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ARTICLE INFO ABSTRACT

Keyword: Objective: We aim to build an accurate machine learning-based system for classifying tumor attributes from

Natural Language Processing cancer pathology reports in the presence of a small amount of annotated data, motivated by the expensive and

Cancer time-consuming nature of pathology report annotation. An enriched labeling scheme that includes the location of

Information Extraction . . . " . . . . .

Pathol relevant information along with the final label is used along with a corresponding hierarchical method for
atholo g e N .

ELR 2 classifying reports that leverages these enriched annotations.

Materials and methods: Our data consists of 250 colon cancer and 250 kidney cancer pathology reports from 2002
to 2019 at the University of California, San Francisco. For each report, we classify attributes such as procedure
performed, tumor grade, and tumor site. For each attribute and document, an annotator trained by an oncologist
labeled both the value of that attribute as well as the specific lines in the document that indicated the value. We
develop a model that uses these enriched annotations that first predicts the relevant lines of the document, then
predicts the final value given the predicted lines. We compare our model to multiple state-of-the-art methods for
classifying tumor attributes from pathology reports.

Results: Our results show that across colon and kidney cancers and varying training set sizes, our hierarchical
method consistently outperforms state-of-the-art methods. Furthermore, performance comparable to these
methods can be achieved with approximately half the amount of labeled data.

Conclusion: Document annotations that are enriched with location information are shown to greatly increase the
sample efficiency of machine learning methods for classifying attributes of pathology reports.

1. Objective consuming and expensive nature of manual information extraction, re-

searchers and clinicians have worked to develop algorithms to auto-

By enabling patients to receive tailored risk assessment and treat-
ment decisions, precision medicine has the potential to improve
healthcare quality. [1] However, effective delivery of precision medi-
cine depends on accurate and detailed patient data. Unfortunately,
much of the relevant clinical data, such as cancer stage and histology,
are stored as free text in lengthy unstructured or semi-structured reports.
[2] Leveraging the data contained in these reports for precision medi-
cine applications relies on manual efforts by annotators with domain
expertise for many downstream automated methods. Due to the time-
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matically extract pertinent data from pathology reports with mixed
success, with machine learning-based methods underlying some of the
more effective solutions [2,3]. However, generating sufficient training
data for different cancer types is challenging, due to the large number of
data elements and their specificity, as well as the need for highly trained
annotators. This is a substantial obstacle for automatically structuring
biomedical text across clinical conditions and healthcare facilities. Thus,
it is critical to develop methods that can provide high accuracy using
small training sets.
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In this work, we develop a novel hierarchical annotation and cor-
responding classification method to address the need for high accuracy
methods in the presence of a small amount of annotated data. We apply
this method to classifying tumor attributes from 250 colon cancer pa-
thology reports and 250 kidney cancer reports at the University of
California, San Francisco. Compared to state of the art approaches, we
find that our methods typically require half the labeled data to achieve
the same level of performance.

2. Background

The abundance of textual data in the clinical domain has led to
increased interest in developing biomedical information extraction
systems. These systems aim to automatically extract pre-specified data
elements from medical documents, such as physician notes, radiology
reports, and pathology reports, and store them in databases. Converting
the originally free-text data into a structured form makes them easily
available to clinical practitioners or researchers.

For categorical attributes, the information extraction task can be
viewed as a form of document classification that classifies the value
based on document contents. For a given attribute, the value is one of a
fixed set of options selected based on information in the document. As an
illustration, the set of values for the attribute “presence of lymphovas-
cular invasion” could consist of the values “present” and “absent”. Both
classical and deep learning classification methods have been applied to
this task in the prior work discussed below.

There has been success in applying classical machine learning tech-
niques to classifying attributes of tumors from pathology reports. Yala
et al. classified over 20 binary attributes from breast cancer pathology
reports using boosting over n-gram features. [3] Jouhet et al. investi-
gated applications of Support Vector Machines (SVMs) and Naive Bayes
classifiers to the task of predicting International Classification of Dis-
eases for Oncology (ICD-0O-3) from cancer pathology reports. [4]. More
recently, there has been success in applying deep learning techniques to
pathology report classification. Qiu et al. applied convolutional neural
networks (CNNs) to predicting ICD-O-3 from breast and lung cancer
pathology reports. [5] Gao et al. applied hierarchical attention networks
to predict tumor site and grade from pathology reports within the NCI-
SEER dataset and noted improvement in micro-f1 of up to 0.2 compared
to baselines across primary site and histologic grade for lung cancer and
breast cancer reports.

There has also been work addressing pathology report classification
in the absence of a large amount of labeled data. Odisho et al. analyzed
performance of machine learning methods for extracting clinical infor-
mation from prostate pathology reports across various data regimes and
found that, while deep learning performed best when trained on the full
dataset of 2,066 labeled documents and achieved a mean weighted-F1
score of 0.97 across classification attributes, simpler methods such as
logistic regression and adaBoost performed best in smaller data regimes
(<256 reports). [6] Additionally, Zhang et al, investigated the problem
of unsupervised adaptation across attributes in breast cancer pathology
reports. [7] Given a set of attributes with labels and a new attribute
without labels but with relevant keywords, they used adversarial
adaptation with semi-supervised attention to extract data. We use all of
the above methods as baselines for our system to compare against, with
the exception of Zhang et al. due to the difference in tasks.

3. Materials and methods
3.1. Data sources

Our data consists of 250 colon cancer pathology reports and 250
kidney cancer reports from 2002 to 2019 at the University of California,
San Francisco. The data was split into two sets, a set of 186, which we
used for training and validation, and a test set of size 64. We list the
tumor attributes and their corresponding possible values in Table 1.
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Table 1
Extracted attributes and their possible values.
Attribute
Tumor Site
Colon Cannot be determined, cecum, colon not otherwise
specified, hepatic flexure, ileocecal valve, left descending
colon, other, rectosigmoid junction, rectum, right
ascending colon, sigmoid colon, splenic flexure,
transverse colon, or not reported
Kidney Upper pole, middle pole, lower pole, other, not specified,

or not reported
Histologic Type
Colon Adenocarcinoma, adenosquamous carcinoma, carcinoma,
type cannot be determined, large cell neuroendocrine
carcinoma, medullary carcinoma, micropapillary
carcinoma, mucinous adenocarcinoma, neuroendocrine
carcinoma poorly differentiated, other histologic type not
listed, serrated adenocarcinoma, signet-ring cell
carcinoma, small cell neuroendocrine carcinoma,
squamous cell carcinoma, undifferentiated carcinoma, or
not reported
Acquired cystic disease associated renal cell carcinoma,
chromophobe renal cell carcinoma, clear cell papillary
renal cell carcinoma, clear cell renal cell carcinoma,
collecting duct carcinoma, hereditary leiomyomatosis and
renal cell carcinoma-associated renal cell carcinoma, mit
family translocation renal cell carcinoma, mucinous
tubular and spindle renal cell carcinoma, multilocular
cystic clear cell renal cell neoplasm of low malignant
potential, oncocytoma, other histologic type, papillary
renal cell carcinoma, papillary renal cell carcinoma type
1, papillary renal cell carcinoma type 2, renal cell
carcinoma unclassified, renal medullary carcinoma,
succinate dehydrogenase sdh deficient renal cell
carcinoma, t611 renal cell carcinoma, tubulocystic renal
cell carcinoma, xp11 translocation renal cell carcinoma,
or not reported

Kidney

Procedure

Colon Abdominoperineal resection, left hemicolectomy, low
anterior resection, not specified, other, polypectomy,
right hemicolectomy, sigmoidectomy, total abdominal
colectomy, transanal disk excision, transverse colectomy,
or not reported

Total nephrectomy, partial nephrectomy, radical
nephrectomy, other, or not reported

Kidney

Laterality

Colon Not applicable to colon cancer

Kidney Left, right, or not reported

Grade

Kidney, Colon

Lymphovascular
Invasion

Kidney, Colon

Perineural Invasion

Colon Present, absent, or not reported

Kidney Not applicable for kidney cancer

Grade 1, 2, 3, 4, not applicable, or not reported

Present, absent, or not reported

Institutional Review Board approval was obtained for this study.
3.2. Data annotation methods

Pathology reports consist of free text describing a patient’s clinical
history and attributes describing the excised specimen, such as surgical
procedure, cancer stage, tumor histology, grade, cell differentiation, and
presence of invasion to surrounding tissues. More recent pathology re-
ports also contain a synoptic comment section, which is a condensed
semi-structured summary of relevant cancer attributes. While many of
the most clinically important attributes are reported in this synoptic
comment, but not always. All attributes in the College of American Pa-
thology reporting guidelines are annotated for each cancer [9], but for
this paper we restrict our investigation to attributes for which some label
appears in at least 90% of reports. We annotate our documents using the
Multi-document Annotation Environment. [8]
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3.3. Enriched annotations

In previous work, annotations consisted of only the label for each
attribute in a document. [3,6,10] However, in this work, for each
attribute of interest the annotator highlighted all occurrences relevant to
the label throughout the document, in addition to the label itself. This
provides us with the specific location within the text that directly in-
dicates the attribute’s label. Each highlight is classified into the corre-
sponding College of American Pathologists (CAP)-derived category. We
investigate two types of annotation: the first we refer to as the “reduced
annotation set”, a minimal set of annotations containing the line of a
given attribute value’s first occurrence in the synoptic comment, or, if
not in the synoptic comment, the line of where that information is
referenced elsewhere in the document. The incremental time required to
annotate this location is marginal because the annotator does not need
to read any more of the document than that required to annotate the first
occurrence of the attribute value. In fact, “We investigated the amount
of additional time required to create these enriched annotations and
found that it took 20 percent longer on average, primarily due to the
time it took the annotator to navigate the attribute drop-down menu.
This could perhaps be improved through user interface (UI) consider-
ations. In addition to a reduced annotation set, we also investigate
performance with all the occurrences relevant to the final classification
highlighted, a more laborious annotation scheme. For our results, unless
stated otherwise, we are using the reduced annotation set due to its
comparable annotation time to labeling the attribute values alone.

3.4. Data preprocessing

For all methods, we replace all words that occur fewer than two times
in the training data with a special < UNK > token, and remove commas,
backslashes, semi-colons, tildes, periods, and the word “null” from each
report in the corpus. For colons, forward slashes, parentheses, plus, and
equal signs, we added a space before and after the character. The spaces
were artificially added to preserve semantic value important to the task.
For instance, colons often appear in the synoptic comment, and so if an
n-gram contains a colon, it can indicate that the n-gram contains
important information. If multiple labels for an attribute occurred
within a report, we concatenate them to form a single super label. For
example, if the report contains both grade 1 and grade 2 as labels for
histologic grade, we label the histologic grade of the report as “grade 1
and grade 2”.

3.5. Baselines

For all classical baselines, we represent each document as a union of
a set of n-grams where n varies from 1 to N, where N is a hyper-
parameter. For all methods we use random search [11] with 40 trials to
tune our hyperparameters according to the 4-fold cross validation error
which we found in preliminary experiments to be a good compromise
between performance and computational efficiency.

Logistic regression

We use sklearn’s [12] logistic regression model with L1 regulariza-
tion and the liblinear solver. We use balanced class weights to up-weight
the penalty on rare classes. We generate 500 points from —6 to 6 log-
space for the regularization penalty, and sample 40 points at random.

Support vector classifier

We use sklearn’s SVC model with balanced class weights. We define
our parameter space as 500 points evenly generated from —6 to 6 in log
space for the error penalty C of the model; the kernel as linear or rbf; and
the parameter of the kernel as either 0.001, 0.01, 0.1, or 1. We then
sample 40 points at random from this space.

Boosting

We use sklearn’s adaboost classifier with decision trees of depth 3
and with the SAMME.R boosting algorithm. Our parameter space is 500
points generated evenly from —4 to 1 in logspace for the learning rate
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and either 25, 50, 100, 25, or 500 for the number of estimators. We then
sample 40 points at random from this space.

Hierarchical Attention Network

We implement the hierarchical attention method from Gao et al. This
model represents the document as a series of word-vectors. For each
sentence in the document it runs a gated recurrent unit (GRU) [13] over
the word vectors. It then uses an attention module to create a sentence
representation as a sum of the attention-weighted outputs of the GRU.
To generate the document representation, a GRU is run over the sen-
tence representations, followed by another attention module is applied
to the GRU outputs. The document representation is the attention-
weighted sum of the GRU outputs.

For our hyperparameters we use random search across the learning
rate, which is either 1le-2, 1le-3, or 1e-4; the width of the hidden layer of
the attention module, which is either 50, 100, 150, 200, 250, or 500; the
hidden size of the GRU, which is either 50, 100, 150, 200, 250, or 500;
and the dropout rate applied to the document representation, which is
either 0, 0.2, 0.4, 0.6, or 0.8. We use a batch size of 64 and ADAM [14] as
our optimizer.

3.6. Our method: Supervised line attention

In order to take advantage of annotations enriched with location
data, we propose a two-stage prediction procedure in which we first
predict which lines in the document contain relevant information. We
then concatenate the predicted relevant lines and use this string to make
the final class prediction using logistic regression.

Finding relevant lines

The first stage predicts which lines are relevant to the attribute. We
do this by training an xgboost [15] binary classification model that takes
a line represented as a bag of n-grams as its input and outputs whether or
not the line is relevant to the attribute. The relevance of each line is
predicted independently by this initial classifier.

We then take the top-k lines with the highest scores under the model
(where k is a hyperparameter). Groups of adjacent lines are combined
into one line so that sentences which span multiple lines are presented to
the model as a single line.

Finally, we represent each line as a set of n-grams vectors and
compose a document representation as the weighted sum of each vector
representation, which is weighted by the score of that line under the
xgboost model. If a line is conjoined, its weight is the maximum of all the
xgboost scores for each line in the conjoined line. Mathematically, this is
represented as

d,(ly,...,1,) = Z’lexkv(l,-)m(l,-)

where d,represents the vector representation of a document d,Sy are the
top-k lines with the highest scores under the xgboost model, v is the
mapping from a line [;to its set of n-grams representation, and m([;) is the
xgboost score for line L.

With this final weighted representation, we train an L1 regularized
logistic regression model with balanced class weights to predict the final
class.

We refer to this method as “supervised line attention” due to its
relationship to supervised attention in the deep learning literature which
predicts relevant locations and creates a weighted representation of the
relevant regions’ features. Supervised attention in the deep learning
literature has been used to match a neural machine translations atten-
tion distribution to match an unsupervised aligner [16] and to match a
sequence-to-sequence neural constituency parser’s attention mechanism
with traditional parsing features [17], for example. Our approach can be
viewed as a form of supervised attention for document classification.
The principle difference from existing work is that in supervised atten-
tion in the deep learning literature the method is trained in an end-to-
end fashion with neural networks, whereas we train each module
independently with classical methods and our feature representation for
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sentences are set of n-grams instead of dense real-valued vectors.

Rule-based line classifier

As a baseline, we also include a line classifier that selects relevant
lines by searching for expert-generated keywords and phrases. After the
lines are selected, the final representation is generated the same way,
with the exception that all lines are given a weight of 1; thus, for all L;eSy,
m(,) = 1.

Oracle model

In addition to the line attention model, we also evaluate a model that
uses the correct relevant lines from the annotator directly as input to the
final classifier, which we refer to as the “oracle model”. Using the oracle
lines, the final representation is generated the same way as the rule-
based line classifier, where all lines are given a weight of 1.

3.7. Hyperparameter tuning

Similar to our baselines, we perform random search for 40 iterations
and choose the hyperparameters that minimize 4-fold cross-validation
error. The hyperparameters for our shallow attention method are an
n-gram size for finding relevant lines between 1 and 4; an n-gram size for
the second stage of making the final classification between 1 and 4.

For xgboost, the hyperparameters were 500 points from —2 to —0.5 in
logspace for the learning rate; a max depth between 3 and 7; a minimum
split loss reduction to split a node that is 0, 0.01, 0.05, 0.1, 0.5, or 1; a
subsample ratio that is 0.5, 0.75, or 1; and an L2 regularization on the
weights that is 0.1, 0.5, 1, 1.5, or 2.

For the final classifier, the L1 penalty is chosen from 500 evenly
spaced points from —6 to 6 in logspace. Additionally, since the final
representation is a weighted representation of the features of the top-k
lines under the line classifier model, we have a hyperparameter k
which determines how many lines to use, where k is between 1 and 5.

3.8. Ablation experiments

For our ablation experiments, we investigate the relative contribu-
tion of each component in our model.

No weighting

Here we investigate if weighting the features in each line by the
classifier scores increases performance compared to weighting the fea-
tures in each line by one.

No joining

Here we investigate how joining affects the results when information
spans multiple lines. Instead of conjoining lines that occur adjacent to
each other, we leave them as separate lines for our final classifier.

No weighting and no joining

Here we neither weight the features vectors representing each line
nor do we join adjacent predicted lines.

3.9. Error analysis

To better understand model performance, we inspect all errors that
the supervised line attention model makes for each attribute and cancer
domain. In our investigation we find 6 primary types of errors, which we
define below:

Attribute Qualification Error occurs when the model correctly extracts
the relevant lines, but fails to classify the final label correctly because
the label text is negated or qualified by an additional phrase indicating
information is not available, such as in the following example: “If we
were to classify the tumor, it would be grade 2 but due to the treatment
effect it is unclassified.”

Rare Phrasing Error occurs when the model correctly predicts the
relevant lines, but the relevant lines contain rare or unusual phrasing
and the model assigns an incorrect final classification.

Irrelevant Lines Error occurs when the model includes irrelevant lines
in its final predictions, which can influence the final classification.

Multi-Label Error occurs when a report contains a conjoined label
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(such as “grade 1 and grade 2”), but the model only correctly predicts
one of the labels.

Annotator Error occurs when the model’s prediction is correct, but on
re-review we noted that the annotator’s label was incorrect.

Unknown error occurs when the underlying cause of the error is not
known. This often occurs when the model correctly extracts out the
relevant line but assigns an incorrect final label.

4. Results

We trained our methods using various training set sizes of 32, 64,
128, and 186 with 4-fold cross validation. We take the average of 10
runs where we reshuffle the data and generate new splits each time and
compute 95% confidence intervals for all methods using bootstrap
resampling, with the exception of the HAN method due to computa-
tional limitations. For our results, unless stated otherwise, we are using
the reduced annotation set due to its comparable annotation time to
labeling the attribute values alone. As shown in Fig. 1 and Table 4, our
shallow attention model frequently improves substantially over existing
methods in terms of micro and macro-f1, particularly in the lowest data
regimes. For example, for colon cancer we see an absolute improvement
of 0.10 micro-f1 and 0.17 macro-fl over previously existing methods
with 32 labeled data points. Furthermore, SLA frequently tends to
perform as well or better than state of the art methods with only half the
labeled documents. Two exceptions are kidney cancer micro-fl scores,
where boosting performs 0.01 better in micro-f1. We see that the rule-
based line classifier method tends to do better than existing methods
with 64 labeled data points or fewer, but its performance plateaus and
XGBoost outperforms it with 128 and 186 labeled data points.
Furthermore, we see that the rule-based line classifier consistently per-
forms worse than supervised line attention.

4.1. Ablation results

We plot the results of our ablation experiments in Fig. 2, using the
same setup as our main result where we have training set sizes of 32, 64,
128, and 186 with 4-fold cross validation. Again, we take the average of
10 runs where we reshuffle the data and generate new splits each time
and compute 95% confidence intervals for all methods using bootstrap
resampling. We see mixed results for joining adjacent predicted lines; it
appears to be inconsequential for colon cancer and detrimental for
kidney cancer. However, weighting the features by line predictor seems
beneficial for the macro-f1 scores. This seems to suggest that weighting
helps primarily for rare classes since the macro-f1 score weights the f1
scores of each class equally.

4.2. Full annotations

Here we compare how well reduced annotation compares to the
more laborious full annotation setting where we highlight all areas in
the document relevant to final classification. We use the same setup as
our main results and ablation experiments and present our results in
Fig. 3. We can see that the full annotation set leads to a consistent in-
crease in performance. However, it is unclear whether the extra time
required to create this full annotation scheme is beneficial overall as it
would lead to fewer documents annotated in the same amount of time.

4.3. Error analysis

We provide a compilation of the number of errors across attributes in
Table 2 and Table 3 for colon and kidney cancer, respectively. We see
that the most common error is the multi-label error. This is primarily
problematic for colon cancer histologic grade, where pathologists will
describe a range of grades such as “grade 1-2” and tumor site for colon
and kidney cancer as tumors can inhabit multiple sites. This suggests
that treating this as a multi-label classification problem instead of
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Pathology Report Snippet
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Fig. 1. Average micro-f1 and macro-f1 performance
across attributes of different methods as a function
of 32, 64, 128, 186 labeled examples on colon

Colorectal Tumor Synoptic
- Location of tumor: Proximal ascending colon.
- Type of tumor: Adenocarcinoma, NOS.
- Grade of tumor: Low grade.

- Depth of invasion:
nonperitonealized pericolic fat.
- Blood/lymphatic vessel invasion:
lymphovascular spaces.

Through the muscularis into the subserosa and

Invasive of small extramural

cancer and kidney cancer pathology reports. SLA:
supervised line attention; oracle: oracle model that
gets access to the true lines as input; rules: line
prediction done with a rule-based method and lo-
gistic regression to predict the final class; boost:
XGBoost; SVM: Support Vector Machine; logistic;
logistic regression; RF: Random forest; HAN: Hier-
archical attention network. We present the mean
result across 10 random shufflings of the data as

well as 95% bootstrap confidence intervals. We see
that our method SLA outperforms existing methods
in almost all cases. Furthermore, we see that pre-
dicting relevant lines outperforms our rule-based
method to extract relevant lines.

Attribute Value Line(s)
Grade 1 - Grade of ..
. - Blood/1 hatic
Lymph Invasion Present ) i
Histology Adenocarcinoma |- Type of tumor:
. . . - Location of
Site Right ascending |tymor-
Pathology Report Fig. 2. Ablation studies for SLA measuring the
average micro-f1 and macro-fl performance across
. Predicted Lines Model score attributes of different methods as a function of 32,
64, 128, 186 labeled examples on colon cancer and
Line Classifier 5. Blood/lymphatic vessel kidney cancer pathology reports. We investigate the
ivasion: Dorh iﬂg:?i;cpizgem 0.9 impact of joining adjacent selected lines prior to
- - - featurization as well as the impact of weighting the
ii;eggimlgzc’ li:\;;;ﬁztﬁv:;;" 0.7 features by the line classifier scores. We present the

mean result across 10 random shufflings of the data

Six peri-rectal lymph nodes
with no tumor identified

with 95% bootstrap confidence intervals. While it
0.2 appears that joining adjacent predicted lines leads to

Lymph Invasion

naively conjoining multiple labels may reduce many of the errors.
5. Discussion

We have investigated the efficacy of location-enriched annotations
and a corresponding hierarchical method, which we call Supervised Line
Attention, for extracting data elements from pathology reports across
colon and kidney cancers at UCSF. By leveraging location annotations,
our two-stage modeling approach can lead to increases of micro-fl
scores up to 0.1 and macro-fl scores up to 0.17 over state-of-the-art
methods and typically reduces the number of training data points by
50 percent to achieve performance of existing methods.

Our hierarchical modeling approach with enriched annotations was

Weighted vectorized

mixed or potentially even negative performance
over not joining adjacent predicted lines, weighted
methods seem to outperform their unweighted al-
ternatives, especially for macro-f1 scores, suggesting
that weighting helps in particular for rare classes.

representation

Final Classifier

Present

primarily developed to tackle the problem of efficiently achieving ac-
curate performance. Previous approaches that attempt to leverage
additional data use multi-task learning and transfer learning using in-
formation from other cancer domains with complex modeling archi-
tectures. For example, Qui et al. investigated using transfer learning
with convolutional neural networks to extract data from 942 breast and
lung cancer reports, achieving 0.685 and 0.782 micro-fl1 scores,
respectively. [24] Alawad et al. implemented multitask learning with
convolutional neural networks to classify tumor attributes in 942 pa-
thology reports for breast and lung cancers, and achieved 0.77, 0.79, and
0.96 micro-f1 scores for tumor site, histologic grade, and laterality,
respectively. [25]

An important observation is that our hierarchical approach is more
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Cancer = colon | metric = micro f1
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Cancer = colon | metric = macro f1

0.9
0.7
0.8 0.6
0.5
0.7
o
O
(%]
0.4
0.6
= 0.3
0.5 Method
0.2 —— boost
—— logistic
40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180 —— RF
Cancer = kidney | metric = micro f1 Cancer = kidney | metric = macro f1 SVM
— rules
0.90 — SLA
HAN
—— oracle
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© 0.75
o
O
¥ 0.70
0.65
0.60
0.55
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Number of labels

180

40 60 80 100 120 140 160 180
Number of labels

Fig. 3. Comparing the more laborious annotating the location information all relevant lines for a given attribute as compared to the more lightweight annotation
method of only annotating the first line in the synoptic comment, if the synoptic comment contains the information, or the first relevant line in the document
otherwise. We see that having the additional information yields a consistent, though sometimes small, benefit.

Table 2

Error analysis: Colon cancer.
Attribute Histologic Grade Histologic Type Perineural invasion Lymphovascular invasion Procedure Tumor Site Total
Attribute Qualification Error 1 0 0 0 0 0 1
Rare phrasing 0 0 0 1 3 0 4
Irrelevant Lines Error 1 0 0 0 5 0 6
Annotator Error Error 3 1 1 0 5 0 10
Multi-label Error 6 0 0 0 0 6 12
Unknown error 1 0 0 0 6 0 7
Total by attribute 12 1 1 1 19 6 40

Table 3

Error analysis: Kidney cancer.
Attribute Histologic Grade Histologic Type Specimen Laterality Lymphovascular invasion Procedure Tumor Site Total
Attribute Qualification Error 0 0 0 0 0 0 0
Rarephrasing 0 0 0 1 5 0 6
Irrelevant Lines Error 1 0 0 1 1 1 4
Annotator Error 1 2 0 1 1 0 5
Multi-label Error 0 4 0 0 2 6 12
Unknown error 1 4 0 1 1 5 12
Total by attribute 3 10 0 4 10 12 39

interpretable than previous machine learning methods, since addition to
outputting the probability and predicted value for a certain report, our
system outputs the exact lines of the text used to make the classification

as well. This enables practitioners to easily check predictions by exam-
ining the lines output by the extraction system, and verify the system is
working as expected before making clinical decisions. The hierarchical
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Table 4

Journal of Biomedical Informatics 122 (2021) 103872

Average micro-f1 and macro-fl performance across attributes of different methods as a function of 32, 64, 128, 186 labeled examples on colon and kidney cancer.

Highest performing non-oracle method is bolded.

HAN RF SVM Boost Logistic Rules SLA Oracle
Colon
Micro-F1
32 0.45 0.57 0.51 0.69 0.63 0.75 0.80 0.80
64 0.50 0.62 0.57 0.79 0.70 0.79 0.84 0.84
128 0.60 0.69 0.62 0.84 0.79 0.83 0.87 0.88
186 0.61 0.73 0.68 0.86 0.83 0.84 0.89 0.89
Macro-F1
32 0.18 0.22 0.21 0.32 0.28 0.43 0.50 0.50
64 0.19 0.29 0.24 0.46 0.37 0.52 0.60 0.59
128 0.25 0.34 0.30 0.57 0.53 0.56 0.66 0.67
186 0.37 0.40 0.35 0.62 0.59 0.59 0.69 0.70
Kidney
Micro-F1
32 0.54 0.57 0.56 0.73 0.66 0.79 0.80 0.85
64 0.54 0.67 0.60 0.80 0.75 0.81 0.83 0.86
128 0.63 0.75 0.68 0.85 0.81 0.83 0.84 0.87
186 0.71 0.77 0.71 0.86 0.83 0.84 0.85 0.88
Macro-F1
32 0.25 0.28 0.29 0.37 0.35 0.46 0.48 0.51
64 0.27 0.35 0.30 0.46 0.42 0.49 0.52 0.54
128 0.36 0.42 0.38 0.52 0.49 0.51 0.54 0.55
186 0.47 0.46 0.42 0.54 0.51 0.54 0.56 0.56

attention approach used by Gao et al. also can output the most pertinent
sentences for a classification by using the attention mechanism to hi-
erarchically filter out pieces of text. [10] However, our experiments
show that HAN requires a large training size to achieve adequate per-
formance due to the more complex architecture used, and requires
significantly more development and computational time to search the
hyperparameter space. Additionally, there have been recent concerns
regarding the interpretability of attention distributions from neural
networks. [18]

Our study has a few limitations. Although we demonstrate the high
performance of our methodology is applicable to both colon and kidney
cancer, our investigation was done at a single institution; this may limit
the generalizability of our findings to other institutions that use different
pathology reporting or data collection systems. Second, within the field
of natural language processing, there has been strong empirical evidence
showing the benefit of pre-trained contextualized representations for a
variety of tasks, both in and out of clinical applications [19-22]. In
preliminary experiments, we investigated the efficacy of using
biomedical word vectors [23] as feature representation input to our SLA
model, but did not see an improvement in results. However, it would be
interesting to investigate the effect that more sophisticated contextual-
ized representations may have on downstream performance.

6. Conclusion

We have shown that including location information in annotation
and applying our supervised line attention mechanism can vastly reduce
the number of labeled documents needed for accurate tumor attribute
classification compared to state of the art approaches. Furthermore, our
supervised line attention method allows for greater interpretability due
to its hierarchical nature, which can allow for easy verification of its
outputs for clinicians. We hope these methods will advance the appli-
cation of information extraction in medicine, where labeled data is
scarce and expensive to acquire.
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