-package (Ridgeway, 2017), which are based on a machine learning algorithm to build
ensemble models by sequentially fitting regression trees from subsets of data. Processing time
is relatively high for BRTs and model overfitting can be more prevalent. However, BRTs
implicitly include important interactions between variables and may have greater predictive
power than GLMs or GAMs (Elith ef al., 2006). The settings for each BRT (number of trees,
learning rate, and interaction depth) was optimized using 10-fold cross validation repeated
three times using the caret package (Table S2; Kuhn, 2018). The minimum number of
observations in terminal nodes was set to ten.

With each of the above approaches, we developed separate models either for

probability of occurrence or for biomass. The probability of occurrence models were based on
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presence and absence data and assumed a binomial error distribution. The biomass models
used log transformed biomass along with Gaussian errors for observations where biomass was
greater than zero. To allow biomass models to include a larger range of environmental
conditions, we added near-zero biomass values (1.07'°) for each species for a fraction of hauls
in survey regions where a species was never observed (Morley ef al., 2018). These near-zero
values amounted to 10% of total observations or 10% of the total hauls in a region, whichever
was smaller. As a result, all species projections could be conducted on an identical coast-wide
scale and not just within environmental boundaries where a species has been historically
observed. The use of near-zero values are similar to the “pseudoabsences” used in presence-
only distribution models (Jones et al., 2012). This approach assumes that climate variables are
what restricts a species from a survey region. This assumption is supported by an analysis of
global fish distributions showing that marine ectotherms generally fill their thermal niches
(Sunday et al. 2012). Several species were observed in all survey regions on a given coast, so
no near-zero values were added for these species (Table 1 and Supplementary Table S1).
California market squid represented a unique case because two survey regions had fewer than
three observations, so we also included near-zero values for those regions.

Final predictions of habitat suitability based on biomass models were calculated using
a delta modeling approach, which uses the product of the predicted probability of occurrence
and the exponentiated prediction of log-biomass (Barry and Welsh, 2002). We emphasize that
predictions of delta-biomass in this context represent a relative value in habitat suitability and
not actual future biomasses. In total, six niche models were fitted for each species, a
probability of occurrence and a delta-biomass model for the GLM, GAM, and BRT

approaches. Models were fit to the combined survey data from either the Pacific or the
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Atlantic (including the Gulf of Mexico) coasts, depending on the species. Predictor variables
included seasonal SST and SBT based on a three month mean, annual minimum and
maximum SBT that was based on the preceding 12 months, maximum SST, seafloor rugosity,
sediment grain size, and a categorical indicator for ecological survey (Morley et al., 2018).
The categorical variable was included as an intercept term in order to account for differences
in sampling gear and methodology between surveys.

To assess differences in predictive power among the six approaches, we fit a separate
set of niche models using a training dataset that consisted of the initial 80% of hauls that
occurred within each survey region. These training models were then used to compare
predicted versus observed values for the remaining 20% of the most recent data. Four metrics
were used for comparison. First, for both probability of occurrence and delta-biomass models,
we calculated mean annual values (i.e., mean of all hauls) for each survey with the testing
data. Multiple annual values were calculated for survey regions where more than one season
was sampled each year (Morley et al., 2018). Linear regression was used to compare
predicted versus observed annual mean values, and associated R’ values were used to
compare the ability of niche models to represent large scale patterns in species distribution.

The other three metrics for comparing niche model performance with independent test
data only pertained to probability of occurrence models and used the dismo R-package
(Hijmans et al., 2017). For these metrics the modeled probability of occurrence was converted
into a binary response (i.e., presence or absence), based on an estimated threshold value
between 0 and 1. The kappa and true skill statistic (TSS; Allouche et al., 2006) were
calculated at all potential threshold values and then the maximum value for each of these

metrics was recorded (i.e., kappamax and TSSmax; Elith ef al., 2006). Also, we calculated the
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area under the receiver operator curve (AUC). We chose these three threshold-independent
statistics, which compute across a range of possible threshold values, because we ultimately
modeled probability of occurrence and not a binary response for projections.

Projecting species habitat distribution

Output from eighteen Earth system models that participated in the Coupled Model
Intercomparison Project 5 (CMIP5) were used to generate a range of ocean temperature
change projections over the 21% century (Table S3). From each ESM, we used output from
simulations that were run under three future greenhouse gas emissions scenarios (i.e.,
Representative Concentration Pathways, RCP): a “strong mitigation” (RCP 2.6), a “midrange
mitigation” (RCP 4.5), and a “business as usual” scenario (RCP 8.5). These three scenarios
represent roughly one, two, and four degrees Celsius of global mean atmospheric surface
temperature change during this century, respectively (Collins et al., 2013).

The ocean temperature projections used here represent an expanded version of the data
set used in Morley et al. (2018). The additions were the RCP 4.5 scenario and two additional
ESMs, which were treated identically to the projection data from the previous study. Briefly,
we used the delta method to downscale ESM projections for the summer season (July —
September). The delta values were added to a mean temperature climatology that was
developed from the SODA3.3.1 data for 1995-2014. The climate projection grid (~0.25°
latitude and longitude) was refined to 0.05° latitude and longitude based on the spatial
resolution of the seafloor data (Fig. 1). Depth of the projection grid was limited to 400m or
shallower. The resulting projection grid consisted of 65,826 individual cells on the Pacific

coast, 69,209 on the Atlantic coast, and 13,383 in the Gulf of Mexico.
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For each species, a set of 324 “baseline” projection time series (3 RCP x 18 ESM X 6
niche models) of annual-summer thermal habitat distributions from 2007 to 2100 were
conducted (Figure 1). Annual grid cell values were aggregated by averaging projections
within five twenty-year bins, which were 2007-2020, 2021-2040, 2041-2060, 2061-2080, and
2081-2100. The baseline projections for each species are available in the Dryad Digital
Repository, at https://doi.org/10.5061/dryad.44j0zpcbc. In addition to this set of baseline
projections that used the original parameterized niche models, we also conducted a second set
of projections to quantify the role of parameter uncertainty within niche models. Examining
parameter uncertainty was done by resampling parameter values for forty iterations from a
multivariate normal distribution, based on the variance of individual parameters in the GLMs
or GAMs (Degeling et al., 2017; Wong et al., 2011), using the MASS package (Venables and
Ripley, 2002). We did not include BRTs with this analysis, as they already represent an
ensemble model and they could not be easily adapted to an analogous method for parameter
resampling. Thus, using this method we created 8640 projection time series (3 RCP x 18
ESM x 4 niche models x 40 parameter iterations) of annual thermal habitat distributions for
each species, which were aggregated into twenty-year bins as was done for the baseline
projections (Figure 1).

Analyses

For each species we summarized all of the projection time series by calculating the
latitudinal centroid during each twenty-year time interval, and also by calculating the
percentage change in thermal habitat quantity during the 21 century. For both of these
analyses, calculations were adjusted for grid cell area, which declines as latitude increases.

Centroids were calculated as mean latitude, weighted by either delta-biomass or probability of
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occurrence depending on the niche model (Pinsky et al., 2013; Morley et al., 2018). Centroids
were calculated across the entire North American coastline, excluding the far-north which was
outside of our projection grid. Generally, changes in the centroid over time represent an
effective way to quantify shifts in the modeled niche across the majority of a species’
geographic range, but do not provide information on changes in overall habitat quantity.

We analyzed projections of thermal habitat quantity as a percentage change between
the initial time period (2007-2020) and each future time interval. For each species, our
analysis of habitat quantity was restricted to a northern and southern geographic region, which
was done to examine how uncertainty varies regionally. The boundaries of these regions
differed among species and—with the exception of market squid—were restricted to the U.S.
exclusive economic zone (EEZ). For all Pacific species except market squid, the northern
region represented Alaskan waters and the southern region represented the west coast of the
contiguous U.S. Market squid were similar to other Pacific species, but the northern region
represented the EEZ of western Canada. For lobster the northern region consisted of the Gulf
of Maine and Georges Bank (east of -70° longitude) and the southern region represented the
remaining U.S. continental shelf north of Cape Hatteras, North Carolina (NC). For summer
flounder and black sea bass the northern and southern regions were divided by Cape Hatteras,
NC and did not include the Gulf of Mexico. Average annual thermal habitat quantity was
calculated as the sum of all projected delta-biomass or probability of occurrence values from
the northern and southern regions of the projection grid within each aggregated twenty-year
time interval (Morley et al., 2018). From these habitat quantity values, we calculated
percentage change from the initial time period. Our approach with habitat quantity contrasted

somewhat with our analysis of centroid, which was not calculated as a percentage change or
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shift from the initial time period. The reason for using percentage change with habitat quantity
analysis was to allow the niche models that projected probability of occurrence to be analyzed
on the same scale as the delta-biomass models.

For each species, we quantified the sources of projection uncertainty during each
future time period using general linear models (GLM)

y~RCP + ESM + SDM + RCP*ESM*SDM + e;

where y is either the centroid or percentage change in habitat quantity for the northern or
southern region for a given time period, SDM refers to the four different niche models used
(not including BRTs), and residual error e indicates variation associated with the i set of
parameter values for a given SDM. To characterize uncertainty, we partitioned the sum of
squares (SS) in the GLMs (Hare et al. 2012a and b). We used the proportion of the total SS
that was explained by residual error to quantify parameter uncertainty. To partition the
remaining SS (i.e., SSiotal = SSresidual) among RCP, ESM and SDM we used dominance analysis
(Azen and Budescu, 2003). Dominance analysis uses R’ values from all possible model
subsets to quantify the relative importance of each predictor variable.

Our examination of baseline projections (i.e., no resampling of parameter values) was
used to compare niche models. We restricted our analysis of baseline projections to RCP 8.5
because this high emission scenario had the most substantial changes in species distribution
and more divergence among the niche models compared to RCP 2.6 and 4.5. To compare
niche models, we calculated the ensemble mean and standard deviation of centroid and
percentage change in habitat quantity across ESMs for each time period.

Ensemble projections across all ESMs and niche models (including BRTs) were also

conducted using the baseline projections with RCP 8.5. To calculate the ensemble mean, we
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first needed to transform the projections based on delta-biomass niche models to match the
scale of the probability of occurrence projections (i.e., range between 0 and 1) so that
weighted means could be calculated across niche models. We used the following equation:
biomassijx = logio(Abiomassijx) / max(logio(Abiomassi))

where rescaled delta-biomass biomass in grid cell i, projection year j, ESM £, and niche
model / is calculated as the log transformed biomass divided by the grid cell with the highest
log projected value within projections for niche model / across all years and ESMs. The delta-
biomass values were first log transformed, because some species had a small number of grid
cells with high biomasses and without a transformation these values were highly influential
when projected biomass was rescaled and did not resemble observed biomass distributions
within historical data. We then calculated the ensemble mean within each grid cell for the
2007-2020 and 2081-2100 time periods. This was done by first calculating weighted means
across niche models within each ESM and time period, using R’ values from mean survey-
year relationships (Table 1) for weights. Then means were calculated across ESMs for each
grid cell and time period. The ensemble habitat projection map for 2007-2020 was compared
with a map showing the change in habitat suitability for the end of the century. The scale of
change was standardized to range between -1 and 1, where all values were proportional to the
grid cell experiencing the greatest change (positive or negative). Finally, we calculated the
standard deviation among ESMs in projected change in habitat suitability between the two
time periods in each grid cell.

To examine how our projections for the present time period (2007-2020) resembled
observations of species distributions, we plotted species occurrence records, which were taken

from the Ocean Biogeographic Information System (OBIS, 2019) and trawl survey data from
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the present study. For both datasets we considered each record (i.e., unique date and location
of a sample) as a single occurrence, because commercial fishery observer data are included in
OBIS and can include large numbers of individuals per record. For some species, the OBIS
data also contained trawl survey data from the present study, and when this occurred, we
removed the duplicate data. Occurrence data were aggregated to a 0.25° latitude and longitude
spatial grid and we plotted logged values to reduce the importance of heavily sampled areas

(Figure S1).

Results

Partitioning projection uncertainty

General patterns in the sources of uncertainty and amount of variation were evident for
halibut (Figure 2), ocean perch (Figure 3), summer flounder (Figure 4), and lobster (Figure 5).
In most cases, the total sum of squares increased with projections that were farther into the
future (Figures 2-5, panels a-c). One major reason for this was an increasing variance
component for greenhouse gas emission scenario (i.e., RCP) towards the end of the century
(e.g., Figures 2a and 4c). The amount of variation due to ESMs and niche model also tended
to increase for projections that were later in the century (e.g., Figures 4b and 5b), but the
increases were proportionally less than for RCP.

The increasing amount of uncertainty at later time periods was also evident in the
distributions of projections by time period (Figures 2-5, panels d-f). For example, halibut and
ocean perch had relatively narrow ranges for southern habitat loss projections by 2021-2040,
and both species had a prominent mode in the distribution of outcomes for this time period

(Figures 2f and 3f). In contrast, for these two species at the end of the century, the distribution
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of projections was more evenly spread across almost a full range of negative outcomes from 0
to 100% loss. Indeed, long-tailed distributions were common among projections towards the
end of the century, which indicated that more extreme outcomes occurred with certain
combinations of RCP, ESM and niche model.

There were some exceptions to the above patterns. For example, variation for the
projected centroid of ocean perch was relatively stable throughout the 21% century, due to a
reduction in variation among ESMs for later projections and little increase in variation among
RCPs (Figure 3a). This pattern for ocean perch was due to more variation in projected
southern habitat quantity among ESMs during the early 21st century. Similarly, market squid
exhibited convergence in niche model centroid projections through time, leading to a general
decline in sum of squares (Supplementary Figure S3a). Another exception from the general
patterns occurred for projections of the change in thermal habitat quantity for market squid
and black sea bass (Supplementary Figures S3b, S4b and c). Both of these species had
pronounced increases in the sum of squares across niche models, ESMs, and RCPs towards
the end of the century.

Two additional patterns across species were evident. First, parameter uncertainty was
relatively unimportant compared to the other three factors examined (Figures 2-5). Second,
projected centroids increased in latitude through time and northern thermal habitat quantities
increased while southern habitat decreased, despite uncertainty (Figures 2-5, panels d-f). This
pattern varied among species and in some cases projected changes stabilized towards the end
of the century (e.g., Figures 2e and 3e). Some species showed less projected change over
time, including mean change in habitat quantity for lobster in their northern region (Figure

Se).
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Within species, the characteristics of uncertainty varied depending on what metric was
examined. For example, niche model contributed little to sum of squares for halibut centroid
projections, but for change in northern habitat quantity niche model was more important than
greenhouse gas emissions scenario (Figure 2a and b). Similar contrasts could be made for all
seven species.

Niche model comparisons with RCP 8.5

All of the niche models that projected probability of occurrence performed well when
tested with independent data (Table 1 and Supplementary Table S1). For example, AUC
scores for all species and niche models were greater than 0.85. Further, when examining
survey-year relationships, (i.e., mean of all hauls annually for each survey using independent
data) all 7* values were above 0.47 (mean = 0.77). This suggests that at the spatial scales at
which trawl surveys are conducted (e.g., Gulf of Alaska; southeast U.S.), the probability of
occurrence niche models effectively represent variation in species distributions. The ability of
the delta-biomass models to reflect survey-year variation in mean catch was more variable
across niche modeling approaches than the probability of occurrence approach (mean r° =
0.48; Table 1 and Supplementary Table S1). For example, the GLM and GAM delta-biomass
niche models for summer flounder performed poorly when predicting regional scale annual
catch per unit effort (Table 1), but the BRT models for summer flounder was strongly related
to observed values. These results underscore how much niche models can differ in
performance. The predictive performance of delta-biomass models was not related to how
much deviance was explained by biomass GAMs when comparing across species (Table 1

and Supplementary Table S1). In particular, biomass GAMs for species that included near-
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zero values during model fitting had a greater proportion of deviance explained due to the
replicated-identical data points added to the margins of species’ niche space.

For all species there were important differences among the six niche modeling
approaches for projecting centroid or percent change in habitat quantity (Figure 6 and
Supplementary Figure S5). Differences among niche models were apparent in both the mean
projection values and the standard deviation among the ESM ensemble members. However,
while niche models often varied in magnitude of projected change, the overall direction of
change was typically similar with only a few exceptions. For example, black sea bass had
poor agreement among niche models in terms of percentage change in suitable habitat
(Supplementary Figure S5f and 1), and the more divergent niche models also had poor
agreement among ESMs as indicated by the large standard deviations.

The projection trends for the niche models that were based on probability of
occurrence tended to cluster more closely together than the delta-biomass models (Figure 6
and Supplementary Figure S4). Further, the delta-biomass and probability of occurrence
models often differed considerably within a modeling approach (i.e., GLM, GAM, and BRT;
e.g., Figure 6f and g), although for some species the presence-absence and biomass models
were similar within approaches (e.g., Figure 61 and j). Finally, of the six niche model
approaches, the GLM delta-biomass based projections most commonly had results that
differed substantially from other niche modeling approaches (e.g., Figure 6e and h,
Supplementary Figure S5¢ and e). These instances of divergent projections based on GLM
delta-biomass models were typically associated with high uncertainty among ESMs.

Ensemble projections with RCP 8.5
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For all species the ensemble projection for 2007-2020 (Figure 7 and Supplementary
Figure S6) represented historical occurrence data well (Supplementary Figure S1). Some of
the minor differences between the projected and observed distributions may be due projected
shifts in suitable habitat from the historical occurrence record. Also, the occurrence data were
taken from all seasons, while our projections represent summer habitat. For example, summer
flounder (Figure 7e) and black sea bass (Supplementary Figure S6e) are projected to be at
higher densities nearshore in the mid-Atlantic region of the U.S., but occurrence data occur
from across the shelf and include overwintering habitat.

Under RCP 8.5, all species were projected to experience major declines in thermal
habitat suitability over large areas of their southern distribution during the 21% century (Figure
7 and Supplementary Figure S6), with the exception of market squid, which had a mix of
negative, neutral, and positive projections off of the southern west coast (Supplementary
Figure S6d). Conversely, there were increases in habitat suitability at northern regions of
species’ present distributions and poleward shifts of the northern geographic range limits. The
projected shift in thermal habitat for halibut and lobster were particularly severe, because
much of their existing range for the 2007-2020 time period showed major declines in habitat
suitability, suggesting the potential for near complete displacement into new geographic areas
(Figure 7a-b and g-h).

An examination of the projection maps revealed several important subregional scale
shifts in habitat. For example, while a majority of niche models for halibut and lobster showed
a net neutral change in northern region habitat quantity (Figure 6e and h), there were
significant shifts in habitat distribution. For halibut, a stark contrast existed between the

Eastern Bering Sea, where there was a gain in thermal habitat, and the Gulf of Alaska and the
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Aleutian Islands where habitat suitability declined (Figure 7b). For northern region lobster
(Figure 6h), thermal habitat shifted into deeper habitats within U.S. EEZ waters and away
from Georges Bank and coastal areas within the Gulf of Maine (Figure 7h and Supplementary
Figure S6d).

The spatial distribution of projection uncertainty among ESMs was different for each
species (Supplementary Figure S7), which reflects the unique way species’ niche model
ensembles interacted with ESMs. Generally, there was stronger agreement among ESMs in
southern regions where species’ habitat declined (e.g., Supplementary Figure S7b and c).
Some species had high variability among ESMs at their northern expanding range edge,
including Pacific halibut and market squid (Supplementary Figure S7a and f).

Discussion

This study represents one of the most comprehensive examinations of uncertainty to
date for the projection of species’ habitat or distribution in the coming century. Generally,
there has been an inadequate treatment of uncertainty with species projections (Planque et al.,
2011; Cheung et al., 2016; Freer et al., 2018), even though a number of previous studies have
included more limited—but still very useful—uncertainty analyses with projections of habitat
(e.g., Thuiller, 2004; Hare et al., 2012b; Jones and Cheung, 2015). We used 54 projections of
future climate (3 RCPs x 18 ESMs) and within each of these futures we projected six niche
modeling approaches, including unique sets of parameter values within four of these niche
models that reflected the uncertainty in species habitat associations. We found major
differences in projection uncertainty among species. This result is similar to previous work,
which found that species vary in the relative amount of uncertainty in projected shifts in

habitat based on the level of agreement among a suite of ESMs (Morley et al., 2018). In the
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present study we have expanded on previous work by showing that the sources of uncertainty
differ among species. Further, within each species, we found regional differences in
uncertainty characteristics (i.e., north vs. south), and also differences between modeled
responses (i.e., centroid vs. habitat quantity). Even pairs of species with similar present-day
geographic ranges had major differences in uncertainty characteristics (e.g., summer flounder
vs. black sea bass). This suggests that features of individual species niche models can interact
in unique ways with climate projections.
Characterizing uncertainty in species projections

We examined four major sources of uncertainty in projecting species habitat shifts:
greenhouse gas emission scenario, Earth system model, niche model, and parameter
uncertainty. For greenhouse gas emissions, the relative importance of RCP scenario increased
with projections on longer timescales, which is consistent with previous research (Hare et al.,
2012a and b; Goberville et al., 2015; Thuiller et al., 2019). This is due to ocean temperature
projections from different RCPs becoming increasingly divergent throughout the 215 century.
For example, by 2050 there is about a 0.5°C difference among RCPs in ensemble mean
projections of global sea surface temperature, but by the end of the century, SST projections
for the RCPs 2.6 and 8.5 differ by around 2°C (Frolicher et al., 2016). It follows that the
magnitudes of projected shifts in habitat are strongly influenced by RCP scenario at the
century scale (Cheung et al., 2009; Morley et al., 2018). In the present study, the uncertainty
due to greenhouse gas emissions scenario was important for all species by the end of the
century. Therefore, it is not surprising that the distributions of projection results spread out in
later time periods (e.g., Figure 1f). However, for all species there were projection metrics

where RCP was not the most important source of uncertainty at the end of the century.
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The suite of 18 ESMs used in this study represented an important source of projection
uncertainty for all species. However, there was not a consistent pattern among species in the
characteristics of ESM uncertainty. Further, for a given species, ESM uncertainty may have
been important for one metric, such as shifts in the centroid, but have relatively strong
agreement when examining changes in habitat quantity. These results illustrate how projected
climate conditions can vary significantly among ESMs at regional scales (i.e., northern vs.
southern half of range; Frolicher et al., 2016), which are the most relevant for anticipating
climate change impacts on living resources (Stock ef al., 2011; Cheung et al., 2016). Thus,
our results illustrate the importance of conducting ensemble projections, based on multiple
ESMs, in order to avoid over-interpretation of regional biases that may be associated with
specific models.

A potentially important source of uncertainty that was beyond the scope of our
analysis was internal variability inherent in the climate system (Stock et al., 2011). Internal
variability reflects variability associated with climate modes such as El Nino-Southern
Oscillation or the Atlantic Multidecadal Oscillation, or natural variability on small spatial
scales unrelated to climate modes. Our analysis assumes that variation among the 18 ESMs
represents a more important source of projection uncertainty than internal variation within the
climate system. Nevertheless, we recognize that internal variability can be important, or even
dominant, at regional scales (Stock et al., 2011; Cheung et al., 2016; Frolicher et al., 2016;
Freer et al., 2018). Our projections were aggregated into 20-year time intervals, which may
reduce the importance of inter-annual variation among ensemble members of each ESM.
However, the role of internal variability in projection studies deserves more attention in future

studies.
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Similar to ESM uncertainty, niche model choice was important for all species
projections, and also varied in its contribution to uncertainty across modeled response metrics
within each species. Other studies have also shown the importance of niche model selection in
projecting species distribution (Thuiller, 2004; Diniz-Filho ef al., 2009; McHenry et al. 2019;
Thuiller et al., 2019). Buisson et al. (2010) conducted future projections of stream fish
distributions in France and characterized uncertainty across the same four modeled
components as our study. They found that choice of species distribution model was the
dominant source of uncertainty. Therefore, we recommend that future studies also conduct
projections using an ensemble of species distribution models, in addition to a suite of ESMs,
to reduce bias in any one approach (Araujo et al., 2011; Jones and Cheung, 2015).

While numerous projection studies have examined structural uncertainty from species
distribution models (Thuiller, 2004; Diniz-Filho et al., 2009; Buisson et al., 2010; Jones and
Cheung, 2015; McHenry et al. 2019), few have simultaneously compared niche models that
project biomass with those that project probability of occurrence. We found important
differences between these two approaches. For the majority of species analyzed here,
predictions based on probability of occurrence were more accurate at projecting geographic
distributions than the delta-biomass models, when applied to independent test data (Table 1
and Supplementary Table S1). Further, projections of habitat from the probability of
occurrence models for the 2007-2020 time period were often qualitatively more similar to
expected distributions based on occurrence records. We found that projections with the delta-
biomass method consistently resulted in more geographically restricted distributions of
suitable habitat than the probability of occurrence models. In several cases this restriction of

habitat was unrealistic based on occurrence records and contrasted greatly with the probability



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

of occurrence approach, which is surprising considering that the delta-biomass approach
represents the product of the two model predictions. Therefore, the biomass component of the
coupled delta-biomass niche modeling approach might have a disproportionate effect on
projections for some species. Nevertheless, the delta-biomass approach was effective for
multiple species, suggesting that for some species a probability of occurrence model can be
overly inclusive of habitat.

Uncertainty in the parameter values of our niche models generally contributed little to
variation in our projection output. Similarly, Buisson et al. (2010) examined parameter
uncertainty by fitting multiple models to subsets of data and they found that the different
model parameterizations had a relatively small impact on projection uncertainty. The
relatively small contribution of parameter uncertainty may be due to our use of niche models
with multiple environmental predictors, and thus no single habitat feature determined a
species distribution. Support for this conclusion comes from projections that are based on
mechanistic distribution models, which are based on more specific aspects of a species’ niche
and thus might be more sensitive to parameter values (Pacifici et al., 2015). For example,
Hare ef al. (2012b) showed that a majority of projection uncertainty for gray snapper range
expansion along the southeast U.S. coast was due to error around estimates of low-
temperature tolerance.

Projected shifts in habitat for important resource species

All of the species analyzed in this study are of economic importance to U.S. fisheries,
and a majority of them are also important in Canada. Under a high greenhouse gas emissions
future, all seven species were projected to experience major northward shifts in suitable

habitat, which will pose challenges to fisheries governance as these resources shift across
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jurisdictional boundaries (Pinsky ef al., 2018). The three Atlantic species included in our
analysis have already experienced major range shifts and for two of these species—black sea
bass and lobster—recent shifts have been linked to changes in ocean temperatures (Bell et al.,
2015; Le Bris et al., 2018). The Atlantic region of the North American shelf contains some of
the most rapidly increasing areas of ocean temperatures globally (Thomas et al., 2017), which
has led to relatively large distribution shifts among marine species in that region (Nye et al.,
2009; Pinsky et al., 2013). Interestingly, the drivers of historical shifts in summer flounder
distribution have been difficult to identify and have not been attributed to temperature (Bell et
al., 2015; Perretti and Thorson 2019). While more research is clearly needed on the
mechanisms behind summer flounder shifts, we still believe that our projections for this
species are valuable. In particular, our regional impact projections (i.e., north vs. south
regions) were conducted at a broad geographic scale, and historical shifts have largely
occurred within our defined “northern” region for summer flounder (Perretti and Thorson
2019).

Recent historical shifts in resource species have already challenged existing
management regulations and have led to conflict over regional allocation (Gaichas et al.,
2016; Dubik et al., 2019) and also major changes in fishermen behavior and fleet
characteristics (Pinsky and Fogarty, 2012; Young et al., 2018). Projections for shifts in habitat
suggest that these challenges to management will only become more common in the 215
century in all regions of coastal North America (Morley et al., 2018). Even under a strong
mitigation scenario for greenhouse gas emissions, we can still expect significant surface ocean
warming during the first half of the 215 century (Frolicher et al., 2016). Further, the

probability of an ocean warming scenario consistent with RCP 2.6 may be low (Raftery et al.,
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2017). Thus, the development of more climate-adaptive fisheries management frameworks is
critical (Pinsky et al., 2018). Species projections, such as the ones in this study, are
immediately relevant to management efforts and can be incorporated into existing risk
assessment frameworks (Gaichas et al., 2016), species vulnerability reports (Hare et al.,
2016), and as objective negotiation tools for reallocation strategies (Dubik ef al., 2019). The
projections in suitable habitat for the seven species in this study serve to illustrate some of the
challenges to fisheries governance that are likely to occur.

The lobster fishery in the U.S. is of high economic importance. Our projections for
this species under RCP 8.5 can be compared with a population dynamics model used to
project lobster population size at mid 21 century, which included fishery, ecosystem and
climate effects (Le Bris et al., 2018). For the southern portion of the lobster geographic
range—where the stock is presently depleted—our results for lobster projections are in
agreement with Le Bris ef al. (2018) and suggest that future climate change will inhibit
recovery of the fishery to historic levels. In the northern region Le Bris et al. (2018) also
project declines in the population due to a reduction in recruitment and increased predation on
juveniles, which were not factors included in our niche modeling approach. Our projections
for the northern region of lobster within U.S. waters differs somewhat from Le Bris ef al.
(2018) because a majority of our niche models projected either a small increase in habitat
quantity or a zero net change by mid century. However, our ensemble projection showed that
nearshore habitat, which are important for lobster reproduction and recruitment, are projected
to decline in habitat suitability. Further, our results suggest lobster may shift into deeper

waters within the Gulf of Maine. Considering that ocean acidification is also expected to have
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a negative impact on this species (Fay et al., 2017), lobster appear to represent a priority
fishery to develop policy that mitigates economic loss to the region.

Other species in our analysis are projected to have major negative impacts from
climate change within areas of important fishery investment. For instance, black sea bass are
one of the most commonly targeted species for bottom-line commercial fisherman in the
southeast U.S. (MacLauchlin, 2018). Our projections for black sea bass suggest that the
dynamics of this multi-species fishery may dramatically change as habitat becomes less
suitable for this key species. On the Pacific coast, shifts in sablefish and halibut distribution
out of areas of historic abundance would also pose important challenges to fisherman and
resource managers. The management challenges that are associated with shifting populations
will be compounded by the potential for stocks to become less productive and more
vulnerable to overfishing in regions of declining habitat quality (Bell ez al., 2018; Le Bris et
al., 2018).

Preparing for emerging fisheries will also be an important aspect of climate-adaptive
resource management. For example, our projections suggest that suitable habitat for market
squid will expand throughout the Gulf of Alaska. While such opportunities may help offset
economic loss from other fisheries, it will be important for resource managers to regulate new
fisheries conservatively as there is often a lack of critical data to assess stocks at their
expanding edge (Pinsky and Mantua, 2014; Pinsky et al., 2018). These uncertainties were
taken into consideration when the multi-nation moratorium on arctic fishing was established
(Hoag, 2017). It is noteworthy that several of the Pacific species analyzed in our study have
the potential to shift northward and off our projection grid. In particular, halibut have been

projected to expand into the Arctic during the 21 century under RCP 8.5 (Wisz et al., 2015).
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Conclusion

Projections of climate change impacts on natural resources will probably become more
available to resource managers in the near future. There are also a number of promising
developments in this field that may refine projections of marine resources and create new
opportunities, including high resolution ocean models that better represent shallow areas of
the continental shelf and that resolve mesoscale eddies (e.g. Saba et al., 2016). Such high-
resolution climate data will also enhance our ability to include additional niche dimensions,
such as salinity and indicators of ocean currents, which were not included in the present
analysis (McHenry ef al. 2019). Further, ensemble climate projections may be refined using
model weighting techniques that are based on regional performance (Eyring et al., 2019). The
development of species projections based on other approaches to characterize biological
responses, such as population dynamics models (Le Bris ef al., 2018), ecosystem models that
include fishing impacts (Lotze et al., 2019), and species distribution models that better
account for survey and spatial autocorrelation effects (Perretti and Thorson 2019; Brodie et
al., 2020) may help quantify direct mechanisms behind climate impacts and also incorporate
other potential constraints on species distributions.

The results from our uncertainty analysis are applicable to many forms of climate
impact projection studies and serve to illustrate the importance of key deficiencies among
projection studies (Planque et al., 2011; Cheung et al., 2016). First, while greenhouse gas
emission scenario is an important source of variation for long-term projections, other sources
of uncertainty can remain important even when projecting at the century scale. Second,

conducting projections with a suite of ESMs and species distribution models is critical,
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because individual ESMs can interact with species temperature preferences in complex ways
at regional scales. In addition, broad distributions of projected outcomes were common. Thus,
climate impact projection studies that are based on few ESMs or a single type of niche model
may not effectively quantify the amount of uncertainty around results. Third, projections from
different types of niche model can vary substantially. We found that basing projections on an
ensemble of niche modeling approaches, which are weighted based on predictive performance
with independent data, can be an effective and subjective method to project climate impacts
on habitat. Finally, the dominant sources of uncertainty differed among species, and for most

species the uncertainty characteristics varied within different geographic regions.

Supplementary data

Supplementary material is available at the /CESJMS online version of the manuscript.
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Table 1. Evaluation of six niche models for four species, including the proportion of
deviance explained for a probability of occurrence and a biomass model for each of three
statistical approaches: GLM (generalized linear model), GAM (generalized additive model),
and BRT (boosted regression trees). Also shown are evaluation metrics where niche models
were applied to independent test data, which includes R? values for relating predicted versus

observed survey-year mean values.

Deviance explained Test data metrics R? survev-vear means
Prob. Prob. Delta-
Model Occ. Biomass AUC TSS(max) kappa(max) Occ. biomass

Pacific halibut (N = 19437 observations; N = 0 near-zero values added)

GLM 0.32 0.28 0.86 0.57 0.57 0.84 0.71
GAM 0.33 0.28 0.87 0.59 0.59 0.87 0.72
BRT 0.39 0.34 0.89 0.63 0.63 0.88 0.75

Pacific ocean perch (N = 8340 observations; N = 0 near-zero values added)

GLM 0.36 0.21 0.89 0.65 0.60 0.89 0.97
GAM 0.38 0.22 0.89 0.64 0.58 0.89 0.98
BRT 0.47 0.34 0.92 0.68 0.62 0.94 0.91

Summer flounder (N = 12200 observations; N = 2954 near-zero values added)

GLM 0.43 0.74 0.93 0.76 0.59 0.86 0.01
GAM 0.46 0.86 0.94 0.79 0.60 0.83 0.00
BRT 0.54 0.97 0.95 0.82 0.64 0.82 0.73

American lobster (N = 11994 observations; N = 3157 near-zero values added)

GLM 0.27 0.76 0.89 0.68 0.45 0.75 0.80
GAM 0.31 0.85 0.90 0.67 0.47 0.75 0.28
BRT 0.42 0.94 0.93 0.73 0.57 0.80 0.85
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900  Figure 1. Modeling approach used for each species to project shifts in habitat suitability and to quantify
901  uncertainty among niche modeling approach, parameter uncertainty within niche models, RCP climate
902  scenario, and climate simulation model. Biological data and models are in blue, static and historical
903  environmental data are in gray, and projected climate data are in yellow.
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925  Figure 2. Sources of projection uncertainty for Pacific halibut Hippoglossus stenolepis. Partitioning of the
926  sum of squares (a, b, ¢) with general linear models and distributions of projection results (d, e, f) by time
927  period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020)
928  time period for the northern region (b, €) and the southern region (c, f). Circles in d, €, and f are mean
929  values.
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Figure 3. Sources of projection uncertainty for Pacific ocean perch Sebastes alutus. Partitioning of the
sum of squares (a, b, ¢) with general linear models and distributions of projection results (d, e, f) by time
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020)

time period for the northern region (b, €) and the southern region (c, f). Circles in d, e, and f are mean
values.
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Figure 4. Sources of projection uncertainty for summer flounder Paralichthys dentatus. Partitioning of the
sum of squares (a, b, ¢) with general linear models and distributions of projection results (d, e, f) by time
period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020)

time period for the northern region (b, €) and the southern region (c, f). Circles in d, e, and f are mean
values.
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990  Figure 5. Sources of projection uncertainty for American lobster Homarus americanus. Partitioning of the
991  sum of squares (a, b, ¢) with general linear models and distributions of projection results (d, e, f) by time
992  period for latitudinal centroid (a, d), and percentage change in suitable habitat from the initial (2007-2020)
993  time period for the northern region (b, €) and the southern region (c, f). Circles in d, e, and f are mean
994  values.
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Figure 6. Ensemble mean projections for the RCP 8.5 scenario using six different niche models including
generalized linear models (blue), generalized additive models (dark gray) and boosted regression trees (red)
for probability of occurrence (dashed line) or for delta-biomass (solid line). Error bars are one standard
deviation and represent uncertainty among 18 Earth system models. Columns represent mean latitudinal
centroid (a, b, ¢, d), and percentage change in suitable habitat from the initial time period (2007-2020) in
the northern (b, f, g, h) and southern (c, j, k, 1) regions for Pacific halibut (a, e, i), Pacific ocean perch (b, f,
), summer flounder (c, g, k) and American lobster (d, h, 1). Note that the full extent of error bars are not
shown in g and L.
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Figure 7. Ensemble mean projections across 18 Earth system models and 6 niche models for the RCP 8.5
scenario for Pacific halibut (a, b), Pacific ocean perch (c, d), summer flounder (e, f) and American lobster
(g, h). For each species the left panel shows projected suitable habitat for the initial time period of 2007-
2020, and the intensity of the blue represents habitat suitability while gray represents areas of the projection
grid that are not suitable. The right panels show projected change in habitat suitability between the 2081-
2100 time period and 2007-2020. For the right panels, red represents a decline in habitat suitability, blue
represents increases in habitat suitability and gray represents areas of no change; increasing intensity of
blue (red) represents a proportionally greater increase (decrease) in habitat suitability.



