
1. Introduction
Basaltic eruptions can produce voluminous lava flows which cover large areas and pose a hazard to infrastruc-
ture and private property (Jenkins et al., 2017; Neal et al., 2019). Forecasting the direction and velocity of lava 
flows is essential for properly mitigating volcanic hazard (Chevrel et al., 2021; Dietterich et al., 2015; Fujita 
et al., 2009). Accurate prediction of flow direction and velocity is challenging because lava flows are sensitive 
to initial eruption conditions, interactions with the surrounding terrain and environment, and changes in the lava 
properties (Biass et al., 2019; Rumpf et al., 2018). The velocity and morphology of lava flows depend on the 
complex rheology of magmas and flow conditions (deGraffenried et al., 2021; Fink & Griffiths, 1990; Gregg & 
Fink, 2000; Griffiths, 2000; Harris & Rowland, 2001; Katz & Cashman, 2003; Kerr et al., 2006; Lev et al., 2012; 
Richardson & Karlstrom, 2019; Stasiuk et al., 1993).

Magma rheology is strongly modulated by the chemical composition, volatile content, temperature, and the 
presence of suspended bubble and crystal phases, all of which can change the viscosity by several orders of 
magnitude (Di Fiore et al., 2021; Kolzenburg et al., 2018; Lesher & Spera, 2015; Mader et al., 2013; Moitra & 
Gonnermann, 2015; Soldati et al., 2021). Lava flows frequently include bubbles and crystals. Vesicularity, i.e., 

Abstract Most lava flows carry bubbles and crystals in suspension. From earlier works, it is known 
that spherical bubbles increase the effective viscosity while bubbles deformed by rapid flow decrease it. 
Changes in the spatial distribution of bubbles can lead to variable rheology and flow localization and thus 
modify the resulting lava flow structure and morphology. To understand the roles of bubble and solid phase 
crystal distributions, we conducted a series of analog experiments of high bubble fraction suspensions. We 
poured the analog lava on an inclined slope, observed its shape, calculated the velocity field, and monitored 
its local thickness. A region of localized rapid flow and low vesicularity, whose thickness is thinner than the 
surrounding area, develops at the center of the bubbly flows. These features suggest that the locally higher 
liquid fraction decreases the effective viscosity, increases the fluid density, and accelerates the flow. We also 
found that a halted particle-bearing bubbly flow can resume flowing. We interpret this to result from the 
upward vertical separation of bubbles, which generates a liquid-rich layer at the bottom of the flow. In our 
experiment, bubbles are basically spherical and decrease the flow velocity, while our estimate suggests that 
bubbles in natural lava flows could increase or decrease flow velocity. Downstream decreases in flow velocity 
stops the bubble deformation and can cause a sudden increase of effective viscosity. The vertical segregation of 
the liquid phase at the slowed flow front may be a way to generate a cavernous shelly paho’eho’e.

Plain Language Summary Lava flows can cover large areas and pose a hazard to buildings and 
infrastructure. To assess this hazard, we need to know what determines the shape and velocity of the lava flow. 
Most lava flows include bubbles, which can decelerate and accelerate lava flows depending on the bubble size 
and the flow velocity. Thus, heterogeneous bubble distribution may affect the lava flow shape and velocity. We 
simulated a lava flow by pouring a bubbly syrup as a lava analog on an inclined slope. We found that a more 
bubbly region flows slowly. The buoyant bubbles concentrate at the top of the flow front, while the liquid-rich 
layer generated at the bottom by vertical bubble separation lubricates the bottom boundary. These results show 
that bubble localization within a lava flow can be a source of variations of shape and velocity in natural lava 
flows. In the field, we sometimes find a cavernous structure beneath a solidified lava surface, which can be 
as large as a meter size, known as shelly paho'eho'e. Our experiments suggest that such hollow voids may be 
generated by bubble accumulation at the top of the flow front.
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volume fraction of solidified bubbles, in natural flows varies in wide range, 
e.g., 0.02–0.88 at Kīlauea and 0.04–0.71 at Etna (Cashman et  al.,  1994; 
Chevrel et al., 2018; Gaonac'h et al., 1996; Halverson et al., 2021; Harris 
& Rowland,  2015; Herd & Pinkerton,  1997; Patrick et  al.,  2019). Higher 
vesicularity is measured close to the vent and decreases with flow distance 
(Cashman et al., 1994). Bubble coalescence in a highly vesicular paho'eho'e 
lava flow generates various void structures (Walker, 1989). Crystal content 
in lavas at Kīlauea is 0.05–0.35 (Gansecki et al., 2019; Robert et al., 2014). 
In addition, magmas and lavas can have strain-rate dependent behavior which 
can have important consequences on flow dynamics, e.g., by causing the 
transition from paho'eho'e to ’a'a (Sehlke et al., 2014).

As a fluid dynamics problem, the morphology and velocity of viscous flow on 
a slope have been investigated extensively theoretically and experimentally 
(e.g., Craster & Matar, 2009; Didden & Maxworthy, 1982; Huppert, 1982b; 
Mériaux et al., 2022). An analytical solution for a viscous flow on a sloping 
plane predicts that the flow length increases with time according to a power-
law relationship (Lister, 1992), whose power index depends on the fluid's 
rheological properties (Balmforth et al., 2007).

Bubbles in magma can increase or decrease the effective viscosity depend-
ing on whether bubbles can deform under a certain shear rate (Llewellin 
& Manga,  2005; Manga et  al.,  1998). Large-scale lava flow experiments 
using molten basalt have shown that bubbles increase the effective viscosity 
(Soldati et al., 2020), while field measurements of viscosity at high shear rate 
suggest the decrease of effective viscosity (Chevrel et al., 2018, 2019). We 
discuss this in detail in Sections 2 and 6.

Bubbles and crystals can also sometimes cause a yield strength, a minimum stress required to allow deformation. 
If the stress caused by the weight of the fluid layer does not exceed the yield strength, it will not flow. Here, the 
yield stress is mostly due to the microstructure of the suspensions, which can evolve with time. In a fluid layer 
slightly overcoming the yield strength, a slow downflow changes the microstructure in suspension, decreases the 
viscosity, and then accelerates the gravity flow (Coussot et al., 2002). Later injection of the low particle fraction 
fluid causes acceleration of the flow (Castruccio et al., 2014). Yield stress fluids show shear localization even in 
homogeneous stress fields (Møller et al., 2008). The yield strength and fluid properties depend not only on the 
particle volume fraction but also on the particle size distribution (Castruccio et al., 2010).

The shear conditions and phase concentrations, and therefore rheology, of lava flows can vary greatly in space 
and time during an eruption. For example, the voluminous lava flow eruption in 2018 at the lower East Rift Zone 
(LERZ) of Kīlauea Volcano, Hawai'i, exhibited rapid flow with velocities up to 15 m s −1 within the confined 
channel (Dietterich et al., 2021; Patrick et al., 2019). Yet overflowed lava from the channel showed slow and thin 
patches. Such a significant change of lava behavior only a short distance from the source is different from previ-
ously observed lava flows (Biass et al., 2019).

At the flow front of some thin overflows, the lava formed large cavities with a length scale of >1 m inside 
the closed flow patch, called shelly paho'eho'e (Jones, 1943; Swanson, 1973; Wentworth & Macdonald, 1953). 
Figure 1 shows a photograph of a solidified shelly paho'eho'e formed during the 2018 eruption at the lower East 
Rift Zone (LERZ) of Kīlauea Volcano, Hawai'i. The standard explanation for forming such cavities is an empty-
ing out of the lava beneath a solidified crust, similar to a small lava tube. However, this flow patch, and others 
like it, do not have an outlet through which to discharge the lava (Figure 1). This feature requires an alternative 
mechanism for formation in which gas accumulates at the toe of the flow. Here, we propose a formation mecha-
nism through a process of flow localization and large bubble concentration at the flow front. We investigate this 
mechanism, and the behavior of highly vesicular flows in general, through a series of experiments with bubbly 
lava flow analogs.

Figure 1. A photograph of solidified shelly paho'eho'e from the Kīlauea 
2018 LERZ eruption found 16 m from the edge of the lava flow channel at 
19.46386°N, 154.91011°W. The scale length is 1 m.
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2. Rheology of a Complex Multiphase Fluid
Bubbles and particles in fluid suspensions change the effective viscosity of suspensions, relative to that of the 
liquid phase, ηl. We here define the bubble volume fraction ϕb and the particle volume fraction ϕp as

!b =
"b

"l + "b + "p
 (1)

!p =
"p

"l + "p
 (2)

where Vl, Vb, and Vp are the liquid, bubble, and particle volumes, respectively. We define the particle volume 
fraction with respect to the dense rock equivalent (bubble-free) suspension to be consistent with the literature 
(e.g., Chevrel et al., 2018; Gurioli et al., 2014).

2.1. The Effect of Particles
The effective viscosity of a liquid-particle flow increases with the particle volume fraction. One such model 
expresses the viscosity ratio ηr as

!r =
!eff

!l
=

(

1 −
"p

"max

)−#"max

 (3)

where ηeff is the effective viscosity of the particle-bearing fluid, ϕp is the volume fraction of particles, and ϕmax 
is the maximum possible volume fraction of particles or undeformed bubbles in random close packing, and the 
exponent is 2.0 ≤ Cϕmax ≤ 2.5 (Mader et al., 2013). The random close packing of spheres of uniform size is 
ϕmax = 0.64. This value decreases with increasing particle aspect ratio and increases with increasing size variation 
(Klein et al., 2017; Mueller et al., 2011). An alternative view of the particle size contribution is that the small 
particles together with the liquid phase form a viscous fluid phase, and the large particles determine the solid 
fraction in Equation 3 (Castruccio et al., 2010).

2.2. The Effect of Bubbles
The effective viscosity of bubbly fluids depends on the capillary number (Llewellin et  al.,  2002; Manga & 
Loewenberg, 2001; Pal, 2003), which is a measure of whether the bubbles will get deformed by the flow. It is 
defined as the ratio of viscous stresses acting to deform bubbles, and surface tension resisting deformation

Ca =
!#̇$

Γ
 (4)

where ! #̇ is strain rate, R is the bubble radius, and Γ is the surface tension. In this equation, the viscosity η can 
be either the effective viscosity ηeff or liquid viscosity ηl. When a large bubble is surrounded by a suspension 
with smaller bubbles and particles, the dominant viscous force for the deformation of the bubbles depends on 
the effective viscosity ηeff. In contrast, the viscous force to deform an isolated bubble should be defined with the 
liquid viscosity ηl. For Ca < 1, bubbles do not deform and behave similarly to solid particles, thus increasing the 
effective viscosity as is expected by Equation 3 by replacing ϕp to the volume fraction of bubble ϕb. In this case, 
ϕmax in Equation 3 becomes the random close packing of undeformed bubbles, and for monodisperse bubbles 
ϕmax ∼ ϕbmax ∼ 0.64. Again, ϕbmax is sensitive to the bubble size distribution.

For Ca > 1, bubble deformation becomes significant and decreases the effective viscosity. Some theoretical and 
empirical equations have been suggested for the impact of bubbles on the effective viscosity for different Ca 
regimes. A numerical estimate of the relative viscosity for an infinite shear rate (high Ca) is close to the Hash-
in-Shtrikman upper bound (Manga & Loewenberg, 2001)

!r =
!eff

!l
= 1 −

5"b

3 + 2"b
 (5)

Pal (2003) formulated the relative viscosity at an infinite shear rate as
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!r =
!eff

!l
=

(

1 −
"b

"bmax

)5"bmax∕3

 (6)

Bagdassarov and Dingwell (1992) suggested an empirical equation

!r =
!eff

!l
=

1

1 + 22.4"b

 (7)

Figure 2 summarizes these equations. The shaded area in light blue indicates 
the possible variation of the relative viscosity with or without bubble defor-
mation, which can reach several orders of magnitude.

We here emphasize quantitative estimates of effective viscosity based on 
above models have limitations. Bubbles within a suspension can have signif-
icant size variation, increasing the maximum bubble fraction and modulation 
of effective viscosity for undeformed bubbles (Equation 3). Bubble size vari-
ation also alters the criteria of deformation through Ca (Equation 4). Tempo-
rally evolving bubble shape and size by coalescence can affect the effective 
viscosity of bubbly fluids (Takeda et al., 2020). A qualitatively meaningful 
interpretation of the above scalings is that bubbles can increase the effective 
viscosity by several orders of magnitude while decreasing it by only 1 order 
of magnitude (Figure 2).

Bubbles are deformable to be polyhedral so that the bubble fraction can exceed 
the random close packing of monodisperse spheres (ϕb  >  ϕbmax  =  0.64). 
Such a bubbly fluid has elasticity by surface tension. An empirical relation 
describes the shear modulus as a function of the bubble radius and fraction 
(Hohler & Cohen-Addad, 2005)

! ∼ "b ("b − "bmax)
Γ

#
 (8)

Here, ∼ indicates approximation in a factor.

For a rhyolitic magma, the effect of surface tension is negligible relative to the shear modulus of the liquid phase, 
the shear modulus decreases with bubble fraction

!

!0

∼ (1 − "b)
# (9)

where G0 is the shear modulus of bubble-free suspending fluid and 1 < ζ < 4 is constant (Namiki et al., 2020).

The yield stresses τy reported for foams by oscillatory measurements are approximately described by the follow-
ing relation (Hohler & Cohen-Addad, 2005):

!y = 0.5
Γ

"
(#b − #bmax)

2 (10)

2.3. Three-Phase Effect
When both bubbles and particles exist in a suspending fluid and bubbles do not deform, the volume fraction of the 
deformable suspending fluid decreases. Thus, adding bubbles to a dilute particle suspension at the low capillarity 
number regime increases its viscosity. In contrast, adding bubbles to a concentrated particle suspension, where 
space of the deformation is limited, decreases its viscosity (Truby et al., 2015). An effect of high-volume fraction 
of particles on the behavior of bubbles has been experimentally confirmed (Pistone et al., 2016).

Figure 2. Summary of the effective viscosity model. The curves labeled 
KD, HS, PA, and BD are defined by equations of 3, 5, 6, and 7, respectively. 
We assumed ϕmax = 0.5, 0.8, Cϕmax = 2.5, in Equation 3, and ϕbmax = 0.8 in 
Equation 6. The horizontal bars indicate the fraction ranges of bubbles and 
particles in our experiments. The color indicates an approximately minimum 
variation of effective viscosity in this estimate.
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The three-phase fluid also has elasticity. The shear modulus can be written 
by the product of bubble effect (Equation 8) and particle effect (Equation 3; 
Namiki & Tanaka, 2017)

! ∼
Γ

"
#b (#b − #bmax)

(

1 −
#p

#max

)−$#max

 (11)

Recall that Equation 3 accounts for reducing the viscously deformable space. 
Equation  11 has similar dependence on ϕp, suggesting a reduction of the 
elastically deformable space.

Birnbaum et al. (2021) developed a set of empirical expressions to describe 
the rheological parameters of three-phase suspensions with both particles 
and bubbles that is based on a Herschel-Bulkley formulation (Herschel & 
Bulkley, 1926)

! = !y +"$̇% (12)

where τ is the shear stress, τy is the yield stress, K is the consistency, and n is the flow index (n > 1 implies 
shear-thickening, n < 1 shear-thinning). Using analog dam-break flow experiments in confined channels, the 
following expressions were derived:

!

"l
=

(

1 −
#p

#m

)−$p

(1 − #b)
−$b (13a)

!y = 10
"1

(

#p−#c,!y

)

+ 10
"2

(

#p+#b−#c,!y

)

 (13b)

! =

⎧

⎪

⎨

⎪

⎩

1, "p (1 − "b) + "b ≤ "c,n

1 + (#3 − #4Ca)
(

"c,n − "p (1 − "b) − "b

)

, "b (1 − "b) + "b > "c,n

 (13c)

where ϕm = 0.56 ± 0.20, Bp = 2.74 ± 1.56 and Bb = 1.98 ± 0.09, C1 = 80.0 ± 10.9, C2 = 1.98 ± 0.23, the critical 
volume fraction for the onset of appreciable yield stress ! "c,#y  = 0.35 ± 0.01, C3 = 0.70 ± 0.25, C4 = 0.55 ± 0.31, 
and the critical volume fraction for the onset of shear rate dependence ϕc,n = 0.39 ± 0.12.

The common characteristic of the three-phase fluid is that the solid particles can increase viscosity and elastic-
ity significantly, while the effects of bubble is limited (Birnbaum et al., 2021; Namiki & Tanaka, 2017; Truby 
et al., 2015).

3. Experimental Methods
To understand the effect of a high-volume fraction of bubbles and crystals on a lava flow, we conducted a series of 
experiments of a particle-bearing bubbly lava flow analog, made of corn syrup as the liquid phase, plastic parti-
cles as crystal analogs, and CO2 bubbles. We simulated the lava flow by pouring the lava analog on an inclined 
acrylic plank (Figure 3). The experimental conditions are summarized in Table 1.

To create our lava analog, we mixed corn syrup and plastic particles in a beaker until the mixture was uniform 
and then added reactants into the mixture. The chemical reaction caused a volume increase of the mixed suspen-
sion. The corn syrup had a temperature and water-content dependent viscosity (Figure S1 in Supporting Infor-
mation S1) that we varied between 0.35 and 150 Pa s and surface tension of 0.08 N m −1 (Rust & Manga, 2002). 
We conducted all experiments at the same room temperature so that the temperature-dependence of the syrup 
viscosity did not impact the results. We present the water-content dependence at the same temperature in Figure 
S1 in Supporting Information S1). The plastic particles had a density in a range of 1,400–1,500 kg m −3, were 
irregularly shaped with an aspect ratio of 1.5 and 0.1 mm in size in averages, and served as analogs to crystals.

We introduced bubbles by a chemical reaction of baking soda and citric acid, which generated CO2. This is 
the same technique and materials used in previous works (Birnbaum et al., 2021; Namiki & Tanaka, 2017). 

Figure 3. A schematic diagram of our apparatus. The inset figure shows the 
complex fluid image containing bubbles (white) and particles (black, red, and 
gray) in corn syrup (green) imaged under a microscope. This sample is a part 
of the fluid prepared as the analog material of lava flow, taken from the beaker 
and observed after the experiments. The suspension, which is opaque in 3D, is 
thinly stretched on a slide glass to be approximately 2D. On the slide glass, the 
bubbles are separated by long distances to prevent the bubble coalescence and 
coarsening.
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The amount of bubbles could be roughly controlled by adjusting the amount of baking soda and citric acid. 
However, the gas produced could not be finely controlled because it escapes into the atmosphere during the 
reaction. The bubble volume was calculated by subtracting the volume of liquid and particles from the total 
volume of the suspension. We measured the total volume of the three-phase suspension using a graduated 
beaker. By introducing bubbles, the liquid color became whitish, indicating that the fluid color can be a 
measure of bubble fraction. The liquid and particle volumes were calculated by their mass and density. The 
vesicularity range used in our experiment was 0.65–0.78, which simulated the highly vesicular lava flow 
(0.5–0.82) that erupted during the 2018 LERZ eruption from Ahu'ailā’au (formerly known as Fissure 8) at 
Kīlauea Volcano, Hawai'i (Patrick et al., 2019; Figure 1). Crystallinity in lavas from Ahu'ailā’au is low (0.05), 
while that for the early phase is 0.35 (Gansecki et al., 2019). The particle fraction in our experiments simulated 
the latter case.

After the volume increase stopped and before any significant liquid separation from the foam by gravity 
occurs, we poured the fluid from the beaker by hand onto a plastic plank, inclined at angles of 25–28° from 
horizontal. This slope angle was chosen to be consistent with conditions in nature and allow measurements of 
active flow with the given materials. We tried slopes from 8° to 45° and found that a flow on a steeper slope 
lengthens in the direction of the downslope, while a flow on a shallow slope acquires a round shape. We also 
found a technical problem that the flow down a shallow slope of <20° is too slow, and its surface dried during 
the experiment due to water evaporation. A very steep slope >30° is rare in nature (Biass et al., 2019; Favalli 
et al., 2010).

The duration of pouring was on the order of 10 s. We tried various methods of introducing the particle-bear-
ing bubbly mixture onto the plank, such as injection through a tube or removal of a dam, and found that 
controlling the flow rate of the non-Newtonian sticky fluid was quite difficult. In addition, flow in a tube 
modified the bubble fraction in the fluid before it reached the plank. We thus concluded that this simple 
method of pouring directly from a beaker is the best way as a first step to simulate short lived unconfined 
bubbly lava flows.

We observed the analog lava flow on the transparent acrylic plank using video cameras, and quantified the veloc-
ity field at the surface on the videos using optical flow velocimetry (Lev et al., 2012; Sun et al., 2010). For the 
measurement of the velocity field of pure liquid flow, we used a more viscous fluid than that of the reference 
experiment. This was because to measure the velocity field for a pure liquid, we needed to add tracers on the flow 
surface. Adding tracers to the rapid flow with low viscosity is challenging. Note that the appearance of two pure 
liquid flows was similar in terms of no localized flow. In some experiments, we used a laser displacement sensor 
(Omron ZG2, vertical resolution of 6 μm) to measure the surface topography of the flow. We also used a more 
viscous liquid for topography measurement. The surface of the bubbly flow with lower viscosity liquid had more 
large bubbles, which became scattering sources of the laser beam. We calculated the time evolution of the topog-
raphy at two representative locations from the line sensor output. Characteristics of bubbles can vary with time 
and space, which cannot be monitored quantitatively. In this series of experiments, we thus try to understand  the 
bubbly flow in a qualitative manner.

Slope Plank length Liquid viscosity Liquid density Total volume ϕb ϕp

(°) (m) (Pa s) (kg m −3) (L) (–) (–)

Figure 4a 28 1.2 0.35 1,315 0.44 0.00 0.00
Figures 4b and 6b 28 1.2 0.35 1,315 0.43 0.69 0.00
Figures 4c and 6c 28 1.2 0.35 1,315 0.42 0.69 0.35
Figure 6a 25 0.66 150 1,470 0.50 0.00 0.00
Figure 6d 26 0.66 1.9 1,370 0.38 0.65 0.00
Figure 7 25 0.66 1.0 1,350 0.10 0.78 0.00
Note. Total volume is the poured volume on the plank for the model lava flow.

Table 1 
Experimental Conditions
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We can estimate the yield stresses for our bubbly lava analog. According to Equation 10, the yield stress for 
bubbly fluid depends on the maximum bubble volume fraction. Assuming ϕbmax = 0.64, our bubbly fluid with 
ϕb ≤ 0.78 and bubble size of >10 −4 m has yield stress of <10 Pa. Using Equation 8, the shear modulus is <100 Pa, 
resulting in that the critical strain for yield becomes <0.01. Similarly, the yield stress for our three-phase suspen-
sion is estimated using Equations 13b, 24 Pa, and the shear modulus is 200 Pa (Equation 11), resulting in the crit-
ical strain for yielding of 0.1. Note that the characteristics of the three-phase fluid, such as liquid surface tension 
and particle size, can affect also the yield stress. The fluid used by Birnbaum et al. (2021) to derive Equation 13b 
was approximately the same as that in this paper.

4. Results
4.1. Flow Velocity Slowed by Bubbles and Particles
Figure 4 summarizes three typical experiments. We used three kinds of fluids; pure liquid, bubbly fluid, and 
particle-bearing bubbly fluid. The most significant result is that the pure liquid flows rapidly, while the bubbly 
fluid and the particle-bearing bubbly fluid flow slowly. At the downslope nose of the pure liquid, droplets orig-
inating from capillary instability precede the flow (Figure S2 in Supporting Information S1; Huppert, 1982a; 
Lister, 1992).

To visualize this trend quantitatively, we plot the time evolution of the length of each flow (Figure 5a). Theoret-
ically, the length of flows would be expected to increase with time t in a power-law manner t α—for a Newtonian 
fluid, while the fluid is being poured at a constant flux, ! " =

7

9
 , and after the pouring ends, ! " =

1

3
 , as denoted in 

Figure 5a (Lister, 1992).

The pure liquid, expected to behave as a Newtonian fluid, flows down rapidly and the flow length time evolution 
follows the power index of 7

9
 , as expected for a Newtonian fluid. This result suggests that the flux rate we achieve 

by pouring is nearly constant, despite pouring by hand. Given that the flow is too rapid, the flow front reaches 
the bottom end of the plank before the pouring ends, and we could not obtain the power index of length evolution 
after the pouring ends (Figures 4a and 5a).

In contrast, the flow of the bubbly fluid advanced much more slowly than the pure liquid (Figure 4b). Bubbly 
fluids are often non-Newtonian, and advance according to different power-law indexes (Balmforth et al., 2007; 
Birnbaum et al., 2021). In our experiment for bubbly fluids, the power-law index before the end of pouring devi-
ates from the ! " =

7

9
 expected for Newtonian fluids. This may suggest the effect of non-Newtonian rheology, but 

Figure 4. Photographs of the lava flow experiments with (a) pure liquid, (b) bubbly flow ϕb = 0.69, and (c) particle-bearing 
bubbly flow ϕb = 0.69 and ϕp = 0.35. The conditions are summarized in Table 1. The liquid viscosity ηl = 0.35 Pa s is the 
same for three experiments. The markers correspond to Figure 5. The numbers denoted on the left side show the elapsed time 
since the front of the pouring fluid contacts the plank. The length of the lava flow in the last photograph is denoted at the 
bottom. The width of each panel is 0.2 m. The light-colored vertical lines are the reflection of overhead fluorescent lights. 
The corresponding movie is provided as Movie S1, which is introduced in Gasparini (2020).
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because of short time pouring different from Balmforth et al. (2007), the power index until the end of pouring 
does not reach a constant. Once the pouring stopped, though, the flow advance rate follows a power-law index of 
1

3
 , which is consistent with a Newtonian behavior (Figure 5a).

The behavior of the particle-bearing bubbly fluid is more complex. The time evolution of the length approx-
imately stops around 100 s, but the fluid resumes to flow down around 500 s at a rate following a power-law 
index of 1

3
 , consistent with Newtonian behavior. In Figure 4c at 17 min, the width of the flow front is narrower 

than that of the original, indicating that the former entire flow upslope adheres to the plank and only the central 
part of the flow is mobile. The width of the flow front decreases with time. The low power index before reaching 

! " =
1

3
 may be due to the rheology effects such as yield stress and shear rate dependence (Balmforth et al., 2007; 

Birnbaum et al., 2021). The time varying power index may suggest that these rheological parameters are also 
time dependent.

The maximum widths of these three examples do not differ significantly (Figure 5b). The bubbly fluid shows a 
slight decrease in measured maximum width with time after the pouring end. This is because the fluid upslope 
at the maximum width flows down to make the measured width narrower. In addition, some bubbles at the edge 
of the flow disappear with time. The width of particle-bearing bubbly suspension continuously increases for 
a long  time. This is because the initially thick flow spreads by gravity in both the downslope and cross-slope 
directions.

The width of flows is also expected to increase over time in a power-law manner, t α. For a Newtonian fluid, 
while the fluid is being poured at a constant flux, ! " =

1

3
 , and after the pouring ends, the growth stops and α = 0 

(Lister, 1992). In Figure 5b, the initial phase is faster than ! " =
1

3
 , which may originate from the width of the 

beaker, which is wider than a point source. The later stage of pouring is close to ! " =
1

8
 . The power index of 1

8
 

is derived, assuming that fluid flux is approximately zero at the very beginning of pouring. Maybe our hand 
moved downslope. This should halt the width evolution at a certain location but not much affect the evolution 
in length.

4.2. Spatial Variation of Velocity and Thickness
In bubbly fluid experiments (Movie S1, Figure 4b), a dark linear structure appears along the center axis at the 
end of the pouring, which overtakes the other whitish parts downslope. Here, the dark fluid color is due to fewer 
bubbles, implying that this region is denser than the surrounding whitish region. We here quantify this feature by 
measuring the flows' surface velocity field (Figures 6a–6c) and flow thickness (Figure 6d). Figures 6b and 6c is 

Figure 5. The time evolution of (a) the length and (b) the maximum width of the lava flows observed in Figure 4. The theoretically predicted power indexes for 
Newtonian fluids are denoted as gray lines. The flow shape is extracted from the top view video (Figure 4) using color contrast, which can produce an error of a few 
pixels, <5 mm.
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the velocity field of Figures 4b and 4c, and Figure 6a is the velocity field of pure liquid flow with more viscous 
fluid than that used in Figure 4a.

Figures 6a–6c show that the flow front has higher velocity than upslope. The pure liquid flow, as a Newtonian 
fluid, has a limited velocity variation in the cross-slope direction (Figure  6a), while the bubbly fluid shows 
strongly localized flow (Figure 6b). This region corresponds to the dark linear structure, indicating that the dense 
region with fewer bubbles flows faster than the surrounding. The particle-bearing bubbly flow shows that the 
flow is concentrated in the narrow flow front, which corresponds to the region that resumed motion after coming 
to a near halt (Figure 6c).

Motivated by the importance of thickness on flow velocity, we then measured the flow thickness using a laser 
displacement sensor (Figure 6d). The liquid viscosity in Figure 6d is higher than that used in Figure 4b, and 
bubbles in both Figures 4b and 6d maintain spherical shapes, suggesting that Ca < 1. The inset shows a photo 
of the measured flow, in which darker spots appear at the middle of the flow. These darker spots, together with 
the whitish region between them, rapidly flow down. Initially, the flow front is upslope of the sensor. After 
40 s, the flow front reaches the location of the sensor (Figure 6d). As expected, the flow front is relatively thick, 
and  the  height decreases with time as the flow is advected downslope. So, the x-axis time in Figure 6d can be 
considered as the distance from the flow front. The center of the flow (red curve) is thicker than the side (blue 
curve) at the flow front, but later the side becomes thicker than the center.

4.3. Observation From Underneath the Plank
When we made the bubbly fluid in the beaker, the liquid was segregated by gravity and formed a lower 
liquid layer with dark color (Figure 3, red arrow). This process may also be important in the flow. We then 
observed the bubbly flow from the bottom of the plank (Figure 7). The bottom view shows a darker color, 
suggesting that more liquid accumulates at the bottom of the flow. The bottom view also shows that, as the 
experiment progresses, the darker region concentrates at the flow front. The side view indicates the flow 
front is thicker than the upslope  region. The top view shows an increased concentration of bubbles at the 
flow front.

Figure 6. The calculated velocity field for (a) pure liquid with a viscosity of 150 Pa s, (b) bubbly fluid (Figure 4b), and (c) particle-bearing bubbly fluid (Figure 4c). 
The length of each panel is 0.6 m. The contour curves show the velocity in the downslope direction, and arrows show the flow direction with a velocity scaled to 
relative magnitude. The numbers indicate the time after pouring. Corresponding movies are provided as Movies S2–S4. (d) Measured flow thickness for the bubbly 
fluid with a liquid viscosity of 1.9 Pa s and the bubble fraction of 0.65. Measured locations of red and blue curves are marked at the inset. One in the channel center and 
one offset by 37 mm, both 0.35 m downslope from the initial pouring location. The area of the inset is 0.45 × 0.2 m.
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5. Discussion
5.1. Why Did Bubbles Only Slow the Flows?
Our experiments show that the bubbly flow is slower than the pure liquid flow for the same liquid viscosity. 
Recall from Section 2 and Figure 2, bubbles can increase or decrease the effective viscosity. Because, in our 
experiments, bubbles only slowed the flow velocity, we infer that the bubbles did not substantially deform.

To confirm this hypothesis, we estimate the capillary number for our bubbly fluid flow. The vertically averaged mean 
flow velocity in the layer u for a Newtonian fluid on a slope angle of θ is calculated by (Turcotte & Schubert, 2014)

! =
"#ℎ2 sin %

3&eff

 (14)

where ρ = ρl(1 − ϕb) is the effective density of the fluid, g = 9.8 m s −2 is the gravitational acceleration, h is the 
thickness of the flow. Equation 14 gives a simple order of magnitude estimate of velocity, which in reality varies 
throughout the flow depth and with any spatial or temporal variations in the flow. Indeed, our experiments show 
that the flow thickness and bubble distribution vary locally and temporally (Figures 6 and 7). In a natural lava 
flow, the slope angle also differs locally. We regard Equation 14 as applicable for the local average in a relatively 
homogeneous region.

We take the average shear rate ! #̇ in the definition of Ca (Equation 4) to be u/h. Substituting Equation 14 and this 
definition of ! #̇ into Equation 4, the viscosity term disappears and we obtain

Ca =
!l (1 − "b) #ℎ% sin &

3Γ
 (15)

In this equation, the liquid density, surface tension, and slope angle do not vary significantly. That is, the flow 
thickness and bubble size are the dominant factors determining the capillary number. In our experiments, the flow 
thickness varies temporally and locally and is on the order of 10 −2 m (Figure 6d). The bubble sizes also vary in the 
range of 10 −4–10 −2 m. The minimum size of 10 −4 m is measured under microscope (Figure 3), and the maximum 
is measured from videos of analog lava flow, taking the time variation into account (Figures 4 and 7).

We plot Equation 15 in Figure 8 and find that the possible bubble radius and flow thickness range in our exper-
iments are located in the field of Ca  <  1, indicating that the bubbles do not deform and effective viscosity 
increases. This estimate is consistent with our observation that the bubbles always slow the flow velocity.

Figure 7. An example observation from three directions of a bubbly flow with liquid viscosity of 1 Pa s and bubble fraction 
of 0.78. The length of each panel is 0.5 m. The panels show top, bottom, and side views from the left. Please note that the 
flow direction is from right to left to be consistent with the side view. We painted the noisy background with white and 
remained the rim of fluids to avoid the artificial effect.
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We here note that Equation 15 assumes that a large bubble is surrounded by 
bubbly fluid. When ϕb is small or bubble size is uniform, liquid viscosity may 
be more appropriate to be a substitute in Equation 4. Given that most bubbles 
did not deform in our experiments Equation 15 becomes

Ca =
!l (1 − "b) #ℎ% sin &

3Γ

(

1 −
"b

"max

)'"max

 (16)

The last term decreases with increasing ϕb to reduce Ca. Thus, estimated Ca 
in Figure 8 is the maximum estimate. Again, our experiments are located in 
the field of Ca < 1 irrespective of the surrounding fluid properties.

5.2. Flow Localization and Vertical Segregation of Liquid
5.2.1. Summary of Observation
In Section 4.2, we quantified the characteristics of flow localization. In the 
bubbly flow, the line-like dark region has a thinner thickness and flows faster 
than the surrounding region (Figures 6b and 6d). To understand the source 
of this structure, we revisit the initial condition. When we made the bubbly 
fluid in the beaker, the lower part of the beaker became relatively liquid-
rich by gravitational segregation (Figure 3, red arrow). As a result, when we 
poured the bubbly suspension on the plank from the beaker, the fluid that 
came out later had fewer bubbles. Since the driving force of the downslope 
flow is gravity, this later fluid parcel, which has fewer bubbles and thus a 
higher bulk density and lower effective viscosity, flows down faster than the 
surrounding fluid and becomes thinner. These characteristics are consistent 
with those observed in Figures 6b and 6d. We thus interpret this region to 
have a lower bubble fraction, originating from liquid separation in the beaker. 
Indeed, Movie S1 shows that the line-like dark structure appears at the end of 
the pouring. Our interpretation is consistent with the previous work in which 
later injected less viscous fluid accelerates the flow (Castruccio et al., 2014).

Such an artificial bubble distribution does not occur in nature. However, the temporal fluctuation of bubble 
fraction in an erupted lava has been observed during the LERZ eruption (Patrick et al., 2019). The above result 
indicates the importance of the heterogeneous bubble distribution in the gravitationally driven downflow. Next, 
we consider the effect of the vertical localization of bubbles, which may occur in natural systems.

In experiments with particle-bearing suspensions (Figure 4c), the flow resumed after almost stopping. It is known 
that suspension fluids with yield stress begin to flow abruptly once a threshold stress is overcome (Coussot 
et al., 2002). This is because the rheology depends on the internal microstructure and deformation fluidizes the 
jammed suspension to accelerate the flow.

The estimated yield stress for our particle-bearing bubbly fluid is 24 Pa (Equation 13b), which is close to the 
stress caused by the fluidal static pressure acting on the fluid layer ρl(1 − ϕb)gh sin θ ∼ 20 Pa with a thickness 
of h  ∼  10 −2  m. This agreement explains the observation that the particle-bearing bubbly flow almost stops 
(Figure 5a, red curve, 100 s). The fluid was initially thick and generated the stress exceeding the yield stress 
ρl(1  −  ϕb)gh sin θ  >  τy. With time, the fluid becomes thinner by flowing, and the stress acting on the flow 
falls  below the yield stress, and then the flow stops. From our visual observation, it is not plausible that the criti-
cal strain of 0.1 for yielding occurs within the three-phase suspension to resume the downflow after the stopping. 
However, the flow resumed.

In contrast, the yield stress of the bubbly fluid of <10 Pa is much smaller than the fluidal static pressure, which is 
consistent with the observation that the bubbly flow did not stop (Figure 4b). Irrespective of differences in yield 
stress, both flow lengths had the same power index of ! " =

1

3
 close to that typical of a Newtonian fluid at the very 

end of observations (Figure 5a).

Figure 8. The estimated capillary number depending on the flow thickness 
and bubble radius (Equation 15). The red and blue lines indicate Ca = 1 for 
a lava flow and model lava flow in our experiments, respectively. The orange 
and blue area indicates a possible range of real lava flow and model lava 
flow, respectively. We here assume ρl = 2,700 kg m −3, θ = 25° (solid line), 
θ = 1° (dotted line), Γ = 0.4 N m −1 for a lava flow, and ρl = 1,400 kg m −3, 
θ = 25°, Γ = 0.08 N m −1 for experiments. For lava flow, the range of thickness 
and slope is estimated by the eruptions at Kīlauea (Biass et al., 2019; 
Dietterich et al., 2021; Patrick et al., 2019) and Mt. Etna (Favalli et al., 2010). 
The bubble size is based on the field observations (Chevrel et al., 2018; 
deGraffenried et al., 2021; Shea et al., 2010; Figure 1). For experiments, the 
range of the flow thickness is estimated based on the side view (Figure 7) 
and the measurement by the laser displacement sensor (Figure 6). The bubble 
radius range is estimated by the analog lava flow video and microscope 
measurements (Figures 3, 4, and 7).
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We interpret this phenomenon as the result of vertical bubble localization developed with time. Less dense bubbles 
are buoyant in a bubbly suspension, and bubbles and liquid separate by gravity with time. Indeed, Figure 7 shows 
that the liquid in the bubbly flow concentrates at the bottom of the flow. Bubbles floated by buoyancy, and the 
liquid segregated to accumulate at the bottom.

5.2.2. Time Scale of Vertical Bubble Separation
Summarizing the above discussion, we interpret our experiments as shown in Figure 9. Liquid concentrates at 
the bottom of the flow front above which the bubbles float. The observation that our experiments approach the 
Newtonian scaling with time suggests that the bubble-poor regions at the base and center of the flow control the 
velocity of flow front propagation. Based on this idea, we estimate the time scale of vertical bubble separation.

The density contrast between liquid and bubble causes bubble floating and liquid drainage. We here focus on 
the two-phase system of bubble and liquid for simplicity. When the bubble fraction is lower than the random 
close packing ϕb < ϕmax, the evolution of liquid-rich layer (dashed line in Figure 9) is produced by the floating 
of bubbles.

An isolated bubble in a liquid layer ascends under the balance of buoyancy and viscous drag which is known as 
Stokes velocity (Turcotte & Schubert, 2014)

!stk =
"l#$

2

3%l
 (17)

In a suspension, the ascending of individual bubbles will be hindered by the presence of neighboring bubbles. 
This effect is empirically tested with settling particles (Davis & Birdsell,  1988). Applying this relation for 
bubbles, the hindered rise velocity becomes

!h = (1 − "b)
5!stk (18)

Actual growth rate of the liquid-rich layer may be intermediate of Equations 17 and 18. This is because, in the 
experiment on gravity-driven settling of packed particles into a liquid layer, the growth rate of the liquid-rich layer 
is intermediate between velocities estimated by these two equations (Shibano et al., 2012).

Another way to estimate the liquid separation is using Darcy velocity, in which liquid phase flows down in the 
suspension

!D =
"2(1 − #b)

3

45#2
b

$l#b%

&l
=

(1 − #b)
3

15#b

!stk (19)

where we assumed that pressure difference is originated from the density difference of mixture and liquid phase. 
At a high fraction of bubbles, the bubble fraction varies with depth, as denoted in Figure 9, and the drainage in 
such foam is complicated (Cantat et al., 2010). Coarsening and coalescence of bubbles occur, which vary the 

Figure 9. A schematic vertical cross-section of our analog lava flow. Liquid segregates from the bubbles generating a liquid-
rich bottom layer, which lubricates the bottom of the bubbly flow. Bubbles accumulate above it.
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bubble size with time and depth (Maurdev et al., 2006; Sato & Sumita, 2007). Compaction induced by the bubble 
deformation is also expected (Bercovici & Ricard, 2003; Huber & Parmigiani, 2018; McKenzie, 1984). These 
processes are essential to generate the large cavity at the top of the bubbly flow, but the film rupture process of 
the viscous surfactant-free liquid is not well established (Ohashi et al., 2022), and we here use Equations 17–19 
for an order estimate.

Next, we estimate the time scale to develop the liquid-rich bottom layer. In the experiment Figure 4b, ϕb = 0.69, 
which is higher than ϕbmax, but considering the vertical variation of the bubble fraction, it is appropriate to use 
Equation 18 for a minimum estimate. Using the parameters for the experiment in Figure 4b, assuming a bubble 
radius of 1 mm and a bubble fraction at the base of the bubble-rich layer ϕb ∼ 0.64, which is appropriate for a wet 
foam (Cantat et al., 2010), we obtain vh ∼ 0.07 mm s −1. Dividing the bubble size by the hindered rise velocity, 
we estimate that a liquid layer with a thickness of the bubble size develops in ∼10 s. Figure 5a indicates that the 
power index of the bubbly flow becomes close to 1

3
 , a value close to Newtonian fluid, after ∼10 s elapsed. This 

may be because deformation is concentrated in the bottom Newtonian fluid layer.

The liquid-rich layer can explain the limited effect of bubbles on slowing the flow velocity. The bubble fraction of 
ϕb = 0.69 for the experiment in Figure 4b can increase the viscosity 100 times relative to pure liquid (Figure 2). 
The density has also decreased to about 30% of the pure liquid. Together, these should lead to slowing down the 
flow <1/100. However, the velocity reduction is ∼1/10 (Figure 4b). The non-Newtonian characteristic might be 
a source of this discrepancy, but the power index of 1

3
 suggests that the liquid-rich layer behaves as a Newtonian 

fluid (Figure 5a). One possible interpretation is that the bottom liquid-rich layer helps to lubricate the bubbly 
flow, and the increase of effective viscosity is less than the above estimate. In our particle-bearing bubbly fluid, 
the particle density is close to that of the liquid phase, and therefore the particles do not segregate as fast as the 
bubbles. We also note that the volume fraction of particles is less than the close packing (i.e., 0.35 < ϕmax = 0.64), 
which is too small to generate large yield stress. Thus, the vertical separation of bubbles could cause the flow to 
resume (Figure 4c). If the particles are denser than the liquid phase or its volume fraction is close to ϕmax = 0.64, 
the bottom of the bubble-poor layer concentrates with particles, which increases the effective viscosity.

The above discussion provides estimates of the orders of magnitude rather than a quantitative analysis. This is 
because our bubbly fluid has size distributions that affect the effective viscosity, and the quantitative estimate and 
control of bubble properties are quite difficult.

6. Implication for a Real Lava Flow
6.1. Estimated Range of the Capillary Number in the Lava Flow
Figure 8 demonstrates that we can estimate Ca for individual bubbles in a flow going down a slope only from 
the fluid thickness and bubble size. This is because the viscosity cancels out, and other parameters are relatively 
constant. In our experiments, Ca < 1, and bubble deformation is not significant (Figure 8). In this section, we use 
Figure 8 to explore the range of Ca expected for natural lava flows.

The possible range for real lava flows (orange region) straddles both areas of Ca < 1 and Ca > 1. In particular, 
low viscosity basaltic flows close to the source region, in confined channels, over steep slopes, or that are several 
meters thick, can experience rapid velocities and high shear rates and high Ca. Indeed, field viscosity measure-
ments of paho'eho'e magma using rotational viscometer indicate that deforming bubble decreases the effective 
viscosity from 700 to 380 Pa s, where the sample has vesicularity of 0.5, bubble size of 0.34 mm, and the crys-
tallinity of few vol.% (Chevrel et al., 2018). This measurement was conducted under high shear rate of >1 s −1, 
which may be a rare condition within a natural lava flow. We here note that the larger bubbles deform more easily 
(Equation 4), and larger bubbles are abundant in a real lava flow. In such conditions, even a flow with a small 
shear rate may cause viscosity decrease as a consequence of bubble deformation.

We here provide a possible example in the field for viscosity decreases and increases associated with changes 
in Ca. Figures 10a and 10b show an overspill from the main lava flow from Ahu'ailā’au (Fissure 8) vent. The 
overspill leaves the main lava flow from the edge of the levee at 1.9 km downstream from the vent, and forms 
fingers after ∼100  m of flow. The velocity of the overspill in this narrow channel is >0.5  m  s −1 but in the 
fingers, it is ≤0.05 m s −1. Here, the lava flow velocity depends on the flow thickness, slope angle, and viscosity 
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(Equation 14). The daytime view of the solidified overspill (Figure 10c), suggests that the flow thickness and 
slope do not change with location significantly. Cooling and increasing crystallinity are major controlling factors 
of lava viscosity in general (Harris et al., 2009; Lipman & Banks, 1987), yet here the overspill emplacement time 
(∼200 s) is too short to allow cooling to play a significant role in slowing the flow.

One possible interpretation is that the change in Ca, and the associated increase in viscosity, are responsible for 
the slowing of the overspill flow. The melt viscosity is estimated as 64 Pa s from the viscosity measurements 
(Soldati et  al.,  2021). Bubbles and crystals increase the effective viscosity to 4.9 times the liquid viscosity 
(Gansecki et al., 2019), resulting in the three-phase bulk viscosity becoming 290 Pa s. With bubble radius of 
20 mm, Γ = 0.4 N m −1, shear rate of 0.1 s −1 as a ratio of flow velocity 0.5 m s −1 to the half of channel width 
5  m, the estimated Ca  ∼  1. If the depth of the channel is shallower than 5  m, which is plausible, the shear 
rate associated with the vertical velocity profile is higher than 0.1 s −1, so smaller bubbles can deform. Large 
bubbles (R > 0.02 m) exceed Ca > 1 and can deform, which decreases the effective viscosity and accelerates the 

Figure 10. (a) Picture (upper panel) and (b) velocity (lower panel) of channelized overspill located ∼1.9 km downstream 
from Ahu'ailā’au (Fissure 8) vent on 26 June at 3:31 a.m. HST (19.47679°N, 154.90153°W), with an estimated drone flight 
height of 142 m. The estimated scale is denoted as the green scale bar. The velocity field is obtained by 3 s time difference. 
The original video is recorded from a moving drone. We adjusted the field of view based on the location at the green square 
but could not remove all migration. The calculated slow velocity outside the overspill may be originated from the movement 
of the camera. (c) The daytime view of the region shown in Figures 10a and 10b on 27 June. The gray ribbon run off the 
main lava flow pointed by the red arrow is the solidified overspill shown in Figures 10a and 10b. The view angle is rotated 
90° from Figures 10a and 10b. The inset shows the locations of overspill in Figure 10 and shelly paho'eho'e in Figure 1. The 
original movies are from DeSmither et al. (2021), and the inset picture was downloaded from Google earth in 2021 October.
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flow. Such a rapid flow increases Ca, deforms bubbles, and enhances coales-
cence (Okumura et al., 2006), which may facilitate the formation of giant 
bubbles. The larger bubbles are more buoyant and concentrate at the top of 
the flow front. In contrast, smaller bubbles R < 0.02 m are below Ca < 1 and 
increase the effective viscosity. Here, smaller bubbles may be left in the lava 
because of slow ascending velocity. Consequently, the effective viscosity of 
the lava flow increases at the flow front. If the shear rate becomes too high, 
the flow may disrupt the giant bubbles and generate smaller ones (Stein & 
Spera, 1992), contributing to reducing Ca suddenly.

Different from our experiments, fresh less viscous lava is supplied from 
the upstream, which could generate a local viscosity contrast in a lava flow 
to cause viscous fingering (Bischofberger et  al.,  2014; Chen et  al.,  2017; 
Homsy, 1987; Nittmann et al., 1985; Oppenheimer et al., 2015). The outer 
shell of each finger may be eventually solidified and the ascending giant 
bubbles accumulate beneath it. When the bubbles are concentrated, the 
chance for bubbles to come into contact with each other increases. Assum-
ing that the bubble coalescence is governed by percolation, the increase of 
local bubble fraction is expected to enhance the coalescence of bubbles to 
make larger bubbles (Gaonac'h et al., 2003; Giachetti et al., 2019; Rust & 
Cashman, 2011). Larger bubbles generated by coalescence accelerate grav-
itational drainage in the bubble film (Nguyen et al., 2013). Drainage makes 
the bubble film thinner than critical for rupture. Thus, the closely located 
bubbles eventually coalesce to make a huge cavity at the end of the flow 
beneath the solidified crust.

6.2. Solidification of the Lava Surface
As shown in Figure 1, a large cavity with a length scale of >1 m exists without an outlet, suggesting that initially 
the flow contained voluminous bubbles and then bubbles concentrated at the flow front. The measured vesicular-
ity of the lava flow erupted during the 2018 LERZ eruption Kīlauea Volcano, Hawai'i is 0.5 ≤ ϕb ≤ 0.82 (Patrick 
et al., 2019). If bubble separation occurs in a patch of lava with a volume of 1 m 3 and an initial vesicularity of 
0.82 becomes finally 0.5, a cavity with a volume of 0.64 m 3 emerges. Thus, the vertical bubble separation likely 
generated a shelly paho'eho'e.

The lava flow cools from the surface, so bubble separation needs to occur before the solidification. Lava flows 
erupt at high temperatures, such as the basaltic lava at Hawaii (>1,000 °C). The large temperature difference with 
the ambient environment cools the lava flow. Heat loss from the lava surface is caused by radiation and convec-
tion of surrounding air (Griffiths, 2000).

In Figure 11, we estimate the time scale to develop a solidified crust by the thermal diffusion, where a hot lava is 
contacting an atmosphere with a constant temperature

!c = 2
√

"# erfc−1
(

$ − $a

$e − $a

)

 (20)

where Lc is the thickness of the cooled lava crust to a given temperature, t is time, T is the glass transition or 
a certain temperature, Ta is atmospheric temperature, Te is eruptive temperature. We here estimate the ther-
mal diffusivity by the method used in Namiki et  al.  (2021), κ =  (km(1  −  ϕb)  +  kaϕb)/[ρl(1  −  ϕb)Cp], where 
km = 1.22 W m −1 K −1 and ka = 0.166 W m −1 K −1 are thermal conductivity of bubble-free magma and steam, 
respectively, and Cp = 2,300 J K −1 kg −1 is heat capacity of melt. We here neglect the effect of bubbles on heat 
capacity because its effect based on the mass fraction is quite small. The measured vesicularity for the LERZ 
eruption is 0.5–0.82 (Patrick et al., 2019). For this vesicularity range, the range of thermal diffusivity is narrow 
2.2 × 10 −7 < κ < 3.2 × 10 −7 m 2 s −1, so we used an average value of 2.6 × 10 −7 m 2 s −1.

Figure 11. Time evolution of cold crust and liquid-rich bottom layer 
thicknesses for a 1-m thick lava flow over 1 day. The black curves show 
the thicknesses of the cooled layer estimated from Equation 20 using 
κ = 2.6 × 10 −7 m 2 s −1, Ta = 25 °C, and Te = 1,168 °C. The glass transition 
temperature is ∼700 °C (Ryan & Sammis, 1981). The liquid viscosity at Te is 
64 Pa s and increases to 218 Pa s at 1,100 °C (Soldati et al., 2021). Red, blue, 
and pink curves are the estimated thicknesses of the liquid-rich layer from 
Equations 17–19 assuming ϕb = 0.64 and ρl = 2,700 kg m −3. Solid and dotted 
curves are for R = 5 mm, and 0.5 mm, respectively.
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The surface temperature of the lava flow is higher than the atmospheric temperature (Fink & Griffiths, 1990). The 
hot lava heats the air above it and drives air convection, which cools the lava, and then the surface temperature 
adjusts to the atmosphere (Moitra et al., 2018; Stroberg et al., 2010). Our estimate assumes the constant atmos-
pheric temperature of the lava surface in Equation 20, which implies neglecting the time for surface cooling, and 
results in a maximum estimate of the solidified crust growth. Convection may occur inside the lava flow, enhanc-
ing the heat transport from the inside lava flow to the atmosphere. However, a viscous boundary layer develops 
at the surface of the lava, in which heat transportation is governed by thermal conduction (Griffiths et al., 2003).

The black solid curve in Figure 11 shows the glass transition temperature of 700 °C (Ryan & Sammis, 1981) 
and suggests that lava flow with a typical thickness (≫10 −1 m) takes >7 hr to solidify. Eruptive temperature is 
assumed as Te = 1,168 °C, and liquid viscosity is 64 Pa s (Soldati et al., 2021). The dashed black curve (1,100 °C) 
indicates the onset of viscosity increase to 218 Pa s (Soldati et al., 2021). The growing liquid-rich layer thick-
ness is calculated by multiplying the time and estimated velocities from Equations 17–19. If the bubble size is 
relatively large (>0.01 m), bubble separation easily occurs, but this is not the case when the bubble size is small 
<1 mm. It is reasonable to consider that the internal bubbles have already experienced the coalescence and have 
a large size at the end of a lava flow.

It is helpful to consider a dimensionless number indicating whether bubble separation or solidification by cooling 
is more dominant. The thickness ratio of the liquid-rich layer Ll and the cooled upper crust Lc makes a dimension-
less number. The evaluation of liquid-rich layer growth depends on the specific situation (Equations 17–19), but 
all cases depend on vstk, as defined by Equation 17. We here use vstk and neglect some constants for simplicity, 
and thus obtain

!l

!c

=
"2#l$%∕&l

√

'%
 (21)

We note ! "l∕"c ∝
√

# , and bubble radius R will increase with time. Thus, Equation 21 indicates that, if the flow 
thickness is sufficiently thick not to solidify too fast, the effect of bubble separation becomes more dominant with 
time. In a real lava flow, bubbles accumulate beneath the solidified upper crust which prevent growth of cold 
crust. We thus conclude that bubble separation can occur to form a cavity in a shelly paho'eho'e.

In Figures  4c and  5a, we observed the resuming of the stopped flow by the vertical separation of bubbles. 
This phenomenon is caused by the balance between the gravitational driving force of flow ρl(1 − ϕb)gh sin θ 
and the yield strength τy. For highly crystalline magma, the yield strength will be high so that flow is likely to 
stop (Castruccio et al., 2014). In this case, the effective viscosity of the magma is also high, and bubble sepa-
ration takes a long time. High bubble fraction also causes yield strength, but its value can be lower than that 
induced only by crystallinity (Birnbaum et al., 2021; Hohler & Cohen-Addad, 2005). Field measurements of yield 
strength of basaltic lava flow are in the order of 10 2–10 3 Pa (Chevrel et al., 2019). Assuming a yield strength of 
τy ∼ 10 3 Pa, melt density of ρ = 2,700 kg m −3, vesicularity of 0.7, and slope angle of 25°, a 0.3 m thick flow would 
stop. Figure 11 suggests bubble separation can occur before the solidification in lava flows with a thickness of 
0.3 m. We conclude that stopping and resuming of flow by changing the microstructure-dependent yield stress 
can occur in a natural lava flow.

7. Conclusion
We conducted a series of experiments of analog lava flows using bubbly corn syrup suspensions at a regime 
dominated by bubble surface tension (the capillary number, Ca < 1), where bubbles are expected to increase the 
effective viscosity of the suspension compared to the liquid viscosity. This regime is relevant for slow moving 
natural lava flows such as the flow end of thin overspills from main channels, and can work to slow the flow 
further than cooling alone. We identified a possibly non-Newtonian behavior during the early stages of the flow of 
bubbly suspensions, but then a return to Newtonian behavior. Liquid segregation and flow localization occurred 
in sections where bubble-poor, and thus a denser and also less viscous (since Ca < 1) fluid advanced faster than 
the rest of the flow. In natural lava flows, Ca > 1 can occur, which can accelerate flow velocity and enhance 
bubble coalescence. Large bubbles and liquid-rich regions can accumulate at the flow front. A bubble-rich region 
generated by the vertical separation might be an origin of shelly paho'eho'e.
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Data Availability Statement
The video used for the overspill analysis (Figure  10) is currently available through the USGS ScienceBase 
(DeSmither et al., 2021). For the calculation on velocity field in Figures 6 and 10, we used optical flow (Sun 
et al., 2010).
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