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A B S T R A C T   

Objective: We aim to build an accurate machine learning-based system for classifying tumor attributes from 
cancer pathology reports in the presence of a small amount of annotated data, motivated by the expensive and 
time-consuming nature of pathology report annotation. An enriched labeling scheme that includes the location of 
relevant information along with the final label is used along with a corresponding hierarchical method for 
classifying reports that leverages these enriched annotations. 
Materials and methods: Our data consists of 250 colon cancer and 250 kidney cancer pathology reports from 2002 
to 2019 at the University of California, San Francisco. For each report, we classify attributes such as procedure 
performed, tumor grade, and tumor site. For each attribute and document, an annotator trained by an oncologist 
labeled both the value of that attribute as well as the specific lines in the document that indicated the value. We 
develop a model that uses these enriched annotations that first predicts the relevant lines of the document, then 
predicts the final value given the predicted lines. We compare our model to multiple state-of-the-art methods for 
classifying tumor attributes from pathology reports. 
Results: Our results show that across colon and kidney cancers and varying training set sizes, our hierarchical 
method consistently outperforms state-of-the-art methods. Furthermore, performance comparable to these 
methods can be achieved with approximately half the amount of labeled data. 
Conclusion: Document annotations that are enriched with location information are shown to greatly increase the 
sample efficiency of machine learning methods for classifying attributes of pathology reports.   

1. Objective 

By enabling patients to receive tailored risk assessment and treat
ment decisions, precision medicine has the potential to improve 
healthcare quality. [1] However, effective delivery of precision medi
cine depends on accurate and detailed patient data. Unfortunately, 
much of the relevant clinical data, such as cancer stage and histology, 
are stored as free text in lengthy unstructured or semi-structured reports. 
[2] Leveraging the data contained in these reports for precision medi
cine applications relies on manual efforts by annotators with domain 
expertise for many downstream automated methods. Due to the time- 

consuming and expensive nature of manual information extraction, re
searchers and clinicians have worked to develop algorithms to auto
matically extract pertinent data from pathology reports with mixed 
success, with machine learning-based methods underlying some of the 
more effective solutions [2,3]. However, generating sufficient training 
data for different cancer types is challenging, due to the large number of 
data elements and their specificity, as well as the need for highly trained 
annotators. This is a substantial obstacle for automatically structuring 
biomedical text across clinical conditions and healthcare facilities. Thus, 
it is critical to develop methods that can provide high accuracy using 
small training sets. 
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In this work, we develop a novel hierarchical annotation and cor
responding classification method to address the need for high accuracy 
methods in the presence of a small amount of annotated data. We apply 
this method to classifying tumor attributes from 250 colon cancer pa
thology reports and 250 kidney cancer reports at the University of 
California, San Francisco. Compared to state of the art approaches, we 
find that our methods typically require half the labeled data to achieve 
the same level of performance. 

2. Background 

The abundance of textual data in the clinical domain has led to 
increased interest in developing biomedical information extraction 
systems. These systems aim to automatically extract pre-specified data 
elements from medical documents, such as physician notes, radiology 
reports, and pathology reports, and store them in databases. Converting 
the originally free-text data into a structured form makes them easily 
available to clinical practitioners or researchers. 

For categorical attributes, the information extraction task can be 
viewed as a form of document classification that classifies the value 
based on document contents. For a given attribute, the value is one of a 
fixed set of options selected based on information in the document. As an 
illustration, the set of values for the attribute “presence of lymphovas
cular invasion” could consist of the values “present” and “absent”. Both 
classical and deep learning classification methods have been applied to 
this task in the prior work discussed below. 

There has been success in applying classical machine learning tech
niques to classifying attributes of tumors from pathology reports. Yala 
et al. classified over 20 binary attributes from breast cancer pathology 
reports using boosting over n-gram features. [3] Jouhet et al. investi
gated applications of Support Vector Machines (SVMs) and Naive Bayes 
classifiers to the task of predicting International Classification of Dis
eases for Oncology (ICD-O-3) from cancer pathology reports. [4]. More 
recently, there has been success in applying deep learning techniques to 
pathology report classification. Qiu et al. applied convolutional neural 
networks (CNNs) to predicting ICD-O-3 from breast and lung cancer 
pathology reports. [5] Gao et al. applied hierarchical attention networks 
to predict tumor site and grade from pathology reports within the NCI- 
SEER dataset and noted improvement in micro-f1 of up to 0.2 compared 
to baselines across primary site and histologic grade for lung cancer and 
breast cancer reports. 

There has also been work addressing pathology report classification 
in the absence of a large amount of labeled data. Odisho et al. analyzed 
performance of machine learning methods for extracting clinical infor
mation from prostate pathology reports across various data regimes and 
found that, while deep learning performed best when trained on the full 
dataset of 2,066 labeled documents and achieved a mean weighted-F1 
score of 0.97 across classification attributes, simpler methods such as 
logistic regression and adaBoost performed best in smaller data regimes 
(<256 reports). [6] Additionally, Zhang et al, investigated the problem 
of unsupervised adaptation across attributes in breast cancer pathology 
reports. [7] Given a set of attributes with labels and a new attribute 
without labels but with relevant keywords, they used adversarial 
adaptation with semi-supervised attention to extract data. We use all of 
the above methods as baselines for our system to compare against, with 
the exception of Zhang et al. due to the difference in tasks. 

3. Materials and methods 

3.1. Data sources 

Our data consists of 250 colon cancer pathology reports and 250 
kidney cancer reports from 2002 to 2019 at the University of California, 
San Francisco. The data was split into two sets, a set of 186, which we 
used for training and validation, and a test set of size 64. We list the 
tumor attributes and their corresponding possible values in Table 1. 

Institutional Review Board approval was obtained for this study. 

3.2. Data annotation methods 

Pathology reports consist of free text describing a patient’s clinical 
history and attributes describing the excised specimen, such as surgical 
procedure, cancer stage, tumor histology, grade, cell differentiation, and 
presence of invasion to surrounding tissues. More recent pathology re
ports also contain a synoptic comment section, which is a condensed 
semi-structured summary of relevant cancer attributes. While many of 
the most clinically important attributes are reported in this synoptic 
comment, but not always. All attributes in the College of American Pa
thology reporting guidelines are annotated for each cancer [9], but for 
this paper we restrict our investigation to attributes for which some label 
appears in at least 90% of reports. We annotate our documents using the 
Multi-document Annotation Environment. [8] 

Table 1 
Extracted attributes and their possible values.  

Attribute  

Tumor Site  
Colon Cannot be determined, cecum, colon not otherwise 

specified, hepatic flexure, ileocecal valve, left descending 
colon, other, rectosigmoid junction, rectum, right 
ascending colon, sigmoid colon, splenic flexure, 
transverse colon, or not reported 

Kidney Upper pole, middle pole, lower pole, other, not specified, 
or not reported 

Histologic Type  
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma, 

type cannot be determined, large cell neuroendocrine 
carcinoma, medullary carcinoma, micropapillary 
carcinoma, mucinous adenocarcinoma, neuroendocrine 
carcinoma poorly differentiated, other histologic type not 
listed, serrated adenocarcinoma, signet-ring cell 
carcinoma, small cell neuroendocrine carcinoma, 
squamous cell carcinoma, undifferentiated carcinoma, or 
not reported 

Kidney Acquired cystic disease associated renal cell carcinoma, 
chromophobe renal cell carcinoma, clear cell papillary 
renal cell carcinoma, clear cell renal cell carcinoma, 
collecting duct carcinoma, hereditary leiomyomatosis and 
renal cell carcinoma-associated renal cell carcinoma, mit 
family translocation renal cell carcinoma, mucinous 
tubular and spindle renal cell carcinoma, multilocular 
cystic clear cell renal cell neoplasm of low malignant 
potential, oncocytoma, other histologic type, papillary 
renal cell carcinoma, papillary renal cell carcinoma type 
1, papillary renal cell carcinoma type 2, renal cell 
carcinoma unclassified, renal medullary carcinoma, 
succinate dehydrogenase sdh deficient renal cell 
carcinoma, t611 renal cell carcinoma, tubulocystic renal 
cell carcinoma, xp11 translocation renal cell carcinoma, 
or not reported 

Procedure  
Colon Abdominoperineal resection, left hemicolectomy, low 

anterior resection, not specified, other, polypectomy, 
right hemicolectomy, sigmoidectomy, total abdominal 
colectomy, transanal disk excision, transverse colectomy, 
or not reported 

Kidney Total nephrectomy, partial nephrectomy, radical 
nephrectomy, other, or not reported 

Laterality  
Colon Not applicable to colon cancer 
Kidney Left, right, or not reported 
Grade  
Kidney, Colon Grade 1, 2, 3, 4, not applicable, or not reported 
Lymphovascular 

Invasion  
Kidney, Colon Present, absent, or not reported 
Perineural Invasion  
Colon Present, absent, or not reported 
Kidney Not applicable for kidney cancer  
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3.3. Enriched annotations 

In previous work, annotations consisted of only the label for each 
attribute in a document. [3,6,10] However, in this work, for each 
attribute of interest the annotator highlighted all occurrences relevant to 
the label throughout the document, in addition to the label itself. This 
provides us with the specific location within the text that directly in
dicates the attribute’s label. Each highlight is classified into the corre
sponding College of American Pathologists (CAP)-derived category. We 
investigate two types of annotation: the first we refer to as the “reduced 
annotation set”, a minimal set of annotations containing the line of a 
given attribute value’s first occurrence in the synoptic comment, or, if 
not in the synoptic comment, the line of where that information is 
referenced elsewhere in the document. The incremental time required to 
annotate this location is marginal because the annotator does not need 
to read any more of the document than that required to annotate the first 
occurrence of the attribute value. In fact, “We investigated the amount 
of additional time required to create these enriched annotations and 
found that it took 20 percent longer on average, primarily due to the 
time it took the annotator to navigate the attribute drop-down menu. 
This could perhaps be improved through user interface (UI) consider
ations. In addition to a reduced annotation set, we also investigate 
performance with all the occurrences relevant to the final classification 
highlighted, a more laborious annotation scheme. For our results, unless 
stated otherwise, we are using the reduced annotation set due to its 
comparable annotation time to labeling the attribute values alone. 

3.4. Data preprocessing 

For all methods, we replace all words that occur fewer than two times 
in the training data with a special < UNK > token, and remove commas, 
backslashes, semi-colons, tildes, periods, and the word “null” from each 
report in the corpus. For colons, forward slashes, parentheses, plus, and 
equal signs, we added a space before and after the character. The spaces 
were artificially added to preserve semantic value important to the task. 
For instance, colons often appear in the synoptic comment, and so if an 
n-gram contains a colon, it can indicate that the n-gram contains 
important information. If multiple labels for an attribute occurred 
within a report, we concatenate them to form a single super label. For 
example, if the report contains both grade 1 and grade 2 as labels for 
histologic grade, we label the histologic grade of the report as “grade 1 
and grade 2”. 

3.5. Baselines 

For all classical baselines, we represent each document as a union of 
a set of n-grams where n varies from 1 to N, where N is a hyper
parameter. For all methods we use random search [11] with 40 trials to 
tune our hyperparameters according to the 4-fold cross validation error 
which we found in preliminary experiments to be a good compromise 
between performance and computational efficiency. 

Logistic regression 
We use sklearn’s [12] logistic regression model with L1 regulariza

tion and the liblinear solver. We use balanced class weights to up-weight 
the penalty on rare classes. We generate 500 points from −6 to 6 log
space for the regularization penalty, and sample 40 points at random. 

Support vector classifier 
We use sklearn’s SVC model with balanced class weights. We define 

our parameter space as 500 points evenly generated from −6 to 6 in log 
space for the error penalty C of the model; the kernel as linear or rbf; and 
the parameter of the kernel as either 0.001, 0.01, 0.1, or 1. We then 
sample 40 points at random from this space. 

Boosting 
We use sklearn’s adaboost classifier with decision trees of depth 3 

and with the SAMME.R boosting algorithm. Our parameter space is 500 
points generated evenly from −4 to 1 in logspace for the learning rate 

and either 25, 50, 100, 25, or 500 for the number of estimators. We then 
sample 40 points at random from this space. 

Hierarchical Attention Network 
We implement the hierarchical attention method from Gao et al. This 

model represents the document as a series of word-vectors. For each 
sentence in the document it runs a gated recurrent unit (GRU) [13] over 
the word vectors. It then uses an attention module to create a sentence 
representation as a sum of the attention-weighted outputs of the GRU. 
To generate the document representation, a GRU is run over the sen
tence representations, followed by another attention module is applied 
to the GRU outputs. The document representation is the attention- 
weighted sum of the GRU outputs. 

For our hyperparameters we use random search across the learning 
rate, which is either 1e-2, 1e-3, or 1e-4; the width of the hidden layer of 
the attention module, which is either 50, 100, 150, 200, 250, or 500; the 
hidden size of the GRU, which is either 50, 100, 150, 200, 250, or 500; 
and the dropout rate applied to the document representation, which is 
either 0, 0.2, 0.4, 0.6, or 0.8. We use a batch size of 64 and ADAM [14] as 
our optimizer. 

3.6. Our method: Supervised line attention 

In order to take advantage of annotations enriched with location 
data, we propose a two-stage prediction procedure in which we first 
predict which lines in the document contain relevant information. We 
then concatenate the predicted relevant lines and use this string to make 
the final class prediction using logistic regression. 

Finding relevant lines 
The first stage predicts which lines are relevant to the attribute. We 

do this by training an xgboost [15] binary classification model that takes 
a line represented as a bag of n-grams as its input and outputs whether or 
not the line is relevant to the attribute. The relevance of each line is 
predicted independently by this initial classifier. 

We then take the top-k lines with the highest scores under the model 
(where k is a hyperparameter). Groups of adjacent lines are combined 
into one line so that sentences which span multiple lines are presented to 
the model as a single line. 

Finally, we represent each line as a set of n-grams vectors and 
compose a document representation as the weighted sum of each vector 
representation, which is weighted by the score of that line under the 
xgboost model. If a line is conjoined, its weight is the maximum of all the 
xgboost scores for each line in the conjoined line. Mathematically, this is 
represented as 

dr(l1, ..., ln) =
∑

li∊Sk
v(li)m(li)

where drrepresents the vector representation of a document d,Sk are the 
top-k lines with the highest scores under the xgboost model, v is the 
mapping from a line lito its set of n-grams representation, and m(li) is the 
xgboost score for line li. 

With this final weighted representation, we train an L1 regularized 
logistic regression model with balanced class weights to predict the final 
class. 

We refer to this method as “supervised line attention” due to its 
relationship to supervised attention in the deep learning literature which 
predicts relevant locations and creates a weighted representation of the 
relevant regions’ features. Supervised attention in the deep learning 
literature has been used to match a neural machine translations atten
tion distribution to match an unsupervised aligner [16] and to match a 
sequence-to-sequence neural constituency parser’s attention mechanism 
with traditional parsing features [17], for example. Our approach can be 
viewed as a form of supervised attention for document classification. 
The principle difference from existing work is that in supervised atten
tion in the deep learning literature the method is trained in an end-to- 
end fashion with neural networks, whereas we train each module 
independently with classical methods and our feature representation for 
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sentences are set of n-grams instead of dense real-valued vectors. 
Rule-based line classifier 
As a baseline, we also include a line classifier that selects relevant 

lines by searching for expert-generated keywords and phrases. After the 
lines are selected, the final representation is generated the same way, 
with the exception that all lines are given a weight of 1; thus, for all liεSk, 
m(li) = 1.

Oracle model 
In addition to the line attention model, we also evaluate a model that 

uses the correct relevant lines from the annotator directly as input to the 
final classifier, which we refer to as the “oracle model”. Using the oracle 
lines, the final representation is generated the same way as the rule- 
based line classifier, where all lines are given a weight of 1. 

3.7. Hyperparameter tuning 

Similar to our baselines, we perform random search for 40 iterations 
and choose the hyperparameters that minimize 4-fold cross-validation 
error. The hyperparameters for our shallow attention method are an 
n-gram size for finding relevant lines between 1 and 4; an n-gram size for 
the second stage of making the final classification between 1 and 4. 

For xgboost, the hyperparameters were 500 points from −2 to −0.5 in 
logspace for the learning rate; a max depth between 3 and 7; a minimum 
split loss reduction to split a node that is 0, 0.01, 0.05, 0.1, 0.5, or 1; a 
subsample ratio that is 0.5, 0.75, or 1; and an L2 regularization on the 
weights that is 0.1, 0.5, 1, 1.5, or 2. 

For the final classifier, the L1 penalty is chosen from 500 evenly 
spaced points from −6 to 6 in logspace. Additionally, since the final 
representation is a weighted representation of the features of the top-k 
lines under the line classifier model, we have a hyperparameter k 
which determines how many lines to use, where k is between 1 and 5. 

3.8. Ablation experiments 

For our ablation experiments, we investigate the relative contribu
tion of each component in our model. 

No weighting 
Here we investigate if weighting the features in each line by the 

classifier scores increases performance compared to weighting the fea
tures in each line by one. 

No joining 
Here we investigate how joining affects the results when information 

spans multiple lines. Instead of conjoining lines that occur adjacent to 
each other, we leave them as separate lines for our final classifier. 

No weighting and no joining 
Here we neither weight the features vectors representing each line 

nor do we join adjacent predicted lines. 

3.9. Error analysis 

To better understand model performance, we inspect all errors that 
the supervised line attention model makes for each attribute and cancer 
domain. In our investigation we find 6 primary types of errors, which we 
define below: 

Attribute Qualification Error occurs when the model correctly extracts 
the relevant lines, but fails to classify the final label correctly because 
the label text is negated or qualified by an additional phrase indicating 
information is not available, such as in the following example: “If we 
were to classify the tumor, it would be grade 2 but due to the treatment 
effect it is unclassified.” 

Rare Phrasing Error occurs when the model correctly predicts the 
relevant lines, but the relevant lines contain rare or unusual phrasing 
and the model assigns an incorrect final classification. 

Irrelevant Lines Error occurs when the model includes irrelevant lines 
in its final predictions, which can influence the final classification. 

Multi-Label Error occurs when a report contains a conjoined label 

(such as “grade 1 and grade 2”), but the model only correctly predicts 
one of the labels. 

Annotator Error occurs when the model’s prediction is correct, but on 
re-review we noted that the annotator’s label was incorrect. 

Unknown error occurs when the underlying cause of the error is not 
known. This often occurs when the model correctly extracts out the 
relevant line but assigns an incorrect final label. 

4. Results 

We trained our methods using various training set sizes of 32, 64, 
128, and 186 with 4-fold cross validation. We take the average of 10 
runs where we reshuffle the data and generate new splits each time and 
compute 95% confidence intervals for all methods using bootstrap 
resampling, with the exception of the HAN method due to computa
tional limitations. For our results, unless stated otherwise, we are using 
the reduced annotation set due to its comparable annotation time to 
labeling the attribute values alone. As shown in Fig. 1 and Table 4, our 
shallow attention model frequently improves substantially over existing 
methods in terms of micro and macro-f1, particularly in the lowest data 
regimes. For example, for colon cancer we see an absolute improvement 
of 0.10 micro-f1 and 0.17 macro-f1 over previously existing methods 
with 32 labeled data points. Furthermore, SLA frequently tends to 
perform as well or better than state of the art methods with only half the 
labeled documents. Two exceptions are kidney cancer micro-f1 scores, 
where boosting performs 0.01 better in micro-f1. We see that the rule- 
based line classifier method tends to do better than existing methods 
with 64 labeled data points or fewer, but its performance plateaus and 
XGBoost outperforms it with 128 and 186 labeled data points. 
Furthermore, we see that the rule-based line classifier consistently per
forms worse than supervised line attention. 

4.1. Ablation results 

We plot the results of our ablation experiments in Fig. 2, using the 
same setup as our main result where we have training set sizes of 32, 64, 
128, and 186 with 4-fold cross validation. Again, we take the average of 
10 runs where we reshuffle the data and generate new splits each time 
and compute 95% confidence intervals for all methods using bootstrap 
resampling. We see mixed results for joining adjacent predicted lines; it 
appears to be inconsequential for colon cancer and detrimental for 
kidney cancer. However, weighting the features by line predictor seems 
beneficial for the macro-f1 scores. This seems to suggest that weighting 
helps primarily for rare classes since the macro-f1 score weights the f1 
scores of each class equally. 

4.2. Full annotations 

Here we compare how well reduced annotation compares to the 
more laborious full annotation setting where we highlight all areas in 
the document relevant to final classification. We use the same setup as 
our main results and ablation experiments and present our results in 
Fig. 3. We can see that the full annotation set leads to a consistent in
crease in performance. However, it is unclear whether the extra time 
required to create this full annotation scheme is beneficial overall as it 
would lead to fewer documents annotated in the same amount of time. 

4.3. Error analysis 

We provide a compilation of the number of errors across attributes in 
Table 2 and Table 3 for colon and kidney cancer, respectively. We see 
that the most common error is the multi-label error. This is primarily 
problematic for colon cancer histologic grade, where pathologists will 
describe a range of grades such as “grade 1–2” and tumor site for colon 
and kidney cancer as tumors can inhabit multiple sites. This suggests 
that treating this as a multi-label classification problem instead of 
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naively conjoining multiple labels may reduce many of the errors. 

5. Discussion 

We have investigated the efficacy of location-enriched annotations 
and a corresponding hierarchical method, which we call Supervised Line 
Attention, for extracting data elements from pathology reports across 
colon and kidney cancers at UCSF. By leveraging location annotations, 
our two-stage modeling approach can lead to increases of micro-f1 
scores up to 0.1 and macro-f1 scores up to 0.17 over state-of-the-art 
methods and typically reduces the number of training data points by 
50 percent to achieve performance of existing methods. 

Our hierarchical modeling approach with enriched annotations was 

primarily developed to tackle the problem of efficiently achieving ac
curate performance. Previous approaches that attempt to leverage 
additional data use multi-task learning and transfer learning using in
formation from other cancer domains with complex modeling archi
tectures. For example, Qui et al. investigated using transfer learning 
with convolutional neural networks to extract data from 942 breast and 
lung cancer reports, achieving 0.685 and 0.782 micro-f1 scores, 
respectively. [24] Alawad et al. implemented multitask learning with 
convolutional neural networks to classify tumor attributes in 942 pa
thology reports for breast and lung cancers, and achieved 0.77, 0.79, and 
0.96 micro-f1 scores for tumor site, histologic grade, and laterality, 
respectively. [25] 

An important observation is that our hierarchical approach is more 

Fig. 1. Average micro-f1 and macro-f1 performance 
across attributes of different methods as a function 
of 32, 64, 128, 186 labeled examples on colon 
cancer and kidney cancer pathology reports. SLA: 
supervised line attention; oracle: oracle model that 
gets access to the true lines as input; rules: line 
prediction done with a rule-based method and lo
gistic regression to predict the final class; boost: 
XGBoost; SVM: Support Vector Machine; logistic; 
logistic regression; RF: Random forest; HAN: Hier
archical attention network. We present the mean 
result across 10 random shufflings of the data as 
well as 95% bootstrap confidence intervals. We see 
that our method SLA outperforms existing methods 
in almost all cases. Furthermore, we see that pre
dicting relevant lines outperforms our rule-based 
method to extract relevant lines.   

Fig. 2. Ablation studies for SLA measuring the 
average micro-f1 and macro-f1 performance across 
attributes of different methods as a function of 32, 
64, 128, 186 labeled examples on colon cancer and 
kidney cancer pathology reports. We investigate the 
impact of joining adjacent selected lines prior to 
featurization as well as the impact of weighting the 
features by the line classifier scores. We present the 
mean result across 10 random shufflings of the data 
with 95% bootstrap confidence intervals. While it 
appears that joining adjacent predicted lines leads to 
mixed or potentially even negative performance 
over not joining adjacent predicted lines, weighted 
methods seem to outperform their unweighted al
ternatives, especially for macro-f1 scores, suggesting 
that weighting helps in particular for rare classes.   
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interpretable than previous machine learning methods, since addition to 
outputting the probability and predicted value for a certain report, our 
system outputs the exact lines of the text used to make the classification 

as well. This enables practitioners to easily check predictions by exam
ining the lines output by the extraction system, and verify the system is 
working as expected before making clinical decisions. The hierarchical 

Fig. 3. Comparing the more laborious annotating the location information all relevant lines for a given attribute as compared to the more lightweight annotation 
method of only annotating the first line in the synoptic comment, if the synoptic comment contains the information, or the first relevant line in the document 
otherwise. We see that having the additional information yields a consistent, though sometimes small, benefit. 

Table 2 
Error analysis: Colon cancer.  

Attribute Histologic Grade Histologic Type Perineural invasion Lymphovascular invasion Procedure Tumor Site Total 

Attribute Qualification Error 1 0 0 0 0 0 1 
Rare phrasing 0 0 0 1 3 0 4 
Irrelevant Lines Error 1 0 0 0 5 0 6 
Annotator Error Error 3 1 1 0 5 0 10 
Multi-label Error 6 0 0 0 0 6 12 
Unknown error 1 0 0 0 6 0 7 
Total by attribute 12 1 1 1 19 6 40  

Table 3 
Error analysis: Kidney cancer.  

Attribute Histologic Grade Histologic Type Specimen Laterality Lymphovascular invasion Procedure Tumor Site Total 

Attribute Qualification Error 0 0 0 0 0 0 0 
Rarephrasing 0 0 0 1 5 0 6 
Irrelevant Lines Error 1 0 0 1 1 1 4 
Annotator Error 1 2 0 1 1 0 5 
Multi-label Error 0 4 0 0 2 6 12 
Unknown error 1 4 0 1 1 5 12 
Total by attribute 3 10 0 4 10 12 39  
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attention approach used by Gao et al. also can output the most pertinent 
sentences for a classification by using the attention mechanism to hi
erarchically filter out pieces of text. [10] However, our experiments 
show that HAN requires a large training size to achieve adequate per
formance due to the more complex architecture used, and requires 
significantly more development and computational time to search the 
hyperparameter space. Additionally, there have been recent concerns 
regarding the interpretability of attention distributions from neural 
networks. [18] 

Our study has a few limitations. Although we demonstrate the high 
performance of our methodology is applicable to both colon and kidney 
cancer, our investigation was done at a single institution; this may limit 
the generalizability of our findings to other institutions that use different 
pathology reporting or data collection systems. Second, within the field 
of natural language processing, there has been strong empirical evidence 
showing the benefit of pre-trained contextualized representations for a 
variety of tasks, both in and out of clinical applications [19–22]. In 
preliminary experiments, we investigated the efficacy of using 
biomedical word vectors [23] as feature representation input to our SLA 
model, but did not see an improvement in results. However, it would be 
interesting to investigate the effect that more sophisticated contextual
ized representations may have on downstream performance. 

6. Conclusion 

We have shown that including location information in annotation 
and applying our supervised line attention mechanism can vastly reduce 
the number of labeled documents needed for accurate tumor attribute 
classification compared to state of the art approaches. Furthermore, our 
supervised line attention method allows for greater interpretability due 
to its hierarchical nature, which can allow for easy verification of its 
outputs for clinicians. We hope these methods will advance the appli
cation of information extraction in medicine, where labeled data is 
scarce and expensive to acquire. 
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