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Recent direct numerical simulations (DNS) and
computations of exact steady solutions suggest that
the heat transport in Rayleigh-Bénard convection
(RBC) exhibits the classical 1/3 scaling as the
Rayleigh number Ra — oo with Prandtl number unity,
consistent with Malkus—-Howard’s marginally stable
boundary layer theory. Here, we construct conditional
upper and lower bounds for heat transport in two-
dimensional RBC subject to a physically motivated
marginal linear-stability constraint. The upper
estimate is derived using the Constantin-Doering—
Hopf (CDH) variational framework for RBC with
stress-free boundary conditions, while the lower
estimate is developed for both stress-free and no-slip
boundary conditions. The resulting optimization
problems are solved numerically using a time-
stepping algorithm. Our results indicate that the
upper heat-flux estimate follows the same 5/12
scaling as the rigorous CDH upper bound for the two-
dimensional stress-free case, indicating that the
linear-stability ~constraint fails to modify the
boundary-layer thickness of the mean tempe-
rature profile. By contrast, the lower estimate
successfully captures the 1/3 scaling for both
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the stress-free and no-slip cases. These estimates are tested using marginally-stable equilibrium
solutions obtained under the quasi-linear approximation, steady roll solutions and DNS data.

This article is part of the theme issue “Mathematical problems in physical fluid dynamics
(part1)".

1. Introduction

Understanding how a fluid convectively transfers heat between two isothermal horizontal
parallel plates with the upper colder than the lower remains a canonical problem in fluid
mechanics with hugely diverse applications in nature and industrial processes. The most
fundamental issue is predicting the heat flux between the plates realized as a function of the
controlling parameters of the problem: the Rayleigh Ra and Prandtl Pr numbers. The large Ra
limit, where the flow is convectively turbulent, is particularly relevant and in the continuing
absence of any full predictive theory the focus naturally has been on identifying a scaling law
dependence of the Nusselt number, Nu—the ratio of the total heat flux to the conductive heat flux,
with Ra. Generally, laboratory experiments and direct numerical simulations (DNS) of turbulent
convection are consistent with Nu ~ Ra'/3 when the confining plates disallow any flow through
them or the internal heating is limited within the boundary layers [1-5], although there are some
competing claims of higher flux [6-8]: see [9-13] for recent commentaries. Theoretical estimates
have varied from the so-called ‘ultimate’ regime Nu~ Ra'/? [14] (possibly with logarithmic
corrections [15,16] and confirmed as a rigorous upper bound for the Boussinesq equations [17,18])
to the “classical’ scaling Nu ~ Ral/3 predicted by other researchers (Priestley [19] argued that
the heat flux should become independent of the layer separation if the temperature adjustment
occurs entirely over the boundary layers; Howard [20] appealed to a marginally stable boundary
layer idea; and Malkus [21] introduced a maximal heat transport hypothesis—see Spiegel [22]
for a subsequent interpretation and statement of the specific prediction Nu ~ 0.07Ra'/? for the
no-slip case). All exact steady Boussinesq solutions computed so far exhibit this classical scaling
[10,23-27].

One way out of this uncertainty is to try to lower the scaling exponent in the upper bound on
the heat flux to a value below that characterizing the ‘ultimate’ regime (i.e. 1/2). The way to do this
seems clear: incorporate more dynamical constraints from the governing Boussinesq equations
to restrict the set of fields over which the heat flux is maximized, but frustratingly no progress
has been achieved so far [28-33] unless some key simplification is made. For example, it can be
proved that Nu < Ra®/12 in two-dimensional stress-free convection [34,35] and Nu < Ral/3 up to
logarithms in the limit of infinite Pr [36,37]. For three-dimensional convection with no-slip plates
at finite Pr, the best bound is still the nearly-two-decade-old ‘ultimate’ result Nu <1 + 0.026Ral/2
[38] (the corresponding result for stress-free plates being Nu <1 + 0.055Ra/2 [32]; see Goluskin
& Doering [39] for a similar result for rough plates).

One distinct possibility is that the upper bound can not be lowered from the ‘ultimate’
regime scaling because there are perfectly good solutions (e.g. steady states) of the governing
equations that achieve this heat flux scaling. These solutions are, however, never permanently
realized as they are unstable so the observed heat flux is lower. In this case, no amount of extra
constraints derived directly from the governing equations can lower the bound (Childress et
al. [40] gives an example of this predicament in shear flow; see also Fantuzzi et al. [41] for a
discussion). Indeed, a non-trivial lower bound on the heat flux cannot be derived precisely for
this reason—the conductive state remains a solution as Ra — oo, so Nu=1 is possible for all
Ra in a perfect experiment (i.e. in the absence of noise). The concept of stability is clearly the
missing ingredient, yet it is unclear how to rigorously formulate this notion as a constraint.
We nevertheless pursue this idea here but lower our sights somewhat by considering only a
physically plausible stability constraint that is not directly derivable from the equations. The
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ensuing ‘bound’ is then admittedly conditional: it only holds for flow solutions obeying the
stability constraint. Our purpose here, however, is to see if this hybrid approach of rigorous
constraints married with some physical insight actually yields good estimates for the empirically
observed heat flux. Moreover, this approach has additional utility: if the conditional bound is
violated then the extra heuristic constraint is definitely not satisfied by the realized solution (see
Kerswell [42] for a prior study in this spirit examining the relevant turbulent lengthscales active
parallel to the plates in convection and Bouillaut et al. [43] which treats convection with internal
heat sources and sinks in this themed issue).

We explore two stability constraints here using two-dimensional Rayleigh-Bénard convection
as the testing ground. One is used to try to reduce the best existing upper bound [35] and the
other to develop a conditional lower bound on the heat flux. These constraints are both marginal
linear-stability constraints on the mean temperature profile (the mean flow is zero) but, crucially,
are oppositely directed: one tests for the loss of stability (the upper bound) while the other for
the lack of instability (the lower bound). Technically, the approach is to take the mean fields,
ignore the fluctuation fields which sustain them (appealing to some smallness or rapid variation
argument), and then examine whether small disturbances will grow or decay on these mean fields
only (see equations (3.1)—(3.3)). This approach is widely used in the study of turbulent shear flows
to try to rationalize the coherent structures that are observed (e.g. [44,45]). With no mean velocity
field, here the constraint simply requires a linear stability calculation about the mean temperature
field.

In the upper bound problem, the optimizing solution is clearly recognized to have overly
thin boundary layers, which yield artificially elevated heat-flux bounds. These boundary layers
are likely linearly stable yet should destabilize if allowed to thicken further through diffusion
[20,46,47]. Hence, the logical stability constraint to apply here is one of loss of linear stability of
the mean temperature profile: imposing this constraint while simultaneously maximizing the heat
flux should realize the thinnest thermal layer which is marginally stable. From the perspective
of the background method [18], the key point is that requiring the mean temperature profile
to be marginally linearly stable restricts the degeneracy between the background and mean
temperature profiles (6 below) and in so doing changes the objective functional to be minimized
(see the end of §4 for a more detailed discussion). This calculation represents an attempt to
formalize the argument of Howard [20] with the enticing possibility of achieving the ‘classical’
exponent of 1/3.

In the lower bound problem for the heat flux, as noted above, it is well known that the
conductive state remains a valid solution to the governing equations yet, as Ra is increased,
this conduction temperature profile becomes increasingly more linearly unstable and is certainly
not realized in any physical experiment. Hence an obvious stability constraint on the mean
temperature gradient for a lower bound is to require that it is not dynamically unstable, with
marginal stability following if the constraint is active. This constraint on the mean temperature
field is not to be confused with the linear stability of any convective solution (mean+fluctuation
part) with respect to the full governing equations. Any such solution, stable or unstable, is
considered for the lower heat-flux estimate provided the associated mean temperature profile
is not linearly unstable.

The reminder of this paper is organized as follows. The equations governing Rayleigh—
Bénard convection are stated in the next section. In §3, the marginal linear-stability constraint
is introduced and formulated as a Rayleigh quotient. This constraint is then imposed on the
mean temperature profile in §4 and §5 to construct, respectively, the upper and lower heat-flux
estimates (i.e. the conditional bounds). The quasi-linear reduction for two-dimensional Rayleigh—
Bénard convection is also introduced in §5 to verify the lower estimate. Solutions for the upper
estimates, lower estimates and quasi-linear dynamical equilibria are computed numerically using
simple time-stepping methods (see appendix A). Our results, including comparisons with the
exact steady (roll) solutions and data from direct numerical simulations, are presented in §6, and
our conclusions are given in §7.
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2. Problem formulation

We consider the dimensionless Boussinesq equations governing Rayleigh-Bénard convection in
a two-dimensional fluid layer (in the x—z plane) that is heated from below and cooled from
above:

1
ﬁ(atu +u-Vu)=-Vp+ V2u + RazT, (2.1)
V.u=0 (2.2)
and &T +u- VT =V2T, (2.3)

where u=ux + wz is the velocity field, p is the pressure and T is the temperature. In the
dimensionless spatial domain (x,z) € [0, I'] x [0,1], all fields are taken to be I'-periodic in x. At
the lower and upper walls (i.e. z=0, 1), the temperature is held fixed at 1 and 0, respectively, and
the velocity field satisfies no-penetration and stress-free boundary conditions

T=1&w=0u=0 atz=0,T=0&w=0,u=0atz=1, (2.4)
or no-slip boundary conditions
T=1&w=u=0 atz=0, T=0&w=u=0atz=1. (2.5)

Three control parameters govern the system: the domain aspect ratio I", the Prandtl number
Pr=v/k, the ratio of the kinematic viscosity v to the thermal diffusivity « of the fluid, and the
Rayleigh number Ra = agATh3 /(vk), the ratio of driving to damping forces, where « is the thermal
expansion coefficient, g is the gravitational acceleration, AT is the dimensional temperature drop
from the bottom boundary to the top one, and & is the layer thickness. The Nusselt number is
defined as the ratio of the heat transport in the presence of convective motion to the conductive
heat transport in the absence of fluid motion

¥
Nu=1+ lim ! J (wT) dt, (2.6)

t—o00 0

where the angle brackets denote a spatial average, i.e. for some function f

1 1l
fr=— J J fdxdz. (2.7)
I" Jo Jo
The equations of motion imply the equivalent expression [48]
1t
Nu = lim ij |IVT|% dt, (2.8)
f>oo t Jo

where ||f|| = (|f|*)"/2.
The evolution equation for the (negative) scalar vorticity £2 = dw/dx — du/9z can be derived
by taking the curl of equation (2.1)

1
5 (2 +u- V)= V22 + Rad, T, (2.9)

where £2|,—0,1 = 0 for the case of stress-free boundary conditions.

3. Linear-marginality constraint

We begin by introducing the linear stability constraint and expressing the result as a Rayleigh
quotient. The governing equations linearized about the general mean base state, Tp(z) & Up(z) =0
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(so 25 =0) are

36 = —wd,Tg + V26, (3.1)
V-u=0 (32)
1
and 52 = V22 + Rad,o, (3.3)

where 6, u and 2 are small-amplitude disturbances to the temperature, velocity and vorticity
fields, respectively. We introduce a stream function v to describe the fluid motion so that (1, w) =
(0,4, —0yy) and V2 = —£2. Then, the linearized equations (3.1) and (3.3) can be expressed as

30 = 0,99, Tg + V20 (3.4)
and
T, o2 4
5r (V) = —Radnd + Vi, (3.5)
where the above disturbance equations are solved subject to
0=0& ¥y =02y =0 atz=0and1 (3.6)
for stress-free boundaries and
0=0& ¢y =0,=0 atz=0and]1, (3.7)

for no-slip boundaries.

Since the linearized system is autonomous in time, the time-dependence of the small
perturbations can be taken to be proportional to e . The resulting linear-stability eigenvalue
problem is

— V20 — 3, Ty = A0 (3.8)

and

1
Rad0 — Viy = x,ﬁv%ﬁ, (3.9)

where the infinitesimal perturbation decays exponentially in time if the real part of A;, %(4;), is
positive. In matrix form, equations (3.8)—(3.9) become

Lv =AMy, (3.10)
where
V2 3, Ty 0(x,z) L0
L— D ove d M= . 11
|:Raax —v4 v W(x,z) and M 0 Pi V2 3-11)
7

In this investigation, we construct upper and lower heat-flux estimates subject to a marginal
linear-stability constraint on the ground state eigenvalue

RAY) > 0. (3.12)

Below we express the eigenvalue 1; and its complex conjugate using Rayleigh quotients.
Defining the inner product
11l
f.9)=("g = FJ J frgdxdz, (3.13)
0Jo
where f and g are vectors and the superscript ‘+” denotes the complex conjugate, the adjoint of an
operator F is obtained via
(Fv,vh) = (v, Ffvh), (3.14)
where the superscript “t’ denotes the adjoint. The adjoint operators of L and M, i.e. L' and M,
can be obtained using integration by parts, e.g.

(Lv,vh) = (V20" — 8, Tpdy*)0" + (Rad.0* — Viy*)y ')
= (0*(=V?0" — Rady") + y* (0. T — Viyh).
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Hence, the adjoint linear-stability eigenvalue problem is

L'vi =MV, (3.15)
where
—-v2  —Rad 0t (x, 2) I 0
+ x + , +
L |:3zTBax V4] v [1/f+(x,z) and M 0 Piv2 (3.16)
7

Forming the appropriate Rayleigh quotients, we obtain

(L Lvy) 4 (vLWV) (L, _ (3.17)

M= ; = = =
My T v, MV T (M, v

It has been proved by Spiegel [49] that J(A;) =0 when R(1;) <0 for general Tg(z) for stress-
free boundary conditions. As we focus on the marginal case in this study, below we assume
that the ground state eigenvalue A? in equation (3.10) is real for all wavenumbers.! Then, the
linear-marginality constraint (3.12) becomes

A >0. (3.18)

4. Upper heat-flux estimate based on linear marginality

In this section, we construct the upper heat-flux estimate subject to the marginal linear-stability
constraint (3.18) within the Constantin-Doering—Hopf (CDH) variational framework. For brevity
and simplicity, the implementation is performed only for the stress-free case.

We begin by decomposing the temperature field T(x, z, t) into a time-independent background
profile t(z) plus an arbitrarily large perturbation 6(x, z, t)

T(x,z,t)=1(2) +6(x,2,1), 4.1)
where (0) =1, (1) =0 and 6(x, 0, t) =0(x, 1,t) = 0. Then, equation (2.3) becomes
30 +u- VO = V26 4 021 — wd,. (4.2)

Following Whitehead & Doering [34,50], the equations of motion together with the background
decomposition and the stress-free boundary conditions imply

1d, 5

53! = —Pr||Vu||® + PrRa(w6), (4.3)
1

IVTI[> = |V6|1* + J [20:78.0 + (9.7)*]dz, (44)
0

1d 5 , [ _

— 101> =—|IVO|> = | 8,70.0 dz — (wOd,T) (4.5)

2 dt 0

and EaH.QH = —Pr||V$2||® + PrRa(£20,0), (4.6)

where the overline denotes the horizontal average. As the infinite long-time averages of the left-
hand sides of equations (4.3), (4.5) and (4.6) vanish, the Nusselt number Nu (2.8) can also be

I This assumption is also verified using a standard optimization package for both no-slip and stress-free boundary conditions.
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expressed as the following combination [34,51-53]:

1 b
N :Zl—lfgo H Jo {PrRa (4:3) + (44) + c(45) + PrRa 3/2( 6)}

1 (t 1
= lim = -0, 4.7
tim 3| (e e 47)

where g, b and c are scalar ‘balance’ parameters for the enstrophy constraint and global energies,
and

1 T
nu=r—r U (8,7)2dz— b+ (c—2)J 92t6dz — (c — 1)J (8,6) dzi| (4.8)
- 0
and
- DIVPR + " var+ L 02 t corwi— 0o 49
Qe— (C_ )| I + ﬁ3/2| | +E +CZTw _W X 7 ()

where 6 =6 — @ and 6 =0. If we can choose the background profile t(z) and coefficients
a>0,0<b<1and c>1so that Q, >0 for all functions § =6(x,z), 2 = 2(x,z) and w=w(x,z)
satisfying periodic boundary conditions in x and homogeneous Dirichlet conditions in z and
the local constraint V2w = 3,£2, then nu is an upper bound on Nu. Minimizing nu subject to
the energy spectral constraint Q. >0 yields the optimal upper bound in the CDH framework.
It should be noted that the positivity constraint for the quadratic form Q. > 0 is equivalent to the
non-negativity of the ground state eigenvalue 10 of the self-adjoint problem [35]

a

~ c ~
— 2V 4+ —— it + ———— 2 =20, 4.10
+C_1sz+Ra1/2(C_1)x e ( )
20 _, 2b
BT AR R 1/2 3O + dxy = Ae2 (4.11)
V2y + chd,r =0 (4.12)
and V2w — 32 =0, (4.13)

where the Lagrange-multiplier field y(x, z) enforcing the local constraint (4.13) satisfies periodic
boundary conditions in x and homogeneous Dirichlet conditions in z.

Below we impose the marginal linear-stability constraint (3.18) on the mean temperature
profile T=17 + 6 within the CDH framework. The Lagrange functional corresponding to this
optimization problem can be expressed as

IV2|? + b o2 + co,Twh —
Z

_ _ _ q12
L= mu <(C DIVl + zar Ra Ra 1/2

93x9>

- <V(V2w - 8x9)> —dry, (4.14)

where the (positive) term 1/(1 — b) from equation (4.7) is omitted for simplification without
affecting the optimal upper bound as we pursue the marginality of Q,, d is a scalar Lagrange
multiplier related to the linear-stability constraint and A? is assumed to be real as discussed in
§3. The variables 7, 6, a, b and ¢ are determined by minimizing nu, subject to the energy spectral
constraint Q, >0 (i.e. 20> 0) and the linear-stability constraint A? > 0. From §3,

Ly O V20 - 3+ )yl + v (Radity — Vi)
(vi"Mv) o1 6 + i Lv2y) ’

) =d

=Ra YO [-V20, — 8.( + 0)dyn] + v} (Rade6) — VEyy)),  (415)
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where the eigenfunctions 6; and v; and their adjoints for the linear-stability eigenvalue problem
are normalized so that (9;r *91 + 1//;r *(1 /Pr)V24;) = dRa. Then, equation (4.14) can be written as

y b
I 2 AP
L =nu <(c 1)|vé| +R3/2|V(Z| 2o 2 + cdrwh — Rl/z

an9>
- <y(V2w - axsz)> —Ra 1o/ “[=V20; — 3.(t + 0)dey] + v *(Rade6) — V). (4.16)

The first variations (Frechet derivatives) of this functional with respect to 7, 6, 6,2,w,v,a,b,c
6", y!", 6,and y; (i.e. 8£/8t =0, 5L/80 =0, etc.) yield the Euler-Lagrange equations

2e-1)(1-b). —. 1-b, ———
— 32t + ———wh) + — 3.6 axyn) =0, (4.17)
_ (c-2(1-b). — 1-b.
= 020 — ——— ———0.(w0) — ——0:(6" ) =0, (4.18)
v whrt —— 3.2=0 (4.19)
c—1 °¢ Ra1/2(c—1) e ’
211 2 Zb
— W + EQ Ra 1/2 8x9 + 8x)/ 0, (420)
V2y +chd,Tr =0, (4.21)
V2w — 9,2 =0, (4.22)
1
_<W| 2P - - 1/293xe> 0, (4.23)
_ _ 1/2
Ra (f(l)(azr)z dz =1+ (c—2) [ 92e8dz — (c — 1) [L(5.0) dz)
b—1+ =0, (4.24)
(£22)
1 _ _ - -
<1—b[82219 —(3,0)%]1 — (IVO)* + 9w821)> =0, (4.25)
— V20, — 0,(t + 0)dy ¥ =0, (4.26)
Rade — V4 =0, (4.27)
— V29" — Radyyf =0 (4.28)
and 9(t +0)d0] — vyl =0. (4.29)

The relationship between the linear-stability eigenfunctions and their adjoints for marginal modes
will be discussed in the next section. After taking an x-derivative and rescaling, we can rewrite
equation (4.20) as

2b ~  Ra%?
—2V3(0,92) + —Ra"/%0,2 — Rao3) + T 92y =o. (4.30)
Since (2 - §£/52) =0, namely
2a 5 2b
<— R IVR|° — R—Q —+ R 1/2.(28x9 any>=0, (4.31)
hence from equation (4.23), equation (4.31) becomes
Ra%2(y8,82) — 2bRa'/?(£2?
_ Ra¥2(y3:2) — 2bRa2(2%) w32

(Ive21?)

Solving the Euler-Lagrange equations (4.17)-(4.19), (4.30), (4.21), (4.22), (4.32) and (4.24)—(4.27)

subject to the energy spectral constraint A2 > 0 and the linear-stability constraint A? > 0 yields the
optimal mean temperature T = v + 6 and the upper estimate Nu g, = nu.

At this point, it is worth clarifying the effect of the linear stability constraint. Setting c =2

for illustrative purposes, the objective functional to be maximized over @ (to construct an upper
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bound) and minimized over t subject to the energy spectral constraint (4.9) (to obtain the lowest
upper bound) is then simply

=
T1-b

In the absence of the linear stability constraint, the Euler-Lagrange equation (4.18) forces
6 =0. With the linear stability constraint, # can no longer vanish and the objective functional is
necessarily reduced. A reasonable estimate of the size of this reduction can be made by assuming
a piecewise-linear profile for T with boundary layers of thickness O(Ra~1/3) (and zero interior
gradient following Howard [20]) and the background profile with the usual boundary layers of
thickness O(Ra—1/2) to be marginally energy stable. Then

r(azr)z —(0,0)*dz — b} . (4.33)
0

1 1
J (8,7)% — (8,0)*dz :J 3, T(20,7 — 3,T) dz = O(Ra'/3). (4.34)
0 0

implying nu ~ Ral/3 rather than the usual Ral/2. This simple estimate motivated the numerical

treatment of the full variational problem.

5. Lower heat-flux estimate based on linear marginality

Next, we construct the lower heat-flux estimate subject to the marginal linear-stability constraint
(3.18) for both the stress-free and no-slip scenarios. Given the time- and horizontally averaged
temperature profile

T(z) = lim ! r % Jr T(x,z,t)dxdt, (.1)

t—o00 0 0

the perturbation temperature is defined so that 6(x,z,t)=T(x,z,t) —?(z) and 9 =0. Then,
equation (2.8) gives

1t 1 1

Nu = lim :J [IVO)? dt +J (3,T)? dz zJ (8,T)? dz. (5.2)
f»oo t Jo 0 0

A rigorous albeit trivial lower bound of Nu >1 for Rayleigh-Bénard convection is achieved by

the conduction solution T=1 — z. In this section, however, we seek a better lower estimate by

using the marginal linear-stability constraint (3.18) on T to exclude the conduction solution, i.e.

by minimizing | é(aﬁ)z dz subject to A? > 0. To compute the optimal T efficiently, we work directly
with the corresponding Euler-Lagrange equations derived by identifying a Lagrange functional
for this optimization problem

-
L= (8.T)*dz—dr)
0

1 _ ok
= (v Lv)
=| (0.7 dz —d—5—~
oy
(07 (=20 — 8.Toy) + ¥ (Rads0 — V4y))
(9+*9 + wf*%va)

1 _
=| (@.T)*dz—d , (5.3)
0

where the first term in £ is the objective functional to be minimized, d is a scalar Lagrange
multiplier related to the linear-stability constraint and A? is assumed to be real (see §3). We then
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normalize the eigenfunctions by setting (76 + y** & V2y) = d, so equation (5.3) becomes
1 _
c =J 3.7 dz — (67 (=V26 — 8. Tovy) + v (Rad0 — V). (5.4)
0

The first variations of this functional with respect to ?, ot w‘L*, 0 and ¥ (i.e. (SE/(S? =0, 6£/69+* =
0, etc.), respectively, yield the Euler-Lagrange equations

— 202T — 9,6 0, 9) =0, (5.5)
— V29 — 3, Toy =0, (5.6)
Rad 0 — Viy =0, (5.7)
— V%" — Ragyt =0 (5.8)
and 9, To.01 — viyt =0, (5.9)

where equations (5.6) and (5.7) correspond to the marginally stable version of the direct
eigenvalue problem (3.8) and (3.9), and correspondingly for equations (5.8) and (5.9) for the
adjoint problem.

The solution to equations (5.5)—(5.9) can be obtained by expressing

N N
0=> 6u(2)sin(nkx), Y= Vn(2)cos(nkx) (5.10)
n=1 n=1
and
N N
0t => 6@ sin(nkx), ¥ =>"1,}(2) cos(nkx), (5.11)
n=1 n=1

where 1 is the horizontal mode number, N is a suitably large truncation index and k = 2x/I" is the
fundamental wavenumber. Equations (5.6)—(5.9) indicate that

bn=[D* — k1Y) and =6, (5.12)

where D = d/dz. Then substituting equations (5.10)—(5.12) into equations (5.5)-(5.7) gives

.
—2D°T + 5D ’;(nkw,%) =0, (5.13)
— [D? — (nk)*10y + DT (k)i =0 (5.14)
and — [D? — (k)*1*r + Ra(nk)y, = 0. (5.15)

Solving the Euler-Lagrange equations (5.13)—(5.15) subject to the marginal linear-stability

constraint A? >0 yields the optimal mean temperature profile T and the lower estimate Nu; =
Jo(8:T)? dz.

In the next section, we provide a partial validation of our lower heat-flux estimate using
marginally stable thermal equilibria (MSTE) computed under a quasi-linear (QL) reduction
of the two-dimensional Boussinesq equations for Rayleigh—-Bénard convection between no-slip
boundaries [54]. Below we show that the steady-state QL approximation has a mathematical form
similar to the Euler-Lagrange equations (5.5)-(5.7) for the lower heat-flux estimate.

The QL reduction begins with a decomposition of the temperature field into the horizontal-
mean profile T plus a perturbation 6,

T(x,z,t) =T(z,t) + 0(x,z, 1), (5.16)
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with 6 =0. The horizontal mean of the velocity (or the stream function) vanishes due to
incompressibility and symmetry. The horizontal mean of equation (2.3) then can be written as

T — 92T — 0,(69,y) =0. (5.17)

Under the QL approximation, the nonlinear terms u-Vé# and u-Vu are omitted from the
perturbation equations, yielding

36 = 0, Y3, T + V26 (5.18)

and

1
ﬁat(vzw) = —Rad6 + V*y, (5.19)

which corresponds to the eigenvalue problem (3.8)—(3.9) upon setting Tp =T. It is evident that
equations (5.5)—(5.7) for the lower heat-flux estimate and the steady QL approximation (equations
(56.17)—(5.19) with time-derivatives suppressed) share the same perturbation equations and similar

mean equations for T and T. Crucially, Nu; = f(l)(BZT)Z dz is a rigorous lower bound for Nug =
—9,T|,—0 for MSTE under the QL approximation as the latter automatically satisfies the marginal
linear-stability constraint.

6. Results

Following previous investigations [35,53,55,56], we solve the Euler-Lagrange equations derived
in the preceding sections numerically using a simple time-stepping algorithm. The upper heat-
flux estimate proposed in §4 is computed for the stress-free case, while the lower estimate
proposed in §5 is computed for both the stress-free and no-slip cases. To validate the lower
estimate, we also compute marginally stable thermal equilibria under the QL approximation
using a modified time-stepping method for both stress-free and no-slip scenarios. Details of
the numerical methods and data are reported in appendix A. Since these solutions are time-
independent, T will be used below to denote the time- and horizontally-averaged temperature
profile. The subscripts ‘cdh’, ‘cdhl’, ‘ql’ and ‘1" hereafter refer to, respectively, the standard
(rigorous) CDH framework, the CDH framework under the marginal linear-stability constraint
(the upper estimate), the quasi-linear approximation, and the formalism for the lower heat-flux
estimate, which only enforces linear marginality. Note that the results from all these schemes are
Pr-independent.

Figure 1 shows the mean temperature profile T(z), the background profile 7(z), and the
corresponding lowest branch of eigenvalues for Ra = 107 and I" = 2+/2 with stress-free boundary
conditions. The profiles and eigenvalues are computed using the various schemes delineated
above. For piecewise-linear T with homogenized interior (T ~1/2) [34], the energy spectral
constraint A, >0 is stronger than the linear-stability constraint A; >0 and thereby generates a
thinner boundary layer?: accordingly, any temperature profile satisfying the energy spectral
constraint also satisfies the linear-stability constraint. In the CDH scheme, the energy spectral
constraint is imposed on the background profile t(z), which controls the boundary-layer thickness
of T=17+86 (figure la—); however, T develops a slightly unstable gradient in the interior
offsetting the ‘linear stability” of the boundary layer (figure 1a,d). In the CDHL scheme, the linear-
stability constraint produces an indistinguishable change to the background profile t (figure 1b)
so that the boundary layer in T and the energy spectra are negligibly affected (figure 1a,c);
nevertheless, the interior gradient of T is modified to ensure the linear marginality of the entire
z-dependent profile (figure 14,d). In both the CDH and CDHL schemes, 6 in equation (4.8) adjusts
to maximize nu to form an upper bound on Nu. Hence, even upon enforcing the linear-stability
constraint, the CDHL scheme still “‘pursues’ the maximum possible transport by preserving the
boundary-layer structure of T in T. By contrast, the QL reduction and lower-estimate scheme

2At large Ra, the boundary-layer thickness § under the energy spectral constraint scales as Ra~>/12 [34], while § under the
linear-stability constraint scales as Ra=1/3 [20].
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Figure 1. (a) Mean temperature profile T, (b) background profile T and (c,d) ground state eigenvalue A° for Ra = 107 and
I = 2+/2 with stress-free boundary conditions. In (a,b), only half of the profile is plotted due to the antisymmetry about the
mid-plane, and the insets show details of the profiles near the lower wall; in (c,d), AS and Af are computed via solving the
eigenvalue problems (4.10)—(4.13) and (3.8)—(3.9) using T and T, respectively. T and Tare marginally stable at certain critical
wavenumbers nck with filled symbols. (Online version in colour.)

only impose linear marginality on T, yielding a profile with a homogenized interior and thicker
boundary layers (figure 1a,d).

Figure 2 shows the bifurcation of the critical wavenumbers nck as a function of Ra extracted
from the computation of the lower heat-flux estimate. Interestingly, at large Ra the largest two
critical wavenumbers scale as Ral/? for both the stress-free and no-slip cases, consistent with
the scaling of the largest critical wavenumber arising under the steady QL approximation with
no-slip boundary conditions as computed by O’Connor et al. [54]. We note that for steady roll
solutions of the full Boussinesq equations, the rising/falling plumes adjacent to the edges of the
convection cell are of thickness O(Ra~1/3) [23,26]. Under the QL approximation with stress-free
boundary conditions, however, our computations indicate that at I" =2+/2 there exists only one
critical mode at n, =1 up to Ra = 109, i.e. only the single critical wavenumber nck =k =/ V2.

Figure 3 shows the collapse of the temperature profiles near the lower wall (z = 0) at large Ra.
For all schemes, the temperature is strongly homogenized in the interior with T ~ 1/2. For the
upper (CDHL) estimate with stress-free boundary conditions, the boundary layer is dominated
by the energy spectral constraint so the thickness scales as Ra~>/12 (figure 3a), consistent with
the CDH result [35,53]. For the steady QL solution and lower heat-flux estimate, however, the
computations shown in figure 3b—d and those by O’Connor et al. [54] indicate the thickness of
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Figure 2. Bifurcation diagram showing the critical wavenumbers nk of marginal modes from the computation of the lower
heat-flux estimate as a function of Ra. (a) I" = 2+/2 with stress-free boundary conditions; (b) I" = 2 with no-slip boundary
conditions. The critical wavenumbers of the highest two branches scale as Ra'/3 at large Ra. (Online version in colour.)

the temperature profile scales as Ra~1/3 for both stress-free and no-slip boundary conditions,
consistent with the exact steady roll solutions of the full Boussinesq equations [26,27].

Figure 4 shows the dependence of the compensated Nusselt number on Ra for the various
schemes with stress-free boundary conditions. For stress-free Rayleigh-Bénard convection, the
conduction state becomes linearly unstable as Ra exceeds the critical value Ra, = 874 ~ 779 with
the corresponding critical wavelength I =2+/2. As discussed above, in the CDHL scheme the
marginal linear-stability constraint drives an unstable mean temperature gradient in the interior,
instead of thickening the boundary layer. Consequently, the upper estimate N, follows the
5/12 scaling, i.e. Nuggp ~ 0.106Ra%/12, and the reduction in the upper bound is minimal. On the
contrary, simply enforcing the linear-stability constraint on T under the lower-estimate scheme
yields the 1/3 scaling at large Ra, i.e. Nuj ~ 0.137Ra'/3. This lower estimate also holds for the MSTE
solutions under the QL approximation, i.e. Nuy < Nuy, as the latter, by construction, satisfies the
marginal linear-stability constraint; specifically, Nug ~ 0.295Ra'/3 lies slightly more than a factor
of 2 above the lower estimate. Note that although Nuy lies strictly below Nuy, in figure 4, it is an
open question whether the latter is a rigorous upper bound for the heat flux achieved by steady
solutions to the QL system.

To further test the upper and lower heat-flux estimates, we compare these estimates with the
DNS data for ‘non-shearing’ convection with Pr =1 and I" =2 from Goluskin et al. [57], and with
the steady roll solutions for Pr =1 and I" =2+/2 computed using a spectral solver developed by
Wen et al. [26] and predicted using matched asymptotic analysis of the fully nonlinear Boussinesq
equations in the limit Ra — oo by Chini & Cox [23]. At small Ra, the upper bound Nuy, is
saturated by steady rolls; at large Ra, heat transport from both DNS and steady roll solutions
increases towards the 1/3 scaling, within a factor of 2 of the lower estimate. We have confirmed
that T from the steady roll solutions satisfies the linear-stability constraint 20>0, so the Nu
achieved by these solutions must lie between the lower and upper estimates. It should be noted,
however, that in the stress-free case there also exist shearing modes of convection in which the
sheared mean flow breaks the linear-stability constraint: Nu is greatly reduced and violates the
lower estimate [57].

Figure 5 shows the dependence of the compensated Nu on Ra for the various schemes with no-
slip boundary conditions. For no-slip Rayleigh-Bénard convection, the conduction state becomes
linearly unstable as Ra exceeds the critical value Ra.~1708 with the corresponding critical
wavelength I'; ~2.016. The best-known upper bound for finite Pr, Nu ~ 0.026Ral/2 [38], is much
higher than the Nu data reported in figure 5 at large Ra and therefore is not included in the
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Figure 3. Scaled mean temperature profile T near the lower wall. (a—c) I" = 2+/2 with stress-free boundary conditions;
(d) I" = 2 with no-slip boundary conditions. The dashed lines are used to denote the edges of the boundary layers—i.e.
the first local extrema with 3,7 = 0 away from the boundary—for () the upper estimate (CDHL), (b) the QL approximation
and (¢,d) the lower estimate. (Online version in colour.)

plot. As shown in the figure, the steady QL solutions computed here agree precisely with the
computations by O’Connor et al. [54] for Ra e [105,2 x 10°]. As in the stress-free case, at small
Ra the Nu data from the QL solutions, DNS, and steady rolls collapse; at large Ra, Nu from
all four schemes reported in figure 5 scales as Ra!/3, although the convergence for the Nu-
maximizing steady rolls and turbulent convection from DNS occurs at even larger Ra (around
Ra =10'3). Specifically, as Ra — oo, Nu from the MSTE under the QL approximation, the lower
estimate and Nu-maximizing steady rolls lies, respectively, within factors of 3.4, 2.6 and 2.2 of
the DNS data. Obviously, the lower estimate holds for the steady QL solutions, but is violated
by the Nu-maximizing steady rolls and turbulent convection at large Ra, indicating that the mean
temperature profile is not linearly stable for those flows.

The no-slip lower estimate for the heat flux is Nu; = 0.089Ra'/3. This scaling and prefactor are
fully consistent with the work of Currie [46] and Kerr [59] who both studied the linear stability
of boundary-confined temperature profiles with no-slip conditions (these represent trial fields for
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Figure 4. Dependence of compensated Nu on Ra under stress-free boundary conditions for: the upper (circles) and lower
(diamonds) heat-flux estimates, steady QL solutions (triangles), numerical steady-roll solutions (squares) and the corresponding
asymptotic prediction (dashed line) from Chini & Cox [23], DNS results (crosses) from Goluskin et al. [57] and rigorous upper
bounds applying to all flows (solid line) from Wen et al. [35]. I" =2and Pr = 1for DNS dataand I" = 24/2 for other data.
The steady roll solutions are computed at Pr = 1using the spectral solver developed by Wen et al. [26]. (Online version in colour.)

the minimization problem). Currie’s temperature gradient is completely confined to a boundary
layer and gives the better (lower) estimate from above of the minimum: in the limit of vanishing
boundary layer thickness, he found numerically a critical boundary-layer Rayleigh number of
32 which corresponds to Nu = (Ra/32)1/3 ~0.315Ra/? > Nu;. Kerr [59] treats the diffusive error
function profile using a complementary matched asymptotic expansion approach and his results
correspond to Nu = (Ra/7?)Y/3 /2 ~0.330Ral/® > Nu;. Both estimates corroborate the classical
scaling behaviour of our lower estimate.

7. Conclusion

The best rigorous upper bounds on the heat transport in Rayleigh-Bénard convection remain
stubbornly well above data obtained from DNS and laboratory experiments. The notion of
dynamical stability seems to be a critical element missing from existing methods for obtaining
rigorous bounds. Accordingly, in this study, we have introduced a novel hybrid approach
in which a physically plausible—although not rigorously derivable—marginal linear-stability
constraint is incorporated into variational formalisms for estimating the heat transport in
two-dimensional Rayleigh-Bénard convection. Our (conditional) upper heat-flux estimate is
constructed within the CDH variational framework for the stress-free case. A lower estimate
also is obtained for both stress-free and no-slip scenarios. To obtain these conditional bounds,
we first demonstrate how linear marginality can be imposed on the mean temperature profile
through a Rayleigh quotient formulation, and then solve the resulting Euler-Lagrange equations
numerically using efficient time-stepping algorithms. The computational results reveal that the
improvement (i.e. the reduction in the bound) provided by the upper estimate is negligible, i.e.
Nucgn £ Nutean ~0.106Ra>/12. This reflects the fact that the linear-stability constraint is almost
entirely accommodated by an adjustment of the interior gradient of Ty, rendering it slightly
unstable, rather than via the anticipated thickening of the thermal boundary layer. The lower
estimate, however, does successfully capture the classical 1/3 scaling for both stress-free (Nuj ~
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Figure 5. Dependence of compensated Nu on Ra under no-slip boundary conditions for: the lower heat-flux estimate
(diamonds), steady QL solutions (triangles) and numerical steady-roll solutions with Nu-maximizing aspect ratios (squares)
from Wen et al. [27], and DNS results (crosses) from Johnston & Doering [58]. 1™ = 2 for the lower heat-flux estimate and DNS
and I" = 4 for the QL solutions. Pr =1 for DNS and steady rolls. The QL solutions (right-pointing triangles) are computed
using the time-stepping methods developed in this work. Here, the computations are performed up to Ra = 2 x 10° to fill the
gap between the convective onset and the 0’Connor et al. data, which start at Ra = 10° [54], and also to verify our numerical
algorithm at10° < Ra < 2 x 10%, while the high-Ra data can be obtained from 0’Connor et al. [54]. For Nu-maximizing steady
rolls, Nu ~ 0.077Ra'/3 at Ra = 10" [27]; for 2D turbulent convection from DNS, Nu ~ 0.035Ra"/> at Ra > 10° [8,11]. (Online
version in colour.)

0.137Ra'/3) and no-slip (Nu; ~ 0.089Ra'/3) cases consistent with the marginally stable thermal
equilibria (MSTE) computed under the quasi-linear approximation, the steady roll solutions and
DNS data. These upper and lower estimates naturally hold for the MSTE, which must satisfy
the linear-stability constraint, providing a partial validation of our formalism. For the stress-free
case, the steady roll solutions also satisfy the linear-stability constraint, so the lower estimate
underestimates their heat flux. By contrast, for the no-slip case, the linear-stability constraint is
violated by Nu-maximizing steady rolls and by the turbulent convection. While the lower estimate
actually overestimates the heat flux in these cases, it nevertheless exhibits the correct scaling with
Ra, unlike available rigorous bounds.

The success of the lower estimate computed here at least in capturing the exponent if not
the numerical prefactor for realized heat flux is encouraging and begs the question whether
something similar would work in other problems (e.g. shear flow). The challenge is always to
exclude the basic response of the flow which becomes dynamically unstable as the system forcing
is increased. Incorporating a stability criterion in a lower estimate makes sense but, as formulated
here, is somewhat arbitrary. The choice to consider the linear stability of the mean state is a
plausible starting point but really needs to be extended to include more information about the
optimal state. The optimal state is, of course, only an approximation to a steady solution of the
governing equations but the hope is that adding a realistic stability constraint brings it closer to a
realized solution.

Ultimately, the fundamental issue is that current upper bounding techniques discard the time
derivatives in the governing equations by long-time-averaging and hence key information about
dynamic stability is lost. A first stab at re-incorporating that has been made here. Disappointingly,
this has not reflected Howard’s idea of a marginally stable thermal boundary layer to give an

G s ki OB



Downloaded from https://royalsocietypublishing.org/ on 25 April 2022

upper bound with classical scaling although, as some compensation, this scaling has emerged in
our lower estimate. A more targeted stability criterion may well do better. There is no doubt that
a more systematic approach clearly would be highly desirable and that much remains to be done
if bounds are to be brought closer to observations.
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Appendix A. Numerical methods and data

The schemes of upper estimate, quasi-linear approximation and lower estimate proposed in §4
and §5 yield the (Euler-Lagrange) equations with similar structures. These equations admit “true’
and ‘spurious’ solutions which are non-trivial at particular horizontal wavenumbers. The desired
true solution satisfies the energy spectral constraint A > 0 and/or the linear-stability constraint
A? >0 for all horizontal wavenumbers and seems to be unique. The existence of the spurious
solutions is because the perturbation terms become trivial/inactive on some critical mode(s)
(note that zero perturbations always satisfy the equations) so that the ground state eigenvalue
A0 becomes negative there (see detailed discussions in Wen et al. [35,55]). Some investigations use
numerical continuation [32,38] or a semidefinite programming [60-65] to compute the optimal
background profile by imposing the spectral constraint for all wavenumbers. In this work,
we employ simple and efficient time-stepping methods to seek the true solution for various
schemes discussed in §4 and §5. This numerical method was developed in Wen et al. [35,55] and
successfully applied to porous media convection [55,56], Rayleigh-Bénard convection between
stress-free boundaries [35,53], Taylor—Couette flow [66], and plane Couette flow with injection
and suction [67].

For the upper-estimate scheme, we add pseudo-time derivatives 77, 970,370, 97 (0x82), 07 ¢
and 376 into equations (4.17)-(4.19), (4.30), (4.25) and (4.26), respectively,

3L 2e—-1)A-=-b). — 1-b_ ——
drT 4+ =0= 077 - a2+ S (w) + %32(91* ay)=0, (A1)
_sc o (=2 -b), — 1-b
076 - 2L 05076 - 2V + —wir 4 — " 5.2=0 (A3)
_Z= — T =0,
LAY, z 1V T R )™

Ra*2 s 2b <
A7 (3:82) — aTa"E = 0= 07(3:2) — 2V2(3:2) + —Ra"/0:2 — Rao2d

Rad/?

+ ——d7y =0, (A4)
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5L 1 _ .
drc+ ——=0=drc+ <m[822r0 —(3:0)%]1 = (IVO)* + ewazr)> =0 (A5)

3L _
and 376 — Raw7 =0=> 376, — V20, — 3,(t + 0)dy; =0. (A6)
1
For the quasi-linear approximation scheme, directly time-stepping the system yields unsteady
computational results at large Ra. To prompt the time stepping to converge to a stationary
solution, we drop the time-derivative terms and then add the pseudo-time derivative 376 into
the steady version of equation (5.18),

376 — V20 — 3,99, T =0. (A7)

For the lower-estimate scheme, we add pseudo-time derivatives 37T and 970 into equations (5.5)
and (5.6), respectively,

— L = =
arT + 7= 0= 07T — 202T — 3,(61 0,) =0 (A8)

and Y
070 — — % =0= 070 — V20 — 8, To =0. (A9)

Next, we advance the above ‘time-dependent’ equations until converging to a stationary
solution, i.e. the solution of the original time-independent equations. In computations, a Fourier
series in x and a Chebyshev collocation method in z are used for spatial discretization, while
temporal discretization is achieved using the Crank—Nicolson method for the linear terms and
a two-step Adams-Bashforth method for the nonlinear terms. It has been proved by Wen et al.
[35] that in the CDH schemes with fixed balance parameters, the spurious solutions are linearly
unstable in the time-dependent Euler-Lagrange systems for porous media convection, Rayleigh—
Bénard convection between stress-free boundaries and plane Couette flow, while the true solution
is linearly stable and therefore the global attractor. In our computations, to avoid converging to
the spurious solutions, non-zero initial data are given for all potential critical modes (simply we
use T and perturbation terms from the first critical mode at a computed Ra as the initial condition);
and as time evolves, the perturbations at non-critical modes decay to zero and the time-dependent
systems converge to the true solution. To reduce the computations and speed up the convergence,
during the time stepping, we check the spectral constraints and exclude the non-critical modes
at which the perturbations are close to zero or 19> 0(1). In computations of upper heat-flux
estimate, at moderate and large Ra we fix the balance parameters a, b and c for the first thousands
of time steps to obtain a good initial guess of the solution, and then advance all the variables until
reaching the convergence.

At large Ra, the convergence of the time-stepping method may be slow due to the small step
size to maintain the numerical stability. The results from the time-stepping method provide a
good initial guess for Newton’s method with quadratic convergence rate, which is the second
stage of the two-step algorithm proposed by Wen et al. [35,55]. In this study, as the computations
are focused on Ra < 10® or Ra < 10° for various schemes, only the time-stepping method (the first
stage) is used.

Table 1 gives numerical values of the Nusselt number Nu plotted in figures 4 and 5.
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Table 1. Values of Nu plotted in figures 4 and 5 from the upper-estimate scheme (cdh/), the quasi-linear approximation scheme
(g/), the lower-estimate scheme (/), and the steady roll solutions (s). The high-Ra Nu, data for the no-slip case can be found in
0’Connor et al. [54].

stress free no slip
Ra Nutdh, Nuq, NU/ Nu,,, NU/
700 11227 11227 1.0074 . 1 1
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