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Abstract
Two quantitative notions of mixing are the decay of correlations and the decay
of a mix-norm—a negative Sobolev norm—and the intensity of mixing can be
measured by the rates of decay of these quantities. From duality, correlations
are uniformly dominated by a mix-norm; but can they decay asymptotically
faster than the mix-norm? We answer this question by constructing an observ-
able with correlation that comes arbitrarily close to achieving the decay rate of
the mix-norm. Therefore the mix-norm is the sharpest rate of decay of correla-
tions in both the uniform sense and the asymptotic sense. Moreover, there exists
an observable with correlation that decays at the same rate as the mix-norm if
and only if the rate of decay of the mix-norm is achieved by its projection onto
low-frequencyFourier modes. In this case, the function beingmixed is called q-
recurrent; otherwise it is q-transient. We use this classification to study several
examples and raise questions for future investigations.
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1. Introduction

Consider a spatially-periodic mean-zero function f t(x) = f(t, x) bounded uniformly in L2(Td)
for all t > 0. For example, f(t, x) might be a solution to the advection-diffusion equation

∂ f
∂t

+ u · ∇ f = DΔ f , (1.1)

with f 0 ∈ L2(Td) and smooth divergence-free velocity field u(t, x). We may also consider
D = 0 in equation (1.1), in which case it is the transport equation. Another example, in
the context of dynamical systems, is when an initial condition f 0 ∈ L2 is transported by an
area-preserving mapM via the transfer operator f n+1 = f n ◦M−1.

Decay of the correlation function Ct(g) = |〈 f t , g〉| as t→∞ for observables g in L2(Td)
corresponds to mixing of f t as t→∞ [32]. Mathew et al [25] introduced the H−1/2 norm as
another criterion to quantify mixing, and Lin et al [19] extended this to any negative Sobolev
(e.g.,H−q) norm and showed that correlations decay to zero if and only if any such ‘mix-norm’
decays to zero. That is,

lim
t→∞

〈 f t , g〉 = 0 ∀g ∈ L2 ⇔ lim
t→∞

‖ f t‖H−q = 0, for any q > 0.

Mix-norms are well-suited to quantification of mixing efficiencies [9, 18, 23, 31, 33–36],
to lower bounds on the rate of mixing in general [15, 21, 22], and to analyzing mixing [24,
26, 27, 37]. Moreover, such negative Sobolev spaces provide a natural setting for a discussion
of enhanced dissipation and relaxation [1, 4, 6–8, 12, 16, 17]. Mathew et al [25] introduced
the mix-norm in the context of spatial averages over strips, and made the connection to weak
convergence (see also [39]).

While mix-norms are well-adapted to the PDE context, correlations and weak convergence
are more commonly studied in the context of ergodic theory. A central question, then, is the
quantitative relationship between decay rate of correlations and decay of mix-norms. This is
the central focus of this paper where we will work in a setting where the evolution of a function
f t(x) is given, arising from the continuous-time solution of a PDE or in discrete times from an
iterated map.

When studying a collection of functions converging to zero as t→∞, such as |〈 f t , g〉| for
g ∈ X where X ⊂ L2 is some Banach space, there are several reasonable ways to define a rate
of decay:

(a) We can consider a uniform upper bound [2, 5, 10, 20, 30].
(b) We can say that each function is O (�) 3 where �(t) is some rate function [38]. This lifts

the tail of the rate function by multiplying by a constant that depends on g ∈ X.
(c) We can instead lift the tail of the rate function by translation and say that each function is

bounded above by a translation of some rate function [11].

We summarize as follows (for concreteness, fix some q > 0 and consider X = Hq(Td)):

(a) Correlations decay at the uniform rate r(t) for g ∈ Hq if

|〈 f t , g〉| � r(t)‖g‖Hq ∀g ∈ Hq. (1.2)

3We say that a(t) = O (b(t)) as t→∞ if there are T ,M so that |a(t)| � Mb(t) for t > T . For b(t)> 0, this is equivalent
to lim supt→∞ |a(t)| /b(t) = C ∈ [0,∞). Moreover, we say a(t) = o (b(t)) if C = 0.
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(b) Correlations decay at the asymptotic rate �(t) for g ∈ Hq if

|〈 f t , g〉| = O (�) , for each g ∈ Hq. (1.3)

That is,

lim sup
t→∞

|〈 f t , g〉|
�(t)

= Cg ∈ [0,∞). (1.4)

(c) Correlations decay at the translational rate λ(t) for g ∈ Hq if for each g ∈ Hq there exists
τg ∈ R such that for all t > τ g we have

|〈 f t , g〉| � λ(t − τg)‖g‖Hq . (1.5)

From considering duality in section 2, we find that the smallest uniform rate is the mix-
norm ‖ f t‖H−q . Since any uniform rate trivially satisfies the definitions of asymptotic rate and
translational rate, the question is whether there is a � (or λ) that decays faster than ‖ f t‖H−q .
We answer this question by showing that we cannot have � = o

(
‖ f t‖H−q

)
. Similarly, given the

additional assumption that lim supt→∞λ(t− τ )/λ(t) is finite, we cannot have λ = o
(
‖ f t‖H−q

)
.

We remark that this growth condition on λ is satisfied by power law and exponential functions4.
We prove the above facts by constructing an observable g ∈ Hq such that |〈 f t , g〉| decays

arbitrarily closely to the mix-norm. Namely, for any positive h(t) = o
(
‖ f t‖H−q

)
there is a g ∈

Hq such that |〈 f t , g〉| is big-O but not little-O of h. Note that this is not the same as asymptotic
equivalence because the correlation may be much smaller than h at certain times.

Let PI f t denote the projection of f t onto the Fourier modes I. We say f t is q-recurrent
(otherwise it is q-transient) if there is a finite set I where ‖PI f t‖H−q is big-O but not little-O
of ‖ f t‖H−q . Heuristically, in this case, the decay of the mix-norm is characterized by PI f t.
We prove f t is q-recurrent if and only if there is a g ∈ Hq such that |〈 f t , g〉| is big-O but not
little-O of ‖ f t‖H−q . Therefore, q-recurrence is the criterion for the existence of a correlation
that obtains the decay rate of the mix-norm.

In section 2 we introduce the key definitions and main theorems. Section 3 contains
examples, and sections 4 and 5 contains the full proofs of the theorems.

2. Overview

Throughout, it will be more convenient to work with the homogeneous Sobolev spaces Ḣα for
α ∈ R. Since the torus Td is a compact manifold, Poincaré’s inequality applies [14] so that the
Hα norm and Ḣα norm are equivalent for mean-zero functions. For α > 0, the Ḣ−α norm is
typically defined via the duality equation

‖ f ‖Ḣ−α = sup
g∈Ḣα

|〈 f , g〉|
‖g‖Ḣα

.

However, there is an equivalent definition [13] for all α ∈ R. Let f k =
∫
Td
f (x) e−2πix·k dx

denote the Fourier coefficients of f(x). Then

4 The growth condition is not satisfied by functions that decay faster than exponentially, such as λ(t) = e−t
2
. In this

case, λ is not asymptotically equivalent to its own translation: for large t, we see e−(t−τ )2 = e2τ t−τ2 e−t
2 � e−t

2
. For

λ not satisfying the growth condition, a translation of λ is much larger than a constant multiple of λ. If there is a
correlation bounded by a translation of λ but not a constant multiple of λ, then λ = o (�).
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Figure 1. Plotted above are the mix-norm and correlations with different choices of g,
demonstrating that the mix-norm is the envelope over |〈 f t , g〉| with ‖g‖Ḣq = 1.

‖ f ‖Ḣα =

⎛⎝∑
k �=0

k2α | f k|2
⎞⎠1/2

,

where k2 = |k|2 = |k1|2 + · · ·+ |kd|2. We will typically omit the k �= 0 under the sum since
f0 = 0 for mean-zero functions.

Similarly, correlations have a simple expression. Since the trigonometric functions {e2πix·k}
provide an orthonormal basis for L2(Td), the Fourier transform is a unitary map to �2(Zd).
Therefore the Fourier transform preserves the inner product [13] and we have Plancherel’s
theorem:

〈 f , g〉 =
∑
k

f k ḡk ∀ f , g ∈ L2(Td).

Now say q > 0 and consider g ∈ Ḣq for the rest of this paper. For time-dependent f t(x),
the duality equation implies |〈 f t , g〉| � ‖ f t‖Ḣ−q‖g‖Ḣq for all t. Moreover, fix t = t0 and take
g with Fourier coefficients

gk = f t0k k
−2q‖ f t0‖−1

Ḣ−q . (2.1)

Then ‖g‖Ḣq = 1 and Plancherel’s theoremgives 〈 f t0 , g〉 = ‖ f t0‖Ḣ−q . The correlation achieves
the mix-norm at the time t0. Since t0 is arbitrary, we see that ‖ f t‖Ḣ−q is the envelope of the
set of functions |〈 f t , g〉| with ‖g‖Ḣq = 1, as in figure 1. This shows the point-wise smallest
uniform rate of decay of correlations, in the sense of equation (1.2), is the mix-norm ‖ f t‖H−q .

Using only duality, the most that can be said about the relationship between the rate of decay
of a correlation and the rate of decay of the mix-norm is that

|〈 f t , g〉| = O
(
‖ f t‖Ḣ−q

)
for each g ∈ Ḣq.

However, each correlation could decay strictly faster than the mix-norm as illustrated in
figure 1. We are then led to ask if such a situation is possible.

When is |〈 f t , g〉| = o
(
‖ f t‖Ḣ−q

)
for each g ∈ Ḣq ? To answer this question, we must con-

struct functions g ∈ Ḣq such that the correlations |〈 f t , g〉| decay as slowly as possible. To do
this, we first classify f t as either q-recurrent or q-transient as follows.
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For a set I ⊂ Zd let

PI f
t =

∑
k∈I

f tk e
2πix·k

denote the projection of f t onto the Fourier modes k ∈ I. Then

‖PI f t‖2Ḣ−q =
∑
k∈I

k−2q | f tk|2

measures the amount of mix-norm supported on I. We often refer to this as the Fourier energy
contained in I. This notion of energy is q-dependent, though the q will usually be clear from
the context.

Definition 1. We say f t is q-recurrent if there exists a finite set I ⊂ Zd such that

lim sup
t→∞

‖PI f t‖Ḣ−q

‖ f t‖Ḣ−q
> 0. (2.2)

Functions that are not q-recurrent will be called q-transient.

Remark. We emphasize that q-recurrence is a property of f t which encompasses both the
stirring action and the initial condition coupled together. To clarify, in the context of the
advection-diffusion equation (1.1), q-recurrence is a property of a particular realization of u
and f 0 taken together—it is not just a property of the vector field u. Flows which don’t mix,
like u = const., will trivially induce a q-recurrent trajectory f t for any initial condition and any
q. However, this stability does not hold in general. In example 2 of section 3, we will see that a
given f t may be q-recurrent for some (larger) values of q and q-transient for other (smaller) q.
Additionally, we will find that a given flow u may induce a q-recurrent evolution f t for some
initial conditions and q-transient for others.

From inequality (2.2) and the trivial bound ‖PI f t‖Ḣ−q � ‖ f t‖Ḣ−q we see that ‖PI f t‖Ḣ−q is
big-O but not little-O of ‖ f t‖Ḣ−q . Unpacking the definition of limit supremum offers another
interpretation: there exists δ > 0 and a sequence tm →∞ where

‖PI f tm‖Ḣ−q � δ‖ f tm‖Ḣ−q . (2.3)

This means that there is at least a δ fraction of the mix-norm supported on I at arbitrarily large
times. As time progresses the Fourier energy could move off of I, but we can always find a
future time tm+1 where a proportion δ of the mix-norm is again on I. In other words, some
Fourier energy always returns to populate the spatial scales in I. In this case, test functions g
with coefficients for k ∈ I similar to that in equation (2.1) will match well with f t at times tm
(after possibly taking a subsequence) so that in section 4 we can prove the following theorem,
a central result of our paper.

Remark. The case ‖ f t0‖Ḣ−q = 0 is degenerate in the context of the advection-diffusion
equation and dynamical systems. In those settings, if the mix-norm is zero at any finite time
it will remain zero for future times. In such a case where f t is eventually zero, the mix-norm
and correlations will trivially decay at the same rate, the zero function. Otherwise, if the mix-
norm is nonzero for a sequence tm →∞, we may drop the times where the mix-norm is zero
so that ‖ f t‖Ḣ−q > 0 for all t > 0. Without loss of generality, to simplify the presentation of
our results, we will take this as an assumption in the theorems below.
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Figure 2. There exists g ∈ Ḣq where |〈 f t , g〉| does not decay faster than c‖ f t‖Ḣ−q .

Theorem 1. Let f t be a mean-zero function in L2(Td) with ‖ f t‖Ḣ−q > 0 for all t > 0. Then
f t is q-recurrent if and only if there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
‖ f t‖Ḣ−q

> 0.

Equivalently, there is a function g ∈ Ḣq, a constant c > 0, and a sequence tm →∞ where

|〈 f tm , g〉| � c ‖ f tm‖Ḣ−q . (2.4)

Remark. As demonstrated in figure 2, it is possible that |〈 f t , g〉| is small at times t �= tm and
so we do not show asymptotic equivalence. We interpret our result as demonstrating that the
correlation does not decay asymptotically faster than the mix-norm in the sense that |〈 f t , g〉|
is big-O but not little-O of ‖ f t‖Ḣ−q . From this theorem, the answer to our previously posed
question ‘when is |〈 f t , g〉| = o

(
‖ f t‖Ḣ−q

)
for each g ∈ Ḣq ?’ is exactly when f t is q-transient.

This naturally prompts us to ask if f t is q-transient and we carefully choose g ∈ Ḣq, how
slowly can we make |〈 f t , g〉| decay? The following theorem answers this question.

Theorem 2. Let f t be a mean-zero function in L2(Td) with ‖ f t‖Ḣ−q > 0 for all t > 0. For
any positive function h(t) such that h(t) = o

(
‖ f t‖Ḣ−q

)
, there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
h(t)

> 0.

Remark. Theorems 1 and 2 do not require f t to be bounded uniformly in L2(Td) in time, nor
for the mix-norm to decay to zero. Additionally, theorem 2 is valid whether f t is q-recurrent
or q-transient.

The proof of theorem 2 is deferred until section 5, but we present the idea behind the proof
now. If f t is q-recurrent, then the proof is accomplished by a result similar to theorem 1. For
q-transient functions, the proof relies on the construction of sets Im and times tm satisfying
certain properties, the first being that we want the finite disjoint sets Im ∈ Z

d to capture a large
amount of the Fourier energy at time tm. We can do this since q-transience ensures that we can
wait for the next time tm+1 where a proportion of the Fourier energy moves off of Im and never
comes back. Then by choosing the Fourier coefficients of g on Im to agree with f t at time tm,
we can guarantee that |〈 f t , g〉| will be large at time tm. Hence, the function g in theorem 2
which gives the slowly decaying |〈 f t , g〉| has Fourier coefficients
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gk =

⎧⎨⎩ f tmk k
−2q‖ f tm‖−2

Ḣ−q h(tm), k ∈ Im;

0, otherwise;
(2.5)

where Im are disjoint and ‖PIm f tm‖Ḣ−q captures a nonzero proportion of h(tm), similar to
inequality (2.3). These coefficients are similar to those of equation (2.1) except with an
extra factor of h/‖ f ‖Ḣ−q . This factor is needed so that we can satisfy the second property
we require from the sets Im and times tm: by taking a subsequence, we can use the fact
that h(t) = o

(
‖ f t‖Ḣ−q

)
to make the gk decay fast enough as k→∞ to have g ∈ Ḣq. Hence,

although correlations may not achieve the decay rate of the mix-norm, they may achieve the
decay rate of h.

These theorems allow us to show the result outlined in the introduction. The following
corollary reveals it is not possible to find a � or λ (under a given growth condition) that is
little-O of the mix-norm.

Corollary 1.

(a) For any � satisfying equation (1.3), we have

lim sup
t→∞

�(t)
‖ f t‖H−q

> 0.

(b) For λ satisfying equation (1.5) and lim supt→∞λ(t − τ )/λ(t) finite for any τ ∈ R, we have

lim sup
t→∞

λ(t)
‖ f t‖H−q

> 0.

Proof of corollary 1. Seeking contradiction we suppose there is a �(t) satisfying
equation (1.3) such that �(t) = o

(
‖ f t‖Ḣ−q

)
. Choosing h(t) =

√
�(t)‖ f t‖Ḣ−q , the geometric

mean of � and the mix-norm, we see

lim sup
t→∞

h
‖ f t‖Ḣ−q

= lim sup
t→∞

√
�

‖ f t‖Ḣ−q
= 0. (2.6)

Then theorem 2 assures there is a g ∈ Ḣq with

lim sup
t→∞

|〈 f t , g〉|
h

> 0.

Then we have arrived at a contradiction:

lim sup
t→∞

|〈 f t , g〉|
h

� lim sup
t→∞

|〈 f t , g〉|
�

· lim sup
t→∞

�

h
= 0

since lim supt→∞ |〈 f t , g〉| /� is finite by equation (1.3) and lim supt→∞�/h = 0 as in
equation (2.6).

A similar argument gives us the second half of the corollary. In this case choose h(t) =√
λ(t)‖ f t‖Ḣ−q and apply theorem 2 to produce a test function g which comes with a τ g from

equation (1.5). Then we have another contradiction:

lim sup
t→∞

|〈 f t , g〉|
h(t)

� lim sup
t→∞

|〈 f t , g〉|
λ(t − τg)

· lim sup
t→∞

λ(t − τg)
λ(t)

· lim sup
t→∞

λ(t)
h(t)

= 0

since lim supt→∞λ(t − τ g)/λ(t) is finite by hypothesis. �
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Figure 3. The baker’s map.

In section 3 we present an example of a q-transient function and alter it to send energy
down the spectrum less efficiently, resulting in q-recurrence for a range of q. We then include
diffusion at every time step, demonstrating a transition to q-recurrence for all q > 0.We include
a numerical example and provide intuition about how to recognize when f t is q-recurrent.
Finally, we prove the theorems in generality in sections 4 and 5.

3. Examples

Example 1 (baker’s map and q-transience). Let B be the baker’s map, the area pre-
serving transformationof the domain [0, 1]2 as pictured in figure 3. For the y-independent initial
function f 0(x, y) = 2 cos (2πx), applying the baker’s map simply doubles the frequency in the
x direction. After n applications of the baker’s map we have f n = f 0 ◦ B−n = 2 cos (2π 2nx).
As a result, the Fourier coefficients have the simple expression

f nk =

{
1 k1 = 2n, k2 = 0;

0 otherwise.

This is a one dimensional action on Fourier coefficients f nk = f nk1,0 via an infinite dimensional
matrix Ak� as

f n+1
k =

∑
�

Ak� f
n
� (3.1)

where

is populated by 1’s along a subdiagonal of slope −2 and 0’s everywhere else.
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Table 1. Nonvanishing Fourier coefficients of f n defined
by equation (3.1), for f 0(x) = 2 cos (2πx).

The entire mix-norm is supported on just one Fourier mode and given any finite set I ∈ Zd ,
it is clear that, as n increases, the Fourier energy will move off of I and never return. Therefore
f n is q-transient ∀q > 0. Δ

Example 2 (baker-like action and q-recurrence). We now alter the previous example
so that the energy of f n is sent down the spectrum less effectively, the result being a q-recurrent
function (if q is large enough). This time, consider the action on the Fourier coefficients of f n(x)
as in equation (3.1) via the infinite dimensional matrix

where a, b > 0 are constants such that a2 + b2 = 1.

Remark. It is not evident that the current example is still a dynamical systems example.
That is, we do not know that there is a map T : [0, 1]d → [0, 1]d so that f n+1 = f n ◦ T and
f n+1
k =

∑
�Ãk� f

n
� . Moreover, such a map might not be injective, surjective, or unique. For

example, B−1 from the previous example is not injective when thought of as a map on
[0, 1], but it is when we allow it to move through another dimension (d = 2). For the
present example, taking a, b =

√
2/2, the initial function f 0(x) = 2 cos (2πx) is transformed

to f 1(x) =
√
2(a cos (2πx)+ b cos (4πx)) after one time step. Since the range of f 0 and f1 are

not the same set, any such T cannot be surjective. In this example, we see the map is also not
measure preserving. Lastly, if f n is constant, then T can be any map. These caveats notwith-
standing, we consider the current example as a study of possible ways for energy to move down
the spectrum and proceed with an analysis.

We show the coefficients of f n for initial function f 0(x) = 2 cos (2πx) in table 1. Heuristi-
cally, the energy starts concentrated on the k = 1 mode and subsequently splits betweenmodes
k = 1, 2 so that L2 norm is preserved. After that the k = 1 mode continues to donate a propor-
tion b of its energy to k = 2 and the energy on k = 2 is transported down the spectrum at the
same rate as the baker’s map (k = 2n).
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Notice that f n is mean-zero because it is the finite sum of cosine functions with full period.
We can compute the L2 norm and find ‖ f n‖L2 = 1 ∀n. Hence Ak� is a unitary map on �2 by the
polarization identity. Therefore f n is bounded uniformly in L2 and so f n satisfies the hypothesis
of the theorems in section 2.

Consider the contribution to the mix-norm from mode k = 1

En1 = ‖Pk=1 f
n‖2Ḣ−q =

∑
k=1

k−2q| f nk |2 = | f n1|2 = a2n,

and compare it to the contributions from modes k > 1 (a geometric sum):

Enk>1 = ‖Pk>1 f
n‖2Ḣ−q =

∑
k>1

k−2q| f nk|2

=

⎧⎪⎨⎪⎩
cq,a
(
a2n − 2−2qn

)
, for a �= 2−q;

b2 a2nn, for a = 2−q;

where

cq,a =
b2

a222q − 1
.

For a > 2−q, we see that En1 ∼ Enk>1 as n→∞ and the mode k = 1 captures a non-zero
proportion of the mix-norm for arbitrarily large n. Therefore f n is q-recurrent for q >
log2(1/a).

For a � 2−q, En1 = o
(
Enk>1

)
so the mode k = 1 does not capture a non-zero proportion of

the mix-norm for arbitrarily large n. This suggests that f n is q-transient for q � log2(1/a). To
proveq-transience,we need to show the same holds for an arbitrary finite set I. Take I =

[
0, 2R

]
for some R ∈ N. For n > R,

‖PI f n‖2Ḣ−q = cR,q,a a
2n,

where

cR,q,a =

{
1+ cq,a

(
1− a−2R2−2qR

)
, for a �= 2−q;

1+ b2R, for a = 2−q

and we conclude that

lim
n→∞

‖PI f n‖2Ḣ−q

‖ f n‖2Ḣ−q
=

⎧⎨⎩cR,q,a
(
1+ cq,a

)−1
, fora > 2−q;

0, fora � 2−q.

Therefore f n is q-transient for q � log2(1/a) and q-recurrent for q > log2(1/a). Δ

Remark. In the above example, an initial function with f 01 = 0 has a trajectory f n that is
q-transient. This is because the coefficients do not see the alterations we have made to the
baker’s map and are sent down the spectrum at the same rate as the baker’s map (k = 2n).
We emphasize that q-recurrence is a property of a particular realization of the flow and initial
condition taken together—a given flow may induce a q-recurrent evolution f t for some initial
conditions and q-transient for others.

Example 3 (baker-like action with diffusion). We use the same matrix Ãk� and initial
condition as in example 2 but now we also include diffusion. Without diffusion the conclusion
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from the previous section was that f n is q-recurrent if q was large enough. We now show that
with diffusion, f n is q-recurrent for all q. Along the way, we show the rate of decay of the
Sobolev norm ‖ f n‖Hβ is independent of β ∈ R.

Let

γk = exp
(
−κ(2πk)2

)
(3.2)

and update the Fourier coefficients according to

f n+1
k =

∑
�

γkÃk� f
n
� , (3.3)

where Ãk� is the matrix defined in example 2. This matrix multiplication will result in pulsed
diffusion with diffusion constant κ. We display the coefficients of f n in table 2.

The amount of mix-norm found on mode k = 1,

En1 = ‖Pk=1 f
n‖2Ḣβ =

∑
k=1

k2β| f nk |2 = | f n1|2 = (aγ1)2n, (3.4)

is asymptotically equivalent to the amount found on modes k > 1 because

Enk>1 = ‖Pk>1 f
n‖2Ḣβ =

∑
k>1

k2β| f nk |2

=

n∑
�=1

(2�)2β
(
(aγ1)n−�b Π�

s=1γ2s
)2

= (aγ1)
2n

n∑
�=1

(2�)2β
(
(aγ1)

−�b Π�
s=1γ2s

)2
,

where the factor

cn,β,a,κ :=
n∑

�=1

(2�)2β
(
(aγ1)−�b Π�

s=1γ2s
)2

(3.5)

limits to a finite constant cβ,a,κ as n→∞. We see that cn,β,a,κ converges since the factor

γ2� = exp
(
−κ(2π2�)2

)
(3.6)

dominates the terms in the sum to render the sum convergent. Lastly, notice that cβ,a,κ →∞ as
β →∞ or a→ 0. We conclude that f n is q-recurrent for all q ∈ R and, moreover, that all of
the Sobolev norms decay at the same rate. Δ

Example 4 (sine flow). Lastly we consider a computational example, the random sine
flow, which is a simple model flow that is empirically quite efficient at mixing [29, 35]. The
sine flow is a two-dimensional time-periodic flow with a full period consisting of the shear
flow

u1(t, x) =
√
2 (0 , sin(2πx + ψ1)), 0 � t < 1/2, (3.7a)

followed by

u2(t, y) =
√
2 (sin(2πy+ ψ2) , 0), 1/2 � t < 1, (3.7b)
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Table 2. Nonvanishing Fourier coefficients of f n defined
by equation (3.3), for f 0(x) = 2 cos (2πx).

Figure 4. For the advection-diffusion equation (1.1) with u given by the random sine
flow (3.7), the rate of decay of the mix-norms is independent of q. The the initial
condition is f 0(x) =

√
2 cos(2πx), and the diffusivity is D = 10−5.

with (x, y) ∈ [0, 1]2 and periodic spatial boundary conditions. Here ψ1 and ψ2 are random
phases, uniformly distributed in [0, 2π], chosen independently at every period. Unlike the
pulsed diffusion in example 3, diffusion acts continuously by solving the advection–diffusion
equation (1.1) with diffusivity D = 10−5. We display ‖ f t‖H−q for various q in figure 4, for
initial condition f 0(x) =

√
2 cos(2πx), and observe that the mix-norms all decay at the same

rate, at least within numerical fluctuations. Δ

In general, if f t is q-recurrent then the decay rate of the mix-norm is independent of q in
the following sense:

Theorem 3. If f t is q-recurrent, then it is also q′-recurrent for any q′ > q. Moreover, we
have

lim sup
t→∞

‖ f t‖Ḣ−q′

‖ f t‖Ḣ−q
> 0.

Then together with the trivial estimate

‖ f t‖Ḣ−q′ � ‖ f t‖Ḣ−q (3.8)

we conclude that ‖ f t‖Ḣ−q′ is big-O but not little-O of ‖ f t‖Ḣ−q .
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Proof. Since f t is q-recurrent, there is a finite set I such that

0 < lim sup
t→∞

‖PI f t‖Ḣ−q

‖ f t‖Ḣ−q
. (3.9)

Say I ⊂ [−R,R] for some R ∈ N. Then

‖PI f t‖Ḣ−q � R(q′−q)‖PI f t‖Ḣ−q′ . (3.10)

Putting together equations (3.8)–(3.10) we obtain

0 < R(q′−q) lim sup
‖PI f t‖Ḣ−q′

‖ f t‖Ḣ−q′
.

We conclude f t is q′-recurrent. Moreover, the trivial estimate ‖PI f t‖Ḣ−q′ � ‖ f t‖Ḣ−q′ together
with equations (3.9) and (3.10) imply

0 < R(q′−q) lim sup
‖ f t‖Ḣ−q′

‖ f t‖Ḣ−q
. (3.11)

�
One question for further investigation is whether a converse to the above theorem exists.

That is, can we conclude f t is q-recurrent for a range of q if the mix-norms decay at the same
rate for the those q? Another question concerns the transition from q-transient to q-recurrent
when including pulsed diffusion. Does q-recurrence imply an introduction of the Batchelor
scale and anomalous dissipation [3, 27, 28]?

4. Proof of theorem 1

We begin by generalizing the definition of q-recurrent functions to the notion of ‘(q,h)-
recurrent’functions.

Definition 2. For positive functions h(t), we say f t is (q,h)-recurrent if there exists a finite
set I ⊂ Zd such that

lim sup
t→∞

‖PI f t‖Ḣ−q

h
> 0. (4.1)

Functions that are not (q,h)-recurrent are called (q,h)-transient.

Lemma 1. If f t is (q,h)-recurrent, then there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
h

> 0.

Moreover, g ∈ Ḣβ for any β ∈ R with

‖g‖2Ḣβ = 2
∑
k∈I

k2(β−q). (4.2)

Proof. There exists a constant c > 0 and a sequence of times tm →∞ where∑
k∈I

| f tmk |2 k−2q � c2h2(tm). (4.3)
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Recall the signum function

sgn x =

{
1, x � 0;

−1, x < 0.
(4.4)

Now notice that for each fixed time tm, { f tmk }k∈I is a list of |I| numbers inC. Write f tmk = atmk +
ibtmk where atmk and btmk are real. Then f tmk is found in one of the four quadrants of the complex
plane, depending on the two possibilities for sgn atmk and two possibilities for sgn btmk . Thus,
{ f tmk }k∈I has 4|I| possible states. Since we have an infinite sequence of times tm, one of these

states must occur infinitely many times. By taking a subsequence tm�
, we can ensure { f tm�k }k∈I

is the same state for all �. Let {(ck, dk)}k∈I encode this state, meaning that ck = sgn a
tm�
k and

dk = sgn b
tm�
k for all �. We see that a

tm�
k ck =

∣∣∣atm�k

∣∣∣ and btm�k dk =
∣∣∣btm�k

∣∣∣ for all �. Let
gk =

{
(ck + idk) k−q, k ∈ I;

0, otherwise.
(4.5)

Notice that g ∈ Ḣβ because

‖g‖2Ḣβ =
∑

|gk|2 k2β =
∑
k∈I

(|ck|2 + |dk|2)k−2qk2β = 2
∑
k∈I

k2(β−q) < ∞ (4.6)

since I is a finite set. We have∑
f
tm�
k ḡk =

∑
k∈I

(
a
tm�
k + ib

tm�
k

)
(ck − idk) k−q

=
∑
k∈I

(
a
tm�
k ck + b

tm�
k dk + i

(
b
tm�
k ck − a

tm�
k dk

))
k−q

=
∑
k∈I

(∣∣∣atm�k

∣∣∣+ ∣∣∣btm�k

∣∣∣+ i
(
b
tm�
k ck − a

tm�
k dk

))
k−q.

We conclude that

|〈 f tm� , g〉| � Re
∑

f
tm�
k ḡk

=
∑
k∈I

(∣∣∣atm�k

∣∣∣+ ∣∣∣btm�k

∣∣∣) k−q

�
∑
k∈I

√∣∣∣atm�k

∣∣∣2 + ∣∣∣btm�k

∣∣∣2k−q
=
∑
k∈I

∣∣∣ f tm�k

∣∣∣ k−q,
as desired. Lastly, we use dominance of �2 by �1 together with equation (4.3) to conclude
|〈 f tm� , g〉| � c h(tm�

), ∀m�. �
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Lemma 1 characterizes the behavior of (q,h)-recurrent functions. We now develop the tool
we need to further analyze (q,h)-transient functions.

Lemma 2. Let f t be (q,h)-transient for some positive h = O
(
‖ f t‖Ḣ−q

)
. For any δ with

0 < δ < 1, there exist sets Ii = {k|Ji−1 < |k| � Ji} with J0 = −1 and a sequence of times
Ti →∞ satisfying the following.

(a) The set Ii captures a significant proportion of the Fourier energy at time Ti, so that∑
k∈Ii

∣∣∣ f Tik ∣∣∣2 k−2q � (1− δ)
∥∥ f Ti∥∥2Ḣ−q . (4.7)

(b) Enough of the Fourier energy does not return to lower frequency modes, so that∑
|k|�Ji−1

| f tk|
2 k−2q � δ h2(t) for all t � Ti. (4.8)

Proof. Base case: i = 1. Since (by definition of absolute convergence)

lim
J→∞

∑
|k|�J

∣∣ f 0k∣∣2 k−2q =
∥∥ f 0∥∥2

Ḣ−q (4.9)

there is a J1 such that∑
|k|�J1

∣∣ f 0k∣∣2 k−2q � (1− δ)
∥∥ f 0∥∥2

Ḣ−q . (4.10)

We see I1 = {k|J0 < |k| � J1} where J0 = −1 and T1 = 0 therefore trivially satisfy
equations (4.7) and (4.8).
Induction step. Suppose that we are given Ji−2, Ji−1 and Ti−1 that satisfy equations (4.7) and

(4.8). Since h = O
(
‖ f t‖Ḣ−q

)
, there is a c > 0 and a time T so that h(t) � c‖ f t‖Ḣ−q ∀t � T.

Recall that f t is (q,h)-transient and so, for any finite set I,

lim sup
t→∞

‖PI f t‖Ḣ−q

h
= 0. (4.11)

That is, given finite set I, then for any constant ε there is Tε so that∑
k∈I

| f tk|
2 k−2q � ε h2(t) for all t � Tε. (4.12)

Take I = {k s.t.|k| � Ji−1} and ε = min(δ, δ/c2). We conclude that there exists Ti with
Ti � Ti−1 + 1 and Ti � T such that equation (4.8) is satisfied. Moreover, we have∑

|k|�Ji−1

∣∣∣ f Tik ∣∣∣2 k−2q <
(
δ/c2

)
h2(Ti) � δ

∥∥ f Ti∥∥2
Ḣ−q . (4.13)

Hence, ∑
|k|>Ji−1

∣∣∣ f Tik ∣∣∣2 k−2q > (1− δ)
∥∥ f Ti∥∥2

Ḣ−q . (4.14)
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That is,

lim
J→∞

∑
Ji−1<|k|�J

∣∣∣ f Tik ∣∣∣2 k−2q = C
∥∥ f Ti∥∥2

Ḣ−q , (4.15)

where C > (1− δ). From the definition of the limit, it follows that there is a Ji large enough
so that for Ii = {k|Ji−1 < |k| < Ji} we have∑

k∈Ii

| f Tik |2 k−2q � (1− δ)
∥∥ f Ti∥∥2

Ḣ−q (4.16)

which is equation (4.7). �
Having developed all of the tools we will need, we now prove theorem 1 and, in the next

section, theorem 2.

Theorem 1. Let f t be a mean-zero function in L2(Td) with ‖ f t‖Ḣ−q > 0 for all t > 0. Then
f t is q-recurrent if and only if there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
‖ f t‖Ḣ−q

> 0.

Proof. The forward direction is a special case of lemma 1 with h(t) = ‖ f t‖Ḣ−q . We assume
f t is q-transient and show 〈 f t , g〉 = o

(
‖ f t‖Ḣ−q

)
for all g ∈ Ḣq. We already know 〈 f t , g〉 =

O
(
‖ f t‖Ḣ−q

)
for all g ∈ Ḣq, so

lim sup
t→∞

|〈 f t , g〉|
‖ f t‖Ḣ−q

< ∞, ∀g ∈ Ḣq. (4.17)

Seeking a contradiction, we suppose there exists a g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
‖ f t‖Ḣ−q

= C > 0. (4.18)

There is a sequence tn →∞ such that

|〈 f tn , g〉| � C
2
‖ f tn‖Ḣ−q , ∀n. (4.19)

We will show that equation (4.19) implies that the Fourier coefficients of g decay too slowly
for g to be in Ḣq. Since g ∈ Ḣq, we can choose δ small enough that C2 − 2

√
δ‖g‖Ḣq = C0 > 0.

Applying lemma 2 with h(t) = ‖ f t‖Ḣ−q , there exist sets Ii = {k|Ji−1 < |k| � Ji} and a
sequence of times Ti →∞ (without loss of generality, say that {Ti} is a subsequence of {tn}
above) such that we have equations (4.7) and (4.8). Equation (4.7) implies∑

|k|>Ji

∣∣∣ f Tik ∣∣∣2 k−2q � δ
∥∥ f Ti∥∥2

Ḣ−q . (4.20)

Note that 〈
f Ti , g

〉
=
∑
j�1

∑
k∈I j

f Tik ḡk

=
∑
k∈Ii

f Tik ḡk + E (4.21)

3777



Nonlinearity 34 (2021) 3762 B W Oakley et al

and we can bound the error using the Cauchy–Schwarz inequality

E =
∑
k/∈Ii

f Tik ḡk �

⎛⎝∑
k/∈Ii

∣∣∣ f Tik ∣∣∣2 k−2q

⎞⎠1/2⎛⎝∑
k/∈Ii

|gk|2 k2q
⎞⎠1/2

. (4.22)

Applying equation (4.7) of lemma 2, we have

|E| �
√
δ
∥∥ f Ti∥∥

Ḣ−q‖g‖Ḣq . (4.23)

and therefore

∣∣〈 f Ti , g〉∣∣ �
∣∣∣∣∣∣
∑
k∈Ii

f Tik ḡk

∣∣∣∣∣∣+
√
δ
∥∥ f Ti∥∥

Ḣ−q‖g‖Ḣq . (4.24)

Putting together equations (4.19) and (4.24), we have

(
C
2
−
√
δ‖g‖Ḣq

)∥∥ f Ti∥∥
Ḣ−q �

∣∣∣∣∣∣
∑
k∈Ii

f Tik ḡk

∣∣∣∣∣∣ . (4.25)

Since g ∈ Ḣq, we can choose δ small enough that

C0 :=

(
C
2
−
√
δ‖g‖Ḣq

)
> 0. (4.26)

Applying Cauchy–Schwarz to the right-hand side of equation (4.25) we have

C0

∥∥ f Ti∥∥
Ḣ−q �

⎛⎝∑
k∈Ii

∣∣∣ f Tik ∣∣∣2 k−2q

⎞⎠1/2⎛⎝∑
k∈Ii

|gk|2 k2q
⎞⎠1/2

(4.27)

�
∥∥ f Ti∥∥

Ḣ−q

⎛⎝∑
k∈Ii

|gk|2 k2q
⎞⎠1/2

. (4.28)

Therefore ∑
k∈Ii

|gk|2 k2q � C2
0, ∀i. (4.29)

This shows that the coefficients of g are large on sets Ii and we have

‖g‖2Ḣq =
∑
i

∑
k∈Ii

|gk|2 k2q �
∑
i

C2
0 = ∞. (4.30)

We conclude that g is not in Ḣq—a contradiction. �
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5. Proof of theorem 2

Theorem 2. Let f t be a mean-zero function in L2(Td) with ‖ f t‖Ḣ−q > 0 for all t > 0. For
any positive function h(t) such that h(t) = o

(
‖ f t‖Ḣ−q

)
, there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈 f t , g〉|
h(t)

> 0.

Proof of theorem 2. If f t is (q,h)-recurrent, then we are done by lemma 1, so say f t is
(q,h)-transient. Take some δ < 1/3 and apply lemma 2 to construct sets {Ii}∞i=1 and a sequence
{Ti}∞i=1. Let

{
Ti�
}∞
�=1 be a subsequence of {Ti}

∞
i=1 satisfying

∑
�>L

(
h(Ti�)∥∥ f Ti�∥∥

Ḣ−q

)2

� δ2

(
h(TiL)∥∥ f TiL∥∥

Ḣ−q

)2

. (5.1)

and

∑(
h(Ti�)∥∥ f Ti�∥∥

Ḣ−q

)2

� δ. (5.2)

This can be done since h(t) = o(‖ f t‖Ḣ−q). Let g be the function with Fourier coefficients given
by

gk =

⎧⎨⎩ f
Ti�
k k−2q

∥∥ f Ti�∥∥−2

Ḣ−qh(Ti�) k ∈ Ii� ;

0 otherwise.
(5.3)

Equation (5.2) allows us to conclude that g ∈ Ḣq:

‖g‖2Ḣq =
∑

|gk|2 k2q

=
∑
i�

∑
k∈Ii�

∣∣∣ f Ti�k ∣∣∣2 k−4q
∥∥ f Ti�∥∥−4

Ḣ−qh
2(Ti�) k

2q

=
∑
i�

∥∥ f Ti�∥∥−4

Ḣ−qh
2(Ti�)

⎛⎝∑
k∈Ii�

∣∣∣ f Ti�k ∣∣∣2 k−2q

⎞⎠
�
∑
i�

∥∥ f Ti�∥∥−2

Ḣ−qh
2(Ti�).

Wewill now finish the proof by showing
∣∣〈 f Ti� , g〉∣∣ � (1− 3δ) h(Ti�).We beginwith some

notation. Split the following sum into two parts:

〈
f Ti� , g

〉
=
∑
j�

∑
k∈I j�

f
Ti�
k f

T j�
k k−2q

∥∥ f T j�∥∥−2

Ḣ−qh(Tj�)

= STi� + ETi� ,
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where STi� is the sum when j� = i�:

STi� =
∑
j�=i�

∑
k∈Ii�

f
Ti�
k f

T j�
k k−2q

∥∥ f T j�∥∥−2

Ḣ−qh(Tj�)

=
∑
k∈Ii�

∣∣∣ f Ti�k ∣∣∣2 k−2q
∥∥ f Ti�∥∥−2

Ḣ−q h(Ti�),

and ETi� is the sum over j� �= i�:

ETi� =
∑
j� �=i�

∑
k∈I j�

f
Ti�
k f

T j�
k k−2q

∥∥ f T j�∥∥−2

Ḣ−qh(Tj�). (5.4)

The idea is that gk is constructed to agree well with f
Ti�
k when k ∈ Ii� . We will show that

STi� dominates the error ETi� . Consider j� < i� and j� > i� separately in equation (5.4); taking
absolute value, we have∣∣ETi� ∣∣ � ∑

j� �=i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣ ∣∣∣ f T j�k

∣∣∣ k−2q
∥∥ f T j�∥∥−2

Ḣ−q h(Tj�) (5.5)

and let E
Ti�
1 be the sum over j� < i�:

E
Ti�
1 :=

∑
j�<i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣ ∣∣∣ f T j�k

∣∣∣ k−2q
∥∥ f T j�∥∥−2

Ḣ−q h(Tj�). (5.6)

Similarly define E
Ti�
2 to be the sum over j� > i�:

E
Ti�
2 :=

∑
j�>i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣ ∣∣∣ f T j�k

∣∣∣ k−2q
∥∥ f T j�∥∥−2

Ḣ−q h(Tj�). (5.7)

We now bound E
Ti�
1 using the Cauchy–Schwarz inequality:

E
Ti�
1 �

⎛⎝∑
j�<i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣2k−2q

⎞⎠1/2⎛⎝∑
j�<i�

∑
k∈I j�

∣∣∣ f T j�k

∣∣∣2k−2q
∥∥ f T j�∥∥−4

Ḣ−q h
2(Tj�)

⎞⎠1/2

�

⎛⎝∑
j�<i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣2k−2q

⎞⎠1/2⎛⎝∑
j�<i�

∥∥ f T j�∥∥−2

Ḣ−q h
2(Tj�)

⎞⎠1/2

.

We use equation (4.8) from lemma 2 to bound the first factor and equation (5.2) to bound the
second factor:

E
Ti�
1 �

(
δh2(Ti�)

)1/2
(δ)1/2 = δ h(Ti�). (5.8)

We similarly bound E
Ti�
2 :
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E
Ti�
2 �

⎛⎝∑
j�>i�

∑
k∈I j�

∣∣∣ f Ti�k ∣∣∣2k−2q

⎞⎠1/2⎛⎝∑
j�>i�

∑
k∈I j�

∣∣∣ f T j�k

∣∣∣2k−2q
∥∥ f T j�∥∥−4

Ḣ−q h
2(Tj�)

⎞⎠1/2

�
∥∥ f Ti�∥∥

Ḣ−q

⎛⎝∑
j�>i�

∥∥ f T j�∥∥−2

Ḣ−q h
2(Tj�)

⎞⎠1/2

.

Using equation (5.1), we find

E
Ti�
2 �

∥∥ f Ti�∥∥
Ḣ−q

⎛⎝δ2

(
h(Ti�)∥∥ f Ti�∥∥

Ḣ−q

)2
⎞⎠1/2

= δ h(Ti�) (5.9)

and therefore 〈
f Ti� , g

〉
= STi� + ETi� � STi� − E

Ti�
1 − E

Ti�
2 � STi� − δ h(Ti�)− δ h(Ti�).

Again using equation (4.7) from lemma 2 that the set Ii� captures a large proportion of the
Sobolev norm, we conclude〈

f Ti� , g
〉
� (1− δ)

∥∥ f Ti�∥∥2
Ḣ−q
∥∥ f Ti�∥∥−2

Ḣ−q h(Ti�)− 2δ h(Ti�)

= (1− 3δ) h(Ti�).

�

Acknowledgments

The authors thank Gautam Iyer for helpful discussions and Georg Gottwald for asking
the question that prompted this research. This work was supported in part by NSF Award
DMS-1813003.

ORCID iDs

Jean-Luc Thiffeault https://orcid.org/0000-0001-7724-7966

References

[1] Bedrossian J and He S 2020 Inviscid damping and enhanced dissipation of the boundary layer for 2D
Navier–Stokes linearized around Couette flow in a channel Commun. Math. Phys. 379 177–226

[2] Bedrossian J, Blumenthal A and Punshon-Smith S 2019 Almost-sure exponential mixing of passive
scalars by the stochastic Navier–Stokes equations (arXiv:1905.03869)

[3] Bedrossian J, Blumenthal A and Punshon-Smith S 2019 The Batchelor spectrum of passive scalar
turbulence in stochastic fluid mechanics (arXiv:1911.11014)

[4] Bedrossian J, Blumenthal A and Punshon-Smith S 2021 Almost-sure enhanced dissipation and
uniform-in-diffusivity exponential mixing for advection–diffusion by stochastic Navier–Stokes
Probab. Theory and Related Fields 179 777–834

[5] Chernov N I 1998 Markov approximations and decay of correlations for Anosov flows Ann. Math.
147 269–324
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[24] Mathew G, Mezić I and Petzold L 2003 A multiscale measure for mixing and its applications Proc.
Conf. on Decision and Control (Piscataway, NJ: IEEE)

[25] Mathew G, Mezić I and Petzold L 2005 A multiscale measure for mixing Phys. D 211 23–46
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