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combined rolling bearing fault localization
and identification with data fusion
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Abstract
Fault diagnosis of rolling bearings becomes an important research subject, where the data-driven deep learning-based

techniques have been extensively exploited. While the state-of-the-art research has shown the substantial progresses in

bearing fault diagnosis, they mostly were implemented upon the hypothesis that the location of bearing prone to failure

already is known. Nevertheless, in actual practice many rolling bearings are installed in a complex machinery system, any of

which is likely subject to fault. As such, fault diagnosis essentially is a process to achieve both fault localization and

identification, which results in many fault scenarios to be handled. This will significantly degrade the fault diagnosis

performance using conventional deep learning analysis. In this research, we aim to develop a new deep learning framework

to address abovementioned challenge. We particularly design a hierarchical deep learning framework consisting of multiple

sequentially deployed deep learning models built upon the transfer learning. This can improve the learning adequacy for

a high-dimensional problem with many fault scenarios involved even under limited dataset, thereby enhancing the fault

diagnosis performance. Without the prior knowledge regarding the fault location, this methodology is greatly favored by

the sensor/data fusion which takes full advantage of the enriched pivot fault-related features in the measurements acquired

from different accelerometers. Systematic case studies using the publicly accessible experimental rolling bearing dataset are

carried out to validate this new methodology.
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1. Introduction

Due to the extensive usage of rolling bearings in the
manufacturing, aerospace, and energy and power industries,
quality control and health monitoring of the rolling bearings
for reliable operation and operation safety recently have
attracted significantly growing attention from various
communities. A wide range of studies have dedicated on
advancing the bearing fault diagnosis capacity, where the
machine learning approaches play an important role (Dong
et al., 2021; Duan et al., 2021; Zhou et al., 2017). The
underlying idea of these approaches is to elucidate the
intrinsic correlation between the faults and different types of
measurements, such as vibration, acoustic emission and
eddy current and so on (Aasi et al., 2021; Ben Ali et al.,
2015; Chen et al., 2016; De Moura et al., 2011; Jiang et al.,
2019; Pandya et al., 2013; Tabatabaei et al., 2020; ). Among
them, vibration signals are most widely used for bearing
fault diagnosis because of the low instrumentation cost and
sufficient fault-related signatures contained (Ben Ali et al.,
2015; Chen et al., 2016; De Moura et al., 2011; Liang and
Zhou, 2021). Combined with the well-established signal

processing techniques, such as wavelet transform, various
machine learning approaches have become fully capable of
analyzing the vibration data collected in the machinery
system and then performing the fault pattern recognition.
For instance, Zhang et al. (2016) used a novel classifier
ensemble based on the lifting wavelet packet transforms and
sample entropy to improve the fault detection accuracy for
rolling bearings. Song et al. (2018) performed compre-
hensive feature extraction of raw signals by combining
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statistical filter (SF), wavelet package transform (WPT) and
moving-peak-hold method (M-PH), upon which the de-
cision tree was employed to achieve the bearing fault di-
agnosis. Rohani Bastami et al. (2019) employed the wavelet
packet decomposition and neural network to monitor the
conditions of rolling bearings and predict their remaining
useful life (RUL). Inturi et al. (2019) conducted the fault
diagnosis of bearing in the wind turbine gearbox operating
under nonstationary loads by using the discrete wavelet
transform (DWT)-based support vector machine. While the
tremendous progresses have been achieved, the bearing
fault diagnosis performance is hindered by the feature se-
lection required in the signal processing procedure, which is
highly dependent on the empirical experience and judg-
ment. Moreover, the entire fault diagnosis process cannot be
streamlined because of the manual feature selection.

Deep learning recently has become a mainstream in
machinery fault diagnosis research owing to its powerful
capability in extracting features from massive raw data. As
such, no pre-processing steps using signal processing are
required and the fault diagnosis as a result can be automated
to accommodate the real-time monitoring purpose (Chen
et al., 2018; Pan et al., 2018; Sonkul et al., 2021). More
importantly, because of the flexibility in architecture design,
deep learning generally is tailored for a broad range of fault
diagnosis applications than traditional machine learning
approaches. The well-known deep learning models in-
cluding but not limited to deep convolutional neural net-
work (CNN), stacked autoencoder and deep belief network
have been extensively employed in bearing fault diagnosis
nowadays (Sun et al., 2019; Xu and Tse, 2019; Zhang et al.,
2018). While the deep leaning methods indeed show the
promising prospect, there still exist the challenges for
practical fault diagnosis applications. To build the complex

input-output mapping, deep learning model oftentimes is
built with large scale, which is expected to be adequately
trained upon the sufficient data samples. However, the
labeled data collected from the real system usually are
limited. As a result, the model overfitting likely occurs. To
address the issue of data scarcity, the artificial data en-
richment techniques, such as data overlap truncation and
interpolation, and data augmentation were proposed (Li
et al., 2020; Zhang et al., 2018). Apart from these sol-
utions, the novel configuration/design of deep learning
strategy also appears to be effective, leading to the estab-
lishment of some representative approaches, that is, transfer
learning and semi-supervised learning (Verstraete et al.,
2020; Wen et al., 2019). Transfer learning follows the
concept of domain knowledge transfer where a model
developed for a previous task can be repurposed for a new
task. With the transfer learning integrated, the deep learning
analysis can yield the satisfactory fault diagnosis perfor-
mance even under the small-sized dataset. In comparison,
the major strength of semi-supervised learning is to improve
the fault diagnosis quality through fully exploiting the large
amount of unlabeled data that can be inexpensively col-
lected. According to the way to handle the unlabeled data,
different types of approaches under semi-supervised
learning framework, such as pseudo labeling, generative
adversarial network (GAN) were developed and im-
plemented (Arazo et al., 2020; Verstraete et al., 2020). The
other notable challenge to be pointed out is that the actual
unseen fault conditions are far beyond the known fault
labels collected in training data for constructing the deep
learning model. As such, it becomes critically important to
develop an enhanced deep learning model with extended
inference capability (Wu et al., 2021; Zhou and Tang,
2021).

Figure 1. Implementation structure of hierarchical deep learning framework.
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It is worth mentioning that the bearing fault diagnosis in
above literature review were performed upon the premise
that the bearing with fault occurrence is known and the
proper sensor placement for vibration measurement can be
executed accordingly. Nevertheless, in actual practice when
a complex machinery system is concerned, the fault likely
occurs in any bearings in the system. Therefore, the si-
multaneous localization and identification of bearing faults
bear practical significance, which however remains an open
research area. In this context, we aim to accomplish the
combined bearing fault localization and identification in this
research. In addition to the fact that the fault can be induced
at any bearings in a system, the fault is represented by
different conditions/types, resulting in the numerous fault
scenarios to be classified by the deep learning analysis. The
resulting high output dimensionality will lead to the poor
model predictive ability. To reduce the classification output
dimensionality and thus enhance the decision-making re-
liability and accuracy, a hierarchical deep learning frame-
work is particularly developed. Additionally, the fusion of
data from different accelerometers is utilized, aiming at
providing the spatially distributed vibration information to
facilitate the fault diagnosis. In other words, the hierarchical
transfer learning and data fusion are two key parameters of
the proposed methodology. The remainder of this paper is
organized as follows. In Sec. 2, the proposed methodology
and its major components are outlined. Sec. 3 provides the
case illustration for methodology validation using the public
bearing fault database from Case Western Reserve Uni-
versity (CWRU) bearing data center, followed by the
Concluding remarks that are summarized in Sec. 4.

2. Bearing fault diagnosis framework

In this section, the proposed hierarchical deep learning
framework built upon the transfer learning for bearing fault
diagnosis is succinctly introduced.

2.1. Hierarchical deep learning framework

The main motivation to adopt a hierarchical deep learning
framework instead of conventional single deep learning
model for bearing fault diagnosis is to reduce the output
dimension of the classification analysis. This framework
consists of multiple deep learning models that are hierar-
chically configured as illustrated in Figure 1. The classifier
located in the first level tends to pinpoint the bearing with
fault occurrence. Training this classifier needs to involve
entire training dataset, in which the original known fault
labels will be consolidated to ones in light of the bearing
locations. It is noted that the fault is sparse in nature; the
fault of single bearing thus is only concerned in this re-
search. Therefore, each output of this classifier represents
the respective bearing with fault occurrence. In the second
level, a cluster of deep learning models are established to

identify the specific fault conditions of bearings. The
number of classifiers is identical to the number of outputs in
the first-level classifier. The proper subset selection of entire
training dataset is required to train each corresponding
classifier in the second level. Once all integrated classifiers
are well established, the testing/prediction can be performed
in a sequential manner. Specifically, if the testing sample is
determined as “Healthy” by the first-level classifier, no
further action is required. Otherwise, the predicted result of
the first-level classifier will point to associated second-level
classifier for further fault condition identification. The two-
level architecture is simply used for illustrating the un-
derlying idea of this framework (Figure 1). This architecture
can be generically extended into multiple levels according
to the nature of problem to be investigated. For example, the
fault condition to be identified in the second level may
include the fault type and severity. In the case when the
numbers of fault types and severities both are large, ad-
ditional level can be incorporated to form a three-level
hierarchical architecture to keep the appropriate output
dimension that can be directly managed. Conversely, the
hierarchical architecture will degrade to one level (i.e.,
single model) if the fault location is not concerned and the
number of fault conditions is small.

2.2. Transfer learning

The classifier used in this research is modeled as the deep
learning neural network (i.e., convolutional neural network)
because of its notable advantages highlighted earlier. It is
worth pointing out that the architecture of the deep learning
neural networks embedded needs to be carefully configured
in order to ensure the adequate training for inherent input-
output correlation characterization. Generally, such archi-
tecture configuration resorts to the trial-and-error tunning,
which heavily relies on the empirical experience. Moreover,
while the performance of deep learning neural network
intuitively can be enhanced by increasing its scale, it is also
profoundly correlated with the size of training data. To
minimize the effort in model architecture tuning and
meanwhile ensure the desired model performance given
limited dataset, the transfer learning, the architecture of
which has been well established and validated, will be used
as the backbone of this framework.

When employing transfer learning, the first m layers of
a well-trained network can be directly transferred to the
target network. The rest of layers (M-m) in the target net-
work are left untrained, which will be trained subsequently
using the training dataset from the new task. Let the training
datasets for the previous and new tasks be represented,
respectively, as

Dpre ¼
�
Xpre,ypre

�
Dnew ¼ ½Xnew,ynew� (1)

where x and y are the vibration measurement and respective
fault label in one sample, respectively. Let φpre be the
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parameters of deep learning neural network for previous
task. The input-output mapping can be defined as

ypre ¼ g
�
Xpre,φpre

�
(2)

After training, the parameters then can be updated as

φ0
pre ¼ arg min

φpre

�
ypre � y0pre

�
¼ arg min

φpre

�
g
�
Xpre,φpre

�� y0pre
�

(3)

In the new task, the firstm layers that are transferred from
the previous task are frozen, and the rest parameters of the
last (M-m) layers can be trained using the new training
dataset

φ0
newð1 :MÞ ¼

h
φ0
preð1 :mÞ,φ0

newðmþ 1 :MÞ
i

¼ arg min
φnewðmþ1 :MÞ

�
ynew � y0new

�

¼ arg min
φnewðmþ1 :MÞ

�
gðXnew,φnewÞ � y0new

�
(4)

Once the training for the new task is completed, the fault
diagnosis can be performed over any given vibration time-
series sample, expressed as

ytest ¼ g
�
Xtest ,

h
φ0
preð1 :mÞ,φ0

newðmþ 1 :MÞ
i�

(5)

Fortunately, many state-of-the-art deep learning archi-
tectures for transfer learning spanning across different
application domains have been developed, validated, and
openly shared (Krizhevsky et al., 2012; Rezende et al.,
2017;Wen et al., 2019; Xia et al., 2017). In this research, we
particularly adopt the AlexNet network as the classifier. It
was originally proposed by Kizhevsky et al. (2012), and its

architecture consists of five convolutional and three fully
connected stages (Figure 2). In the figure, n is the number of
nodes in softmax layer which denotes the number of fault
classes in the problem. While different types of images will
be used to train the deep learning neural network, the high-
level abstraction can be extracted in a similar way through
the convolutional stages of the network (Yosinski et al.,
2014). Therefore, the first five convolutional stages can be
directly transferred to other tasks. To enable the best model
learning performance, we treat the fully connected stages to
be retrained in the new task as hyperparameters and create
three hyperparameter options, including (1) only last fully
connected stage to be retrained; (2) last two fully connected
stages to be retrained; (3) all three fully connected stages to
be retrained. The best option needs to be finalized in
subsequent analysis.

3. Fault diagnosis implementation on
CRWU bearing fault data

In this section, the bearing fault diagnosis using the pro-
posed framework will be practiced on the dataset from the
Case Western Reserve University (CWRU) bearing data
center (http://csegroups.case.edu/bearingdatacenter). The
advantages of hierarchical deep learning framework and
data fusion will be illustrated through the systematic
investigation.

3.1. Experimental data acquisition and problem
formulation

The experimental testbed to generate the bearing fault data
is shown in Figure 3. The testbed consists of a dynamom-
eter, a torque transducer, and an induction motor. Two

Figure 2. AlexNet network architecture.
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accelerometers are placed at drive end (DE) and fan end
(FE), respectively, for vibration measurement. The tested
bearing is deep groove ball bearing (6205-2RS JEM SKF),
which is installed either at DE or FE of the induction motor
to mimic the different fault locations.While various datasets
are collected under different motor speeds and sampling
frequencies, we specifically use the datasets under 1797
r/min motor speed and 12K sampling frequency to facilitate
the methodology validation. The new dataset to be used is
the combination of the two datasets corresponding to the
bearing faults at DE and FE, respectively. For each bearing
that is likely subject to fault, there are three fault types (i.e.,
inner ring (IR), ball element (BA), and outer ring (OR)
faults), each of which has three severities (i.e., 0.007, 0.014,
and 0.021 inches), yielding nine fault conditions. With the
healthy condition, totally 19 (9 × 2þ 1) fault labels/classes

are involved for subsequent classification analysis. For each
fault condition, the first 10-s vibration signals are utilized
and segmented into 75 samples, each of which has 1600
data points to reflect the vibration in 4 revolutions. It is
noted that there is no overlap between adjacent samples
which avoids the data dependency in model training. The
total number of segmented samples covering all fault lo-
cations and conditions hence are 1425 (75 × 19). The details
of the dataset used in this research are summarized in
Table 1.

To fully verify the effectiveness of the proposed
methodology, several testing scenarios are formulated
with details given in Table 2. We firstly examine the fault
diagnosis performance among Scenarios 1, 2, and 3, in
which the influential variable is the vibration measure-
ment. The vibration data measured via single acceler-
ometer at DE and FE are employed in Scenarios 1, 2,
respectively, whereas the fusion of vibration data mea-
sured via both accelerometers is adopted in Scenario 3.
The single deep learning model is used for all above three
scenarios. The purpose of this investigation is to elucidate
the effect of data fusion. We then look into the results of
Scenarios 3 and 4, which both utilize the data fusion. In
Scenario 4, the hierarchical deep learning framework is
employed, and the result will be compared with that of
Scenario 3. Through such scenario formulation and as-
sociated result comparison, the advantages of two key
built-in features, that is, hierarchical deep learning ar-
chitecture and data fusion in the proposed methodology
can be highlighted.Figure 3. Experimental testbed.

Table 1. Overview of bearing fault data.

Bearing location Fault condition Fault severity/Inch Dataset size Class ID

NA Healthy No 75 1

Inner Ring (IR) fault 0.007 75 2

Drive end 0.014 75 3

0.021 75 4

Ball Element (BA) fault 0.007 75 5

Drive end 0.014 75 6

0.021 75 7

Outer Ring (OR) fault 0.007 75 8

Drive end 0.014 75 9

0.021 75 10

Inner Ring (IR) fault 0.007 75 11

Fan end 0.014 75 12

0.021 75 13

Ball Element (BA) fault 0.007 75 14

Fan end 0.014 75 15

0.021 75 16

Outer Ring (OR) fault 0.007 75 17

Fan end 0.014 75 18

0.021 75 19
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3.2. Fault diagnosis performance examination and
validation

As mentioned, each data sample contains 1600 data points
(or data features), indicating a time series with 0.133 s.
When carrying out the data fusion using two accel-
erometers, the number of original data features in each
sample will be doubled, that is, 3200. In other words, the
data fusion increases the number of features in each sample
instead of the size of data samples. Figure 4 gives the
examples of data fusion under different fault locations and
conditions. Figures 4(a) and (b) indicate that the fault-
induced vibration amplitude will become more significant
using the accelerometer that is closer to the fault location.

The vibration amplitude discrepancy also depends on the
fault type. It seems that the vibration amplitude variation
due to OR fault is small despite accelerometer location
(Figure 4(c)). For healthy condition, the vibrations mea-
sured at DE and FE become quite identical (Figure 4(d)). It
is worth mentioning that the fundamental mechanism of
machine learning is to learn the intrinsic correlation be-
tween the features and associated faults. The learning
process becomes more adequate if the features contain more
pivot signatures explicitly pointing to the faults. Increasing
the features through data fusion essentially will enrich the
pivot signatures, thereby enhancing the fault diagnosis
performance.

Each time-series sample essentially is a 1-D array. It is
converted to a 2-D image which will be further resized to
227 × 227 × 3 to be consistent with the size of input layer of
AlexNet network. Recall that each AlexNet network is
integrated with transfer learning, and three retraining op-
tions are available for model establishment. We examine the
training performance of all options and find that the option 1
tops the rest. Unless otherwise specified, the results
throughout the manuscript are analyzed through the
AlexNet network with transfer learning hyperparameters
shown in option 1. The Adam optimizer built upon the
stochastic gradient descent (SGD) algorithm is adopted to

Table 2. Scenarios formulated.

Scenario

ID Model type

Accelerometer

placement

1 Single deep learning network DE

2 Single deep learning network FE

3 Single deep learning network DE+FE

4 Hierarchical deep learning

networks

DE+FE

Figure 4. Illustration of data fusion (single sample) (a) 0.021 IR fault of bearing at DE; (b) 0.021 OR fault of bearing at FE; (c) 0.021 BA

fault of bearing at FE; (d) Healthy condition. (Note: each sample lasts 0.133 s according to the sampling frequency and sample seg-

mentation mentioned above).
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direct the backpropagation training (Zhou et al., 2021). The
epoch and batch sizes are set as 10 and 5, respectively,
which are proven to enable the adequate training through
observing the training and validation loss trends with re-
spect to epoch. The 90% of entire 1425 data samples and the
rest are used for training and testing, respectively. It is noted
that the class balance also is maintained in above data split
using so called stratification. The classification accuracy
metric defined as the ratio of number of correct predictions
to the total number is used to assess the performance, as
given below

Taccð%Þ ¼ Ncor

Ntot
× 100 (6)

where Ncor denotes the number of samples that are correctly
identified, and Ntot denotes the total number of samples.

Under the operating set-up defined above, the
classification-based fault diagnosis analyses of Scenarios 1,
2 and 3 are carried out, and the overall accuracy are
computed as 84.21%, 83.46%, and 89.47%, respectively.
Apparently, the data fusion plays a positive role in en-
hancing the fault diagnosis accuracy. To dig the result more
deeply, the misclassifications take place in these scenarios
are further investigated as shown in Figure 5, where each
black line denotes the mapping between the actual/true class

and wrongly predicted class of certain sample. Overall, the
distribution of classes for misclassified samples varies with
respect to the scenario. In Scenario 1, the samples of BA
faults of bearing at FE (i.e., Classes 15 and 16) being
misclassified to BA fault of bearing at DE (i.e., Class 6) play
a major contribution (Figure 5(a)). The reason may lie in the
lack of sensitivity of bearing faults at FE with respect to the
data measured at DE. In Scenario 2, BA faults of bearing at
FE (i.e., Classes 14, 15 and 16) are interfered by different
severities (Figure 5(b)). The misclassification however
doesn’t occur across different bearings. Similar observation
also can be captured for OR bearing fault at FE (i.e., Class
18). According to the distribution of misclassified samples,
the faults of bearing at FE are discriminated more difficultly
than that at DE. While in Scenario 3 most misclassifications
still are found for the faults of bearing at FE (Figure 5(c)),
the data fusion indeed can significantly reduce the mis-
classification occurrence as compared with both Scenarios 1
and 2.

Considering the randomness existed in training and
testing data split, and backpropagation optimization for
model training, the results of above scenarios need to be
examined in a more robust manner. This generally can be
realized by cross-validation analysis. It is well known that
k-fold cross validation is a popular cross-validation method

Figure 5. Misclassifications over testing space (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.
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that has been extensively adopted. However, we employ
repeated random subsampling cross validation also known
as Monte Carlo cross validation in this research because it is
more convenient in implementation and is especially
suitable for relatively small-sized dataset (Raschka, 2018).
To ensure the class balance in classification analysis,
stratification is performed during cross-validation analysis.
10 emulations for each scenario are carried out, and each of
emulations follows the same training and testing data split
ratio used above. The testing accuracy of 10 emulations for
all scenarios are compared using violin plots (Figure 6). It is
consistently found that the Scenario 3 has the best per-
formance while possessing good robustness, illustrating the
feasibility of data fusion for bearing fault diagnosis.
Moreover, the performance of Scenario 2 is slightly inferior
to that of Scenario 1 because of the worse robustness (i.e.,
wider distribution). The reason may be associated with the
more useful fault-related features that are contained in the
measurement from accelerometer at DE than at FE.

Taking full advantage of both the developed hierarchical
deep learning framework and data fusion, we then perform
the fault diagnosis analysis of Scenario 4 following the
similar procedure shown above and compare the result with
that of Scenario 3. The testing accuracy of Scenario 4
obtained is 95.49%, which is considerably improved as
compared with the accuracy of Scenario 3. The mis-
classification details also are examined (Figure 7), showing
that the misclassified samples are dramatically reduced,
especially for the samples corresponding to the faults of
bearing at FE. Cross-validation analysis is subsequently
provided for systematic validation. The cross-validation
results of 10 emulations for both Scenarios 3 and 4 are
compared in Figure 8. As can be seen clearly, the accuracy
of all emulations for Scenario 4 is above 90%, indicating
excellent robustness. Overall, the accuracy level of Scenario
4 is much higher than that of other scenarios, which readily
verifies the effectiveness of proposed methodology.

4. Conclusion

In this research, a new deep learning framework is proposed
to realize the combined bearing fault localization and
identification. This methodology can be tailored to the
practical fault diagnosis of bearings in a complex machinery
system where the fault likely occurs at any of the bearings.
Many fault conditions together with possible fault locations
may result in the excessive fault scenarios to be
differentiated/identified in the classification analysis. The
conventional single deep learning model usually lacks the
capability to construct the clear boundaries for these fault
scenarios with high dimensionality. To address this issue,
a new deep learning framework is particularly designed
with hierarchical architecture, encompassing multiple deep
learning models in a sequential deployment. The transfer
learning is integrated into the deep learning models to direct
fault diagnosis analysis, which can not only minimize the
effort for tuning network configuration, but also avoid the
overfitting given limited dataset. Moreover, the data fusion
is adopted to facilitate the adequate learning of intrinsic

Figure 6. Cross-validation result versus the scenario.

Figure 7. Misclassifications over testing space in Scenario 4.

Figure 8. Cross-validation result versus the scenario.
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correlation between the features in the measurement and
associated faults, which further improves the fault diagnosis
reliability. Inspired by the data fusion concept, the vision-
based sensing technique that can lead to the full-field
measurement will become one of focal points in our fu-
ture fault diagnosis research. The effectiveness of proposed
framework is verified through carrying out the fault di-
agnosis implementation on the publicly accessible rolling
bearing fault dataset. The results clearly illustrate the
strength of this framework as compared with the conven-
tional deep learning method without data fusion.
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