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A MONOTONE, SECOND ORDER ACCURATE SCHEME FOR
CURVATURE MOTION\ast 

SELIM ESEDO\=GLU\dagger AND JIAJIA GUO\ddagger 

Abstract. We present a second order accurate in time numerical scheme for curve shortening
flow in the plane that is unconditionally monotone. It is a variant of threshold dynamics, a class
of algorithms in the spirit of the level set method that represent interfaces implicitly. The novelty
is monotonicity: it is possible to preserve the comparison principle of the exact evolution while
achieving second order in time consistency. As a consequence of monotonicity, convergence to the
viscosity solution of curve shortening is ensured by existing theory.
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1. Introduction. In this short note, we report a second order accurate threshold
dynamics algorithm for simulating curvature motion (curve shortening) in the plane
that is monotone: It respects the comparison principle of the exact evolution. Existing
theory [2, 13] then immediately implies that the approximate evolution generated
by the scheme converges to the viscosity solution of mean curvature motion under
appropriate conditions.

The finding is surprising, as previous studies, e.g., [20, 11, 25], that explored the
idea of designing high order accurate versions of threshold dynamics speculated that
monotonicity may need to be sacrificed. This note shows that, at least in two dimen-
sions, this need not be so. To the best of our knowledge, the algorithm presented is
the only one of its kind (level-set style numerical algorithm capable of handling topo-
logical changes implicitly) that is rigorously shown to be unconditionally monotone,
and consistent to second order, and thereby convergent. All the advantages of the
original scheme are retained, as the version proposed here differs only in its choice of
convolution kernel, replacing the standard choice of Gaussian with a carefully chosen
linear combination of Gaussians. Hence, at least in two dimensions, there is a very
special choice of a convolution kernel.

2. Previous work. There are several relevant contributions to high order in
time versions of threshold dynamics in existing literature. The first contribution is
from the Ph.D. thesis of Ruuth [20]. There, a second order accurate, multistep scheme
inspired by Richardson extrapolation is proposed that is numerically demonstrated to
achieve second order accuracy in time in two and three dimensional examples, at least
while the evolving interface remains smooth. However, the stability of that scheme
(whether by maximum principles or energy methods) appears hard to study, and there
are no results to that effect (or even a careful consistency calculation) available.
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2436 SELIM ESEDO\=GLU AND JIAJIA GUO

The topic of high order accurate schemes for curvature motion also comes up
naturally as a byproduct in studies focused on adapting threshold dynamics to high
order geometric motions such as Willmore flow [12, 8], where the idea of using linear
combinations of Gaussians as the convolution kernel to cancel out undesirable terms
in consistency calculations plays the same prominent role. In [11], designing a second
order accurate in time version of threshold dynamics for curvature motion in the
plane by a judicious choice of convolution kernel is floated, but the whole approach
is based on the incorrect assumption that the curvature of the exact solution can be
taken to remain constant during a single time step: The resulting scheme propagates
the interface with normal speed given by a second order accurate estimate of the
curvature of the exact solution at the end of the time step; this is different from and
not sufficient for matching the location of the exact interface at the end of the time
step up to a third order local truncation error. Consequently, the proposed scheme is
still only first order accurate. Moreover, it is stated that the resulting kernel would
not be positive everywhere, and thus the proposed scheme would violate monotonicity.

More recently, second order versions of threshold dynamics were proposed in [25].
One is multistep, similar to that of Ruuth in [20], and therefore not likely to be mono-
tone. However, unlike in [20], it comes with a careful consistency calculation, which
verifies second order consistency (in addition to numerical evidence) in two and three
dimensions. The other proposed scheme of [25] is multistage, and therefore also un-
likely to be monotone. It is, however, second order consistent in two dimensions, and,
most notably, satisfies an unconditional energy stability property in any dimension:
it dissipates the Lyapunov functional for threshold dynamics discovered in [7]. In the
broader context of level-set type methods that represent interfaces implicitly, the early
contribution [24] proposes second order, energy (total variation) diminishing schemes
for the level set formulation of mean curvature motion, but reports difficulties with
(slow or lack of convergence of iterative solvers on) the nonlinear algebraic systems
that need to be solved at every time step.

It is also worth recalling that using different (namely, in this case, nonradially
symmetric) kernels in threshold dynamics comes up in its extensions to anisotropic
curvature flows [22, 3, 5, 6]. In particular, barrier type theorems [5, 6] show that any
threshold dynamics scheme that is at all consistent (never mind second order) with
certain anisotropic curvature flows in three dimensions cannot possibly be monotone.

3. The standard algorithm. Recall that the threshold dynamics algorithm of
Merriman, Bence, and Osher [19, 18] generates a discrete in time approximation to
the motion by mean curvature of an interface \partial \Sigma 0 given as the boundary of an initial
set \Sigma 0 \subset Rd by alternating the two steps of convolution and thresholding:

Algorithm:(MBO'92). Given a time step size t > 0, alternate the
following steps:

1. Convolution:

(3.1) \psi k = Kt \ast 1\Sigma k.

2. Thresholding:

(3.2) \Sigma k+1 =
\bigl\{ 
x : \psi k(x) \geq \lambda 

\bigr\} 
.

In (3.1), Kt is defined as

Kt(x) =
1

t
d
2

K

\biggl( 
x\surd 
t

\biggr) D
ow
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CURVATURE MOTION 2437

for a smooth convolution kernel K : Rd \rightarrow R of total mass 2\lambda > 0 and sufficiently
rapid decay at | x| \rightarrow \infty . The kernelK was chosen in [19] originally to be the Gaussian:

(3.3) G(x) =
1

(4\pi )
d
2

exp

\biggl( 
 - | x| 2

4

\biggr) 
,

but choosing it something else was also raised as a possibility in the same work. With
choice (3.3), convergence of scheme (3.1), (3.2) had been established in a number of
previous studies, including [9, 1, 13, 23]. There are even convergence results [15, 16]
in the multiphase setting.

In this note, we restrict our attention to radially symmetric convolution kernels
of the form

K(x) =
N\sum 
j=1

cjG\alpha j (x)

and ask whether the coefficients \alpha j and cj can be chosen so that
1. K(x) \geq 0, and
2. scheme (3.1), (3.2) is second order consistent.

We are surprised to find out that the answer is yes when d = 2. Recall that K(x) \geq 0
implies unconditional monotonicity of the scheme

\Omega 0 \subset \Sigma 0 =\Rightarrow \Omega k \subset \Sigma k for all k = 1, 2, 3, . . .

regardless of the time step size k > 0. Preserving this fundamental qualitative feature
of the exact evolution is tremendously helpful in establishing stability and convergence
of numerical schemes.

4. A special kernel in dimension \bfitd = 2. In this section, we carefully exhibit
a positive convolution kernel that endows scheme (3.1), (3.2) with second order con-
sistency and, thanks to positivity, monotonicity. Assume that the initial interface is
given as the graph of a smooth function g : R \rightarrow R with g(0) = 0 and g\prime (0) = 0, and
the initial set is \Sigma 0 = \{ (x, y) : y \geq g(x)\} . The exact solution y = \phi (x, t) of curvature
motion solves the PDE

(4.1)

\left\{   \phi t =
\phi xx

1 + \phi 2x
,

\phi (x, 0) = g(x).

Taylor expanding \phi (0, t) in t at t = 0 and converting all time derivatives to spatial
ones via the equation, one gets

(4.2) \phi (0, t) = t g\prime \prime (0) + t2
\biggl( 
1

2
g(iv)(0) - 

\bigl( 
g\prime \prime (0)

\bigr) 3
(0)

\biggr) 
+O(t3)

as t \rightarrow 0+, where g(iv) is the fourth derivative of the function g(x). We will demand
that one step of the threshold dynamics scheme gives an interface that crosses the
y-axis at \phi (0, t) up to O(t3) terms.

Taylor expansion for the interface after one step of threshold dynamics using a
Gaussian kernel had been obtained in multiple previous studies, e.g., [12, 17, 20, 21].
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2438 SELIM ESEDO\=GLU AND JIAJIA GUO

In particular, formula (4.28) in [20] gives the following expression for the convolution
restricted to the y-axis (the initial normal direction):

Gt \ast 1\Sigma (0, y) =
1

2
 - 1

2
\surd 
\pi 

y\surd 
t
+

1

24
\surd 
\pi 

y3

t3/2

+
g\prime \prime (0)

2
\surd 
\pi 

\surd 
t - g\prime \prime (0)

8
\surd 
\pi 

y2\surd 
t

+
g(iv)(0)

4
\surd 
\pi 

t3/2 +
3
\bigl( 
g\prime \prime (0)

\bigr) 2
8
\surd 
\pi 

\surd 
ty

 - 
5
\bigl( 
g\prime \prime (0)

\bigr) 3
8
\surd 
\pi 

t3/2 +O(t5/2).

(4.3)

The first step in those calculations is to expand the convolution step (3.1) of the
algorithm along the y-axis, which is, of course, linear in the kernel K. Define

(4.4) \theta (p) =
N\sum 
j=1

\alpha 
p
2
j cj .

Using (4.3), we get

Kt \ast 1\Sigma (0, y) =
1

2
\theta (0) - 1

2
\surd 
\pi 

y\surd 
t
\theta ( - 1) +

1

24
\surd 
\pi 

y3

t3/2
\theta ( - 3)

+
g\prime \prime (0)

2
\surd 
\pi 

\surd 
t\theta (1) - g\prime \prime (0)

8
\surd 
\pi 

y2\surd 
t
\theta ( - 1)

+
g(iv)(0)

4
\surd 
\pi 

t3/2\theta (3) +
3
\bigl( 
g\prime \prime (0)

\bigr) 2
8
\surd 
\pi 

\surd 
ty\theta (1)

 - 
5
\bigl( 
g\prime \prime (0)

\bigr) 3
8
\surd 
\pi 

t3/2\theta (3) +O(t5/2)

(4.5)

under the assumption that y = O(t) as t\rightarrow 0. The next step is to obtain the expansion
for the interface after the thresholding step (3.2); at that point, the dependence of
the scheme on the convolution kernel K is no longer linear. We substitute the ansatz
y = a1t+ a2t

2 +O(t3) into (4.5) to get

(4.6) Kt \ast 1\Sigma (0, y) = A0 +A1

\surd 
t+A3t

3/2 +O(t5/2),

where

(4.7) A0 =
1

2
\theta (0),

and

(4.8) A1 =
1

2
\surd 
\pi 

\Bigl( 
\theta (1)g\prime \prime (0) - a1\theta ( - 1)

\Bigr) 
,

and

A3 =
1

8
\surd 
\pi 
\theta (3)

\Bigl( 
2g(iv)(0) - 5

\bigl( 
g\prime \prime (0)

\bigr) 3\Bigr) 
+

3
\bigl( 
g\prime \prime (0)

\bigr) 2
8
\surd 
\pi 

\theta (1)a1

 - g
\prime \prime (0)

8
\surd 
\pi 
\theta ( - 1)a21 +

1

24
\surd 
\pi 
\theta ( - 3)a31  - 

1

2
\surd 
\pi 
\theta ( - 1)a2.

(4.9)
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CURVATURE MOTION 2439

It turns out that taking N = 3 is sufficient for our purposes in this section. Thus, for
the rest of this section, we take our kernel K to be of the form

(4.10) K = G+ c1G\alpha 1
+ c2G\alpha 2

.

From (4.7), we see that the convolution level will be given by

(4.11) \lambda =
1 + c1 + c2

2
.

Setting (4.6) equal to (4.11), we require A1 = 0 and A2 = 0. At the O(
\surd 
t) level,

solving A1 = 0 for a1, we find

(4.12) a1 =
\theta (1)

\theta ( - 1)
g\prime \prime (0).

Having determined a1, A3 can now be expressed as

A3 =
\theta (3)

4
\surd 
\pi 
g(iv)(0) +

\theta 3(1)\theta ( - 3) + 6\theta 2(1)\theta 2( - 1) - 15\theta 3( - 1)\theta (3)

24
\surd 
\pi \theta 3( - 1)

\bigl( 
g\prime \prime (0)

\bigr) 3
 - \theta ( - 1)

2
\surd 
\pi 
a2.

(4.13)

Setting A3 = 0 and solving for a2, we find

(4.14) a2 =
\theta (3)

2\theta ( - 1)
g(iv)(0) +

\theta 3(1)\theta ( - 3) + 6\theta 2(1)\theta 2( - 1) - 15\theta 3( - 1)\theta (3)

12\theta 4( - 1)

\bigl( 
g\prime \prime (0)

\bigr) 3
.

We can now compare (4.12) and (4.14) with (4.2). To match the two expansions for
some effective choice of time step size in (3.1) and (3.2), we need

(4.15)
\theta 2(1)

\theta 2( - 1)
=

\theta (3)

\theta ( - 1)

and

(4.16)
\theta (3)

\theta ( - 1)
=  - \theta 

3(1)\theta ( - 3) + 6\theta 2(1)\theta 2( - 1) - 15\theta 3( - 1)\theta (3)

12\theta 4( - 1)

along with the proviso \theta ( - 1) \not = 0 that we will verify at the end. Taking \alpha 1 = 4 and
\alpha 2 = 1/4, (4.15) becomes

(4.17) 72c1 + 18c2 + 225c1c2 = 0,

which gives

(4.18) c2 =  - 8c1
25c1 + 2

.

Substituting into (4.16), we get

(4.19)
(10c1 + 1)2

\bigl( 
1000c31  - 2175c21 + 210c1 + 64

\bigr) 
12(5c1 + 2)5

= 0.
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2440 SELIM ESEDO\=GLU AND JIAJIA GUO

The polynomial

(4.20) p(x) = 1000c31  - 2175c21 + 210c1 + 64

satisfies p(1/5) = 27 and p(1/4) =  - 61/16, and hence has a root in ( 15 ,
1
4 ), at which

the denominator of (4.19) does not vanish. Taking this root as the value of c1, i.e.,

(4.21) c1 \approx 0.2444098,

(4.19) is then satisfied. Substituting into (4.18) determines c2:

(4.22) c2 \approx  - 0.2410874.

We note that \theta ( - 1) = 1 + 1
2c1  - 2c2 \not = 0, as hoped for.

Returning to (4.12), we see that when the convolution kernel F in (3.1) is given
by (4.10) with \alpha 1 = 4, \alpha 2 = 1

4 , and the two coefficients c1, c2 are given by (4.21) and
(4.22), and scheme (3.1), (3.2) is second order accurate with the (rescaled) effective
time step size

(4.23) \tau =
\theta (1)

\theta ( - 1)
t =

1 + 2c1 +
1
2c2

1 + 1
2c1 + 2c2

t \approx 2.137831t.

Figure 1 shows a plot of the radial profile of the kernel. It appears to be positive; we
now show that it indeed is.

Let \xi = exp( - 1
16r

2) so that \xi \in (0, 1]. Then,

K =
1

\pi 
\xi q(\xi ), where q(\xi ) = c2\xi 

15 +
1

4
\xi 3 +

1

16
c1.

We have

q(\xi ) = \xi 3
\biggl( 
1

4
+ c2\xi 

12

\biggr) 
+

1

16
c1

\geq \xi 3
\biggl( 
1

4
+ c2

\biggr) 
+

1

16
c1

\geq 0

(4.24)

since c1 \in ( 15 ,
1
4 ), and so c2 \in ( - 8

33 , - 
8
35 ). We have established the following claim.

Claim 4.1. Let c1 be the root of the polynomial (4.20) in ( 15 ,
1
4 ). Let c2 be given

in terms of c1 by (4.18). Let K be the convolution kernel

K = G+ c2G4 + c3G 1
4
.

Then, scheme (3.1), (3.2) is monotone and second order consistent with curvature
motion in the plane. The discrete in time evolutions generated by the scheme (ex-
tended from sets to functions in the natural way of, e.g., [13]) converge uniformly to
the unique viscosity solution [10, 4] of curvature motion on any finite time interval,
starting from bounded, uniformly continuous initial data.

Proof. The claim is an immediate consequence of positivity, smoothness, and
decay properties of the kernel, the consistency calculation above, and the theory of
[2, 13]. In fact, our kernel satisfies the conditions of [13].
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CURVATURE MOTION 2441

Fig. 1. Radial profile of the special convolution kernel K that endows the standard threshold
dynamics algorithm of Merriman, Bence, and Osher with second order accuracy in two dimensions,
as well as with monotonicity.

5. Numerical demonstration. We demonstrate that second order accuracy (in
time) is indeed achieved by scheme (3.1), (3.2) using the convolution kernel (4.10).
To that end, and to minimize any potential issues with insufficient spatial resolution,
we implement the algorithm 1. in the radial case to test on a shrinking circle, and 2.
in case the interface is given as the periodic graph of a function.

For the shrinking circle test, we merely test the local truncation error by taking
a single time step (of various sizes) with the algorithm, starting from initial radii of
r0 = 1, 2, and 3. In this case, the exact solution of curvature motion is given by\sqrt{} 
r20  - 2t. The convolution in the algorithm is calculated very accurately in polar

coordinates. The expected O(t3) rate of decay of the local error is observed, as shown
in Figure 2.

To test on interfaces given as graphs of functions, we measure the global error
at final time T = 1/40, starting from periodic initial conditions y = f0(x), where
f0(x) =

1
2 sin(2\pi x) and f0(x) = exp(cos(\pi x)). The benchmark solution of the PDE

(4.1) is obtained by an extremely fine finite differences discretization (forward Euler
time steps, and centered differences in space). The algorithm is implemented by
discretizing the x-axis, and for each discrete x-value, finding the value of y for which
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10-3 10-2 10-1

dt

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Lo
ca

l T
ru

nc
at

io
n 

Er
ro

r

LTE Data: r0 = 1
Fitting: log(y) = 3.1831*log(x) + (2.9695)
LTE Data: r0 = 2
Fitting: log(y) = 3.0415*log(x) + (-1.3109)
LTE Data: r0 = 3
Fitting: log(y) = 3.0168*log(x) + (-3.4791)

Fig. 2. Local truncation error for initial condition given by circles of radii r0 = 1, 2, 3.

the convolution integral

Gt \ast 1\Sigma (x, y) =

\int +\infty 

 - \infty 
Gt(x - \=x)

\int f0(\=x)

 - \infty 

1\surd 
4\pi \delta t

e - 
(y - \=y)2

4\delta t d\=yd\=x

=
1

2
+

1

2

\int +\infty 

 - \infty 
Gt(x - \=x) erf

\biggl( 
f(\=x) - y

2
\surd 
t

\biggr) 
d\=x

(5.1)

equals the thresholding value \lambda , where the interface at the current time step is repre-
sented by y = f(x). The convolution integral (5.1) is estimated numerically, and its
integrand is truncated once it falls below a tolerance. The expected O(t2) scaling of
the global error can be seen in Tables 1 and 2 and Figure 3.

Table 1
Error and order for f0(x) =

1
2
sin(2\pi x).

Number of time steps 32 64 128 256 512

L2 error 3.76e-04 1.04e-04 2.73e-05 6.93e-06 1.70e-06
Order - 1.9 1.9 2.0 2.0

6. Dimension \bfitd = 3. In this section, we show that the simple kernel construc-
tion of section 4 as a linear combination of Gaussians will not work in higher dimen-
sions. This was mentioned in [25] in passing; here we give a careful explanation. For
d = 3, assume that the initial interface \partial \Sigma 0 is given as the graph of a smooth function
g : R2 \rightarrow R with g(0, 0) = 0 and \nabla g(0, 0) = 0 so that \Sigma 0 = \{ (x, y, z) : z \geq g(x, y)\} .
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CURVATURE MOTION 2443

Table 2
Error and order for f0(x) = exp(cos(\pi x)).

Number of time steps 32 64 128 256 512

L2 error 7.92e-04 2.16e-04 5.67e-05 1.45e-05 3.64e-06
Order - 1.9 1.9 2.0 2.0

10-4 10-3
10-6

10-5

10-4

10-3

10-4 10-3
10-6

10-5

10-4

10-3

dt

G
lo

ba
l E

rro
r

Fig. 3. Global error for initial condition given f0 = 1
2
sin(2\pi x) and f0 = exp (cos(\pi x)).

The exact solution of motion by mean curvature is described at least for short time
by the PDE

(6.1)

\left\{     \phi t =
(1 + \phi 2y)\phi xx + (1 + \phi 2x)\phi yy  - 2\phi x\phi y\phi x,y

1 + \phi 2x + \phi 2y
,

\phi (x, y, 0) = g(x, y).

As in two dimensions, we can obtain a Taylor expansion for the solution at time t > 0:

\phi (0, 0, t) = tH(0, 0) +
1

2
t2
\bigl\{ 
\Delta 2g(0, 0) - 2H3(0, 0) + 6H(0, 0)\kappa (0, 0)

\bigr\} 
+O(t3)

= tH(0, 0) +
1

2
t2
\bigl\{ 
\Delta SH(0, 0) +H3(0, 0) - 2H(0, 0)\kappa (0, 0)

\bigr\} 
+O(t3),

(6.2)

where

H(0, 0) = \Delta g(0, 0) = gxx(0, 0) + gyy(0, 0),

\kappa (0, 0) = gxx(0, 0)gyy(0, 0) - g2xy(0, 0),

\Delta SH(0, 0) = \Delta 2g(0, 0) - 3H3(0, 0) + 8H(0, 0)\kappa (0, 0).

(6.3)
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Taylor expansion for the convolution step (3.1) using the standard Gaussian kernel has
also been obtained in higher dimensions d \geq 3 in multiple previous studies; combining,
for instance, formula (3.3) in [25] for d = 3 with (6.3), we get

Gt \ast 1\Sigma 0(0, 0, z) =
1

2
 - 1

2
\surd 
\pi 

z\surd 
t
+

1

24
\surd 
\pi 

z3

t3/2
+
H(0, 0)

2
\surd 
\pi 

\surd 
t

+
\Delta 2g(0, 0)

4
\surd 
\pi 

t3/2  - 1

8
\surd 
\pi 

z2\surd 
t
H(0, 0)

+
1

2
\surd 
\pi 
z
\surd 
t

\biggl( 
3

4
H2(0, 0) - \kappa (0, 0)

\biggr) 
 - 1

2
\surd 
\pi 
t3/2

\biggl( 
5

4
H3(0, 0) - 3H(0, 0)\kappa (0, 0)

\biggr) 
+O(t5/2).

(6.4)

Then the Taylor expansion for the convolution step (3.1) of scheme (3.1), (3.2) using
a linear combination of Gaussian kernels is now given by

Kt \ast 1\Sigma 0(0, 0, z) =
1

2
\theta (0) - 1

2
\surd 
\pi 

z\surd 
t
\theta ( - 1) +

1

24
\surd 
\pi 

z3

t3/2
\theta ( - 3) +

H(0, 0)

2
\surd 
\pi 

\surd 
t\theta (1)

+
\Delta 2g(0, 0)

4
\surd 
\pi 

t3/2\theta (3) - 1

8
\surd 
\pi 

z2\surd 
t
H(0, 0)\theta ( - 1)

+
1

2
\surd 
\pi 
z
\surd 
t

\biggl( 
3

4
H2(0, 0) - \kappa (0, 0)

\biggr) 
\theta (1)

 - 1

2
\surd 
\pi 
t3/2

\biggl( 
5

4
H3(0, 0) - 3H(0, 0)\kappa (0, 0)

\biggr) 
\theta (3) +O(t5/2).

(6.5)

Substituting the ansatz z = a1t+ a2t
2 +O(t3), we get

(6.6) Kt \ast 1\Sigma 0(0, 0, z) = A0 +A1

\surd 
t+A3t

3/2 +O(t5/2),

where

(6.7) A0 =
\theta (0)

2
,

and

(6.8) A1 =
1

2\pi 

\Bigl( 
\theta (1)H(0, 0) - a1\theta ( - 1)

\Bigr) 
,

and

A3 = - \theta ( - 1)

2
\surd 
\pi 
a2 +

\theta ( - 3)

24
\surd 
\pi 
a31 +

\theta (3)

4
\surd 
\pi 
\Delta 2g(0, 0) - \theta ( - 1)

8
\surd 
\pi 
a21H(0, 0)

+
\theta (1)

2
\surd 
\pi 
a1

\biggl( 
3

4
H2(0, 0) - \kappa (0, 0)

\biggr) 
 - \theta (3)

2
\surd 
\pi 

\biggl( 
5

4
H3(0, 0) - 3H(0, 0)\kappa (0, 0)

\biggr) 
.

(6.9)

Choosing the thresholding level as

(6.10) \lambda =
\theta (0)

2
=

1

2

N\sum 
j=1

cj ,
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we set A1 = 0 and solve for a1 to obtain

(6.11) a1 =
\theta (1)

\theta ( - 1)
H(0, 0).

Having determined a1, we substitute the expression for it into A3 and solve for a2 to
obtain

a2 =
\theta (3)

2\theta ( - 1)
\Delta 2g(0, 0)

+
\theta 3(1)\theta ( - 3) + 6\theta 2(1)\theta 2( - 1) - 15\theta (3)\theta 3( - 1)

12\theta 4( - 1)
H3(0, 0)

 - \theta 2(1) - 3\theta (3)\theta ( - 1)

\theta 2( - 1)
H(0, 0)\kappa (0, 0).

(6.12)

Thus, in summary, the location of the interface along the z-axis after one time step
with scheme (3.1), (3.2) is given by

(6.13) z = tB1H(0, 0) + t2
\bigl\{ 
B2\Delta 

2g(0, 0) +B3H
3(0, 0) +B4H(0, 0)\kappa (0, 0)

\bigr\} 
,

where

B1 =
\theta (1)

\theta ( - 1)
,

B2 =
\theta (3)

2\theta ( - 1)
,

B3 = +
\theta 3(1)\theta ( - 3) + 6\theta 2(1)\theta 2( - 1) - 15\theta (3)\theta 3( - 1)

12\theta 4( - 1)
, and

B4 =  - \theta 
2(1) - 3\theta (3)\theta ( - 1)

\theta 2( - 1)
.

(6.14)

To match the exact expansion (6.2) for some possibly rescaled effective time step size,
we need, in particular,

(6.15) 6B2 = B4,

which, under the proviso that \theta ( - 1) \not = 0, implies B1 = 0. That precludes matching
(6.2) up to O(t3) terms. Hence, second order consistency with motion by mean curva-
ture cannot be obtained using any linear combination of Gaussians as the convolution
kernel in dimensions d \geq 3, even at the expense of violating the comparison prin-
ciple (i.e., allowing the kernel to become negative). In particular, the special linear
combination of Gaussians exhibited in section 4 that attains second order accuracy
on curves in R2 degrades to first order accuracy for a general surface in R3. The
leading order error term entails the product H(0, 0)\kappa (0, 0) of the mean and Gaussian
curvatures of the surface.

7. Conclusion. We have exhibited a second order accurate in time scheme for
curvature motion in the plane that is monotone: It preserves the comparison principle
satisfied by the exact evolution it approximates. The scheme is a variant of the
threshold dynamics algorithm of Merriman, Bence, and Osher. In particular, we
have shown that there is a very special convolution kernel---a carefully chosen linear
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combination of Gaussians---to use in that algorithm that endows the scheme with both
second order accuracy in time and monotonicity. Numerical experiments presented
bear out the advertised order of accuracy. We have also shown that extending our
work to three dimensions and higher will require a convolution kernel that cannot be
as simple as a linear combination of Gaussians. Some immediate, intriguing directions
for further study include the following:

\bullet Is there a more elaborate kernel construction that would result in a monotone,
second order accurate algorithm of the form (3.1), (3.2) in three dimensions
and higher?

\bullet The two dimensional special convolution kernel identified in section 4 is posi-
tive (which is what makes the resulting algorithm monotone), but its Fourier
transform isn't. This means the resulting scheme is not guaranteed to dissi-
pate the Lyapunov functional identified in [7]. Is there another kernel that
results in second order accuracy in time, and that is positive in both physical
and Fourier domains, so that both the comparison principle and energy based
notions of stability are guaranteed?

\bullet We already know that the scheme is convergent to the viscosity solution
of curvature motion, thanks to consistency and monotonicity. Given that
consistency holds at second order, can the rate of convergence be rigorously
shown to be second order in time, as in [14], which establishes first order
convergence for the original algorithm?

\bullet Are there related geometric motions for which a similar thresholding scheme
can be found that is monotone and second order?
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